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A B S T R A C T

We propose tensor time series imputation when the missing pattern in the tensor data can be
general, as long as any two data positions along a tensor fibre are both observed for enough time
points. The method is based on a tensor time series factor model with Tucker decomposition of
the common component. One distinguished feature of the tensor time series factor model used
is that there can be weak factors in the factor loading matrix for each mode. This reflects reality
better when real data can have weak factors which drive only groups of observed variables, for
instance, a sector factor in a financial market driving only stocks in a particular sector. Using
the data with missing entries, asymptotic normality is derived for rows of estimated factor
loadings, while consistent covariance matrix estimation enables us to carry out inferences. As
a first in the literature, we also propose a ratio-based estimator for the rank of the core tensor
under general missing patterns. Rates of convergence are spelt out for the imputations from
the estimated tensor factor models. Simulation results show that our imputation procedure
works well, with asymptotic normality and corresponding inferences also demonstrated. Re-
imputation performances are also gauged when we demonstrate that using slightly larger rank
then estimated gives superior re-imputation performances. A Fama–French portfolio example
with matrix returns and an OECD data example with matrix of economic indicators are
presented and analysed, showing the efficacy of our imputation approach compared to direct
vector imputation.

1. Introduction

Large dimensional panel data is easier to obtain than ever thanks to a quickly evolving internet speed and more diverse download
platforms. Together with the advancement of statistical analyses for these data over the past decade, researchers also open up
more to time series data with higher order, namely, tensor time series data. A prominent example would be order 2 tensor time
series, i.e., matrix-valued time series. Wang et al. (2019) proposes a factor model using a Tucker decomposition of the common
component in the modelling. An example on monthly import–export volume of products among different countries is given in Chen
et al. (2022a), where factor modelling using Tucker decomposition is explored, and generalized to higher order tensors. Focusing on
matrix-valued time series, Chang et al. (2023) proposes a tensor-CP decomposition for modelling the data. Zhang (2024) and Chen
et al. (2021) propose autoregressive models for matrix-valued time series. For a more comprehensive review on matrix-valued time
series analysis, please refer to Tsay (2023).

A less addressed topic in large time series analysis is the treatment of missing data, in particular, imputation of missing data and
the corresponding inferences. While there are numerous data-centric methods in various scientific fields for imputing multivariate
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time series data (see Chapon et al. (2023) for environmental time series, Kazijevs and Samad (2023) for health time series, Zhao
et al. (2023) and Zhang et al. (2021) for using deep-learning related architectures for imputations, to name but a few), almost
none of them address statistically how accurate their methods are, and all of them are not for higher order tensor time series. We
certainly can line up the variables in a tensor time series to make it a longitudinal panel, but in doing so we lose special structures
and insights that can be utilized for forecasting and interpretation of the data. More importantly, transforming a moderate sized
tensor to a vector means the length of the vector can be much larger than the sample size, creating curse of dimensionality.

For imputing large panel of time series with statistical analyses, Bai and Ng (2021) defines the concept of TALL and WIDE blocks
f data and proposes an iterative TW algorithm in imputing missing values in a large panel, while Cahan et al. (2023) improves

the TW algorithm to a Tall-Project (TP) algorithm so that there is no iterations needed. Both papers use factor modelling for the
imputations, and derive rates of convergence when all factors are pervasive and the number of factors known. Asymptotic normality
for rows of estimated factor loadings and the corresponding practical inferences are also developed. Xiong and Pelger (2023) also
bases their imputations on a factor model for a large panel of time series with pervasive factors and number of factors known, and
build a method for imputing missing values under very general missing patterns, with asymptotic normality and inferences also
developed.

To the best of our knowledge, for tensor time series with order larger than 1 (i.e., at least matrix-valued), there are no theoretical
nalyses on imputation performances. Imputation methodologies developed on tensor time series are also scattered around very
ifferent applications. See Chen et al. (2022b) on traffic tensor data and Pan et al. (2021) for RNA-sequence tensor data for instance.

In view of all the above, as a first in the literature, we aim to develop a tensor imputation method accompanied by theoretical
nalyses in this paper. Like Cahan et al. (2023), we use factor modelling for tensor time series as a basis for our imputation method.

Unlike Cahan et al. (2023), Bai and Ng (2021) or Xiong and Pelger (2023) though, we develop a method that can consistently
estimate the number of factors, or the core tensor rank, in a Tucker decomposition-based factor model for the tensor time series
with missing values. Our method can be considered a combination of He et al. (2022a) for the tensor factor model, and Xiong and
elger (2023) for the imputation methodology with general missingness. In Section 3, we introduce two motivating examples and our
ethodology at the same time. One is the Fama–French portfolio return data with missing entries, to be analysed in Section 5.2. The

other is a set of monthly and quarterly OECD Economic indicators, with missingness naturally occurring for the quarterly recorded
indicators relative to the monthly ones. We analyse this set of OECD data in Section 5.3.

As a further contribution, we also allow factors to be weak. A weak factor corresponds to a column in a factor loading matrix
eing sparse, or approximately sparse. This implies that not all units in a tensor have dynamics contributed by all the factors inside

the core tensor. Chen and Lam (2024b) allows for weak factors in its analyses, and discovers that there are potentially weak factors
in the NYC taxi traffic data, which are going to be analysed in the supplementary materials of this paper. We prove consistency of our
mputations under general missingness, and develop asymptotic normality and practical inferences for rows of factor loading matrix

estimators, with rates of convergence in all consistency results spelt out. Our method is available in the R package tensorMiss,
which has used the Rcpp package to greatly boost computational speed.

The rest of the paper is organized as follows. Section 2 introduces the notations used in this paper. Section 3 presents the
Fama–French portfolio returns data and the OECD data as two motivating examples, before describing the tensor factor model and
he imputation methodology we employ. Section 4 lays down the main assumptions for the paper, with consistent estimation and

rates of convergence of all factor loading matrix estimators and imputed values presented. Asymptotic normality and the estimators
f the corresponding asymptotic covariance matrices for practical inferences are also introduced in Section 4.3, before our proposed

ratio-based estimators for the number of factors in Section 4.5. Section 5 presents extensive simulation results for our paper, together
ith an analysis for the Fama–French portfolio return data in Section 5.2 and an analysis for the OECD economic data in Section 5.3.

The NYC taxi traffic data, together with extra simulations are presented in the supplementary materials for the paper. All proofs are
in the supplementary materials associated with this paper.

2. Notations

Throughout this paper, we use the lower-case letter, bold lower-case letter, bold capital letter, and calligraphic letter,
i.e., 𝑥, 𝐱,𝐗, , to denote a scalar, a vector, a matrix, and a tensor respectively. We also use 𝑥𝑖, 𝑋𝑖𝑗 ,𝐗𝑖⋅,𝐗⋅𝑖 to denote, respectively, the
𝑖th element of 𝐱, the (𝑖, 𝑗)-th element of 𝐗, the 𝑖th row (as a column vector) of 𝐗, and the 𝑖th column of 𝐗. We use ⊗ to represent the
Kronecker product, and ◦ the Hadamard product. We use 𝑎 ≍ 𝑏 to denote 𝑎 = 𝑂(𝑏) and 𝑏 = 𝑂(𝑎). Hereafter, given a positive integer
𝑚, define [𝑚] ∶= {1, 2,… , 𝑚}. The 𝑖th largest eigenvalue of a matrix 𝐗 is denoted by 𝜆𝑖(𝐗). The notation 𝐗 ≽ 0 (resp. 𝐗 ≻ 0) means
that 𝐗 is positive semi-definite (resp. positive definite). We use 𝐗′ to denote the transpose of 𝐗, and diag(𝐗) to denote a diagonal
matrix with the diagonal elements of 𝐗, while diag({𝑥1,… , 𝑥𝑛}) represents the diagonal matrix with {𝑥1,… , 𝑥𝑛} on the diagonal.

Norm notations: For a given set, we denote by | ⋅ | its cardinality. We use ‖⋅‖ to denote the spectral norm of a matrix or the
𝐿2 norm of a vector, and ‖⋅‖𝐹 to denote the Frobenius norm of a matrix. We use ‖ ⋅ ‖max to denote the maximum absolute value of
the elements in a vector, a matrix or a tensor. The notations ‖ ⋅ ‖1 and ‖ ⋅ ‖∞ denote the 𝐿1 and 𝐿∞-norm of a matrix respectively,
defined by ‖𝐗‖1 ∶= max𝑗

∑

𝑖 |𝑋𝑖𝑗 | and ‖𝐗‖∞ ∶= max𝑖
∑

𝑗 |𝑋𝑖𝑗 |. Without loss of generality, we always assume the eigenvalues of a
matrix are arranged by descending orders, and so are their corresponding eigenvectors.

Tensor-related notations: For the rest of this section, we briefly introduce the notations and operations for tensor data, which
will be sufficient for this paper. For more details on tensor manipulations, readers are referred to Kolda and Bader (2009). A

ultidimensional array with 𝐾 dimensions is an order -𝐾 tensor, with its 𝑘th dimension termed as mode-𝑘. For an order-𝐾 tensor
= (𝑋 ) ∈ R𝐼1×⋯×𝐼𝐾 , a column vector (𝑋 ) represents a mode-𝑘 fibre for the tensor  . We denote by
2

𝑖1 ,…,𝑖𝐾 𝑖1 ,…,𝑖𝑘−1 ,𝑖,𝑖𝑘+1 ,…,𝑖𝐾 𝑖∈[𝐼𝑘]
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Fig. 1. Illustration of the mode-𝑘 fibres and its corresponding unfolding matrix.

mat𝑘() ∈ R𝐼𝑘×𝐼-𝑘 (or sometimes 𝐗(𝑘), with 𝐼-𝑘 ∶= (∏𝐾
𝑗=1 𝐼𝑗 )∕𝐼𝑘) the mode-𝑘 unfolding/matricization of a tensor, defined by placing

all mode-𝑘 fibres into a matrix. See Fig. 1 for an illustration (figure from Tao et al. (2019)).
We denote by  ×𝑘 𝐀 the mode-𝑘 product of a tensor  with a matrix 𝐀, defined by

mat𝑘( ×𝑘 𝐀) ∶= 𝐀mat𝑘().

Finally, we use the notation vec
(

⋅
)

to denote the vectorization of a matrix or the vectorization of the mode-1 unfolding of a tensor.

3. Two motivating examples and the imputation procedure

We first describe two motivating data examples in Sections 3.1 and 3.2, before presenting our imputation procedure for a general
order-𝐾 mean zero tensor 𝑡 = (𝑡,𝑖1 ,…,𝑖𝐾 ) ∈ R𝑑1×𝑑2×⋯×𝑑𝐾 for each 𝑡 ∈ [𝑇 ]. The two data examples will be analysed in details in
Sections 5.2 and 5.3 respectively.

3.1. Example: The Fama–French portfolio returns

This is a set of Fama–French portfolio returns data with missing entries. Stocks are categorized into ten levels of market equity
(ME) and ten levels of book-to-equity ratio (BE) which is the book equity for the last fiscal year divided by the end-of-year ME.
At the end of June each year, both ME and BE use NYSE deciles as breakpoints, with stocks of NYSE, AMEX and NASDAQ firms
allocated accordingly. Moreover, the stocks in each of the 10 × 10 categories form exactly two portfolios, one being value weighted,
and the other of equal weight. Hence, there are two sets of 10 by 10 portfolios with their time series to be studied. We use monthly
data from January 1974 to June 2021, so that 𝑇 = 570, and for both value weighted and equal weighted portfolios we have each
of our data set as an order-2 tensor 𝑡 ∈ R10×10 for 𝑡 ∈ [570]. For more details, please visit

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_100_port_sz.html.
If no stocks are allocated to a category (i.e., intersection of ME and BE categorization) at a timestamp, the corresponding return

data is unavailable and hence missing. It is reasonable to argue the missingness might depend on the rows of the loading matrix,
i.e., extreme categories tend to contain fewer stocks, but independent of latent factors and noise. The total number of missing entries
is 161 and hence the percentage of missing is 161∕(10 × 10 × 570) = 0.28% for both the value weighted and equal weighted series.
However, the irregular missing pattern here can be harmful if we are after a complete case analysis. For full observation after a
timestamp, we may only start from July 2009 and hence 74.7% of the data would be ditched. On the other hand, we might ditch
four categories to obtain a complete data set but lose the potential insights on the return series of the four categories.

3.2. Example: OECD economic indicators

In this example, we study a group of economic indicators for a selection of countries obtained from the Organization for Economic
Co-operation and Development (OECD). The data consists of monthly/quarterly observations of 11 economic indicators: current
account balance as percentage of GDP (CA-GDP), consumer price index (CP), merchandise exports (EX), merchandise imports (IM),
short-term interest rates (IR3TIB), long-term interest rates (IRLT), interbank rates (IRSTCI), producer price index (PP), production
volume (PRVM), retail trade volume (TOVM) and unit labour cost (ULC). They are observed for 17 countries: Belgium (BEL), Canada
(CAN), Denmark (DNK), Finland (FIN), France (FRA), Germany (DEU), Greece (GRC), Italy (ITA), Luxembourg (LUX), Netherlands
(NLD), Norway (NOR), Portugal (PRT), Spain (ESP), Sweden (SWE), Switzerland (CHE), United Kingdom (GBR) and United States
3
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(USA), with data spanning from January 1971 to December 2023. We correspond respectively rows and columns to countries and
indicators, so that we have our data as an order-2 tensor 𝑡 ∈ R17×11 for 𝑡 ∈ [636]. For more details, see key short-term economic
indicators available at https://data.oecd.org/.

The data is naturally missing for three reasons. Firstly, indicator records for some countries at early time periods are unavailable.
Secondly, quarterly indicators are only available at the end of each quarter. Finally, these quarterly indicators are sometimes
unrecorded. Similar to the Fama–French data, we suppose the missing pattern is dependent on the loading matrices by arguing that
relatively less important indicators are only available quarterly. The percentage of missing data is 26.2%, which leads to significantly
inefficient use of data if we hope to analyse a set of complete data. The fact that the data is observed at least quarterly in the long
run ensures the existence of a lower bound on the proportion of available data, which in turn satisfies Assumption (O1) in Section 4.

3.3. The model and the imputation procedure

The Model: Suppose the order-𝐾 mean zero tensor 𝑡 is modelled by

𝑡 = 𝑡 + 𝑡 = 𝑡 ×1 𝐀1 ×2 𝐀2 ×3 … ×𝐾 𝐀𝐾 + 𝑡, 𝑡 ∈ [𝑇 ], (3.1)

where 𝑡 is the common component and 𝑡 the error tensor. The core tensor is 𝑡 ∈ R𝑟1×𝑟2×⋯×𝑟𝐾 , and each mode-𝑘 factor
loading matrix 𝐀𝑘 has dimension 𝑑𝑘 × 𝑟𝑘. See He et al. (2022a) amongst others using the same tensor factor model. Using the
QR decomposition, if we can decompose 𝐀𝑘 = 𝐐𝑘𝐙

1∕2
𝑘 (see Assumption (L1) in Section 4.1 for details), then (3.1) can be written as

𝑡 = 𝑍 ,𝑡 ×1 𝐐1 ×2 ⋯ ×𝐾 𝐐𝐾 + 𝑡, 𝑡 ∈ [𝑇 ], where

𝑍 ,𝑡 ∶= 𝑡 ×1 𝐙
1∕2
1 ×2 … ×𝐾 𝐙1∕2

𝐾 .
(3.2)

Model (3.1) is an extension to the usual time series factor model (𝐾 = 1):

𝑡 = mat1(𝑡) = mat1(𝑡 ×1 𝐀1) + mat1(𝑡) = 𝐀1mat1(𝑡) + mat1(𝑡) = 𝐀1𝑡 + 𝑡,

and also for a matrix-valued time series factor model (𝐾 = 2):

𝑡 = mat1(𝑡) = 𝐀1mat1(𝑡)𝐀′
2 + mat1(𝑡) = 𝐀1𝑡𝐀′

2 + 𝑡.

The Imputation Procedure: We only observe partial data. Define the missingness tensor 𝑡 = (𝑡,𝑖1 ,…,𝑖𝐾 ) ∈ R𝑑1×𝑑2×⋯×𝑑𝐾 with

𝑡,𝑖1 ,…,𝑖𝐾 =
{

1, if 𝑡,𝑖1 ,…,𝑖𝐾 is observed;
0, otherwise.

Our aim is to recover the value for the common component 𝑡,𝑖1 ,…,𝑖𝐾 if 𝑡,𝑖1 ,…,𝑖𝐾 = 0. Assuming first the number of factors 𝑟𝑘 is
known for all modes, we want to obtain the estimators of the factor loading matrices, �̂�𝑘 for 𝑘 ∈ [𝐾], and then the estimated core
ensor series ̂𝑍 ,𝑡 for 𝑡 ∈ [𝑇 ]. See (3.2) for the definition of 𝐐𝑘 and 𝑍 ,𝑡. We can then estimate the common components at time 𝑡 by

̂𝑡 = ̂𝑍 ,𝑡 ×1 �̂�1 ×2 ⋯ ×𝐾 �̂�𝐾 . (3.3)

With (3.3), we can impute 𝑡 using

̃𝑡,𝑖1 ,…,𝑖𝐾 =

{

𝑡,𝑖1 ,…,𝑖𝐾 , if 𝑡,𝑖1 ,…,𝑖𝐾 = 1;

̂𝑡,𝑖1 ,…,𝑖𝐾 , if 𝑡,𝑖1 ,…,𝑖𝐾 = 0.

We leave the discussion of estimating 𝑟𝑘 to Section 4.5. See Section 3.4 in how to obtain �̂�𝑘 and Section 3.5 in how to obtain ̂𝑍 ,𝑡.

3.4. Estimation of factor loading matrices

In this paper, we use the following notation:

𝜓𝑘,𝑖𝑗 ,ℎ ∶=
{

𝑡 ∈ [𝑇 ] ∣ mat𝑘(𝑡)𝑖ℎmat𝑘(𝑡)𝑗 ℎ = 1
}

. (3.4)

Hence 𝜓𝑘,𝑖𝑗 ,ℎ is the set of time periods where both the 𝑖th and 𝑗th entries of the ℎth mode-𝑘 fibre are observed, 𝑖, 𝑗 ∈ [𝑑𝑘], ℎ ∈ [𝑑-𝑘]
with 𝑑-𝑘 ∶= 𝑑1 ⋯ 𝑑𝐾∕𝑑𝑘.

Inspired by Xiong and Pelger (2023) for a vector time series panel, our method relies on the reconstruction of the mode-𝑘 sample
covariance matrix 𝐒𝑘, defined for 𝑖, 𝑗 ∈ [𝑑𝑘],

(𝑆𝑘)𝑖𝑗 ∶=
1
𝑇

𝑇
∑

𝑡=1
mat𝑘(𝑡)′𝑖⋅mat𝑘(𝑡)𝑗⋅ =

𝑑-𝑘
∑

ℎ=1

1
𝑇

𝑇
∑

𝑡=1
mat𝑘(𝑡)𝑖ℎmat𝑘(𝑡)𝑗 ℎ. (3.5)

With missing entries characterized by 𝑡 and 𝜓𝑘,𝑖𝑗 ,ℎ in (3.4), we can generalize the above to

(𝑆𝑘)𝑖𝑗 =
𝑑-𝑘
∑

ℎ=1

{

1
|𝜓𝑘,𝑖𝑗 ,ℎ|

∑

𝑡∈𝜓𝑘,𝑖𝑗 ,ℎ
mat𝑘(𝑡)𝑖ℎmat𝑘(𝑡)𝑗 ℎ

}

. (3.6)

Intuitively, the cross-covariance between unit 𝑖 and 𝑗 at the ℎth mode-𝑘 fibre is estimated inside the curly bracket in (3.6) using
only the corresponding available data. PCA can now be performed on �̂� , and �̂� is obtained as the first 𝑟 eigenvectors of �̂� .
4
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3.5. Estimation of the core tensor series

With �̂�𝑘 available (which is estimating the factor loading space of 𝐐𝑘, with �̂�𝑘 having orthonormal columns), we can estimate
𝑍 ,𝑡 (equivalently vec

(

𝑍 ,𝑡
)

) by observing from model (3.2) that

vec
(

𝑡
)

= 𝐐⊗vec
(

𝑍 ,𝑡
)

+ vec
(

𝑡
)

, where 𝐐⊗ ∶= 𝐐𝐾 ⊗⋯⊗𝐐1.

If 𝐐⊗ is known, then the least squares estimator of vec
(

𝑍 ,𝑡
)

is given by

vec
(

𝑍 ,𝑡
)

= (𝐐′
⊗𝐐⊗)−1𝐐′

⊗vec
(

𝑡
)

=

( 𝑑
∑

𝑗=1
𝐐⊗,𝑗⋅𝐐′

⊗,𝑗⋅

)−1( 𝑑
∑

𝑗=1
𝐐⊗,𝑗⋅[vec

(

𝑡
)

]𝑗

)

.

With missing data, using the missingness tensor 𝑡, the above can be generalized to

vec
(

̂𝑍 ,𝑡
)

=

( 𝑑
∑

𝑗=1
[vec

(

𝑡
)

]𝑗�̂�⊗,𝑗⋅�̂�′
⊗,𝑗⋅

)−1( 𝑑
∑

𝑗=1
[vec

(

𝑡
)

]𝑗�̂�⊗,𝑗⋅[vec
(

𝑡
)

]𝑗

)

. (3.7)

4. Assumptions and theoretical results

We present our assumptions for consistent imputation and estimation of factor loading matrices, with the corresponding
theoretical results presented afterwards.

4.1. Assumptions

O1) (Observation patterns)
1. 𝑡 is independent of 𝑠 and 𝑠 for any 𝑡, 𝑠 ∈ [𝑇 ].
2. Given 𝑡 with 𝑡 ∈ [𝑇 ], for any 𝑘 ∈ [𝐾], 𝑖, 𝑗 ∈ [𝑑𝑘], ℎ ∈ [𝑑-𝑘], there exists a constant 𝜓0 such that with probability going to 1, we
have

|𝜓𝑘,𝑖𝑗 ,ℎ|
𝑇

≥ 𝜓0 > 0.

M1) (Alpha mixing) The elements in 𝑡 and 𝑡 are 𝛼-mixing. A vector process {𝐱𝑡 ∶ 𝑡 = 0,±1,±2,… } is 𝛼-mixing if, for some 𝛾 > 2, the
mixing coefficients satisfy the condition that

∞
∑

ℎ=1
𝛼(ℎ)1−2∕𝛾 < ∞,

where 𝛼(ℎ) = sup𝜏 sup𝐴∈𝜏
−∞ ,𝐵∈∞

𝜏+ℎ
|P(𝐴 ∩ 𝐵) −P(𝐴)P(𝐵)| and 𝑠

𝜏 is the 𝜎-field generated by {𝐱𝑡 ∶ 𝜏 ≤ 𝑡 ≤ 𝑠}.

(F1) (Time series in 𝑡) There is 𝑓 ,𝑡 the same dimension as 𝑡, such that 𝑡 =
∑

𝑞≥0 𝑎𝑓 ,𝑞𝑓 ,𝑡−𝑞 . The time series {𝑓 ,𝑡} has i.i.d. elements
with mean 0 and variance 1, with uniformly bounded fourth order moments. The coefficients 𝑎𝑓 ,𝑞 are such that ∑𝑞≥0 𝑎

2
𝑓 ,𝑞 = 1 and

∑

𝑞≥0 |𝑎𝑓 ,𝑞| ≤ 𝑐 for some constant 𝑐.
(L1) (Factor strength) We assume for 𝑘 ∈ [𝐾], 𝐀𝑘 is of full column rank and independent of factors and errors series. Furthermore, as

𝑑𝑘 → ∞,

𝐙−1∕2
𝑘 𝐀′

𝑘𝐀𝑘𝐙
−1∕2
𝑘 → 𝜮𝐴,𝑘, (4.1)

where 𝐙𝑘 = diag(𝐀′
𝑘𝐀𝑘) and 𝜮𝐴,𝑘 is positive definite with all eigenvalues bounded away from 0 and infinity. We assume (𝐙𝑘)𝑗 𝑗 ≍ 𝑑

𝛼𝑘,𝑗
𝑘

for 𝑗 ∈ [𝑟𝑘], and 1∕2 < 𝛼𝑘,𝑟𝑘 ≤ ⋯ ≤ 𝛼𝑘,2 ≤ 𝛼𝑘,1 ≤ 1.

With Assumption (L1), we can denote 𝐐𝑘 ∶= 𝐀𝑘𝐙
−1∕2
𝑘 and hence 𝐐′

𝑘𝐐𝑘 → 𝜮𝐴,𝑘. We need 𝛼𝑘,𝑗 > 1∕2 in order that the ratio-based
estimator of the number of factors in Section 4.5 works.

(E1) (Decomposition of 𝑡) We assume 𝐾 is constant, and

𝑡 = 𝑒,𝑡 ×1 𝐀𝑒,1 ×2 ⋯ ×𝐾 𝐀𝑒,𝐾 +𝜮𝜖◦𝝐𝑡, (4.2)

where 𝑒,𝑡 is an order-𝐾 tensor with dimension 𝑟𝑒,1 × ⋯ × 𝑟𝑒,𝐾 , containing independent elements with mean 0 and variance 1. The
order-𝐾 tensor 𝝐𝑡 ∈ R𝑑1×⋯×𝑑𝐾 contains independent mean zero elements with unit variance, with the two time series {𝝐𝑡} and {𝑒,𝑡}
being independent. The order-𝐾 tensor 𝜮𝜖 contains the standard deviations of the corresponding elements in 𝝐𝑡, and has elements
uniformly bounded.
Moreover, for each 𝑘 ∈ [𝐾], 𝐀𝑒,𝑘 ∈ R𝑑𝑘×𝑟𝑒,𝑘 is such that ‖‖

‖

𝐀𝑒,𝑘
‖

‖

‖1
= 𝑂(1). That is, 𝐀𝑒,𝑘 is (approximately) sparse.
5
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(E2) (Time series in 𝑡) There is 𝑒,𝑡 the same dimension as 𝑒,𝑡, and 𝜖 ,𝑡 the same dimension as 𝝐𝑡, such that 𝑒,𝑡 =
∑

𝑞≥0 𝑎𝑒,𝑞𝑒,𝑡−𝑞 and
𝝐𝑡 =

∑

𝑞≥0 𝑎𝜖 ,𝑞𝜖 ,𝑡−𝑞 , with {𝑒,𝑡} and {𝜖 ,𝑡} independent of each other, and each time series has independent elements with mean 0
and variance 1 with uniformly bounded fourth order moments. Both {𝑒,𝑡} and {𝜖 ,𝑡} are independent of {𝑓 ,𝑡} from (F1).
The coefficients 𝑎𝑒,𝑞 and 𝑎𝜖 ,𝑡 are such that ∑𝑞≥0 𝑎

2
𝑒,𝑞 =

∑

𝑞≥0 𝑎
2
𝜖 ,𝑞 = 1 and ∑

𝑞≥0 |𝑎𝑒,𝑞|,
∑

𝑞≥0 |𝑎𝜖 ,𝑞| ≤ 𝑐 for some constant 𝑐.
(R1) (Further rate assumptions) We assume that, with 𝑑 ∶= 𝑑1 ⋯ 𝑑𝐾 and 𝑔𝑠 ∶=

∏𝐾
𝑘=1 𝑑

𝛼𝑘,1
𝑘 ,

𝑑 𝑔−2𝑠 𝑇 −1𝑑
2(𝛼𝑘,1−𝛼𝑘,𝑟𝑘 )+1
𝑘 = 𝑜(1), 𝑑 𝑔−1𝑠 𝑇 −1𝑑

2(𝛼𝑘,1−𝛼𝑘,𝑟𝑘 )
𝑘 = 𝑜(1), 𝑑 𝑔−1𝑠 𝑑

𝛼𝑘,1−𝛼𝑘,𝑟𝑘−1∕2
𝑘 = 𝑜(1).

Assumption (O1) means that the missing mechanism is independent of the factors and the noise series, which is also assumed
in Xiong and Pelger (2023) for the purpose of identification. It also means that the missing pattern can depend on the 𝐾 factor loading
matrices, allowing for a wide variety of missing patterns that can vary over time and units in different dimensions. Condition 2 of
O1) implies that the number of time periods that any two individual units are both observed are at least proportional to 𝑇 , which
implifies proofs and presentations, and is also used in Xiong and Pelger (2023). Assumption (M1) is a standard assumption in vector

time series factor models, which facilitates proofs using central limit theorem for time series without losing too much generality.
Assumption (F1), (E1) and (E2) are exactly the corresponding assumptions in Chen and Lam (2024b), allowing for serial correlations
in the factor series, and serial and cross-sectional dependence within and among the error tensor fibres. These three assumptions
acilitate the proof of asymptotic normality in Section 4.3, and boil down to similar assumptions in Chen and Fan (2023) for matrix

time series and in Barigozzi et al. (2023) for general tensor time series (see Proposition 1 in the supplementary materials for the
echnical details). Together with Assumption (M1), we implicitly restrict the general linear processes in (F1) and (E2) to be, for
nstance, of short rather than long dependence.

Assumption (L1) is quite different from assumptions in other papers on factor models, in the sense that we allow for the existence
of weak factors alongside the pervasive ones. Chen and Lam (2024b) adapted the same assumption, which allows each column of
𝐀𝑘 to be completely dense (i.e., a pervasive factor) or sparse to a certain extent. A diagonal entry in 𝐙𝑘 then records how dense a
column really is, and the corresponding strength of factors defined. Assumption (L1) is similar to, yet technically more general than,
Assumption 1(iii) in Onatski (2012) which requires 𝜮𝐴,𝑘 to be diagonal while the normalization on the factor series is essentially the
ame as ours. If all factors are pervasive, (4.1) can be read as 𝑑−1𝑘 𝐀′

𝑘𝐀𝑘 → 𝜮𝐴,𝑘 which is akin to Assumption 3 of Chen and Fan (2023)
for 𝐾 = 2. Modelling with weak factors is closer to reality, and empirical evidence can be found in economics and finance, etc. For
instance, apart from a pervasive market factor, there can be weaker sector factors in a large selection of stock returns (Trzcinka,
1986). More recent work on factor models specifically focuses on weak factors with real data examples confirming the existence of

eak factors, such as Freyaldenhoven (2022) and Chen and Lam (2024a).
Finally, Assumption (R1) gives the technical rates needed for the proof of various theorems in the paper because of the existence

of weak factors. If all factors are pervasive (i.e., 𝛼𝑘,𝑗 = 1), then the conditions are automatically satisfied. Suppose 𝐾 = 2, 𝑇 ≍ 𝑑1 ≍ 𝑑2
and the strongest factors are all pervasive (i.e., 𝛼𝑘,1 = 1), then we need 𝛼𝑘,𝑟𝑘 > 1∕2 for (R1) to be satisfied. This condition is the
same as the one remarked right after we stated Assumption (L1). A factor with 𝛼𝑘,𝑗 close to 0.5 presents a significantly weak factor
with only more than 𝑑1∕2𝑘 of elements are non-zero in the corresponding column of 𝐀𝑘.

Remark 1. With the missing entries imputed using the estimated common components ̂𝑡,𝑖1 ,…,𝑖𝐾 , we have a completed data set
which could be used for re-estimation and hence re-imputation. The convergence could be shown empirically to be accelerated by
such a procedure. The rate improvement would be from the difference between 𝑇 and 𝜓0𝑇 , where 𝜓0 is the lowest proportion of
observation among all entries from Assumption (O1). We omit the lengthy proofs as eventually the rates only differ by a constant,
but we note here that re-imputation can indeed improve our imputation, which is essentially credited to the more observations used
when we have an initially good imputation.

4.2. Consistency: factor loadings and imputed values

We present consistency results in this section. For 𝑘 ∈ [𝐾], 𝑗 ∈ [𝑑𝑘], define

𝐇𝑘,𝑗 ∶= �̂�−1
𝑘

𝑑𝑘
∑

𝑖=1
�̂�𝑘,𝑖⋅

𝑑-𝑘
∑

ℎ=1

1
|𝜓𝑘,𝑖𝑗 ,ℎ|

∑

𝑡∈𝜓𝑘,𝑖𝑗 ,ℎ

(

𝑟-𝑘
∑

𝑚=1
𝛬𝑘,ℎ𝑚mat𝑘(𝑍 ,𝑡)⋅𝑚

)′
𝐐𝑘,𝑖⋅

(

𝑟-𝑘
∑

𝑚=1
𝛬𝑘,ℎ𝑚mat𝑘(𝑍 ,𝑡)⋅𝑚

)′
, (4.3)

𝐇𝑎
𝑘 ∶=

1
𝑇

𝑇
∑

𝑡=1
�̂�−1
𝑘 �̂�′

𝑘𝐐𝑘mat𝑘(𝑍 ,𝑡)𝜦′
𝑘𝜦𝑘mat𝑘(𝑍 ,𝑡)′, (4.4)

where �̂�𝑘 ∶= �̂�′
𝑘�̂�𝑘�̂�𝑘 is a diagonal matrix of eigenvalues of �̂�𝑘 defined in (3.6). Hence 𝐇𝑘,𝑗 = 𝐇𝑎

𝑘 if there are no missing entries,
.e., |𝜓𝑘,𝑖𝑗 ,ℎ| = 𝑇 for each 𝑘 ∈ [𝐾], 𝑖, 𝑗 ∈ [𝑑𝑘] and ℎ ∈ [𝑑-𝑘]. Furthermore, each 𝐇𝑘,𝑗 and 𝐇𝑎

𝑘 can be shown asymptotically invertible
see Lemma 3 and 4 in the supplementary materials).

We first present a consistency result for the factor loading matrix estimator �̂�𝑘 of 𝐐𝑘. In particular, our theoretical rates are
shown in the presence of potential weak factors. To compare with results in similar literature, we will end this section with a
implified result. Readers interested in the rates under only pervasive factors can go straight to Corollary 1.
6
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Theorem 1. Under Assumptions (O1), (M1), (F1), (L1), (E1), (E2) and (R1), for any 𝑘 ∈ [𝐾], we have

1
𝑑𝑘

𝑑𝑘
∑

𝑗=1

‖

‖

‖

�̂�𝑘,𝑗⋅ −𝐇𝑘,𝑗𝐐𝑘,𝑗⋅
‖

‖

‖

2
= 𝑂𝑃

(

𝑑
2(𝛼𝑘,1−𝛼𝑘,𝑟𝑘 )−1
𝑘

(

1
𝑇 𝑑-𝑘

+ 1
𝑑𝑘

)

𝑑2

𝑔2𝑠

)

= 𝑜𝑃 (1),

where 𝑔𝑠 is defined in Assumption (R1). Furthermore, define 𝜂 ∶= 1 − 𝜓0 with 𝜓0 from Assumption (O1), then

1
𝑑𝑘

𝑑𝑘
∑

𝑗=1

‖

‖

‖

�̂�𝑘,𝑗⋅ −𝐇𝑎
𝑘𝐐𝑘,𝑗⋅

‖

‖

‖

2
= 1
𝑑𝑘

‖

‖

‖

�̂�𝑘 −𝐐𝑘𝐇𝑎
𝑘’
‖

‖

‖

2

𝐹

= 𝑂𝑃

(

𝑑
2(𝛼𝑘,1−𝛼𝑘,𝑟𝑘 )−1
𝑘

{(

1
𝑇 𝑑-𝑘

+ 1
𝑑𝑘

)

𝑑2

𝑔2𝑠
+ min

(

1
𝑇
,

𝜂2

(1 − 𝜂)2
)}

)

= 𝑜𝑃 (1).

The proof of the theorem can be found in the supplementary materials of this paper. The two results in Theorem 1 coincide with
each other if 𝜂 = 0, i.e., there are no missing values.

We present the two results in the theorem to highlight the difficulty of obtaining consistency when there are missing values.
ince a factor loading matrix is not uniquely defined, in the second result in Theorem 1 we are estimating how close �̂�𝑘 is to a
ersion of 𝐐𝑘 in Frobenius norm, namely 𝐐𝑘𝐇𝑎

𝑘, which is still defining the same factor loading space as 𝐐𝑘 does. With missing data,
uch a feat is complicated, in the sense that for the 𝑗th row of 𝐐𝑘, �̂�𝑘,𝑗⋅, there corresponds an 𝐇𝑘,𝑗 different from 𝐇𝑎

𝑘 in general, so
hat �̂�𝑘,𝑗⋅ is close to 𝐇𝑘,𝑗𝐐𝑘,𝑗⋅. The extra rate min(1∕𝑇 , 𝜂2∕(1 − 𝜂)2) in the second result is essentially measuring how close each 𝐇𝑘,𝑗
s to 𝐇𝑎

𝑘. See Lemma 3 in the supplementary materials as well.

Theorem 2. Under the Assumptions in Theorem 1, suppose we further have 𝑑
2𝛼𝑘,1−3𝛼𝑘,𝑟𝑘
𝑘 = 𝑜(𝑑-𝑘). Define

𝑔𝜂 ∶= min
(

1
𝑇
,

𝜂2

(1 − 𝜂)2
)

, 𝑔𝑤 ∶=
𝐾
∏

𝑘=1
𝑑
𝛼𝑘,𝑟𝑘
𝑘 .

Then we have the following.
1. The error of the estimated factor series has rate

‖

‖

‖

𝐯𝐞𝐜(̂𝑍 ,𝑡) −
(

𝐇𝑎′
𝐾 ⊗⋯⊗𝐇𝑎′

1
)−1𝐯𝐞𝐜(𝑍 ,𝑡)‖‖

‖

2

= 𝑂𝑃

(

max
𝑘∈[𝐾]

{

𝑇 −1𝑑 𝑑3𝛼𝑘,1−2𝛼𝑘,𝑟𝑘𝑘 𝑔−1𝑠 + 𝑑2𝑔−1𝑠 𝑑
2𝛼𝑘,1−3𝛼𝑘,𝑟𝑘−1
𝑘 + 𝑔𝜂𝑔𝑠𝑑

2𝛼𝑘,1−3𝛼𝑘,𝑟𝑘+1
𝑘

}

+ 𝑑
𝑔𝑤

)

.

2. For any 𝑘 ∈ [𝐾], 𝑖𝑘 ∈ [𝑑𝑘], 𝑡 ∈ [𝑇 ], the squared individual imputation error is
(̂𝑡,𝑖1 ,…,𝑖𝐾 − 𝑡,𝑖1 ,…,𝑖𝐾 )

2

= 𝑂𝑃

(

max
𝑘∈[𝐾]

{

𝑇 −1𝑑 𝑑3𝛼𝑘,1−2𝛼𝑘,𝑟𝑘𝑘 𝑔−1𝑠 𝑔−1𝑤 + 𝑑2𝑔−1𝑠 𝑔−1𝑤 𝑑
2𝛼𝑘,1−3𝛼𝑘,𝑟𝑘−1
𝑘 + 𝑔𝜂𝑔𝑠𝑔−1𝑤 𝑑

2𝛼𝑘,1−3𝛼𝑘,𝑟𝑘+1
𝑘

}

+ 𝑑
𝑔2𝑤

)

.

3. The average imputation error is given by

1
𝑇 𝑑

𝑇
∑

𝑡=1

𝑑1 ,…,𝑑𝐾
∑

𝑖1 ,…,𝑖𝐾=1
(̂𝑡,𝑖1 ,…,𝑖𝐾 − 𝑡,𝑖1 ,…,𝑖𝐾 )

2

= 𝑂𝑃

(

max
𝑘∈[𝐾]

{

𝑇 −1𝑑
3𝛼𝑘,1−2𝛼𝑘,𝑟𝑘
𝑘 𝑔−1𝑠 + 𝑑 𝑔−1𝑠 𝑑

2𝛼𝑘,1−3𝛼𝑘,𝑟𝑘−1
𝑘 + 𝑑−1𝑔𝜂𝑔𝑠𝑑

2𝛼𝑘,1−3𝛼𝑘,𝑟𝑘+1
𝑘

}

+ 1
𝑔𝑤

)

.

The proof can be found in the supplementary materials, which utilizes some rates from the proof of Theorem 3 in the
supplementary materials (without the need for extra rate restrictions like Theorem 3 though). The complication of missing data
comes explicitly from the rate 𝑔𝜂 . The average squared imputation error in result 3 improves upon individual squared error in result
2 when weak factors exist, with degree of improvements larger when the difference in strength of factors is larger.

Our rate can be considered a generalization to a general order tensor, with general factor strengths and missing data, see the
comparison of our results with others’ below Corollary 1. Such generalizations have certainly revealed that when there are weak
factors, especially when the strongest and weakest factor strengths are quite different, those rates of convergence greatly suffer.

Corollary 1 (Simplified Theorems 1 and 2 Under Pervasive Factors). Let Assumption (O1), (M1), (F1), (L1), (E1) and (E2) hold. If all
factors are pervasive such that 𝛼𝑘,𝑗 = 1 for all 𝑘 ∈ [𝐾], 𝑗 ∈ [𝑟𝑘], then with the renormalized loading and core factor estimators defined as
�̂�𝑘 =

√

𝑑𝑘 �̂�𝑘 and ̂𝑡 = ̂𝑍 ,𝑡∕
√

𝑑, we have the following:
1. The (renormalized) loading estimator is consistent such that for any 𝑘 ∈ [𝐾],

1
𝑑𝑘

𝑑𝑘
∑

𝑗=1

‖

‖

‖

�̂�𝑘,𝑗⋅ −𝐇𝑘,𝑗𝐀𝑘,𝑗⋅
‖

‖

‖

2
= 𝑂𝑃

( 1
𝑇 𝑑-𝑘

+ 1
𝑑𝑘

)

= 𝑜𝑃 (1),

1
𝑑𝑘
∑

‖

‖

‖

�̂�𝑘,𝑗⋅ −𝐇𝑎
𝑘𝐀𝑘,𝑗⋅

‖

‖

‖

2
= 𝑂𝑃

{ 1 + 1 + min
( 1 ,

𝜂2
2

)}

= 𝑜𝑃 (1).
7
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2. The (renormalized) core factor estimator is consistent such that for any 𝑡 ∈ [𝑇 ],
‖

‖

‖

𝐯𝐞𝐜(̂𝑡) −
(

𝐇𝑎′
𝐾 ⊗⋯⊗𝐇𝑎′

1
)−1𝐯𝐞𝐜(𝑡)

‖

‖

‖

2
= 𝑂𝑃

{

max
𝑘∈[𝐾]

( 1
𝑇 𝑑-𝑘

+ 1
𝑑2𝑘

)

+ min
( 1
𝑇
,

𝜂2

(1 − 𝜂)2
)}

.

3. The imputation is consistent both for each entry and on average (with the same rate), such that for any 𝑘 ∈ [𝐾], 𝑖𝑘 ∈ [𝑑𝑘], 𝑡 ∈ [𝑇 ],
(̂𝑡,𝑖1 ,…,𝑖𝐾 − 𝑡,𝑖1 ,…,𝑖𝐾 )

2 = 𝑂𝑃
{

max
𝑘∈[𝐾]

( 1
𝑇 𝑑-𝑘

+ 1
𝑑2𝑘

)

+ min
( 1
𝑇
,

𝜂2

(1 − 𝜂)2
)

+ 1
𝑑

}

.

When 𝐾 = 1 with missing data, result 1 has rate 1∕ min(𝑑1, 𝑇 ), which is the same as the rate in Theorem 1 of Xiong and Pelger
(2023). If 𝐾 = 2 and 𝜂 = 0 (i.e, no missing values), result 1 has rate 1∕ min(𝑑𝑘, 𝑇 𝑑-𝑘), which is consistent with Theorem 1 of Chen
nd Fan (2023), for example. For a general order-𝐾 tensor without missing data (i.e., 𝜂 = 0), our Lemma 5 in the supplementary

materials states that

‖�̂�𝑘,𝑗⋅ −𝐇𝑎
𝑘𝐐𝑘,𝑗⋅‖

2 = 𝑂𝑃
( 1
𝑇 𝑑 + 1

𝑑3𝑘

)

, implying 1
𝑑𝑘

‖�̂�𝑘 − 𝐀𝑘𝐇𝑎
𝑘‖

2
𝐹 = 𝑂𝑃

( 1
𝑇 𝑑-𝑘

+ 1
𝑑2𝑘

)

,

which aligns with Theorem 3.1 of He et al. (2022a) or Barigozzi et al. (2023).
If 𝐾 ≥ 2 and 𝜂 = 0, result 3 has rate

max
𝑘∈[𝐾]

(

1
𝑇 𝑑-𝑘

+ 1
𝑑2𝑘

)

+ 1
𝑑

≍ 1
min(𝑇 𝑑-1,… , 𝑇 𝑑-𝐾 , 𝑑21 ,… , 𝑑2𝐾 )

.

This rate is the same as the result in Theorem 4 of Chen and Fan (2023) for 𝐾 = 2, which is a rate for estimating the common
omponent. On the other hand, if 𝜂 is a constant and 𝐾 = 1, then result 3 becomes 𝑑−11 +𝑇 −1 ≍ 1∕ min(𝑑1, 𝑇 ), which is the same rate
s result 3 of Theorem 2 in Xiong and Pelger (2023).

4.3. Inference on the factor loadings

We establish asymptotic normality of the factor loadings for inference purposes. In Section 4.4 we present the covariance matrix
estimator for practical use of our asymptotic normality result. First, we define

𝐇𝑎,∗
𝑘 ∶= tr(𝐀′

-𝑘𝐀-𝑘)1∕2 ⋅ 𝐃
−1∕2
𝑘 𝛶 ′

𝑘𝐙
1∕2
𝑘 , (4.5)

where 𝐃𝑘 ∶= tr(𝐀′
-𝑘𝐀-𝑘)diag{𝜆1(𝐀′

𝑘𝐀𝑘),… , 𝜆𝑟𝑘 (𝐀′
𝑘𝐀𝑘)}, and 𝛶𝑘 is the eigenvector matrix of tr(𝐀′

-𝑘𝐀-𝑘) ⋅ 𝑔−1𝑠 𝑑
𝛼𝑘,1−𝛼𝑘,𝑟𝑘
𝑘 𝐙1∕2

𝑘 𝜮𝐴,𝑘𝐙
1∕2
𝑘 . It

turns out 𝐇𝑎,∗
𝑘 is the probability limit of 𝐇𝑎

𝑘 defined in (4.4). Before presenting our results, we need three additional assumptions.

(L2) (Eigenvalues) For any 𝑘 ∈ [𝐾], the eigenvalues of the 𝑟𝑘 × 𝑟𝑘 matrix 𝜮𝐴,𝑘𝐙𝑘 from Assumption (L1) are distinct.
AD1) Define 𝜔𝐵 ∶= 𝑑−1-𝑘 𝑑

2𝛼𝑘,𝑟𝑘−3𝛼𝑘,1
𝑘 𝑔2𝑠 and the following,

𝜩𝑘,𝑗 ∶= plim
𝑇 ,𝑑1 ,…,𝑑𝐾→∞

Var
( 𝑑𝑘
∑

𝑖=1
𝐐𝑘,𝑖⋅

𝑑-𝑘
∑

ℎ=1

1
|𝜓𝑘,𝑖𝑗 ,ℎ|

∑

𝑡∈𝜓𝑘,𝑖𝑗 ,ℎ
mat𝑘(𝑡)𝑗 ℎ(𝐀-𝑘)′ℎ⋅mat𝑘(𝑡)′𝐀𝑘,𝑖⋅

)

,

then we assume 𝑇 𝜔𝐵 ⋅ ‖‖
‖

𝐃−1
𝑘 𝐇𝑎,∗

𝑘 𝜩𝑘,𝑗 (𝐇
𝑎,∗
𝑘 )′𝐃−1

𝑘
‖

‖

‖𝐹
is of constant order.

AD2) Define the filtration 𝑇 ∶= 𝜎(∪𝑇𝑠=1𝑠) with 𝑠 ∶= 𝜎({𝑡,𝑖1 ,…,𝑖𝐾 ∣ 𝑡 ≤ 𝑠},𝐀1,… ,𝐀𝐾 ), and

𝛥𝐹 ,𝑘,𝑖𝑗 ,ℎ ∶= 1
|𝜓𝑘,𝑖𝑗 ,ℎ|

∑

𝑡∈𝜓𝑘,𝑖𝑗 ,ℎ
mat𝑘(𝑡)𝐯𝑘,ℎ𝐯′𝑘,ℎmat𝑘(𝑡)′ −

1
𝑇

𝑇
∑

𝑡=1
mat𝑘(𝑡)𝐯𝑘,ℎ𝐯′𝑘,ℎmat𝑘(𝑡)′,

where 𝐯𝑘,ℎ ∶= [⊗𝑙∈[𝐾]⧵{𝑘}𝐀𝑙]ℎ⋅. With 𝐐𝑘 being the normalized mode-𝑘 factor loading defined below Assumption (L1), we have for
every 𝑘 ∈ [𝐾], 𝑗 ∈ [𝑑𝑘], for a function ℎ𝑘,𝑗 ∶ R𝑟𝑘 → R𝑟𝑘×𝑟𝑘 ,

√

𝑇 𝑑𝛼𝑘,𝑟𝑘𝑘 ⋅ 𝐃−1
𝑘 𝐇𝑎,∗

𝑘

𝑑𝑘
∑

𝑖=1
𝐐𝑘,𝑖⋅𝐀′

𝑘,𝑖⋅

𝑑-𝑘
∑

ℎ=1
𝛥𝐹 ,𝑘,𝑖𝑗 ,ℎ𝐀𝑘,𝑗⋅

→  (𝟎,𝐃−1
𝑘 𝐇𝑎,∗

𝑘 ℎ𝑘,𝑗 (𝐀𝑘,𝑗⋅)(𝐇
𝑎,∗
𝑘 )′𝐃−1

𝑘 ) 𝑇 -stably.

Assumption (AD1) guarantees a part of the covariance matrix of the asymptotic normality in Theorem 3 is of constant order. It
an be regarded as a lower bound condition which is necessary for the dominance of a certain term involved in the asymptotic
ormality. Since we show the upper bound of 𝑇 𝜔𝐵 ⋅ ‖‖

‖

𝐃−1
𝑘 𝐇𝑎,∗

𝑘 𝜩𝑘,𝑗 (𝐇
𝑎,∗
𝑘 )′𝐃−1

𝑘
‖

‖

‖𝐹
is of constant order in the proof of Theorem 3 in the

supplementary materials, this assumption is not particularly strong.
Assumption (AD2) is required since the missing data creates a discrepancy term 𝛥𝐹 ,𝑘,𝑖𝑗 ,ℎ as defined in the assumption. This

ssumption is also parallel to Assumption G3.5 in Xiong and Pelger (2023). We demonstrate how this assumption is satisfied with
Assumption (O1), (F1), (L1) and two additional but simpler assumptions in Proposition 1 in Section 4.6.
8
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Theorem 3. Let all the assumptions under Theorem 2 hold, in addition to (L2), (AD1) and (AD2) above. With 𝑟𝑘 fixed and 𝑑𝑘, 𝑇 → ∞
for 𝑘 ∈ [𝐾], suppose also 𝑇 𝑑-𝑘 = 𝑜(𝑑

𝛼𝑘,1+𝛼𝑘,𝑟𝑘
𝑘 ). We have

√

𝑇 𝑑𝛼𝑘,𝑟𝑘𝑘 ⋅ (�̂�𝑘,𝑗⋅ −𝐇𝑎
𝑘𝐐𝑘,𝑗⋅)


←←←←←←←←→  (𝟎,𝐃−1

𝑘 𝐇𝑎,∗
𝑘 (𝑇 𝑑𝛼𝑘,𝑟𝑘𝑘 ⋅ 𝜩𝑘,𝑗 + ℎ𝑘,𝑗 (𝐀𝑗⋅))(𝐇

𝑎,∗
𝑘 )′𝐃−1

𝑘 ).

Furthermore, if 𝑇 𝑑−1𝑔2𝑠𝑔𝜂𝑑
1+𝛼𝑘,1−3𝛼𝑘,𝑟𝑘
𝑘 = 𝑜(1) is also satisfied, then

√

𝑇 𝜔𝐵 ⋅ (�̂�𝑘,𝑗⋅ −𝐇𝑎
𝑘𝐐𝑘,𝑗⋅)


←←←←←←←←→  (𝟎, 𝑇 𝜔𝐵 ⋅ 𝐃−1

𝑘 𝐇𝑎,∗
𝑘 𝜩𝑘,𝑗 (𝐇

𝑎,∗
𝑘 )′𝐃−1

𝑘 ).

If all factors are pervasive, the rate condition 𝑇 𝑑-𝑘 = 𝑜(𝑑
𝛼𝑘,1+𝛼𝑘,𝑟𝑘
𝑘 ) reduces to 𝑇 𝑑-𝑘 = 𝑜(𝑑2𝑘), which is equivalent to the condition

needed for asymptotic normality in Bai (2003) for 𝐾 = 1 and Chen and Fan (2023) for 𝐾 = 2. The first asymptotic normality result
s compatible to Theorem 2.1 of Xiong and Pelger (2023) when all factors are pervasive. In their Theorem 2.1, the 𝛤 𝑜𝑏𝑠𝛬,𝑗 is in fact of

rate 𝑁−1, so that the normalizing rate is
√

𝑇 𝑁 , which is exactly
√

𝑇 𝑑1 in our first result when 𝐾 = 1.
Suppose all factors are pervasive. The rate condition 𝑇 𝑑−1𝑔2𝑠𝑔𝜂𝑑

1+𝛼𝑘,1−3𝛼𝑘,𝑟𝑘
𝑘 = 𝑜(1) is automatically satisfied when there is no

issing data, i.e., 𝜂 = 0 so that 𝑔𝜂 = 0. If so, the rate of convergence is √

𝑇 𝜔𝐵 =
√

𝑇 𝑑, which is compatible to Theorem 2.1,
heorem 2.2 of Chen and Fan (2023) and Theorem 3.2 of Barigozzi et al. (2023) (after our normalization to their factor loading
atrices). The condition is also satisfied when there is only finite number of missing data points, so that 𝜂 ≍ 𝑇 −1 and 𝑔𝜂 ≍ 𝑇 −2, and
1, 𝑑2 = 𝑜(𝑇 ) for 𝐾 = 2.

Remark 2. We do not establish asymptotic normality for the estimated factor series and common components. The reason is that
for a tensor with 𝐾 > 1, the decomposition in the estimated factor series and the common components cannot be dominated by
terms that are asymptotically normal. This is also the reason why Chen and Fan (2023) does not include asymptotic normality for
the estimated factor series and common components. Barigozzi et al. (2023) constructs asymptotic normality for the core factor
built upon their projection estimator ̃𝑡, which is sensible as the projecting loading estimator already has an improved rate. In
comparison, the rate of any PCA-type estimators, such as the one in Chen and Fan (2023) for matrix data and the one in our case
or general tensors, is insufficient for a potentially asymptotically Gaussian term to be dominating. The main goal of this work is
o impute missing entries, and existing methods on tensor factor models using Tucker decomposition should be applicable with all

missing entries replaced by the consistent imputations.

4.4. Estimation of the asymptotic covariance matrix

In order to carry out inferences for the factor loadings using Theorem 3, we need to estimate the asymptotic covariance matrix
or �̂�𝑘,𝑗⋅ − 𝐇𝑎

𝑘𝐐𝑘,𝑗⋅. To this end, we use the heteroscedasticity and autocorrelation consistent (HAC) estimators (Newey and West,
1987) based on {�̂�𝑘,mat𝑘(̂𝑡),mat𝑘(̂𝑡)}𝑡∈[𝑇 ], where

mat𝑘(̂𝑡) = (�̂�𝑘)mat𝑘(̂𝑍 ,𝑡)(�̂�𝐾 ⊗⋯⊗ �̂�𝑘+1 ⊗ �̂�𝑘−1 ⊗⋯⊗ �̂�1)′, mat𝑘(̂𝑡) ∶= mat𝑘(𝑡) − mat𝑘(̂𝑡).

With a tuning parameter 𝛽 such that 𝛽 → ∞ and 𝛽∕(𝑇 𝑑𝛼𝑘,𝑟𝑘𝑘 )1∕4 → 0, we define two HAC estimators

�̂�𝐻 𝐴𝐶 ∶= 𝐃𝑘,0,𝑗 +
𝛽
∑

𝜈=1

(

1 − 𝜈
1 + 𝛽

)

(

𝐃𝑘,𝜈 ,𝑗 + 𝐃′
𝑘,𝜈 ,𝑗

)

,

�̂�
𝛥
𝐻 𝐴𝐶 ∶= 𝐃𝛥𝑘,0,𝑗 +

𝛽
∑

𝜈=1

(

1 − 𝜈
1 + 𝛽

)

(

𝐃𝛥𝑘,𝜈 ,𝑗 + (𝐃𝛥𝑘,𝜈 ,𝑗 )′
)

, where

𝐃𝑘,𝜈 ,𝑗 ∶=
𝑇
∑

𝑡=1+𝜈

( 𝑑𝑘
∑

𝑖=1

( 1
𝑇

𝑇
∑

𝑠=1
�̂�−1
𝑘 �̂�′

𝑘�̂�(𝑘),𝑠�̂�(𝑘),𝑠,𝑖⋅

)

𝑑-𝑘
∑

ℎ=1

1
|𝜓𝑘,𝑖𝑗 ,ℎ|

�̂�(𝑘),𝑡,𝑗 ℎ�̂�(𝑘),𝑡,𝑖ℎ ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑖𝑗 ,ℎ}
)

⋅
( 𝑑𝑘
∑

𝑖=1

( 1
𝑇

𝑇
∑

𝑠=1
�̂�−1
𝑘 �̂�′

𝑘�̂�(𝑘),𝑠�̂�(𝑘),𝑠,𝑖⋅

)

𝑑-𝑘
∑

ℎ=1

1
|𝜓𝑘,𝑖𝑗 ,ℎ|

�̂�(𝑘),𝑡−𝜈 ,𝑗 ℎ�̂�(𝑘),𝑡−𝜈 ,𝑖ℎ ⋅ 1{𝑡 − 𝜈 ∈ 𝜓𝑘,𝑖𝑗 ,ℎ}
)′
,

𝐃𝛥𝑘,𝜈 ,𝑗 ∶=
𝑇
∑

𝑡=1+𝜈

[ 𝑑𝑘
∑

𝑖=1

( 1
𝑇

𝑇
∑

𝑠=1
�̂�−1
𝑘 �̂�′

𝑘�̂�(𝑘),𝑠�̂�(𝑘),𝑠,𝑖⋅

)

𝑑-𝑘
∑

ℎ=1

(

1
|𝜓𝑘,𝑖𝑗 ,ℎ|

�̂�(𝑘),𝑡,𝑖ℎ�̂�(𝑘),𝑡,𝑗 ℎ ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑖𝑗 ,ℎ}

− 1
𝑇
�̂�(𝑘),𝑡,𝑖ℎ�̂�(𝑘),𝑡,𝑗 ℎ

)

]

⋅

[ 𝑑𝑘
∑

𝑖=1

( 1
𝑇

𝑇
∑

𝑠=1
�̂�−1
𝑘 �̂�′

𝑘�̂�(𝑘),𝑠�̂�(𝑘),𝑠,𝑖⋅

)

⋅
𝑑-𝑘
∑

ℎ=1

(

1
|𝜓𝑘,𝑖𝑗 ,ℎ|

�̂�(𝑘),𝑡−𝜈 ,𝑖ℎ�̂�(𝑘),𝑡−𝜈 ,𝑗 ℎ ⋅ 1{𝑡 − 𝜈 ∈ 𝜓𝑘,𝑖𝑗 ,ℎ} − 1
𝑇
�̂�(𝑘),𝑡−𝜈 ,𝑖ℎ�̂�(𝑘),𝑡−𝜈 ,𝑗 ℎ

)

]′

,

where �̂�(𝑘),𝑠 ∶= mat𝑘(̂𝑠) and �̂�(𝑘),𝑠 ∶= mat𝑘(̂𝑠).

Theorem 4. Let all the assumptions under Theorem 2 hold, in addition to (L2), (AD1) and (AD2) above. With 𝑟𝑘 fixed and 𝑑𝑘, 𝑇 → ∞
for 𝑘 ∈ [𝐾], suppose also the rate for the individual common component imputation error in result 2 of Theorem 2 is 𝑜(1), together with
9
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𝑇 𝑑-𝑘 = 𝑜(𝑑
𝛼𝑘,1+𝛼𝑘,𝑟𝑘
𝑘 ) and 𝑑

2(𝛼𝑘,1−𝛼𝑘,𝑟𝑘 )
𝑘 [(𝑇 𝑑-𝑘)−1 + 𝑑−1𝑘 ]𝑑2𝑔−2𝑠 = 𝑜(1). Then

1. �̂�−1
𝑘 �̂�𝐻 𝐴𝐶 �̂�−1

𝑘 is consistent for 𝐃−1
𝑘 𝐇𝑎,∗

𝑘 𝜩𝑘,𝑗 (𝐇
𝑎,∗
𝑘 )′𝐃−1

𝑘 ;
2. �̂�−1

𝑘 �̂�
𝛥
𝐻 𝐴𝐶 �̂�−1

𝑘 is consistent for (𝑇 𝑑𝛼𝑘,𝑟𝑘𝑘 )−1𝐃−1
𝑘 𝐇𝑎,∗

𝑘 ℎ𝑘,𝑗 (𝐀𝑘,𝑗⋅)(𝐇
𝑎,∗
𝑘 )′𝐃−1

𝑘 ;

3. (�̂�𝐻 𝐴𝐶 + �̂�
𝛥
𝐻 𝐴𝐶 )−1∕2�̂�𝑘(�̂�𝑘,𝑗⋅ −𝐇𝑎

𝑘𝐐𝑘,𝑗⋅)

←←←←←←←←→  (𝟎, 𝐈𝑟𝑘 ).

The extra rate assumption 𝑑
2(𝛼𝑘,1−𝛼𝑘,𝑟𝑘 )
𝑘 [(𝑇 𝑑-𝑘)−1 + 𝑑−1𝑘 ]𝑑2𝑔−2𝑠 = 𝑜(1) ensures that we have Frobenius norm consistency for �̂�𝑘 from

Theorem 1. The imputation error from result 2 of Theorem 2 also has rate going to 0 when all factors are pervasive, for instance.
With result 3 in particular, we can perform inferences on any rows of �̂�𝑘. Practical performances of result 3 is demonstrated in
ection 5.1.3. The reason that we need two HAC estimators is that similar to Theorem 1, there is a component for missing data,

arising from the fact that 𝐇𝑘,𝑗 is different from 𝐇𝑎
𝑘 for each 𝑗 ∈ [𝑑𝑘] in general.

4.5. Estimation of number of factors

The reconstructed mode-𝑘 sample covariance matrix �̂�𝑘 is in fact estimating a complete-sample version of a matrix 𝐑∗
𝑘, where

𝐑∗
𝑘 ∶=

1
𝑇

𝑇
∑

𝑡=1
𝐐𝑘mat𝑘(𝑍 ,𝑡)𝜦′

𝑘𝜦𝑘mat𝑘(𝑍 ,𝑡)′𝐐′
𝑘, (4.6)

and 𝑍 ,𝑡 and 𝜦𝑘 are defined in (3.2). It turns out that we have 𝜆𝑗 (�̂�𝑘) ≍𝑃 𝜆𝑗 (𝐑∗
𝑘) for 𝑗 ∈ [𝑟𝑘], and

𝜆𝑗 (𝐑∗
𝑘) ≍𝑃 𝑑

𝛼𝑘,𝑗−𝛼𝑘,1
𝑘 𝑔𝑠, 𝑔𝑠 ∶=

𝐾
∏

𝑘=1
𝑑𝛼𝑘,1𝑘 as defined in (R1).

We have the following theorem.

Theorem 5. Let Assumption (O1), (M1), (F1), (L1), (E1), (E2) and (R1) hold. Moreover, assume
{

𝑑 𝑔−1𝑠 𝑑
𝛼𝑘,1−𝛼𝑘,𝑟𝑘
𝑘 [(𝑇 𝑑-𝑘)−1∕2 + 𝑑

−1∕2
𝑘 ] = 𝑜(𝑑

𝛼𝑘,𝑗+1−𝛼𝑘,𝑗
𝑘 ), 𝑗 ∈ [𝑟𝑘 − 1] with 𝑟𝑘 ≥ 2;

𝑑 𝑔−1𝑠 [(𝑇 𝑑-𝑘)−1∕2 + 𝑑
−1∕2
𝑘 ] = 𝑜(1), 𝑟𝑘 = 1.

Then �̂�𝑘 is a consistent estimator of 𝑟𝑘, where

�̂�𝑘 ∶= ar g min
𝓁

{

𝜆𝓁+1(�̂�𝑘) + 𝜉
𝜆𝓁(�̂�𝑘) + 𝜉

, 𝓁 ∈ [⌊𝑑𝑘∕2⌋]
}

, 𝜉 ≍ 𝑑[(𝑇 𝑑-𝑘)−1∕2 + 𝑑
−1∕2
𝑘 ]. (4.7)

The extra rate assumption is satisfied, for instance, when all factors corresponding to 𝐀𝑘 are pervasive. An eigenvalue-ratio
estimator is considered in Lam and Yao (2012) and Ahn and Horenstein (2013), while a perturbed eigenvalue ratio estimator
s considered in Pelger (2019). However, all of these estimators are for a vector time series factor model. Our estimator �̂�𝑘 in

(4.7) extracts eigenvalues from �̂�𝑘, which is not necessarily positive semi-definite. The addition of 𝜉 can make �̂�𝑘 + 𝜉𝐈𝑑𝑘 positive
semi-definite, while stabilizing the estimator. We naturally assume that 𝑟𝑘 < 𝑑𝑘∕2, which is a very reasonable assumption for all
applications of factor models. In fact, our recommended choice of 𝜉 is

𝜉 = 1
5
𝑑[(𝑇 𝑑-𝑘)−1∕2 + 𝑑

−1∕2
𝑘 ].

The requirement that 𝜉 ≍ 𝑑[(𝑇 𝑑-𝑘)−1∕2+𝑑
−1∕2
𝑘 ] ensures that 𝜉 = 𝑜𝑃 (𝜆𝑟𝑘 (�̂�𝑘)) from our rate assumption in the theorem. Our simulations

n Section 5.1.2 suggest that this proposal works very well.

4.6. *How Assumption (AD2) can be implied

This section details how Assumption (AD2) can be implied from simpler assumptions. Readers can skip this part and go straight
to the next section for a more integral reading experience. We begin by presenting a proposition.

Proposition 1. Let Assumption (O1), (F1), (L1) hold. For a given 𝑘 ∈ [𝐾], 𝑗 ∈ [𝑑𝑘], assume also the following:

1. The mode-𝑘 factor is strong enough such that 𝛼𝑘,𝑟𝑘 > 4∕5, and 𝑑
𝛼𝑘,1−𝛼𝑘,𝑟𝑘
𝑘 𝑇 −𝜖∕2 = 𝑜(1) with some 𝜖 ∈ (0, 1).

2. There exists some 𝜓𝑘,𝑖𝑗 such that 𝜓𝑘,𝑖𝑗 = 𝜓𝑘,𝑖𝑗 ,ℎ for any 𝑖 ∈ [𝑑𝑘], ℎ ∈ [𝑑-𝑘]. Furthermore, there exists 𝜔𝜓 ,𝑘,𝑗 such that for any 𝑡 ∈ [𝑇 ],
as 𝑑𝑘, 𝑇 → ∞,

𝑑−2𝑘

𝑑𝑘
∑

𝑖=1

𝑑𝑘
∑

𝑙=1

(𝑇 ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑖𝑗}
|𝜓𝑘,𝑖𝑗 |

− 1
)(𝑇 ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑙 𝑗}

|𝜓𝑘,𝑙 𝑗 |
− 1

) 𝑝
←←←←←←→ 𝜔𝜓 ,𝑘,𝑗 .

With the above, Assumption (AD2) is satisfied.
10
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Condition 1 and 2 in Proposition 1 are on the factor strength and missingness pattern, respectively. Condition 1 is trivially
satisfied if all factors are pervasive. Condition 2 can be easily satisfied by assuming that in mat𝑘(𝑡), all the elements in each row
are missing at random with probability 1 − 𝑝0. We then have for each 𝑡 ∈ [𝑇 ], as 𝑑𝑘, 𝑇 → ∞,

𝑑−2𝑘

𝑑𝑘
∑

𝑖=1

𝑑𝑘
∑

𝑙=1

(𝑇 ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑖𝑗}
|𝜓𝑘,𝑖𝑗 |

− 1
)(𝑇 ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑙 𝑗}

|𝜓𝑘,𝑙 𝑗 |
− 1

)

= 𝑑−2𝑘

𝑑𝑘
∑

𝑖=1

𝑑𝑘
∑

𝑙=1

(𝑇 2 ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑖𝑗} ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑙 𝑗}
|𝜓𝑘,𝑖𝑗 | ⋅ |𝜓𝑘,𝑙 𝑗 |

−
𝑇 ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑖𝑗}

|𝜓𝑘,𝑖𝑗 |
−
𝑇 ⋅ 1{𝑡 ∈ 𝜓𝑘,𝑙 𝑗}

|𝜓𝑘,𝑙 𝑗 |
+ 1

)

𝑝
←←←←←←→ 𝑝−10 − 1,

which is 𝜔𝜓 ,𝑘,𝑗 . Similar to Assumption S3.2 in Xiong and Pelger (2023), the value of 𝜔𝜓 ,𝑘,𝑗 can be regarded as a measure of
missingness complexity. It is a parameter related to the variance of the stable convergence, and tends to increase when there is
 larger portion of data missing.

5. Numerical results

5.1. Simulation

We demonstrate the empirical performance of our estimators in this section. Note that we do not have comparisons to other
imputation methods since to the best of our knowledge, there are no other general imputation methods available for 𝐾 > 1 apart
from tensor completion methods for very specific applications as mentioned in the introduction. However, we will make comparisons
with an alternative approach to impute tensor time series combining Xiong and Pelger (2023) and Chen and Lam (2024b), as
demonstrated in Section 5.1.4. Under different missing patterns which will be described later, we investigate the performance of
the factor loading matrix estimators, the imputation, and the estimator of the number of factors. We also demonstrate asymptotic
normality as described in Theorem 3, followed by an example plot of a statistical power function using result 3 of Theorem 4.
Throughout this section, each simulation experiment of a particular setting is repeated 1000 times.

For the data generating process, we use model (3.1) together with Assumption (E1), (E2) and (F1). More precisely, the elements
in 𝑡 are independent standardized AR(5) with AR coefficients 0.7, 0.3, −0.4, 0.2, and −0.1. The elements in 𝑒,𝑡 and 𝝐𝑡 are generated
imilarly, but their AR coefficients are (−0.7, −0.3, −0.4, 0.2, 0.1) and (0.8, 0.4, −0.4, 0.2, −0.1) respectively. The standard deviation
f each element in 𝝐𝑡 is generated by i.i.d. | (0, 1)|.

For each 𝑘 ∈ [𝐾], each factor loading matrix 𝐀𝑘 is generated independently with 𝐀𝑘 = 𝐔𝑘𝐁𝑘, where each entry of 𝐔𝑘 ∈ R𝑑𝑘×𝑟𝑘

is i.i.d.  (0, 1), and 𝐁𝑘 ∈ R𝑟𝑘×𝑟𝑘 is diagonal with the 𝑗th diagonal entry being 𝑑−𝜁𝑘,𝑗𝑘 , 0 ≤ 𝜁𝑘,𝑗 ≤ 0.5. Pervasive (strong) factors have
𝑘,𝑗 = 0, while weak factors have 0 < 𝜁𝑘,𝑗 ≤ 0.5. Each entry of 𝐀𝑒,𝑘 ∈ R𝑑𝑘×𝑟𝑒,𝑘 is i.i.d.  (0, 1), but has independent probability of
.95 being set exactly to 0. We set 𝑟𝑒,𝑘 = 2 for all 𝑘 ∈ [𝐾] throughout the section.

To investigate the performance with missing data, we consider four missing patterns:

• (M-i) Random missing with probability 0.05.
• (M-ii) Random missing with probability 0.3.
• (M-iii) The missing entries have index (𝑡, 𝑖1,… , 𝑖𝐾 ), where

0.5𝑇 ≤ 𝑡 ≤ 𝑇 , 1 ≤ 𝑖𝑘 ≤ 0.5𝑑𝑘 for all 𝑘 ∈ [𝐾].

• (M-iv) Conditional random missingness such that the unit with index 𝑗 along mode-1 is missing with probability 0.2 if
(𝐀1)𝑗 ,1 ≥ 0, and with probability 0.5 if (𝐀1)𝑗 ,1 < 0.

To test how robust our imputation is under heavy-tailed distribution, we consider two distributions for the innovation process
in generating 𝑡, 𝑒,𝑡 and 𝝐𝑡: (1) i.i.d.  (0, 1); (2) i.i.d. 𝑡3.

5.1.1. Accuracy in the factor loading matrix estimators and imputations
For both the factor loading matrix estimators and the imputations, since our procedure for vector time series (𝐾 = 1) is essentially

the same as that in Xiong and Pelger (2023), we show here only the performance for 𝐾 = 2, 3. We use the column space distance

(𝐐, �̂�) = ‖

‖

‖

𝐐(𝐐′𝐐)−1𝐐′ − �̂�(�̂�′�̂�)−1�̂�′‖
‖

‖

for any given 𝐐, �̂�, which is a commonly used measure in the literature. For measuring the imputation accuracy, we report the
relative mean squared errors (MSE) defined by

relative MSE =
∑

𝑗∈ (𝐶𝑗 − 𝐶𝑗 )2
∑

𝑗∈ 𝐶
2
𝑗

, (5.1)

where  either denotes the set of all missing, all observed, or all available units.
We consider the following simulation settings:
11
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Fig. 2. Plot of the column space distance (𝐐𝑘 , �̂�𝑘) (in log-scale) for 𝑘 ∈ [𝐾] for missing pattern (M-i), with 𝐾 = 2 on the left panel and 𝐾 = 3 on the right.
The horizontal axis is indexed from (a) to (g) to represent Settings (Ia) to (Ig), with the 𝑘th boxplot of each setting corresponding to the 𝑘th factor loading

atrix 𝐐𝑘 therein. Performances on other missing patterns are very similar, and are omitted.

(Ia) 𝐾 = 2, 𝑇 = 100, 𝑑1 = 𝑑2 = 40, 𝑟1 = 1, 𝑟2 = 2. All factors are pervasive with 𝜁𝑘,𝑗 = 0 for all 𝑘, 𝑗. All innovation processes in
constructing 𝑡,𝑒,𝑡 and 𝝐𝑡 are i.i.d. standard normal, and missing pattern is (M-i).

(Ib) Same as (Ia), but one factor is weak with 𝜁𝑘,1 = 0.2 for all 𝑘 ∈ [𝐾].
(Ic) Same as (Ia), but all innovation processes are i.i.d. 𝑡3, and all factors are weak with 𝜁𝑘,𝑗 = 0.2 for all 𝑘, 𝑗.
(Id) Same as (Ic), but 𝑇 = 200, 𝑑1 = 𝑑2 = 80.
(Ie) 𝐾 = 3, 𝑇 = 80, 𝑑1 = 𝑑2 = 𝑑3 = 20, 𝑟1 = 𝑟2 = 𝑟3 = 2. All factors are pervasive with 𝜁𝑘,𝑗 = 0 for all 𝑘, 𝑗. All innovation processes in

constructing 𝑡,𝑒,𝑡 and 𝝐𝑡 are i.i.d. standard normal, and missing pattern is (M-i).
(If) Same as (Ie), but all factors are weak with 𝜁𝑘,𝑗 = 0.2 for all 𝑘, 𝑗.
(Ig) Same as (If), but 𝑇 = 200, 𝑑1 = 𝑑2 = 𝑑3 = 40.

Settings (Ia) to (Id) have 𝐾 = 2, and settings (Ie) to (Ig) have 𝐾 = 3. They all have missing pattern (M-i), but we have considered
ll settings with missing patterns (M-ii) to (M-iv), with performance of the factor loading matrix estimators very similar to those

with missing pattern (M-i). Hence we are only presenting the results for settings (Ia) to (Ig) in Fig. 2 for the missing pattern (M-i).
The imputation results for the above settings are collected in Table 1, together with those under different missing patterns.

We can see from Fig. 2 that the factor loading matrix estimators perform worse when there are weak factors or when the
distribution of the innovation processes is fat-tailed. However, larger dimensions ameliorate the worsen performance. The increase
in the loading space distance from 𝑘 = 1 to 𝑘 = 2 in settings (Ia) to (Id) is due to more factors along mode-2, which naturally incurs

ore errors compared to smaller 𝑟𝑘. In comparison, the loading space errors shown in the right panel of Fig. 2 are in line for all
modes due to the same number of factors along each mode.

From Table 1, we can see that missing pattern (M-iii) is uniformly more difficult in all settings for imputation. This is
nderstandable as there is a large block of data missing in setting (M-iii), so that we obtain less information towards the ‘‘centre’’

of the missing block. This is also the reason why under (M-iii), the imputation performance for the missing set is worse than the
bserved set, unlike for other missing patterns where all imputation performances are close.

Random missing in (M-i) and (M-ii) are relatively easier for our imputation procedure to handle. Note that if the TALL-WIDE
algorithm in Bai and Ng (2021) were to be extended to the case for 𝐾 > 1, it can handle missing pattern (M-iii), but not (M-i) and
M-ii). The design of our method allows us to handle a wider variety of missing patterns, including random missingness. We want to

stress that we have made attempts to generalize the TALL-WIDE algorithm to impute high-order time series data for comparisons,
yet the method is almost impossible to use in tensor data. The generalization is also too complicated, and hence is not shown here.

5.1.2. Performance for the estimation of the number of factors
In this section, we demonstrate the performance of our ratio estimator �̂�𝑘 in (4.7) for estimating 𝑟𝑘 for 𝐾 = 1, 2, 3. For each

𝑘 ∈ [𝐾], we set the value of 𝜉 in Theorem 5 as 𝜉 = 𝑑[(𝑇 𝑑-𝑘)−1∕2+𝑑
−1∕2
𝑘 ]∕5. We have tried a wide range of values other than 1∕5 for 𝜉

in all settings, but 1∕5 is working the best in the vast majority of settings, see simulation results on the sensitivity of different 𝜉 in
the supplementary materials. Hence we do not recommend treating it as a tuning parameter in this section for saving computational
time.

We present the results under a fully observed scenario and a missing data scenario for each of the following setting:
12
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Table 1
Relative MSE for settings (Ia) to (Ig), reported for  as the set containing respectively observed (obs), missing (miss), and all
(all) units. For 𝐾 = 3, all results presented are multiplied by 104.
Setting K=2 K=3

Missing Pattern  (Ia) (Ib) (Ic) (Id) (Ie) (If) (Ig)

(M-i)
obs .002 .020 .066 .039 2.61 120 .293

miss .002 .020 .066 .039 2.63 121 .294

all .002 .020 .066 .039 2.61 120 .293

(M-ii)
obs .003 .025 .079 .045 5.97 154 .702

miss .003 .025 .079 .045 6.06 155 .703

all .003 .025 .079 .045 6.00 154 .702

(M-iii)
obs .004 .025 .079 .048 6.64 136 1.75

miss .009 .036 .107 .061 14.7 164 4.02

all .005 .026 .083 .050 7.19 138 1.89

(M-iv)
obs .004 .027 .086 .047 7.75 173 .888

miss .004 .028 .088 .047 8.49 179 .964

all .004 .027 .086 .047 8.00 175 .914

Table 2
Results for setting (IIa). Each column reports the mean and SD (subscripted, in bracket) of the
estimated number of factors over 1000 replications, followed by the correct proportion of the
estimates. The estimator �̂� is our proposed estimator; �̂�re,0 and �̂�re,1 are similar but used imputed
data where the imputation is done using the number of factors as �̂� and �̂�+ 1, respectively; �̂�iTIP,re,0
and �̂�iTIP,re,1 are iTIP-ER on imputed data (using �̂� and �̂� + 1 respectively); �̂�full and �̂�iITP,full are our
estimator and iTIP-ER on fully observed data (in green), respectively.

Setting (IIa) (True 𝑟1 = 2)
Missing Pattern �̂� �̂�re,0 �̂�re,1 �̂�iTIP,re,0 �̂�iTIP,re,1 �̂�full �̂�iTIP,full

Mean(SD)
(M-ii) 1.98(.13) 1.98(.13) 2.00(.06) 1.97(.18) 1.97(.22)
(M-iii) 1.92(.27) 1.93(.26) 1.97(.20) 1.90(.30) 1.92(.31)
(M-iv) 1.98(.14) 1.98(.14) 2.01(.08) 1.97(.17) 1.98(.24)

1.99(.10) 1.92(.28)

Correct Proportion
(M-ii) .982 .982 .996 .967 .949
(M-iii) .921 .93 .96 .901 .898
(M-iv) .979 .979 .993 .97 .943

.99 .917

(IIa) 𝐾 = 1, 𝑇 = 𝑑1 = 80, 𝑟1 = 2. All factors are pervasive with 𝜁1,𝑗 = 0 for all 𝑗. All innovation processes involved are i.i.d. standard
normal. We try missing patterns (M-ii), (M-iii), and (M-iv).

(IIb) Same as (IIa), but one factor is weak with 𝜁1,1 = 0.1 and the missing pattern is only (M-ii).
(IIc) Same as (IIb), but factors are weak with 𝜁1,1 = 0.1 and 𝜁1,2 = 0.15.
(IId) Same as (IIc), but 𝑇 = 160.
IIIa) 𝐾 = 2, 𝑇 = 𝑑1 = 𝑑2 = 40, 𝑟1 = 2, 𝑟2 = 3. All factors are pervasive with 𝜁𝑘,𝑗 = 0 for all 𝑘, 𝑗. All innovation processes involved are

i.i.d. standard normal, and the missing pattern is (M-ii).
IIIb) Same as (IIIa), but all factors are weak with 𝜁𝑘,𝑗 = 0.1 for all 𝑘, 𝑗.
IIIc) Same as (IIIb), but 𝑇 = 𝑑1 = 𝑑2 = 80.
IVa) 𝐾 = 3, 𝑇 = 𝑑1 = 𝑑2 = 𝑑3 = 20, 𝑟1 = 2, 𝑟2 = 3, 𝑟3 = 4. All factors are pervasive with 𝜁𝑘,𝑗 = 0 for all 𝑘, 𝑗. All innovation processes

involved are i.i.d. standard normal, and the missing pattern is (M-ii).
IVb) Same as (IVa), but all innovation processes are i.i.d. 𝑡3.
IVc) Same as (IVa), but 𝑇 = 40.

Since estimating the number of factors with missing data is new to the literature, it is of interest to explore the accuracy of
he estimator under different missing patterns. Hence we explore different missing patterns in setting (IIa). Extensive experiments
not shown here) on the imputation accuracy using misspecified number of factors show that underestimation is harmful, while
light overestimation hardly worsen the performance of the imputations. Thus, for each of the above settings, we also compare the
erformance using re-imputation and iTIP-ER by Han et al. (2022), where the re-imputation is done by using both �̂�𝑘 and �̂�𝑘 + 1 to

avoid information loss due to underestimating the number of factors, see Tables 2 and 3.
From both Tables 2 and 3, it is easy to see that our proposed method generally gives more accurate estimates than iTIP-ER, and

it is clear that the re-imputation estimate is at least as good as the initial estimate. In fact, �̂�re,1 outperforms �̂�full which is based on
ull observation.
13
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Table 3
Results for settings (II), (III), and (IV), excluding (IIa). Refer to Table 2 for the
definitions of different estimators. The missing pattern concerned in all settings
is (M-ii).

Correct Proportion
Setting �̂� �̂�re,0 �̂�re,1 �̂�iTIP,re,0 �̂�iTIP,re,1 �̂�full �̂�iITP,full

𝐾 = 1 (True 𝑟1 = 2)
(IIb) .556 .556 .886 .526 .765 .633 .53
(IIc) .626 .626 .762 .594 .668 .67 .539
(IId) .791 .791 .817 .794 .837 .812 .767

𝐾 = 2 (True (𝑟1 , 𝑟2) = (2, 3))
(IIIa) 1 1 1 .995 .995 1 .994
(IIIb) .978 .978 .987 .985 .989 .981 .986
(IIIc) .999 .999 1 1 .996 .999 1

𝐾 = 3 (True (𝑟1 , 𝑟2 , 𝑟3) = (2, 3, 4))
(IVa) 1 1 1 .987 .987 1 .988
(IVb) .996 .996 .999 .991 .991 1 .991
(IVc) 1 1 1 .999 1 1 1

Fig. 3. Histograms of the first entry of (�̂�𝐻 𝐴𝐶 + �̂�
𝛥
𝐻 𝐴𝐶 )−1∕2�̂�1(�̂�1,1⋅ −𝐇𝑎

1𝐐1,1⋅). In each panel, the curve (in red) is the empirical density, and the other curve (in
reen) in the left panel depicts the empirical density of the second entry of (�̂�𝐻 𝐴𝐶 + �̂�

𝛥
𝐻 𝐴𝐶 )−1∕2�̂�1(�̂�1,1⋅ −𝐇𝑎

1𝐐1,1⋅). The density curve for  (0, 1) (in black, dotted)
s also superimposed on each histogram.

5.1.3. Asymptotic normality
We present the asymptotic normality results for 𝐾 = 1, 2, 3 respectively. When the data is a vector time series (𝐾 = 1), our

approach is similar to Xiong and Pelger (2023), but their proposed covariance estimator for the asymptotic normality includes
information at lag 0 only (i.e., the estimator of the asymptotic variance of the loading estimator), while we use the HAC-type
estimator facilitating more serial information. For all 𝐾 considered, we present the result on (�̂�)11, with the parameter 𝛽 of our
HAC-type estimator set as ⌊

1
5 (𝑇 𝑑1)1∕4⌋. We use (M-i) as the missing pattern for all settings.

The data generating process is similar to the ones for assessing the factor loading matrix estimators and imputations, but the
parameters are slightly adjusted. All elements in 𝑡, 𝑒,𝑡, and 𝝐𝑡 are now independent standardized AR(1) with AR coefficients 0.05,
and we use i.i.d.  (0, 1) as the innovation process. We stress that we include contemporary and serial dependence among the noise
variables through our construction following Assumption (E1) and (E2), while most existing literatures demonstrating asymptotic
normality display results only for i.i.d. Gaussian noise.

We assume all factors are pervasive in this section. For all 𝐾 = 1, 2, 3, given 𝑑1, we set 𝑇 , 𝑑𝑖 = 𝑑1∕2, 𝑖 ≠ 1. We generate a
wo-factor model for 𝐾 = 1, and a one-factor model for 𝐾 = 2, 3. For the settings (𝐾 , 𝑑1) = (1, 1000), (2, 400), (3, 160), we consider
(�̂�𝐻 𝐴𝐶 + �̂�

𝛥
𝐻 𝐴𝐶 )−1∕2�̂�1(�̂�1,1⋅ − 𝐇𝑎

1𝐐1,1⋅). In particular, we plot the histograms of the first and second entry in Fig. 3, whereas the
corresponding QQ plots are presented in Fig. 4.

The plots in Fig. 3 provide empirical support to Theorem 3 and result 3 of Theorem 4. For 𝐾 = 3, there are some heavy-tail
issues, as seen in the bump at the right tail in the histogram (confirmed by its corresponding QQ plot). The QQ plot for 𝐾 = 2
lso hints on this, but the tail is thinned as the dimension increases. Our simulation is similar to that in Chen and Fan (2023) for
𝐾 = 2, but we allow partial data unobserved and we generalize to any tensor order 𝐾. We remark that the convergence rate of the
HAC-type estimator is not completely satisfactory, such that relatively large dimension is needed, and it becomes less feasible for
some applications. We leave the improvements of the HAC-type estimator to future work.

Lastly, we demonstrate an example of statistical testing for the above one-factor model for 𝐾 = 2. More precisely, we want
to test the null hypothesis  ∶ 𝐐 = 0 with a two-sided test. A 5% significance level is used so that we reject the null if
14
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Fig. 4. QQ plots of the first entry of (�̂�𝐻 𝐴𝐶 + �̂�
𝛥
𝐻 𝐴𝐶 )−1∕2�̂�1(�̂�1,1⋅ −𝐇𝑎

1𝐐1,1⋅). The horizontal and vertical axes are theoretical and empirical quantiles respectively.

Fig. 5. Statistical power of testing the null hypothesis 0 ∶ (𝐐1,1⋅)1 = 𝐐1,11 = 0 against the general alternative. The null is rejected when |(�̂�𝐻 𝐴𝐶 + �̂�
𝛥
𝐻 𝐴𝐶 )−1∕2

̂
1�̂�1,11| > 1.96.

(�̂�𝐻 𝐴𝐶 + �̂�
𝛥
𝐻 𝐴𝐶 )−1∕2�̂�1�̂�1,11 is not in [−1.96, 1.96]. Each experiment is repeated 400 times and the power function for 𝐐1,11 ranging

from −0.02 to 0.02 is presented in Fig. 5. The power function is approximately symmetric, and suggests that our test can successfully
eject the null if the true value for 𝐐1,11 is away from 0. When 𝐐1,11 = 0, the false positive probability is 7.25% which is slightly
igher than the designated size of test. This is due to the slow convergence of the HAC estimators, and an increase in dimensions
ould improve this.

5.1.4. Comparison with an iterative vectorization-based approach
We compare our proposed tensor factor-based imputation method with the following procedure.

Iterative vectorization-based imputation
1. Given an order-𝐾 tensor with missing entries, 𝑡 ∈ R𝑑1×…×𝑑𝐾 for 𝑡 ∈ [𝑇 ], obtain 𝐲𝑡 = vec

(

𝑡
)

∈ R𝑑 for all time stamps.
Impute the vector time series {𝐲𝑡}𝑡∈[𝑇 ] by Xiong and Pelger (2023) and denote by the tensorized imputation data {̂vec,𝑡}𝑡∈[𝑇 ].

2. Replace missing entries in 𝑡 by the corresponding entries in ̂vec,𝑡. For the resulting time series, estimate the loading
matrices, core factors and hence the common components by Chen and Lam (2024b). Denote the series of estimated common
components by {̂preavg,𝑡}𝑡∈[𝑇 ].

3. Iterate from step 2, except that we replace missingness of 𝑡 by ̂preavg,𝑡 from the previous iteration.

The above algorithm is a natural way of leveraging the vector imputation of Xiong and Pelger (2023) to tensor time series, and
the iteration step is akin to Appendix A of Stock and Watson (2002). For demonstration, all innovation processes in constructing
𝑡,𝑒,𝑡 and 𝝐𝑡 are i.i.d. standard normal, and all factors are pervasive. In particular, the following settings are considered:

(Va) 𝐾 = 2, 𝑇 = 20, 𝑑 = 𝑑 = 40, 𝑟 = 𝑟 = 2, and missing pattern is (M-ii).
15
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Fig. 6. Plot of the relative MSE for settings (Va) to (Vd), averaged over 1000 replications. Setting (Va), (Vb), (Vc) and (Vd) are represented by the symbols
n red on the left panel, green on the left panel, red on the right panel and green on the right panel, respectively. Dashed lines denote our tensor-based approach
without iteration), while points denote the iterative vectorization-based method with step 0 corresponding to the initial imputation.

(Vb) Same as (Va), except that the missing pattern is (M-iii).
(Vc) 𝐾 = 3, 𝑇 = 10, 𝑑1 = 𝑑2 = 𝑑3 = 10, 𝑟1 = 𝑟2 = 𝑟3 = 2, and missing pattern is (M-ii).
(Vd) Same as (Vc), except that the missing pattern is (M-iii).

The results for settings (Va) to (Vd) are shown in Fig. 6. From both panels, our proposed method (in dashed lines) performs better
than the direct vectorized imputation. One intuition can be the following. Suppose we have a matrix-valued time series 𝐘𝑡 ∈ R𝑑1×𝑑2

for 𝑡 ∈ [𝑇 ], and assume 𝑑1 ≍ 𝑑2 and the data is asymptotically observed with the rate 𝜂 ≍ 1∕√𝑇 𝑑1. According to Corollary 1, the
squared imputation error has rate 1∕(𝑇 𝑑1) + 1∕𝑑21 . In comparison, if we choose to vectorize the data and impute, the squared error
ate is 1∕𝑇 + 1∕𝑑21 which is inflated.

The performance of the vectorization-based imputation can be further improved by iterative imputation in the context of tensor
data. However, Fig. 6 demonstrates the low efficiency of such iterative method if the missing pattern is unbalanced to a certain
xtent. We also point out that the computation time of the initial vectorized imputations can be significantly larger than the

our proposed method if the order of the data is large. In fact, the computational complexity (given the number of factors) of
direct vectorized imputation is (ignoring the cost of vectorization and unfolding) 𝑂(𝑇 𝑑2 + 𝑑3), while our proposed method is
(𝐾 max𝑘∈[𝐾]{𝑇 𝑑 𝑑𝑘 + 𝑑3𝑘}), which can be of significantly smaller order than 𝑑3.

5.2. Real data analysis: Fama–French portfolio returns

We analyse the set of Fama–French portfolio returns data described in Section 3.1. With sufficient observed samples of each
category along its time series, Assumption (O1) in Section 4 can be satisfied and our imputation approach is applicable under such
missing pattern. Since the market factor is pervasive in financial returns, we remove the market effect by modelling the data with
CAPM as

vec
(

𝑡
)

= vec
(

̄
)

+ 𝜷(𝑟𝑡 − �̄�) + vec
(

𝑡
)

,

where vec
(

𝑡
)

∈ R100 is the vectorized returns at time 𝑡, vec
(

̄
)

is the sample mean of vec
(

𝑡
)

, 𝜷 is the coefficient vector to be
estimated, 𝑟𝑡 is the return of the NYSE composite index at time 𝑡, �̄� is the sample mean of 𝑟𝑡, and vec

(

𝑡
)

is the CAPM residual. We
compute the sample mean using only the observed data, and more sophisticated methods could be studied in the future. The least
squares solution is

𝜷 =
∑𝑇
𝑡=1(𝑟𝑡 − �̄�){vec

(

𝑡
)

− vec
(

̄
)

}
∑𝑇
𝑡=1(𝑟𝑡 − �̄�)2

.

Hence for the rest of this section, we focus on the matrix series {̂𝑡}𝑡∈[570] with ̂𝑡 ∈ R10×10, constructed from the estimated CAPM
esidual {vec

(

𝑡
)

− vec
(

̄
)

− 𝜷(𝑟𝑡 − �̄�)}𝑡∈[570].
To estimate the rank of the core factors, we first use our proposed rank estimator to obtain initial estimates (�̂�1, ̂𝑟2) = (1, 1) for

both series, followed by re-estimating the rank based on the imputed series using (�̂� +𝑟 , ̂𝑟 +𝑟 ) with some pre-specified integer 𝑟 to
16
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Table 4
Rank estimators for Fama–French portfolios. Miss-ER represents the rank re-estimated by our proposed eigenvalue-
ratio estimator for missing data.

initial Miss-ER BCorTh iTIP-ER RTFA-ER

�̂�1 �̂�2 �̂�1 �̂�2 �̂�1 �̂�2 �̂�1 �̂�2 �̂�1 �̂�2
Value Weighted 1 1 1 1 2 1 1 1 1 2
Equal Weighted 1 1 1 1 2 1 1 1 1 2

Table 5
Estimated loading matrices �̂�1 and �̂�2 for the value weighted portfolio series, after varimax rotation and scaling (entries rounded to the nearest integer).

agnitudes larger than 9 are in red to highlight units with heavy loadings. All null hypotheses of a row of 𝐐1 or 𝐐2 being zero (see (5.2)) are rejected at 5%
significance level.

ME1 ME2 ME3 ME4 ME5 ME6 ME7 ME8 ME9 ME10

Factor 1 −15 −14 −9 −7 −6 −3 −1 0 2 3
Factor 2 5 3 −3 −6 −7 −9 −10 −11 −10 −10

BE1 BE2 BE3 BE4 BE5 BE6 BE7 BE8 BE9 BE10

Factor 1 2 −1 −2 −3 −5 −6 −7 −8 −10 −18
Factor 2 16 12 9 7 5 3 3 2 1 −7

capture any omitted weak factors. We have seen in Tables 2 and 3 where such rank re-estimation with 𝑟∗ = 1 is stable and accurate.
However, factors can be empirically too weak to detect in the initial estimation under various missing patterns, see the NYC taxi
tensor data analysis in the supplementary materials as an extra example. According to previous studies by e.g. Wang et al. (2019),
we choose 𝑟∗ = 3 here to ensure sufficient information of factors is carried in the imputation, at the cost of including more noise. For
e-estimation, in addition to our eigenvalue-ratio estimator, we also experiment BCorTh by Chen and Lam (2024b), iTIP-ER by Han

et al. (2022) and RTFA-ER by He et al. (2022b). The results are presented in Table 4. To ease demonstration, we use (2, 2) as the
core factor rank for both series hereafter.

With the chosen rank, we perform imputation which is further refined by re-imputation. The results are similar on the two
portfolio series, so we only present the one for the value weighted series. The estimated loading matrices are presented in Table 5,
after a varimax rotation and scaling. It is clear from the entries in red that on the size factor (i.e., ME loading), ME1 and ME2 form
ne group (‘‘small size’’) and ME7 to ME10 form another group (‘‘large size’’). On the book-to-equity factor (i.e., BE loading), BE1
nd BE2 form a group and BE9 and BE10 form another, which can be interpreted as ‘‘undervalued’’ and ‘‘overvalued’’ respectively.
his grouping effect is similarly seen in Table 9 and 10 in Wang et al. (2019).

Moreover, we apply our Theorems 3 and 4 to test if any rows of the loading matrices are zero. For each 𝑘 ∈ [2], 𝑖 ∈ [10], we test

0 ∶ 𝐐𝑘,𝑖⋅ = 𝟎, 1 ∶ 𝐐𝑘,𝑖⋅ ≠ 𝟎. (5.2)

The above can be tested since 𝐇𝑎
𝑘𝐐𝑘,𝑖⋅ = 𝟎 under the null, and no matter what varimax rotations we use, it retains its meaning.

or instance, if 𝐐1,𝑖⋅ = 𝟎, then it means that the 𝑖th category of the row factor (here, the 𝑖th Market Equity category) is useless in
xplaining any data variability.

It turns out that at 5% significance level, we cannot reject any null hypotheses for 𝐐1,𝑖⋅ = 𝟎 or 𝐐2,𝑖⋅ = 𝟎, meaning that individual
arket equity and book-to-equity ratio categories are tested to be meaningful in explaining some variations of the data. See the

NYC Taxi traffic data analysis in the supplementary materials for some similar null hypotheses not rejected. We remark that, since
the dimensions of our data are not very large, the accuracy of the asymptotic normality and the HAC estimators are weakened, and
there can be false positives as a result.

Lastly, two imputation examples for the category (ME10, BE10) are displayed in Fig. 7. From the timestamps on which the
portfolio series is observed, we see that the estimated series (in green) does capture some patterns of fluctuations on the true CAPM
esidual series (in red) and hence can be a good reference for the CAPM residual of portfolios consisted of large size, overvalued
tocks. This is certainly more revealing than a naive imputation using zeros or local means. From the above discussions, the estimated
actors can be potentially used to replace the Fama–French size factor (SMB) and book-to-equity factor (HML) in a Fama–French
actor model for asset pricing, factor trading etc., with a more sophisticated further analysis of the data.

5.3. Real data analysis: OECD economic indicators for countries

We analyse the OECD economic data described in Section 3.2. After investigating the estimated number of factors ( Table 6) in
a similar re-imputation approach as in Section 5.2, we decide to use (�̂�1, ̂𝑟2) = (3, 3) for the rest of this section due to the potentially
weak factors suggested by iTIP-ER and RTFA-ER. The estimated loading matrices for countries are presented in Table 7 after a
varimax rotation and scaling, with entries highlighted in red to facilitate interpretation. The first factor is mainly formed by European
countries except the Northern European ones which, together with Canada, form the third factor. Such regional grouping effects
are also confirmed in the second factor which mainly consists of the United States, and the fact that Germany loads also heavily
on this factor suggests their similar economic patterns as large economic entities. For the estimated loading for indicators reported
in Table 8, CP, PRVM and TOVM form the first factor (‘‘consumption factor’’), PP and ULC form the second (‘‘production factor’’),
17
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Fig. 7. Two 50-day examples for the value weighted series in the category (ME10, BE10), with horizontal axis of both panels indexed by each day of the
selected period. Green triangles denote the estimated series and red squares denote the observed true series. Bold symbols represent the imputed series which
onsists of the observed series whenever available and the estimated series otherwise.

Table 6
Rank estimators for economic indicators. Refer to Table 4 for the definitions of different estimators.

initial Miss-ER BCorTh iTIP-ER RTFA-ER

�̂�1 �̂�2 �̂�1 �̂�2 �̂�1 �̂�2 �̂�1 �̂�2 �̂�1 �̂�2
OECD 1 1 1 1 1 2 4 5 3 3

Table 7
Estimated loading matrix �̂�1 on three country factors for the OECD data, after varimax rotation and scaling (entries rounded to the nearest integer). Magnitudes
arger than 9 are in red to highlight units with heavy loadings. All null hypotheses of a row of 𝐐1 being zero (see (5.3)) are rejected at 5% significance level.

BEL CAN DNK FIN FRA DEU GRC ITA LUX NLD NOR PRT ESP SWE CHE GBR USA

1 −10 4 −3 −7 −8 −8 −9 −7 −1 −2 1 −1 −10 0 −15 −13 1
2 −1 −6 2 5 −2 −12 7 −1 2 −7 0 2 1 −2 0 −1 −24
3 1 −12 −8 −5 -2 3 −6 −4 −11 -6 −12 −11 −2 −10 5 4 −1

Table 8
Estimated loading matrix �̂�2 on three indicator factors for OECD data, after varimax rotation and scaling (entries rounded to the nearest integer). Magnitudes
larger than 9 are in red to highlight units with heavy loadings. All null hypotheses of a row of 𝐐2 being zero (see (5.3)) are rejected at 5% significance level.

CA-GDP CP EX IM IR3TIB IRLT IRSTCI PP PRVM TOVM ULC

1 0 −20 1 3 0 0 0 0 −20 −11 −1
2 0 −6 2 3 1 1 1 20 1 9 18
3 0 9 18 22 −2 −2 −2 1 −4 −2 -1

and EX and IM form the third (‘‘international trade factor’’).
Moreover, we apply Theorems 3 and 4 to test if a particular row in the two factor loading matrices is zero, meaning that if a

ountry (if a row in 𝐐1 is 𝟎) or an economic indicator (if a row in 𝐐2 is 𝟎) cannot explain any variations in the data. The meaning
ere is independent of the varimax rotation performed. For each 𝑘 ∈ [2], 𝑖 ∈ [𝑑𝑘], 𝑗 ∈ [3] with (𝑑1, 𝑑2) = (17, 11), we form the
ypothesis

0 ∶ 𝐐𝑘,𝑖⋅ = 𝟎, 1 ∶ 𝐐𝑘,𝑖⋅ ≠ 𝟎. (5.3)

Similar to the Fama–French data analysis, all null hypotheses of a row of 𝐐1 or 𝐐2 being zero are rejected at 5% significance level.
It means that all individual country and economic indicator are tested to be meaningful categories in explaining some variations of
the data. Similar to a reminder in Section 5.2, there could be false positives due to the fact that the dimension of the data is not
very large.

In Fig. 8, we present two examples of the imputed series overlaid on the observed series. One panel plots ULC of the United States
and the other plots PP of the United Kingdom. ULC is a quarterly observed index and the peak pattern in-between each reported
imestamp suggests potentially high labour cost in the United States from 1971 to 1975. The PP data in our OECD data is unavailable
or the United Kingdom until December 2008. Our imputation implies a gradual increase of the PP before the data is reported, which

is reasonable by the impact of the financial crisis. Lastly, we compare between our tensor imputation (matrix imputation for this
18



Journal of Econometrics 249 (2025) 105974Z. Cen and C. Lam

a

r
t
w
w

Fig. 8. 50-day examples for unit labour cost of the United States (left panel) and production price index of the United Kingdom (right panel), with horizontal
xis of both panels indexed by each day of the selected period. Refer to Fig. 7 for the explanations of different symbols.

Table 9
Comparison of different models for the OECD data. The total sum of squares of the observation is 324,402,709.

Factor RSS # factors # parameters

Matrix model (3,3) 7,087,373 9 84
Matrix model (4,4) 4,542,956 16 112
Matrix model (5,5) 3,066,851 25 140
Matrix model (6,6) 1,973,321 36 168

Vector model 2 8,240,976 2 374
Vector model 3 3,954,554 3 561
Vector model 4 2,093,001 4 748

example) and the vectorized imputation using Xiong and Pelger (2023). We use different models to perform imputations whose
esults are summarized in Table 9 similar to Wang et al. (2019), except that the reported residual sum of squares are computed on
he observed entries. Although we require a larger number of factors in general for matrix models, the imputation by matrix models
ith less parameters can perform better than those by vector models with a much larger number of parameters. This is consistent
ith the conclusion of Table 11 in Wang et al. (2019).
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Appendix A. Supplementary data

Proofs of all the theorems in this paper can be found in the supplement of this paper. Instruction in using our R package
tensorMiss can be found here.

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2025.105974.
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