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A B S T R A C T

Phase I clinical trials are the first-in-human studies that primarily focus on the safety profile of drugs.
Traditionally, the primary aim of a phase I clinical trial is to establish the maximum tolerated dose and
characterize the toxicity profile of the tested agents. As a secondary aim, some phase I studies also include
studies to obtain preliminary efficacy information about the experimental agents. In our research, we consider
the optimal design of experiments in extended phase I clinical trials where both efficacy and toxicity
are measured and the maximum tolerated dose has been established. We represent the response of both
outcomes using a bivariate probit model for correlated responses and propose systematic numerical approaches
based on Semidefinite Programming to address the problem. We construct locally optimal experimental
designs for the following situations: (i) responses with efficacy and toxicity strongly correlated versus non-
correlated, by varying the correlation parameter; (ii) a priori known correlation versus unknown correlation;
(iii) unconstrained versus constrained designs, where the constraints represent safety limits, budget constraints
and probability bounds; (iv) single versus combined drugs. Additionally, we consider four distinct optimality
criteria: D–, A–, E–, and K–optimality. Our methodologies are extensively tested, and we demonstrate the
optimality of the designs using equivalence theorems. To enrich our analysis, an equivalence theorem for the
K–optimality criterion is derived.
1. Motivation

The dose of a drug must be carefully calibrated to achieve effi-
cacy without causing toxicity. Traditionally, safety and efficacy have
been evaluated independently across different trial phases. However,
efficacy and toxicity are often correlated at the individual level. This
paper presents computational tools for designing experiments that si-
multaneously estimate the relationships between dose, efficacy, and
toxicity. Our approach considers the bivariate probit model proposed
by Fedorov and Wu [1] and Fedorov et al. [2].

The high attrition rate observed in phase III trials is widely at-
tributed to inadequate dose selection [3]. Typically, phase I trials focus
on assessing the safety of the test drug and determining the maximum
tolerable dose (MTD) based solely on toxicity. In contrast, phase II trials
evaluate the efficacy of the test drug [4]. However, under various cir-
cumstances, employing a joint model for toxicity and efficacy to select
the optimal dose and analyze their correlation can be advantageous.
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Several joint modeling strategies have been explored in the literature,
see Thall and Cook [5]. In the context of an HIV trial, O’Quigley et al.
[6] proposed a model to describe the relationship between dose and
success rate. Thall and Russell [7] integrated toxicity and efficacy into
a single trinomial variable and employed a proportional odds (PO) re-
gression model. Alternatively, Zhang et al. [8] used a continuation-ratio
(CR) model instead of the PO model. Braun [9] introduced a bivariate
distribution for correlated binary outcomes, including a parameter to
represent the association between the two outcomes. Dragalin and
Fedorov [10] modeled the distribution of bivariate binary endpoints
using either Gumbel bivariate logistic regression or the Cox bivariate
binary model. The bivariate probit model of Fedorov and Wu [1] and
Fedorov et al. [2] has the advantage that it can model the correlation
between the two outcomes. Dragalin et al. [11] applied this model to
combinations of drugs.

These modeling methods are suitable for binary endpoints and
effectively model the relationship between dose and the probability of
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efficacy and toxicity. Continuous outcome models have also been ex-
plored [12,13]. Recently, adaptive designs that integrate both efficacy
nd toxicity data have been investigated [14,15], along with Bayesian
esigns for mixed types of responses [16].

Notwithstanding the importance of dose finding, challenges per-
sist. Despite advances in optimization algorithms and computational
capabilities, systematic tools for designing experimental trials remain
lacking. Recent literature provides a broad overview of optimization
techniques and methodologies that can be used to construct optimal
experimental designs. However, their application in clinical trials to
simultaneously capture efficacy and toxicity outcomes has been largely
overlooked. Integrating various constraints (such as safety and bud-
getary) into the design is particularly important when maximizing
information within the limitations of the trial scenario. Our paper aims
to address this gap. We study optimal experimental designs for clinical
trials where both outcomes are measured as binary responses, and the
goal is to minimize the confidence regions of the parameter estimates
in the models of these outcomes. We assume that the maximum tol-
erated dose has already been established. We propose systematic tools
based on Semidefinite Programming (SDP) to solve the optimization
problems. We focus on finding locally optimal designs for normalized
dose domains where the bivariate model of outcomes follows the probit
class [17].

In our investigation, we focus on the most commonly used opti-
mality criteria: D–, A–, E–, and K–optimality. These criteria are chosen
for their simplicity, practical importance and ease of translation into
tractable SDP formulations. The first three criteria are primarily used
for prediction purposes, while the K–criterion aims to balance pre-
diction with the minimization of ill-conditioning in the generalized
least squares problem arising in parameter estimation. We employ
equivalence theorems to verify the optimality of the designs found.

1.1. Novelty statement and organization

This paper offers several novel contributions:

(i) an automated numerical method for identifying locally optimal
experimental designs for efficacy-toxicity responses, modeled
using the bivariate probit framework;

(ii) application of the proposed computational approach to vari-
ous scenarios, including: a. varying the correlation between the
two outcomes; b. employing different optimality criteria; and c.
adjusting the number of active agents combined in the trials;

(iii) incorporation of constraints related to safety limitations, such as
toxicity thresholds or budgetary restrictions; and

(iv) derivation of an equivalence theorem for the K–optimality crite-
rion, which, together with other equivalence theorems, provides
a means of verifying the optimality of the identified designs.
Similar to the E–optimality criterion, this equivalence theorem
applies to Fisher Information Matrices where the eigenvalues
have multiplicity 1 [18]. To the best of our knowledge, this
theoretical result is novel.

The paper is organized as follows. Section 2 introduces the back-
round and notation used to formulate the problem of finding op-
imal designs for bivariate binary outcomes that follow the probit
odel. Additionally, this Section covers the fundamentals of Semidefi-
ite Programming used to handle these problems numerically. Section 3

presents the formulations used for determining optimal designs of
experiments of both unconstrained and constrained classes. The appli-
cation of these algorithms to a dose–response problem is detailed in
Section 4. Section 5 offers a review of the formulations and provides a
ummary of the results obtained. The Appendix A contains the proof of
he equivalence theorem for K–optimality criterion, used to check the
ptimality of the designs found numerically. The Appendix B includes
he SDP formulations for D–, A–, and E–optimality criteria.
 𝜂

2 
2. Notation and background

In our notation bold face lowercase letters represent column vectors,
bold face capital letters stand for continuous domains, blackboard
bold capital letters are used to denote discrete domains and capital
etters are adopted for matrices. Finite sets containing 𝜄 elements are

compactly represented by [[𝜄]] ≡ {1,… , 𝜄}. The transpose operation of
a matrix or vector is represented by ‘‘⊺’’, and the trace of a matrix by
t r (∙).

In Section 2.1, we present the efficacy-toxicity model. In Section 2.2
we introduce the basics of model-based optimal design of experiments.
Following that, in Section 2.3, we provide the fundamental aspects of
Semidefinite Programming.

2.1. Efficacy-toxicity model

Here, we introduce the probit model used to represent the bivari-
ate efficacy-toxicity response, see Fedorov and Leonov [19, Chap. 6]
nd Fedorov et al. [2]

Let 𝐱 ∈ 𝐗 represent the vector of doses administered in a drug
response study involving a set of individuals. To simplify the notation,
we consider the administration of a single drug. The extension to a
drug combination is straightforward. Each element of 𝐱, denoted by 𝑥𝑖,
represents a single scaled dose, while the compact domain of possible
doses is given by 𝐗 ≡ [0, 1]. Each patient receives a dose 𝑥𝑖 ∈ 𝐗, where
𝑖 ∈ [[𝑛𝑑 ]], and 𝑛𝑑 represents the number of distinct doses used in the
study. The same dose may be administered to multiple individuals;
that is, the response to 𝑥𝑖 is replicated 𝑛𝑖 times, where 𝑛𝑖 can vary
cross dose levels. If we extend the study to the administration of two
ombined drugs, the dose at the 𝑖t h level is represented as a two-row
ector 𝗑𝑖 ∈ [0, 1]2 containing the doses of the two combined drugs. In
his case, the full set of doses is given by 𝐱 = (𝗑1,… , 𝗑𝑖,… , 𝗑𝑛𝑑 ).

Now, let us consider the binary variable 𝑌 (with possible values
0/1) indicating the response with respect to the efficacy of a given
dose 𝑥𝑖 ∈ 𝐗. Here 𝑌 = 0 indicates that the dose has no efficacy on
the individual and 𝑌 = 1 the opposite. Similarly, 𝑍 is a binary variable
indicating the response to the toxicity of the same dose where 𝑍 = 0
indicates that the dose has no toxicity on the individual and 𝑍 = 1 the
pposite. Thus, the combined response probability of having 𝑌 = 𝑦 and

𝑍 = 𝑧 with 𝑦, 𝑧 ∈ {0, 1} is

𝑝𝑦,𝑧(𝑥𝑖,𝜽) = P(𝑌 = 𝑦, 𝑍 = 𝑧|𝑥𝑖,𝜽), (1)

where 𝜽 ∈ 𝛩 is the vector of parameters included in the model
representing both the efficacy and toxicity outcomes, 𝛩 ∈ R𝑛𝜃 is the
ompact domain including all the possible values of parameters, 𝑛𝜃

stands for the number of parameters in both models and may include
he correlation parameter relating them in case it is unknown a priori.
(∙) represents the probability of the combined response in terms of

efficacy and toxicity of administering the dose 𝑥𝑖. In case we consider
the case of two combined drugs 𝑥𝑖 is replaced by 𝗑𝑖

The parameter sets for the efficacy and toxicity models are denoted
as 𝜽1 ∈ 𝛩1 and 𝜽2 ∈ 𝛩2, respectively. The full parameter set is given by
= 𝜽1 ⊕ 𝜽2, where ⊕ represents concatenation. The parameter space

s defined as 𝛩 = 𝛩1 × 𝛩2 ⊆ R𝑛𝜃1 × R𝑛𝜃2 , where 𝑛𝜃1 and 𝑛𝜃2 are the
imensions of 𝜽1 and 𝜽2, respectively.

Efficacy outcomes are represented by 𝑦 = 1 (efficacious) or 𝑦 = 0
(non-efficacious), and toxicity outcomes are 𝑧 = 1 (non-toxic) or 𝑧 = 0
(toxic). The probability of observing efficacy, toxicity, efficacy without
toxicity, efficacy with toxicity, no efficacy without toxicity, and no
fficacy with toxicity are denoted by 𝑝𝑦=1,𝑧∈{0,1}, 𝑝𝑦∈{0,1},𝑧=1, 𝑝𝑦=1,𝑧=0,
𝑦=1,𝑧=1, 𝑝𝑦=0,𝑧=0, and 𝑝𝑦=0,𝑧=1, respectively. The efficacy and toxicity

response models for a dose 𝑥𝑖 are given by

𝜂1(𝑥𝑖,𝜽1) = 𝜽⊺1 ⋅ 𝐟1(𝑥𝑖) (2a)

(𝑥 ,𝜽 ) = 𝜽⊺ ⋅ 𝐟 (𝑥 ). (2b)
2 𝑖 2 2 2 𝑖
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where 𝐟1(∙) and 𝐟2(∙) are vectors of polynomial functions of the co-
variates of interest, included in efficacy and toxicity response models,
respectively.

These probabilities are modeled using the probit family [20,21] as:

𝑝𝑦=1,𝑧∈{0,1}(𝑥𝑖,𝜽) = 𝛷1[𝜂1(𝑥𝑖,𝜽1)], (3a)

𝑦∈{0,1},𝑧=1(𝑥𝑖,𝜽) = 𝛷1[𝜂2(𝑥𝑖,𝜽2)], (3b)

𝑝𝑦=1,𝑧=1(𝑥𝑖,𝜽) = 𝛷2[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝛴], (3c)

𝑝𝑦=1,𝑧=0(𝑥𝑖,𝜽) = 𝛷1[𝜂1(𝑥𝑖,𝜽1)] − 𝑝𝑦=1,𝑧=1(𝑥𝑖,𝜽), (3d)

𝑝𝑦=0,𝑧=1(𝑥𝑖,𝜽) = 𝛷1[𝜂2(𝑥𝑖,𝜽2)] − 𝑝𝑦=1,𝑧=1(𝑥𝑖,𝜽), (3e)
𝑝𝑦=0,𝑧=0(𝑥𝑖,𝜽) = 1 −𝛷1[𝜂1(𝑥𝑖,𝜽1)] −𝛷1[𝜂2(𝑥𝑖,𝜽2)] + 𝑝𝑦=1,𝑧=1(𝑥𝑖,𝜽).

(3f)

Here, 𝛷1[𝑎] is the standard univariate normal CDF evaluated at 𝑎,
nd 𝛷2[𝑏, 𝑐 , 𝛴] is the bivariate normal CDF at (𝑏, 𝑐) when both response

variables are correlated by matrix 𝛴 where

𝛴 =
(

1 𝜌
𝜌 1

)

,

𝜌 being the correlation between the response variables.
The number of parameters of the two-outcome model is 𝑛𝜃 , each

f the parameters being constrained to a compact domain, i.e. 𝜃𝑖 ∈
𝜃𝐿𝑖 , 𝜃𝑈𝑖 ], where 𝜃𝐿𝑖 is the lower bound for parameter 𝑖, and 𝜃𝑈𝑖 the
pper bound. Consequently, the Cartesian domain containing all the
ombinations of parameters is Θ ≡ ⊗𝑛𝜃

𝑖=1[𝜃
𝐿
𝑖 , 𝜃𝑈𝑖 ] ⊂ R𝑛𝜃 . To distinguish

etween the generic vector 𝜽 and a singleton realization vector of Θ,
he latter is designated by 𝐪0.

The model, defined by Eqs. (2)–(3), can be compactly represented
as

E(𝐲) = (𝐱,𝜽), (4)

where 𝐲 denotes the observed binary outcomes (0 or 1) for efficacy and
oxicity, 𝐱 represents the set of dose level(s) of each drug, and 𝜽 is the
omplete parameter set governing the models for both outcomes.

To summarize, the primary goal of optimal designs is to estimate
he parameters of the models for both outcomes by measuring the
robability of toxicity and efficacy in a group of individuals tested with
 set of doses. These doses are optimally chosen and may consist of a
ingle active principle or a combination of active principles.

2.2. Optimal design of experiments

We revisit model (2)–(3) and consider a continuous design with 𝓁
support points located at 𝐱1, 𝐱2,… , 𝐱𝓁 . In practice, 𝓁 corresponds to
he number of distinct doses in the trial, denoted 𝑛𝑑 . However, we

use a different notation here because 𝓁 is treated as a variable to
be determined in the optimal design of experiments, whereas 𝑛𝑑 is
assumed to be known for planning purposes in trials. Furthermore, we
represent the support points as vectors, accommodating both scenarios:
(i) single-drug trials, where 𝐱 consists of a single element, and (ii)
two-drug trials, where 𝐱 includes two elements.

Continuous designs, also known as approximate designs, are em-
ployed to represent experimental setups as the number of observations,

, approaches infinity (𝑁 → +∞). In this setting, the weights
re continuously distributed over the interval [0, 1], representing the
roportion of total observations allocated to each support point.
ontinuous designs offer several advantages. They provide a unified

ramework for identifying optimal designs, especially in model-based
ptimal design of experiments, where the design criterion is often a
oncave or convex function over the set of approximate designs [22].

On the other hand, exact designs are used when 𝑁 is finite, focusing on
determining the exact number of experiments allocated to each support
point. In this paper, we focus on continuous designs.
 a

3 
In the context of continuous designs, the weights at the support
oints are denoted as 𝑤1, 𝑤2,… , 𝑤𝓁 , where 𝓁 ⩾ 𝑛𝜃 . To implement the

design for a total of 𝑁 individuals, approximately 𝑁 × 𝑤𝑘 individuals
are allocated to each support point 𝐱𝑘 for every 𝑘 ∈ [[𝓁]]. This allocation
ensures that the total number of individuals is maintained, such that
𝑁 ×𝑤1 +⋯ +𝑁 ×𝑤𝓁 = 𝑁 , with each term being an integer.

For models with 𝑛𝑐 control factors, where each factor corresponds to
the dose of a different drug, the 𝑘t h support point is 𝗑⊺𝑘 = (𝑥𝑘,1,… , 𝑥𝑘,𝑛𝑐 ).
n the single-drug case, this simplifies to 𝑥𝑘. For clarity, we present the
ingle-drug case, noting that replacing 𝑥𝑘 with 𝗑⊺𝑘 extends the results to

multiple drugs.
The continuous design space 𝐗 is replaced by a discrete set, denoted

as X[[𝑛𝑥]], consisting of 𝑛𝑥 candidate design points sampled from 𝐗, often
referred to as doses in this context. The continuous design 𝜉 comprises

columns, each represented as (𝑥⊺𝑘, 𝑤𝑘)⊺ for 𝑘 ∈ [[𝓁]], subject to the
onstraint ∑𝓁

𝑘=1 𝑤𝑘 = 1. It is important to note that the number of
support points, 𝓁, is determined by the design algorithm. In practice, 𝓁
corresponds to the number of support points among the 𝑛𝑥 candidate
points (or doses) for which 𝑤𝑘 > 0.

The theoretical foundations of the optimal design of experiments
were established by Kiefer [23] and Kiefer and Wolfowitz [24], and we
build on these principles to present the basic concepts. In the following
sections, we define 𝛯 ≡ X[[𝑛𝑥]]×𝛶 as the space of feasible 𝓁-point designs
ver 𝐗, where 𝛶 is the 𝑛𝑥 − 1 simplex in the domain of weights, given
y

𝛶 =

{

𝑤𝑘 ∣ 𝑤𝑘 ⩾ 0,∀𝑘 ∈ [[𝑛𝑥]],
𝑛𝑥
∑

𝑘=1
𝑤𝑘 = 1

}

.

The information resulting from an experimental design is mea-
ured by its Fisher Information Matrix (FIM). For single drug case the
lements of the normalized FIM are given by

(𝜉 ,𝜽) = ∫𝜉∈𝛯
𝑀(𝐱,𝜽) d(𝜉) =

𝓁
∑

𝑘=1
𝑤𝑘 𝑀(𝑥𝑘,𝜽), (5)

where (𝜉 ,𝜽) is the global FIM from the design 𝜉 and 𝑀(𝑥𝑘,𝜽) is the
ocal FIM from point 𝑥𝑘. For the model (4) let

𝑀(𝑥𝑘,𝜽) =
𝜕(𝐱,𝜽)
𝜕𝜽⊺

|

|

|

|𝑥𝑘
⋅
𝜕(𝐱,𝜽)

𝜕𝜽
|

|

|

|𝑥𝑘
(6)

where 𝜕(𝐱,𝜽)∕𝜕𝜽⊺|𝑥𝑘 is the vector of derivatives of (𝐱,𝜽) with respect
to 𝜽 at 𝑥𝑘.

Consequently, the FIM for a single observation when 𝜌 is known and
𝜽 ∈ R𝑛𝜃 is

𝑀(𝑥𝑖,𝜽) =𝐶1[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖]⋅
⋅ 𝐶2[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖]⋅
⋅ (𝑃 − 𝐩 ⋅ 𝐩⊺)−1 ⋅ 𝐶2[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖]⊺⋅
⋅ 𝐶1[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖]⊺ (7a)

𝐶1[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖] =
(

𝜙1[𝜂1(𝑥𝑖,𝜽1)] ⋅ 𝐟1(𝑥𝑖) 𝟎𝑛𝜃1
𝟎𝑛𝜃2 𝜙1[𝜂2(𝑥𝑖,𝜽2)] ⋅ 𝐟2(𝑥𝑖)

)

(7b)

𝐶2[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖] =
(

𝛷1(𝑢1) 1 −𝛷1(𝑢1) −𝛷1(𝑢1)
𝛷1(𝑢2) −𝛷1(𝑢2) 1 −𝛷1(𝑢2)

)

(7c)

𝑢1 =
𝜂2(𝑥𝑖,𝜽2) − 𝜌 ⋅ 𝜂1(𝑥𝑖,𝜽1)

√

1 − 𝜌2
(7d)

𝑢2 =
𝜂1(𝑥𝑖,𝜽1) − 𝜌 ⋅ 𝜂2(𝑥𝑖,𝜽2)

√

1 − 𝜌2
(7e)

𝑃 =

⎛

⎜

⎜

⎜

⎝

𝑝𝑦=1,𝑧=1 0 0
0 𝑝𝑦=1,𝑧=0 0
0 0 𝑝𝑦=0,𝑧=1

⎞

⎟

⎟

⎟

⎠

(7f)

𝐩 =(𝑝𝑦=1,𝑧=1, 𝑝𝑦=1,𝑧=0, 𝑝𝑦=0,𝑧=1)⊺ (7g)

Here, 𝜙1[𝑎] denotes the value of the univariate standard normal prob-
bility density function at 𝑎. 𝑃 is a diagonal matrix containing the
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probabilities defined in Eqs. (3c)–(3e), and 𝐩 is the corresponding
olumn vector. 𝐶1[∙] and 𝐶2[∙] are matrices of dimensions 𝑛𝜃 × 2 and
 × 3, respectively.

For unknown values of 𝜌 the FIM has an additional column and row,
nd is:

𝑀(𝑥𝑖,𝜽) =
(

𝐶1[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥] ⋅ 𝐶2[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖]
𝜑(𝑥𝑖,𝜽, 𝛴) −𝜑(𝑥𝑖,𝜽, 𝛴) −𝜑(𝑥𝑖,𝜽, 𝛴)

)

⋅

⋅ (𝑃 − 𝐩 ⋅ 𝐩⊺)−1⋅

⋅
(

𝐶1[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖] ⋅ 𝐶2[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝑥𝑖]
𝜑(𝑥𝑖,𝜽, 𝛴) −𝜑(𝑥𝑖,𝜽, 𝛴) −𝜑(𝑥𝑖,𝜽, 𝛴)

)⊺

,

(8a)

𝜑(𝑥𝑖,𝜽, 𝛴) = 𝜙2[𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝛴]. (8b)

𝜙2(𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2), 𝛴) represents the bivariate normal probability
distribution at [(𝜂1(𝑥𝑖,𝜽1), 𝜂2(𝑥𝑖,𝜽2))⊺] with correlation matrix 𝛴 and
𝜑(𝑥𝑖,𝜽, 𝛴) an auxiliary variable used to represent it compactly. The
remaining variables included have the same meaning as that in (7).

Since 𝜽̂ is asymptotically normally distributed, the volume of the
asymptotic confidence region for 𝜽 is inversely proportional to the
square root of det [(𝜉 ,𝜽)]. Therefore, maximizing the determinant of
the FIM minimizes the volume of this confidence region. Various design
criteria aim to optimize the FIM in different ways, typically formulated
as convex functions of the FIM. When 𝜽 is fixed, the locally D–, A–, E–,
nd K–optimal designs are defined as follows:

𝜉D = ar g max
𝜉∈𝛯

{det [(𝜉 ,𝜽)]}1∕𝑛𝜃 , (9a)

𝜉A = ar g min
𝜉∈𝛯

{

t r [(𝜉 ,𝜽)−1]} , (9b)

𝜉E = ar g max
𝜉∈𝛯

{

𝜆min[(𝜉 ,𝜽)]} , (9c)

𝜉K = ar g min
𝜉∈𝛯

{𝜅[(𝜉 ,𝜽)]} , (9d)

where 𝜆min(∙) denotes the smallest eigenvalue of the FIM, and 𝜅(∙)
is the condition number, defined as the ratio of the largest to the
smallest eigenvalue. The optimal designs, D–, A–, E–, and K–optimal,
are obtained by solving the respective optimization problems in (9).

To compare the 𝛹 -optimal efficiency, where 𝛹 ∈ {D,A,E,K}, as
an indicator of the information content extracted from two different
designs, denoted 𝜉𝛹 and 𝜉ref

𝛹 (with the latter being the reference design),
e use the following formulas:

EffD =

{

det [(𝜉𝐷,𝜽)]
det [(𝜉ref

𝐷 ,𝜽)]

}1∕𝑛𝜃

, (10a)

EffA =
t r [−1(𝜉ref

𝐴 ,𝜽)]
t r [−1(𝜉𝐴,𝜽)]

, (10b)

EffE =
𝜆min[(𝜉𝐸 ,𝜽)]
𝜆min[(𝜉ref

𝐸 ,𝜽)]
, (10c)

EffK =
𝜅[(𝜉ref

𝐾 ,𝜽)]
𝜅[(𝜉𝐾 ,𝜽)]

. (10d)

Since these criteria 𝛹 are convex or concave over the space of
information matrices, the global optimality of any design 𝜉 ∈ 𝛯 can
e verified using equivalence theorems (see, for instance, Whittle [25],

Kiefer [26] and Fedorov [22]). The convexity of the K–optimality cri-
terion is discussed in Yue et al. [27]. These theorems are derived from
onsiderations of directional derivatives and share a general structure,
ith each convex criterion exhibiting its specific form. A design 𝜉 ∈
is considered 𝛹 -optimal if the corresponding function 𝜐𝛹 (𝐱,𝜽), for
∈ {D,A,E,K}—commonly referred to as the dispersion function—is

ounded above by zero and achieves this bound at the support points
of 𝜉. The dispersion functions are as follows:

𝜐D(𝐱,𝜽) = t r [𝑀(𝐱,𝜽) ⋅(𝜉D,𝜽)−1
]

− 𝑛𝜃 ⩽ 0, ∀𝐱 ∈ 𝐗, (11a)
𝜐A(𝐱,𝜽) = t r [𝑀(𝐱,𝜽) ⋅(𝜉A,𝜽)−2

]

− tr[(𝜉A,𝜽)−1] ⩽ 0, ∀𝐱 ∈ 𝐗,

(11b)

4 
𝜐E(𝐱,𝜽) = t r [𝑀(𝐱,𝜽) ⋅𝑄min(𝜹𝑥,𝜽)
]

− 𝜆min[(𝜉E,𝜽)] ⩽ 0, ∀𝐱 ∈ 𝐗,
(11c)

𝜐K(𝐱,𝜽) = 𝜅[(𝜉K,𝜽)] −
t r [𝑀(𝐱,𝜽) ⋅𝑄max(𝜹𝑥,𝜽)

]

t r [𝑀(𝐱,𝜽) ⋅𝑄min(𝜹𝑥,𝜽)
] ⩽ 0, ∀𝐱 ∈ 𝐗, (11d)

where 𝐱 is a generic point in R𝑛𝑐 , and 𝑄min(𝐱,𝜽) = 𝐯min(𝐱,𝜽) ⋅ 𝐯
⊺
min(𝐱,𝜽)

nd 𝑄max(𝐱,𝜽) = 𝐯max(𝐱,𝜽)⋅𝐯
⊺
max(𝐱,𝜽) are 𝑛𝜃×𝑛𝜃 matrices. Here, 𝐯min(𝐱,𝜽)

nd 𝐯max(𝐱,𝜽) are the eigenvectors of the FIM associated with the
inimum and maximum eigenvalues, 𝜆min and 𝜆max, respectively, 𝜉D,

A, 𝜉E and 𝜉K are the optimal designs obtained using D–, A–, E– and
–optimality criteria. Since the result for the K–optimality criterion is
ovel, it is demonstrated in Appendix A.

2.3. Semidefinite Programming

In this Section, we introduce the fundamentals of this class of
convex optimization methods, which are used to solve optimal design
f experiments problems. Specifically, we focus on the case where the
iscretized design domain X[[𝑛𝑥]] consists of 𝑛𝑥 candidate experimental
oints.

Let S𝑛𝜃+ be the space of 𝑛𝜃 × 𝑛𝜃 symmetric positive semidefinite
matrices, and S𝑛𝜃 the space of 𝑛𝜃 × 𝑛𝜃 symmetric matrices. A convex
set 𝐒 ∈ R𝑛𝜃 is semidefinite representable (SDr) if pr oj𝐒exp (𝜻), ∀𝜻 ∈ 𝐒,
interpreted as the projection 𝜻 on to a higher dimensional set 𝐒exp, can
be described by Linear Matrix Inequalities (LMIs).

In turn, a convex (or concave) function 𝜑 ∶ R𝑚1 ↦ R is SDr if
nd only if the epigraph of 𝜑, {(𝑡, 𝜻) ∶ 𝜑(𝜻) ⩽ 𝑡}, or the hypograph,
(𝑡, 𝜻) ∶ 𝜑(𝜻) ⩾ 𝑡}, respectively, are SDr and can be represented

by LMIs [28,29]. The optimal values, 𝜻 , of SDr functions are then
formulated as semidefinite programs of the form

max
𝜻

{

𝐝⊺ 𝜻 ,
𝑚1
∑

𝑖=1
𝜁𝑖 𝑀𝑖 −𝑀0 ⪰ 0

}

. (12)

In our design context, 𝐝 is a vector of known constants that depends
on the specific design problem. The matrices 𝑀𝑖, for 𝑖 ∈ {0,… , 𝑚1},
represent local Fisher Information Matrices and other matrices derived
from reformulating the functions 𝜑(𝜻) into LMIs. The notation 𝑀0 ⪰ 0
indicates that the matrix 𝑀0 must be semidefinite positive for the
solution to be feasible.

The decision variables, contained in the vector 𝜻 , include the
eights 𝑤𝑖 for 𝑖 ∈ [[𝑛𝑥]] that define the optimal design, as well as other

auxiliary variables needed for the formulation. The design problem
is to calculate the optimal design for a pre-specified set of candidate
experiments X[[𝑛𝑥]], consisting of points 𝐱𝑖 for 𝑖 ∈ [[𝑛𝑥]]. This is solved
using the formulation in (12), subject to the linear constraints on 𝐰: (i)
𝐰 ⩾ 0, and (ii) 𝟏⊺𝑛𝑥𝐰 = 1, where 𝟏𝑛𝑥 is the unit column vector of length
𝑥. The problem in (12) is a classic SDP problem, incorporating LMIs

that represent conic constraints.
Ben-Tal and Nemirovski [28] provide a list of SDr functions useful

for solving continuous optimal design problems with SDP formulations,
see Boyd and Vandenberghe [29, §7.3]. Recently, Sagnol [30] showed
hat each criterion in the Kiefer class of optimality criteria is SDr for all

rational values of 𝜔 ∈ (−∞, 0] and general Semidefinite Programming
formulations exist for them. Here, 𝜔 is the coefficient in the Kiefer
general class of criteria 𝛹𝜔 [26]. Notice that A–optimality corresponds
to 𝜔 = −1, E–optimality to 𝜔 → −∞ and D–optimality to 𝜔 → 0.
ractically, the problem of finding optimal approximate experimental
esigns for the most common convex (or concave) criteria can be
ormulated as a Semidefinite Programming problem falling into the
eneral representation (12) complemented with the constraints on 𝐰,

see Vandenberghe and Boyd [31] and Duarte and Wong [32] among
others.
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3. Formulations for finding optimal designs of experiments

In this Section, we introduce the proposed formulations for finding
he alphabetic optimal experimental designs used to allocate doses to
ndividuals. First, in Section 3.1, we discuss unconstrained problems.

Then, in Section 3.2, we generalize the formulation to constrained
scenarios which are important in the application to the design of
linical trials.

We consider the regression model (4). A uniformly spaced grid is
sed for discretization purposes, with step size 𝛥𝑥. Consequently, the

continuous design space 𝐗 of the regressors is approximated by a finite
discrete set of candidate points, X[[𝑛𝑥]]. Here, 𝑛𝑥 = 1 + (𝑥𝑈−𝑥𝐿)∕𝛥𝑥, where
𝑥𝑈 and 𝑥𝐿 are the upper and lower bounds of 𝐗, respectively. After
discretizing the design space, the local Fisher Information Matrices
at each candidate point are constructed. For nonlinear models, the
singleton vector of parameters used to construct the FIMs is 𝐪0.

The same strategy is applied to two-dimensional covariates in drug
ombination setups. In this case, the candidate points result from the
iscretization of the dimensions representing the doses of both drugs,
orresponding to the nodes of the grid.

3.1. Finding alphabetic unconstrained locally optimal experimental designs

This Section presents the formulations for finding locally optimal
alphabetic designs via Semidefinite Programming. While SDP ensures
the global optimum for a grid of discrete candidate points, it can be
computationally challenging if the number of candidate experiments
is large. The SDP formulations for all criteria follow the general form
(12). The formulations for D–, A–, and E–optimality criteria are state–
f-the-art and can be found in Vandenberghe and Boyd [31] and Boyd
nd Vandenberghe [29]. Detailed formulations for the D–, A– and
–optimality criteria, which are currently considered state–of-the-art,
re provided in Appendix B. The formulation for K–optimality is less

familiar and is therefore analyzed here in more detail. The K–optimality
criterion minimizes the condition number of the Fisher Information
Matrix by choosing the optimal experimental design points, see the
representation in (9d).

The concept of 𝐾-optimal designs was introduced by Ye and Zhou
33], who demonstrated that the condition number of the FIM—a natu-

rally positive semidefinite matrix—is a smooth function for polynomial
egression models with design intervals constrained to [−1,+1]. This
nsight enables the formulation of 𝐾–optimal designs as a semidefinite
rogramming (SDP) problem within the space of regressors.

The 𝐾-optimality criterion is defined as the ratio
𝜆max[(𝜉 ,𝜽)]∕𝜆min[(𝜉 ,𝜽)], where 𝜆max and 𝜆min are the largest
nd smallest eigenvalues of the FIM, respectively. While 𝜆max is
on-convex and 𝜆min is concave, the criterion is a locally Lipschitz
unction that is Clarke regular (exhibiting predictable behavior even at
onsmooth points) and strongly pseudoconvex, ensuring convergence
o a unique global minimizer [34]. Consequently, the global solution
an be approximated by solving a nonsmooth convex program.

Lu and Pong [35] reformulated the condition number optimization
in a convex framework, solvable via SDP, while Boyd et al. [36,
Chap. 3] showed that such problems can be represented as Linear
Matrix Inequalities (LMIs), further facilitating their solution through
SDP.

Although the condition number is quasi-convex – characterized by
aving convex sublevel sets – it can still be efficiently addressed us-
ng convex optimization techniques such as semidefinite programming
SDP), for the following reasons:

1. The condition number, defined via eigenvalues, can be reformu-
lated as Linear Matrix Inequalities (LMIs), making it naturally
compatible with SDP frameworks.
5 
2. The feasible set, consisting of positive semidefinite matrices, is
inherently convex. This convexity enables robust convex opti-
mization methods to effectively manage quasi-convex objectives,
ensuring computational tractability.

Our representation of the dispersion function for the K–optimality
criterion (see Fig. 1(d)) further strengthens the quasi-convex nature of
the problem.

We now adopt a reformulation similar to that of Ye and Zhou [33] to
establish the K–optimality criterion. The SDP formulation for K–optimal
designs is as follows:

Opt ≡ min
𝑠,𝑡,𝐳

𝑠 (13a)

s.t. 𝑠 ⋅ 𝐼𝑛𝜃 −(𝜉 ,𝐪0) ⪰ 0 (13b)

(𝜉 ,𝐪0) − 𝐼𝑛𝜃 ⪰ 0 (13c)

(𝜉 ,𝐪0) =
𝑛𝑥
∑

𝑖=1
𝑧𝑖𝑀(𝑥𝑖,𝐪0) (13d)

𝑛𝑥
∑

𝑖=1
𝑧𝑖 = 𝑡 (13e)

𝑧𝑖 ⩾ 0, 𝑖 ∈ [[𝑛𝑥]], 𝑡 > 0 (13f)

Here, Eq. (13b) establishes the upper bound for the eigenvalues of the
Fisher Information Matrix (FIM), while Eq. (13c) ensures the positive
definiteness of the FIM. Eq. (13d) constructs the global FIM by aggre-
gating the local FIMs at the candidate points 𝑥𝑖, denoted as 𝑀(𝑥𝑖,𝐪0),
where 𝐪0 captures the dependence on parameters in the nonlinear
models. Eq. (13e) ensures that the sum of the values of 𝐳 equals 𝑡. The
ariable 𝑠 quantifies the condition number, and 𝑡 represents the sum of
he weights of the candidate points in a non-unitary domain.

After solving this optimization problem, the optimal design weights
are computed by normalizing the vector 𝐳 as follows:

𝑤𝑖 =
𝑧𝑖
𝑡
, 𝑖 ∈ [[𝑛𝑥]]. (14)

3.2. Finding alphabetic constrained locally optimal experimental designs

Constrained designs arise when the decision variables 𝐰 in 𝜉 are
limited due to external factors such as a cost function. Systematically
handling these constraints involves incorporating them, represented as
inequalities or equalities, into optimal design problems, such as that
resulting from K–optimality (model (13)).

We consider three types of constraints. The first type involves
estricting the administered dose in tests, referred to as dose-constrained
esigns. These designs penalize certain configurations by limiting doses
o a therapeutic range [19], expressed as:

𝑤𝑖 = 0, 𝑖 ∉ I ≡ {𝑖 ∣ 𝑖 ∈ [[𝑛𝑥]], 𝑥𝐿𝑂lim ⩽ 𝑥𝑖 ⩽ 𝑥𝑈 𝑃lim }, (15)

where 𝑥𝐿𝑂lim and 𝑥𝑈 𝑃lim are the lower and upper dose limits, imposed to
mitigate toxicity concerns, and are set to 0 and 1, respectively, and I
the set of infeasible candidate doses. These designs are comparable to
those proposed by Haines et al. [37], which assign a probability of 1 to
scenarios where 𝑝𝑦=1,𝑧∈{0,1} ⩾ 𝑞𝐸 and 𝑝𝑦∈{0,1},𝑧=1 ⩽ 𝑞𝑇 , while assigning
a value of +∞ to all other cases.

We now consider budget-constrained designs, where the allocation
ector 𝐰 is restricted by a specified budget, 𝐵. The costs associated with
dministering each dose comprise two components: (i) a fixed cost,
enoted by 𝛼; and (ii) a variable cost that increases linearly with dose
ize, represented by a per-unit increment 𝛽. The cost of administering
ose 𝑥𝑖 is thus expressed as 𝑐𝑖 = 𝛼 + 𝛽 ⋅ 𝑥𝑖, and the budget constraint is
ormulated as:
𝑛𝑥
∑

𝑤𝑖𝑐𝑖 ⩽ 𝐵 . (16)

𝑖=1
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This formulation aligns with one of the problems explored in Harman
et al. [38]. Often, the natural metric for ‘‘dose’’ is the logarithm of the
administered amount, as interest may lie in the effects of changes, such
as doubling the dose. The cost function should be adjusted accordingly,
though this modification does not affect the numerical method used
to compute optimal designs. Then, the constraint is linear in 𝐰, mak-
ing it straightforward to incorporate into a semidefinite programming
problem.

Finally, we address probability-constrained designs, which allow for
the exclusion of doses that result in, for example, lower values of effi-
cacy without toxicity, denoted as 𝑝𝑦=1,𝑧=0. Naturally, other probabilities
listed in (3) can also be constrained. To establish this setup, let us
consider that the probability of efficacy without toxicity should be at
east 𝜏 for a dose to be included in the experiment. This constraint can
e formulated as:

𝑤𝑖 = 0, 𝑖 ∈ I ≡ {𝑖 ∣ 𝑖 ∈ [[𝑛𝑥]], 𝑝𝑦=1,𝑧=0(𝑥𝑖,𝜽) ⩽ 𝜏}. (17)

In this Equation, I represents the set of indices corresponding to doses
where the probability of efficacy without toxicity is less than or equal to
the threshold 𝜏. In practice, dose-constrained designs are a specific subset
f probability-constrained designs, derived using Eq. (2). The distinction

lies in their implementation: dose-constrained designs directly restrict
the candidate dose levels, while probability-constrained designs impose
constraints on a functional transformation of these levels.

In our work, we solved the Semidefinite Programming (SDP) prob-
lems using the CVX environment (version 2.2) in combination with the
Mosek solver (version 10), which employs an efficient Interior Point
lgorithm [39]. The relative and absolute tolerances for solving the SDP

were set to 1 × 10−5. All computations in Section 4 were performed on
 machine equipped with an AMD Ryzen 7 5800X 8-core processor,

running a 64-bit Windows 10 operating system with a clock speed of
3.80 GHz and 32 GB of RAM.

4. Application examples

This Section presents the results of the application of the formu-
ations introduced in Section 3. First, in Section 4.1, we consider

unconstrained designs. Then, in Section 4.2, we specifically address
constrained designs of the classes listed in Section 3.2.

The reference setup considers a single drug with doses expressed in
a unitary domain, i.e. 𝑥 ∈ [0, 1]. The functions 𝜂1(𝑥,𝜽1) and 𝜂2(𝑥,𝜽2) are
inear, defined as follows:

𝜂1(𝑥,𝜽1) = 𝜽⊺1 ⋅ 𝐟1(𝑥) = (𝜃1,0, 𝜃1,1) ⋅ (1, 𝑥)⊺ = 𝜃1,0 + 𝜃1,1 ⋅ 𝑥 (18a)

𝜂2(𝑥,𝜽2) = 𝜽⊺2 ⋅ 𝐟2(𝑥) = (𝜃2,0, 𝜃2,1) ⋅ (1, 𝑥)⊺ = 𝜃2,0 + 𝜃2,1 ⋅ 𝑥. (18b)

In scenarios where 𝜌 is known, the complete model includes four
arameters 𝜽 = (𝜃1,0, 𝜃1,1, 𝜃2,0, 𝜃2,1)⊺, which are to be determined from
xperiments. In scenarios where 𝜌 is unknown, 𝜽 includes additionally
, and 𝑛𝜃 becomes 5. The locally optimal designs obtained for single
rug scenarios consider the vector of postulated parameter values
0 = (−0.9, 7.0,−1.2, 1.6)⊺ and 𝜌 = 0.5. This vector of parameters was
roposed in Fedorov and Leonov [19, Chap. 6] for a similar model,
nd we have also used it for reference in our formulations. The design

domain is discretized with 𝛥𝑥 = 0.0025, which leads to 𝑛𝑥 = 401.
aturally, other values of 𝐪0, 𝜌 and 𝛥𝑥 can be used.

4.1. Results for unconstrained designs

In this Section, we present results for unconstrained designs, focus-
ing on the impact of: (i) the correlation parameter 𝜌 in setups where
t is known, (ii) whether 𝜌 is known a priori or estimated, and (iii) the

use of a combination of two drugs compared to a single drug, on the
optimal designs.

In the matrices representing the ‘‘optimal designs’’ in the result
tables of the following sections, the bottom row corresponds to the
6 
Table 1
Optimal designs for various values of 𝜌, computed using the D–, A–, E–, and K–
optimality criteria. The setup parameters are 𝐪0 = (−0.9, 7.0,−1.2, 1.6)⊺, 𝐗 = [0, 1], and
𝛥𝑥 = 0.0025.
𝜌 = 0.0
Criterion Optimal design Optimum

D–
(

0.0000 0.3000 1.0000
0.4132 0.3542 0.2326

)

9.5840 × 10−2

A–
(

0.0000 0.3575 1.0000
0.4073 0.4886 0.1041

)

1.4046 × 102

E–
(

0.0000 0.3625
0.4223 0.5777

)

1.0149 × 10−2

K–
(

0.0000 0.3400
0.5082 0.4918

)

4.8118 × 101

𝜌 = 0.2
D–

(

0.0000 0.3000 1.0000
0.4134 0.3541 0.2325

)

9.6280 × 10−2

A–
(

0.0000 0.3550 1.0000
0.4085 0.4864 0.1051

)

1.3980 × 102

E–
(

0.0000 0.3650 1.0000
0.4224 0.5723 0.0053

)

1.0008 × 10−2

K–
(

0.0000 0.3500
0.4981 0.5019

)

5.0263 × 101

𝜌 = 0.5
D–

(

0.0000 0.2950 1.0000
0.4128 0.3539 0.2333

)

9.8790 × 10−2

A–
(

0.0000 0.3525 1.0000
0.4047 0.4855 0.1098

)

1.3677 × 102

E–
(

0.0000 0.3625 1.0000
0.4153 0.5559 0.0288

)

9.8600 × 10−3

K–
(

0.0000 0.3600 1.0000
0.4522 0.5263 0.0215

)

5.6437 × 101

𝜌 = 0.6
D–

(

0.0000 0.2925 1.0000
0.4124 0.3541 0.2335

)

1.0027 × 10−1

A–
(

0.0000 0.3500 1.0000
0.4021 0.4855 0.1124

)

1.3540 × 102

E–
(

0.0000 0.3600 1.0000
0.4128 0.5497 0.0375

)

9.8433 × 10−3

K–
(

0.0000 0.3625 1.0000
0.4323 0.5380 0.0297

)

5.9123 × 101

weights, while the other rows represent the dosing levels for the first
drug and, where applicable, the second drug.

First, we analyze the impact of the correlation parameter. To do so,
e varied 𝜌 discretely in {0.0, 0.2, 0.5, 0.6}, where 𝜌 = 0.0 indicates no

orrelation between efficacy and toxicity, and 𝜌 = 0.6 indicates moder-
te correlation. The optimal designs obtained are displayed in Table 1.

All the designs, except the K–optimal and E–optimal designs for small
alues of 𝜌, are based on three support points. The exceptions require
nly two support points. As we have four parameters and observe two
esponse variables per experiment, saturated designs (designs with the

minimum number of support points) would require only two. Thus,
most of the designs have one additional support point. The last column
of Table 1 reports the optimum at convergence.

The results suggest that the value of 𝜌 has a minimal impact on
he optimal designs, with only slight variations observed. Specifically,
he weights at 𝑥 = 1 for the E- and K–optimality criteria remain very
mall, with a maximum value of 0.0373. The observed optima follow
he anticipated trends: (i) the optima increase with increasing 𝜌 for D-

and K–optimality; and (ii) the optima decrease with increasing 𝜌 for A-
nd E–optimality. Lastly, the collapse of the support point at 𝑥 = 1 for
he E- and K–optimality criteria is attributed to 𝜆min[(𝜉 ,𝜽)] becoming
oo small.

To evaluate the optimality of the designs presented in Table 1, we
examine the scenario where 𝜌 = 0.5, corresponding to the third tableau
in the table. We plot the dispersion functions given by Eq. (11) for each
optimality criterion. As shown in Fig. 1, the equivalence theorems are
confirmed: the dispersion functions are below zero, with their maxima
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Fig. 1. Dispersion functions for optimal designs found for 𝐪0 = (−0.9, 7.0,−1.2, 1.6)⊺, 𝜌 = 0.5, 𝐗 = [0, 1], 𝛥𝑥 = 0.0025: (a) D–optimality criterion; (b) A–optimality criterion; (c)
E–optimality criterion; (d) K–optimality criterion.
occurring at the support points. This pattern is also confirmed for the
–optimality criterion.

The Supplementary Material presents a sensitivity analysis of the
design efficiency, examining the effects of variation of model parame-
ters. The efficiency for all optimality criteria was computed using the
formulas in Eq. (10). The reference designs were those obtained for the
singleton 𝐪0 = (−0.9, 7.0,−1.2, 1.6)⊺ and 𝜌 = 0.5. In all simulations, we
considered 𝐗 = [0, 1] and 𝛥𝑥 = 0.0025 (i.e., 𝑛𝑥 = 401). The analysis of
the results reveals a relative loss in efficiency as the parameters vary,
consistent with theoretical expectations.

Next, we consider the case where 𝜌 is an additional parameter to
e estimated from the data. Thus, the parameter vector now includes
n extra element: 𝜽 = (𝜃1,0, 𝜃1,1, 𝜃2,0, 𝜃2,1, 𝜌)⊺. The first four elements

remain the same as in the previous setup, and the fifth element cor-
responds to 𝜌. The optimal designs are determined for the vector 𝐪0 =
(−0.9, 7.0,−1.2, 1.6, 0.5)⊺, where 𝜌 = 0.5. All other parameters used in the
algorithm remain constant. For this scenario, we use Eq. (8) instead of
q. (7a) to compute the local Fisher Information Matrices.

The results are presented in Table 2. They are similar to those
btained when 𝜌 is known and set to 0.5 (refer to the third tableau in

Table 1). All variations are minor, but are greatest for the D–optimality
criterion.

Finally, we consider the combination of two drugs, where the dose
of drug 1 is represented by 𝑥1 and the dose of drug 2 by 𝑥2. The design
space is defined as 𝐗 = [0, 1]2. To discretize this space, we use an
equispaced grid with interval 𝛥𝑥 = 0.01 in both domains resulting in
 total of 10 201 candidate points 𝐱 = (𝑥1, 𝑥2)⊺.

The linear response models account for both first-order and inter-
action terms to capture the potential combined effects of the drugs.
Specifically, the models are defined as follows:

𝜂1(𝗑,𝜽1) = 𝜽⊺1 ⋅ 𝐟1(𝗑) = (𝜃1,0, 𝜃1,1, 𝜃1,2, 𝜃1,3) ⋅ (1, 𝑥1, 𝑥2, 𝑥1 ⋅ 𝑥2)⊺

= 𝜃 + 𝜃 ⋅ 𝑥 + 𝜃 ⋅ 𝑥 + 𝜃 ⋅ 𝑥 ⋅ 𝑥 (19a)
1,0 1,1 1 1,2 2 1,3 1 2

7 
Table 2
Optimal designs for various values of 𝜌, computed using the D–, A–, E–, and K–
optimality criteria. The setup parameters are 𝐪0 = (−0.9, 7.0,−1.2, 1.6)⊺, 𝐗 = [0, 1], and
𝛥𝑥 = 0.0025; 𝜌 is an additional parameter to be estimated.

Criterion Optimal design Optimum

D–
(

0.0000 0.2580 1.0000
0.4499 0.3628 0.1873

)

1.1524 × 10−1

A–
(

0.0000 0.3500 1.0000
0.4142 0.4789 0.1069

)

1.4280 × 102

E–
(

0.0000 0.3625 1.0000
0.4157 0.5552 0.0291

)

9.8146 × 10−3

K–
(

0.0000 0.3605 1.0000
0.4522 0.5261 0.0217

)

5.6799 × 101

𝜂2(𝗑,𝜽2) = 𝜽⊺2 ⋅ 𝐟2(𝗑) = (𝜃2,0, 𝜃2,1, 𝜃2,2, 𝜃2,3) ⋅ (1, 𝑥1, 𝑥2, 𝑥1 ⋅ 𝑥2)⊺

= 𝜃1,0 + 𝜃2,1 ⋅ 𝑥1 + 𝜃2,2 ⋅ 𝑥2 + 𝜃2,3 ⋅ 𝑥1 ⋅ 𝑥2. (19b)

Here, 𝜽 includes 8 parameters, with 𝜌 known and set to 0.5. Table 3
presents the locally optimal designs obtained for the singleton 𝐪0 =
(−0.9, 7.0,−2.0, 0.8,−1.2, 1.6,−0.5, 0.5)⊺. The D–, A–, and E–optimal de-
signs have 6 support points, with the doses of drug 2 typically at either
its minimum (𝑥2 = 0) or maximum (𝑥2 = 1). The K–optimal design
requires only 5 support points. Notably, the saturated designs have 4
support points. Once again, the weight at points of maximum dose for
drug 1 (𝑥1 = 1) is low, similar to that observed for the single drug
case. The designs are far from the product designs often found for linear
models.

4.2. Results for constrained designs

In this Section, we determine constrained optimal designs. We
consider a single drug with a linear response represented by model (18).
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Table 3
Optimal designs for various values of 𝜌, computed using the D–, A–, E–, and K–
optimality criteria. The setup parameters are 𝐪0 = (−0.9, 7.0,−2.0, 0.8,−1.2, 1.6,−0.5, 0.5)⊺,
𝜌 = 0.5, 𝐗 = [0, 1] × [0, 1], 𝛥𝐱 = (0.01, 0.01)⊺.

Criterion Optimal design Optimum

D–
⎛

⎜

⎜

⎝

0.0000 0.2155 0.2970 0.5100 1.0000 1.0000
0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
0.2065 0.2134 0.1772 0.1768 0.1164 0.1097

⎞

⎟

⎟

⎠

4.5174 × 10−2

A–
⎛

⎜

⎜

⎝

0.0000 0.1600 0.3500 0.5700 1.0000 1.0000
0.0000 1.0000 0.0200 1.0000 0.0000 1.0000
0.2290 0.2272 0.2715 0.1685 0.0617 0.0421

⎞

⎟

⎟

⎠

8.6440 × 102

E–
⎛

⎜

⎜

⎝

0.0000 0.1600 0.3600 0.5800 1.0000 1.0000
0.0000 0.9300 0.0700 1.0000 0.0000 1.0000
0.2523 0.2097 0.3093 0.2038 0.0191 0.0058

⎞

⎟

⎟

⎠

1.8877 × 10−3

K–
⎛

⎜

⎜

⎝

0.0000 0.0900 0.3600 0.5600 1.0000
0.0000 0.8900 0.0000 1.0000 0.0000
0.2901 0.3022 0.2940 0.1020 0.0117

⎞

⎟

⎟

⎠

3.1970 × 102

Table 4
Dose constrained optimal designs for 𝜌 = 0.5 computed using the D–, A–, E–, and

–optimality criteria. The setup parameters are 𝐪0 = (−0.9, 7.0,−1.2, 1.6)⊺, 𝐗 = [0, 0.65],
𝑥 = 0.0025, 𝑥𝑈 𝑃lim = 0.65.

𝜌 = 0.5
Criterion Optimal design Optimum

D–
(

0.0000 0.3050 0.6500
0.4536 0.3397 0.2067

)

8.0131 × 10−2

A–
(

0.0000 0.3575 0.6500
0.4283 0.4538 0.1179

)

1.6000 × 102

E–
(

0.0000 0.3700 0.6500
0.4294 0.5473 0.0233

)

9.5140 × 10−3

K–
(

0.0000 0.3725 0.6500
0.4655 0.5265 0.0080

)

5.7986 × 101

Table 5
Budget constrained optimal designs for 𝜌 = 0.5 computed using the D–, A–, E–, and
K–optimality criteria. The setup parameters are 𝐪0 = (−0.9, 7.0,−1.2, 1.6)⊺, 𝐗 = [0, 0.65],
𝑥 = 0.0025, 𝛼 = 0.3, 𝛽 = 0.7, 𝐵 = 0.4.
𝜌 = 0.5
Criterion Optimal design Optimum

D-
(

0.0000 0.2775 1.0000
0.6718 0.2563 0.0719

)

8.3630 × 10−2

A-
(

0.0000 0.3150 1.0000
0.6237 0.3408 0.0355

)

1.6594 × 102

E-
(

0.0000 0.3275 1.0000
0.5844 0.4055 0.0101

)

8.8427 × 10−3

K-
(

0.0000 0.3400 1.0000
0.5937 0.3992 0.0071

)

6.2299 × 101

The discretization interval is 𝛥𝑥 = 0.0025 and 𝜌 = 0.5.
First, we consider dose-constrained designs described by Eq. (15),

with 𝑥𝑈 𝑃lim set to 0.65 and 𝑥𝐿𝑂lim to 0.0. The optimal designs obtained
are shown in Table 4. Comparing these results with those in the third
ableau of Table 1, we observe that the number of support points

remains the same, but the weight of 𝑥 = 0.0 increases regardless of the
optimality criterion. As expected, one of the support points becomes
coincident with the maximum dose limit allowed, 𝑥𝑈 𝑃lim , with weight
close to that when 𝑥𝑈 𝑃lim is 1.

Now, we consider budget-constrained designs. The constraint im-
osed is represented by Eq. (16), and for simulation, we set 𝛼 = 0.3,
= 0.7, and 𝐵 = 0.4. The results are presented in Table 5. The designs

still utilize three support points, but the lower dose points now have
larger weights at the expense of those with higher values of 𝑥. This
outcome results from penalizing the cost of tests with higher doses to
meet a limited budget.

Finally, we illustrate the process of finding probability-constrained
esigns. The constraint is defined by Eq. (17), and we set 𝜏 to 0.35. The
8 
Table 6
Probability constrained optimal designs for 𝜌 = 0.5. Setup: 𝐪0 = (−0.9, 7.0,−1.2, 1.6)⊺,
𝐗 = [0, 0.65], 𝛥𝑥 = 0.0025, 𝜏 = 0.35.
𝜌 = 0.5
Criterion Optimal design Optimum

D-
(

0.1200 0.3425 0.9900
0.4129 0.3502 0.2369

)

8.1762 × 10−2

A-
(

0.1200 0.3900 0.9900
0.3350 0.5675 0.0975

)

2.4855 × 102

E-
(

0.1200 0.3950 0.9900
0.3443 0.6345 0.0212

)

5.1054 × 10−3

K-
(

0.1200 0.3900 0.9900
0.3643 0.6193 0.0164

)

1.2107 × 102

Table 7
Efficiency and CPU time required to compute constrained designs (reference designs
hown in the third tableau of Table 1). The values in parentheses indicate CPU times,

expressed in s.
Efficiency Dose-constrained

design
Budget-constrained
design

Probability-constrained
design

EffD 0.8129 (1.25) 0.8465 (1.76) 0.8276 (1.50)
EffA 0.8542 (1.10) 0.8236 (0.85) 0.5499 (0.98)
EffE 0.9649 (1.14) 0.8968 (0.78) 0.5178 (1.11)
EffK 0.9733 (1.44) 0.9059 (1.21) 0.4662 (1.51)

optimal design is presented in Table 6. Comparing with the reference
design reveals that the lowest dose now tested is 𝑥 = 0.12, as lower
oses fail to meet the constraint (the probability of efficacy is below

0.35). The same reason holds for the choice of the highest dose tested
– 𝑥 = 0.99, not 𝑥 = 1.0.

The 𝛹 -optimality efficiencies of the constrained designs are pre-
sented in Table 7. These efficiencies were computed using Eq. (10),

ith the reference designs being the unconstrained designs determined
or 𝜌 = 0.5, as listed in the third tableau of Table 1. As expected,

all constrained designs exhibit a loss of efficiency. However, within
the feasibility regions defined by the constraints, the designs found
are optimal. Table 7 also reports the CPU times for computing con-
strained designs (see the values in parentheses), which are modest and
comparable to those for unconstrained designs.

The strategy described above also highlights the simplicity of solv-
ing constrained optimal design problems. For linear constraints on
weights, these are directly included in the design problem as additional
onstraints. Consequently, the basic formulation remains unchanged,
ut is supplemented with additional equality or inequality constraints,

which are converted to active structures in a way similar to those
defining the original design problem.

Note that the constraints apply only to the probabilities in (3).
or example, 𝑝𝑦=1,𝑧=0(𝑥𝑖,𝜽) ⩽ 𝜏 restricts the probability of efficacy
ithout toxicity, rather than directly limiting toxicity. These constraints

an only be derived for the probabilities in (3). Specifically, stating
𝑝𝑦=1,𝑧=0(𝑥𝑖,𝜽) ⩽ 𝜏 imposes a limit on the probability of efficacy without
toxicity, not on toxicity itself.

This approach extends to models with both efficacy and toxicity
onstraints. In this case, the set I in Eq. (17) is reduced. For instance,
f the probability of efficacy without toxicity is bounded below by 𝜏
nd the probability of efficacy with toxicity is bounded above by 𝜗, the
andidate dose set for optimal design becomes

𝑤𝑖 = 0, 𝑖 ∈ I ≡ {𝑖 ∣ 𝑖 ∈ [[𝑛𝑥]], 𝑝𝑦=1,𝑧=0(𝑥𝑖,𝜽) ⩽ 𝜏 ∩ 𝑝𝑦=1,𝑧=1(𝑥𝑖,𝜽) ⩾ 𝜗}.

(20)
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5. Conclusions

We have addressed the challenge of systematically finding approxi-
mate D–, A–, E–, and K–optimal designs for phase I and II clinical trials
aimed at establishing the efficacy and toxicity profiles of agents. We
consider a model with a bivariate response, where the outcomes are
toxicity and efficacy, and the control factor is the scaled dose level. The
response variables are binary, and the model relating the probability of
toxicity and efficacy to the dose is of the probit type, with correlated
outcomes.

To find optimal designs on a previously discretized grid of candidate
dose) points, we utilize Semidefinite Programming. Our approach ac-
ommodates both unconstrained and constrained designs by appending
dditional constraints on weights without altering the basic formu-
ation. In our study of unconstrained designs, we explored: (i) the
ignificance of the correlation between outcomes; (ii) the impact of
nowing the correlation coefficient a priori versus estimating it from
xperiments; and (iii) the extension from single-drug design spaces to
ombined-drug problems.

For constrained designs, we examined: (i) dose-constrained de-
signs; (ii) budget-constrained designs; and (iii) probability-constrained
designs.

We demonstrate the optimality of the unconstrained designs us-
ng equivalence theorems. For the D–, A–, and E–optimality criteria,
e applied well-established results from the literature. Additionally,
e derived an equivalence theorem for the K–optimality criterion,
hich, to the best of our knowledge, represents a novel contribution.
ur formulations efficiently solved all design problems, encompass-

ng single- and double-drug setups as well as constrained designs.
Single-drug problems required approximately 1 s of CPU time across all
ases. Constrained designs exhibited similar computational times, while
ouble-drug problems were solved in less than 10 s.

This work also opens several research avenues for future explo-
ation. One particular topic worth further investigation is the design of

optimal experiments for drug combinations. By exploring the combined
effects of drugs, researchers can aim to improve efficacy while limiting
toxicity, as described by Mihich and Grindey [40] in the context of
hemotherapy. Another promising area involves maximizing the infor-

mation extracted from a study while considering various constraints.
hese constraints often include toxicity limitations, as discussed by Lee
t al. [41] and Boston and Gaffney [42]. Finally, in the absence of
pecific knowledge required for designing optimal allocation schemes,
daptive approaches may be crucial. Methods suggested by Dragalin

and Fedorov [43] and Ji and Wang [44] could ensure that the knowl-
edge gained is effectively used to determine the most appropriate dose
for subsequent individuals.

Numerical results for the adaptive procedure of Dragalin and Fe-
dorov [43] for one and two-component treatments are given in Fedorov
t al. [2, §8.3] who use D–optimality and update using the results

from treating one patient at a time. Often, patients will be allocated
reatments in cohorts, which will reduce the efficiency demonstrated
n these simulations of adaptive designs. The combination of adaptive

designs and constraints on toxicity is, theoretically, an attractive safe-
guard against a poor initial determination of the maximum tolerated
dose. However it is important that, although the effect of treatment may
be almost immediate, toxicities may be delayed. See for example Liu
nd Ning [45], who use a logistic model for the relationship of efficacy
nd toxicity. The papers in Sverdlov [46] discuss many aspects of
daptive design in clinical trials, but with an emphasis on Phase III.
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Appendix A. Equivalence for K–optimality criterion

Theorem 1. Let 𝜉∗𝐾 be such that both the largest and the smallest
eigenvalue of (𝜉∗𝐾 ) have multiplicity one. Then 𝜉∗𝐾 is K–optimal if and
only if the following condition is satisfied:

The inequality

𝜅[(𝜉∗𝐾 )] −
t r [𝑀(𝐱)𝑄max]
t r [𝑀(𝐱)𝑄min]

⩽ 0 (A.1)

holds for all 𝐱 ∈ 𝐗, with strict equality at the support points of 𝜉∗𝐾 .

Here, (𝜉∗𝐾 ) denotes the FIM corresponding to the design 𝜉∗𝐾 ,
𝜅[(𝜉∗𝐾 )] is the condition number of (𝜉∗𝐾 ), 𝑀(𝐱) is the local Fisher
information matrix at the design point 𝐱, 𝑄max = 𝐯max𝐯

⊺
max and 𝑄min =

𝐯min𝐯
⊺
min, 𝐯max and 𝐯min are standardized eigenvectors of length 1 of

(𝜉∗𝐾 ) associated with 𝜆∗max and 𝜆∗min, respectively.

Proof. Let us consider an experimental design

𝜉 =
(

𝐱𝑖
𝑤𝑖

)

𝑖∈[[𝐼]]

with 𝐼 support points 𝐱𝑖 each one with weight 𝑤𝑖. Let the model
representing the response being linear, i.e.

E(𝑦) = 𝜽⊺ ⋅ 𝐟 (𝐱) (A.2)

𝐟 (𝐱) is a vector of polynomial terms and 𝐱 a set of covariates.
The global FIM of 𝜉∗𝐾 is

(𝜉∗𝐾 ) =
𝐼
∑

𝑖=1
𝑤∗

𝑖 ⋅ 𝐟 (𝐱
∗
𝑖 ) ⋅ 𝐟 (𝐱

∗
𝑖 )

⊺, (A.3)

where 𝑤∗
𝑖 designate the weights in 𝜉∗ and 𝐱∗𝑖 the support points.

The K–optimality criterion is such that 𝜉∗𝐾 = ar g min𝜉 𝜅[(𝜉)]. Now
e use the perturbation method to construct the global FIM of a design

nfinitely close to 𝜉∗ , say 𝜉∗ +𝜀 𝜹 where 𝜀 is a positive small value and
𝐾 𝐾 𝐱
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𝜹𝐱 is a Dirac measure in the domain of the covariates. The FIM becomes

(𝜉∗𝐾 + 𝜀 𝜹𝐱) = (𝜉∗𝐾 ) + 𝜀 𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺, (A.4)

where 𝐱∗ is point of the design space.
The variation in the eigenvalues of the FIM is

𝛥𝜆𝑖 ≈ 𝐯⊺𝑖
[

𝜀 𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺
]

𝐯𝑖, 𝑖 ∈ [[𝐼]] (A.5)

where 𝛥𝜆𝑖 is the variation of the 𝑖th eigenvalue and 𝐯𝑖 the correspond-
ing eigenvector. The application of (A.5) to maximum and minimum
eigenvalues of the FIM for the K–optimal design produces

𝛥𝜆max ≈𝐯
⊺
max

[

𝜀 𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺
]

𝐯max (A.6a)

𝛥𝜆min ≈𝐯
⊺
min

[

𝜀 𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺
]

𝐯min (A.6b)

Let 𝜆′max = 𝜆∗max + 𝛥𝜆max and 𝜆′min = 𝜆∗min + 𝛥𝜆min. Then, the perturbation
n condition number is

𝜅[(𝜉∗𝐾 + 𝜀 𝜹𝐱)] =
𝜆′max

𝜆′min
=

𝜆∗max + 𝐯⊺max [𝜀 𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺] 𝐯max

𝜆∗min + 𝐯⊺min [𝜀 𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺] 𝐯min

=
𝜆∗max
𝜆∗min

⋅

(

1 + 𝜀 𝐯⊺max [𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺] 𝐯max∕𝜆∗max
)

(

1 + 𝜀 𝐯⊺min [𝐟 (𝐱) ⋅ 𝐟 (𝐱)
⊺] 𝐯min∕𝜆∗min

) (A.7)

If 𝜉∗𝐾 is optimal, then
𝜆∗max
𝜆∗min

⋅

(

1 + 𝜀 𝐯⊺max [𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺] 𝐯max∕𝜆∗max
)

(

1 + 𝜀 𝐯⊺min [𝐟 (𝐱) ⋅ 𝐟 (𝐱)
⊺] 𝐯min∕𝜆∗min

) ⩾
𝜆∗max
𝜆∗min

(A.8)

which after algebraic manipulation yields
𝐯⊺max [𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺] 𝐯max

𝐯⊺min [𝐟 (𝐱) ⋅ 𝐟 (𝐱)
⊺] 𝐯min

⩾
𝜆∗max
𝜆∗min

. (A.9)

Let 𝑄max = 𝐯⊺max ⋅ 𝐯max, 𝑄min = 𝐯⊺min ⋅ 𝐯min, 𝐱 = 𝐱∗ + 𝜹𝐱 be a generic
oint of the design space, and 𝑀(𝐱) = 𝐟 (𝐱) ⋅ 𝐟 (𝐱)⊺ be the local FIM at 𝐱.

Then, (A.9) leads to
t r [𝑀(𝐱) ⋅𝑄max]
t r [𝑀(𝐱) ⋅𝑄min]

⩾ 𝜅[(𝜉∗𝐾 )] (A.10)

Finally, we obtain the equivalence theorem

𝜅[(𝜉∗𝐾 )] −
t r [𝑀(𝐱) ⋅𝑄max]
t r [𝑀(𝐱) ⋅𝑄min]

⩽ 0 𝐱 ∈ 𝐗. □ (A.11)

Appendix B. Formulations to determine the optimal allocation via
emidefinite Programming

Here, we list the SDP formulations for the D–, A– and E–optimality
riteria. The first three were introduced in Vandenberghe and Boyd [31,

47] and Ben-Tal and Nemirovski [28]. We start with the formulation
for D–optimal designs:

Opt ≡ max
𝐰,,𝑡

𝑡 (B.1a)

s.t.
(

(𝜉) ⊺

 diag()

)

⪰ 0 (B.1b)

𝑡 ⩽
𝑛𝜃
∏

𝑖=1
1∕𝑛𝜃
𝑖,𝑖 (B.1c)

𝑘
∑

𝑖=1
𝑤𝑖 = 1 (B.1d)

0 ⩽ 𝑤𝑖 ⩽ 1, 𝑖 ∈ {1,… , 𝑘}. (B.1e)

The formulation for computing A–optimal designs is:
Opt ≡ min

𝐰,,𝑡
𝑡 (B.2a)

s.t.
(

(𝜉) 𝐼𝑛𝜃
𝐼𝑛𝜃 

)

⪰ 0 (B.2b)

𝑡 ⩾
𝑛𝜃
∑

𝑖,𝑖 (B.2c)

𝑖=1

10 
𝑘
∑

𝑖=1
𝑤𝑖 = 1 (B.2d)

0 ⩽ 𝑤𝑖 ⩽ 1, 𝑖 ∈ {1,… , 𝑘}, (B.2e)

Finally, for E–optimal designs, we have:

Opt ≡ max
𝐰,𝑡

𝑡 (B.3a)

s.t. (𝜉) − 𝑡 𝐼𝑛𝜃 ⪰ 0 (B.3b)
𝑘
∑

𝑖=1
𝑤𝑖 = 1 (B.3c)

0 ⩽ 𝑤𝑖 ⩽ 1, 𝑖 ∈ {1,… , 𝑘}. (B.3d)

Appendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.compbiomed.2025.109848.
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