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The network of injustice: A novel approach
to inequality of opportunity

Francesco Colcerasa∗ Lorenzo Giammei† Francesca Subioli‡

Abstract

Restoring the theoretical foundation of John Roemer’s conceptualization of inequality of op-
portunity (IOp), we introduce an innovative empirical approach to measure unfair inequal-
ities through Bayesian networks. This methodology enhances our understanding of income
inequality through structural learning algorithms, generating an IOp index and, most impor-
tantly, shedding light on the underlying income formation process. We demonstrate how this
proposal relates to established measurement methods through simulated data, and provide
an application to five European countries to illustrate the potential of Bayesian networks in
the context of measuring inequality of opportunity.
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1 Introduction
The distributive issue has long fascinated scholars, and its appeal still makes it one of the most
disputed topics in economics. The main controversy is whether and to what extent inequality in
a relevant outcome, typically income, but also health, education or wealth, should be tolerated.
The economic literature has attempted to address this issue through two conceptually opposed
approaches. The first one judges the acceptability of social inequalities on the basis of their con-
sequences on other valuable social outcomes such as economic growth or well-being, i.e. for
instrumental reasons (examples are Alesina and Perotti, 1996; Galor and Zeira, 1993; Alesina
et al., 2004; Berg et al., 2018; Ferrer-I-Carbonell and Ramos, 2014). On the contrary, a second
approach disregards the possible consequences while asking what and how much inequality is
in itself acceptable according to a criterion of social justice. The distinction is crucial when it
comes to justifying redistributive policies: in the former case, they aim to mitigate the bad con-
sequences of neutral social and economic phenomena. In the latter, they aim to apply a criterion
of distributive justice that the society cannot otherwise meet.

Universal education can be motivated by reasons of efficiency through the widespread acquisition
of human capital and neighbouring effects (Friedman, 1982). Universal basic income can find its
social justification from the need to avoid the consequences of poverty on children’s development.
Taxing wealth at the top can be viewed as necessary to avoid the extreme consequences, up to
revolt, resulting from the social unrest of the part of society left behind. Even the wealthiest may
claim for less inequality when they fear its consequences such as decreased national productivity
or increased crime. On the other side, public policies may find their motivational roots in a
requirement for equality of opportunity (Scanlon, 2018). People may be more supportive of
policies to reduce inequality, regardless of their income, if they believe that existing inequality is
the result of circumstances beyond individual control, i.e. if they perceive it as, at least partially,
unfair. Indeed, preferences for inequality-reducing policies can be affected by these two opposing
views on how to assess inequality (Fehr et al., 2024; OECD, 2021).

The distinction between morally acceptable and morally unacceptable inequality originated from
philosophical egalitarian thought (Rawls, 1958, 1971; Dworkin, 1981a,b; Arneson, 1989; Cohen,
1989), challenging the welfare egalitarian criterion according to which social welfare can depend
only on the utility levels of individuals, i.e. on their outcome. A new approach to egalitarianism
proposed to insert personal responsibility into the discussion of what inequalities are fair, shifting
the focus from the outcomes to the sources. The disparity in outcomes among individuals can
be considered ethically fair as long as people can be held accountable for it. In other words, a
fair distribution of outcomes should reflect individuals’ deliberate and conscious choices. The
economic discipline has embraced this shift in perspective starting from Sen (1980) and Roemer
(1993, 1998), and a rich theoretical and empirical literature aimed at defining and measuring
equality of opportunity has flourished (for a comprehensive review of the approaches, see Roe-
mer and Trannoy, 2015, 2016; Ramos and Van de Gaer, 2016; Ferreira and Peragine, 2016).
Under this responsibility-sensitive egalitarianism, the differences stemming from factors beyond
individuals’ control, called circumstances in John Roemer’s works, are considered morally unac-
ceptable. In contrast, those due to effort are fair and should not be addressed by policy. Of course,
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there is no clear-cut separation between circumstances and effort in reality, and this represents
the main challenge of equality of opportunity measurement.

The main rationale of Roemer’s proposal consists of comparing the average outcomes of differ-
ent groups of people who share the same circumstances, called types. Inequality of opportunity
can then be identified as the share of inequality in outcomes attributable to those circumstances.
Symmetrically, the share of inequality due to individuals’ responsibilities – choices – is inequal-
ity of effort. However, empirical practice has revealed that drawing this distinction is extremely
challenging. Many empirical strategies have been developed to operationalize the philosophi-
cal and theoretical formulation of Roemer’s concept of inequality of opportunity (among others,
see Ferreira and Gignoux, 2011; Checchi and Peragine, 2010; Ramos and Van de Gaer, 2016;
Andreoli et al., 2021; Brunori and Neidhöfer, 2021). Any empirical application relies on a cru-
cial theoretical distinction between the ex-ante and the ex-post approaches. While the former
approach compares opportunity sets across individuals using circumstances only, the second ap-
proach obtains inequality of opportunity from a rank comparison across circumstance-groups,
where rankings approximate effort profusion.1 Their common rationale is to simulate an income
distribution generated only by circumstances, so that the emerging disparities can be unambigu-
ously traced back to unfair differences.

The literature has made many advancements in addressing crucial issues such as circumstances
selection and the choice of the best prediction model to simulate the counterfactual income dis-
tribution, also making use of modern machine learning techniques (Carranza, 2023; Brunori and
Neidhöfer, 2021; Brunori et al., 2024). Among these advancements, particularly relevant are the
recent contributions of Carranza (2023) and Brunori et al. (2024), where the issues of downward
and upward biases in IOp estimates are remarked, and by Brunori and Neidhöfer (2021) – who
deal with these specific issues by implementing machine learning algorithms to perform an opti-
mal model specification. We continue in the same vein as this literature with the additional goal
of recovering the original emphasis on measuring inequality of opportunity to guide distributive
policies. To this end, we need to return to the roots of the theoretical framework of inequality
of opportunity, which focused primarily on the mechanisms underlying unfair inequalities and
only secondarily on their actual measurement. This emerges clearly in the contribution by Fleur-
baey and Schokkaert (2009) on the importance of structural modelling in the context of equal
opportunity analysis, as paraphrased by Roemer and Trannoy (2015):

«[...] any equality of opportunity empirical analysis must be preceded by an estima-
tion phase to discover the best structural model leading to the results. Only in the
second step should we be interested in measuring inequality of opportunity as such.»
(Roemer and Trannoy, 2015, p, 273-274)

While most of the advancements in the inequality of opportunity literature focused on the second
step of the challenge – better measuring unfair differences by refining the way Roemerian types
are defined, we try to recover the first one and go back to structural modelling. In the context
of income inequalities, our methodological proposal emphasizes the role of channels transmit-

1For more details, see Fleurbaey and Peragine (2013)
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ting unfair inequalities throughout the income formation process. Our main goal is to inform
policymakers about the engines of inequality of opportunity so that they can more appropriately
target distributive policies, while preserving the technical improvements of the most recent liter-
ature. To this aim, we propose an innovative methodology to extract inequality of opportunity,
able to compute an index of dispersion and detect the structure of the income allocation process.
The method draws from both theory-based and data-driven approaches. Specifically, it relies on
a probabilistic graphical model called Bayesian network (BN). On the one hand, BNs allow to
extract and graphically represent the relationships among circumstances and the outcome from
data through machine learning. On the other hand, by means of conditional probability distibu-
tions, they can generate a standard predicted counterfactual distribution of incomes and, thus, an
inequality indicator. The proposed perspective enhances the understanding of the data generat-
ing process underlying the market remuneration of circumstances, enabling an in-depth analysis
of how unfairness shapes the income distribution.

The remainder of the papers is as follows. Section 2 proceeds with a comparison of our pro-
posal with the established techniques for IOp estimation. Section 3 provides the fundamentals of
Bayesian networks and a detailed description of the methodological proposal, including a simu-
lation exercise, compared with the most widely used techniques. Section 4 reports an application
to five European countries, namely France, Italy, Sweden, Germany, and Poland. Section 5 re-
marks on the contribution of the article and summarizes the empirical findings, emphasizing its
relevance for policy action.

2 Comparing approaches
The theoretical formulation of Roemer (1998) laid the foundation for a new perspective on in-
equality by linking the discussion of the ethical acceptability of inequality in outcomes to the kind
of sources that generate it. As briefly summarised in the introduction, many methods have been
proposed to operationalise Roemer’s formulation of inequality of opportunity (IOp). In what fol-
lows, we provide a brief explanation of the methods most relevant to our goals. In the very first
phases of Roemer’s work, a Structural Equation Model (SEM) seemed to be the best tool to root
the measurement of equality of opportunity on the structure of the income formation process.
SEMs allowed to consider the interactions between circumstances, as well as the mediation of
effort variables for the effect of circumstances on the outcome, providing a theory-founded struc-
ture for the emergence of inequalities. However, some major obstacles prevented researchers
from applying this method – in particular, the impossibility of accurately distinguishing effort
and circumstance variables – while preferring a reduced-form approach with only circumstances
on the right-hand side of a single income equation. With this approach, the coefficients estimated
in a linear regression for each circumstance also capture the mediated effect of that circumstance
through effort variables.

This reduced-form model – a linear regression of income on circumstances – has been established
in empirical practice from the contribution of Bourguignon et al. (2007) on. The starting point
for measuring IOp this way consists of simulating a counterfactual distribution of the outcome
as if only circumstances were relevant in shaping it. This can be done either parametrically or
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non-parametrically (Ferreira and Gignoux, 2011). In the first case, a log-income regression is
performed and a parametric linear structure is imposed to the relationship between income and
circumstances. Then, a counterfactual distribution is obtained by predicting individual incomes
through the estimated coefficients, and the value of an inequality index applied to such predicted
outcomes is the measure of inequality of opportunity. By construction, inequality of effort can be
obtained as the residual inequality.2 On the other hand, non-parametric methods are based on
groups – the “types” – that are created starting from all possible combinations of circumstances’
categories. The average (or median) income of each group is taken as the representative outcome
of that particular combination of circumstances. Inequality of opportunity emerges as the vari-
ability of such representative incomes, namely as the disparity among representative individuals
for each possible opportunity set.

Besides this general framework, many specific improvements have been implemented over the
years to address two main issues in measuring IOp: the downward bias due to unobservable cir-
cumstances (Ferreira and Gignoux, 2011), and the upward bias due to model overfitting when
adding as many circumstances as possible as well as their interactions (Carranza, 2023; Brunori
et al., 2024). Some authors, as Brunori and Neidhöfer (2021) and Brunori et al. (2024), remarked
on the importance of optimal circumstances selection when creating groups, proposing the adop-
tion of machine learning techniques like conditional trees, transformation trees, and random forests
. Table 1 summarizes the similarities and differences between the mentioned methods. While the
SEM aims at modelling income with a structure driven by theory and fixed parametrization, the
reduced-form regression and the random forest share the predictive vocation. While the relations
in the regression are given by theory and the parametrization is fixed, in random forests circum-
stances’ types emerge through iterative splits in “trees”, and the parametrization is flexible.

Table 1: Models for IOp measurement

Model Main scope Identification of Types Parametrization

SEM Modelling Given by theory Fixed
Reduced-form Prediction Given by theory Fixed
Random Forest Prediction Derived through iterative

splits in trees
Flexible

Bayesian Networks Modelling Learned through structural
learning algorithm

Flexible

Note: The table classifies four possible models for IOp measurement based on their main scope, the nature of the
relations they are based on, and the kind of parametrization they rely on. Source: Authors’s elaborations.

In this context, Bayesian networks represent a viable and good compromise: its main scope is
modelling the income generation process, as for SEMs, but the empirical procedure is data-driven
and the parametrization is flexible, as in trees and random forests. The main difference with the
latter lies in the method’s objective. In fact, machine learning techniques – and, specifically, ran-
dom forests and trees – focus on prediction. Instead, a Bayesian network maps relations among

2Notice that the decomposition is exact only adopting an additively decomposable dispersion measure, like those
belonging to the Generalized Entropy family (Shorrocks, 1980).
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variables employing a graph and a joint probability distribution associated to the graph, providing
detailed information on how connected variables affect each other. Remarkably, if the relational
structure underlying a set of variables is unknown (as it is in most cases), it can be retrieved from
the data and encoded in a graph through machine learning procedures. Importantly, a Bayesian
network can also be represented through a SEM (Pearl, 2000), as it shares with it the same objec-
tive of representing a system of structural relationships among variables. The research process is
reversed but the two-step procedure suggested by Fleurbaey and Schokkaert (2009) is followed:
machine learning algorithms learn the structure through a non-parametric data-driven process –
maintaining the benefits of ML techniques –, and returns it as a SEM, instead of the researcher
establishing the structure and then estimating the parameters. Then, the emerging relations can
be used to classically estimate inequality of opportunity. In the next section the methodological
details of the model will be described and the BN-based IOp estimands will be compared to those
obtained through alternative approaches.

3 Our proposal
In this work, we propose the adoption of Bayesian Networks (Pearl, 1995) to estimate IOp and ob-
tain the map of the relationships between the variables that generate it. The analysis begins with
extracting information from a dataset and translating it into a graphical form. This is achieved
through structural learning algorithms, namely machine learning procedures that investigate the
multivariate relational structure between variables and encode it into a graph. Any available pre-
vious knowledge concerning variable interaction can be introduced in the learning phase in the
form of constraints. Marginal and conditional probability distributions of the variables are then
estimated employing the same dataset according to the structure of the graph. The mentioned
steps produce a Bayesian network that can be interpreted as a model of the outcome generating
process. The resulting structure can in fact reveal how variables affect one another and contribute
to shaping a certain income level. The emerging relationship structure is a crucial contribution
of our work, since it allows the researcher to go beyond IOp measurement by shedding light on
its generating process. The resulting BN is then exploited to generate a predicted distribution of
the outcome that can be used to compute IOp, following what is performed in the standard IOp
measurement literature.

The following subsections focus on the technical details of the proposed methodology. In partic-
ular, subsection 3.1 provides an accurate description of the methodological fundamentals under-
pinning Bayesian networks. Subsection 3.2 proposes a simulation exercise, where we compare
IOp values estimated through the proposed methodology to those obtained from existing ap-
proaches, at increasing sample sizes.

3.1 The statistical model: Bayesian networks
Widely employed in epidemiology, computer science, and some social sciences, Bayesian Net-
works (Pearl, 1995) are a powerful multivariate statistical tool that is still uncommon in eco-
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nomics.3 Here we introduce the foundational elements of a Bayesian network model and outline
the machine learning procedures that allow learning a BN from data.

Definitions A Bayesian network (BN) is a statistical model that consists of a directed acyclic
graph (DAG) and a joint probability distribution over its nodes. A graph G = (V,E) is a collection
of vertices or nodes V and edges E, and each vertex is associated with a random variable Xi.
The edges represent relationships between random variables, and an edge that originates from a
nodeXi and goes to another vertexXj is referred to as a directed edge. A graph that only contains
directed edges is called a directed graph. When two nodes are connected by an edge, they are
adjacent nodes.

A sequence of connected nodes that starts at node Xi and ends at node Xj , regardless of the
directions of the edges, is called a path. In a directed path, all the edges are oriented in the same
direction along the path. A directed path from Xi to Xj , where Xi = Xj , is referred to as a
directed cycle. A directed graph is acyclic if it does not contain any directed cycle, meaning that
there are no paths starting from a node and ending at the same node following the directions
of the arrows. BNs literature often adopts kinship terminology to describe relationships among
nodes, according to the graph’s structure. Specifically, when a directed edge goes from nodeXi to
nodeXj , Xi is denoted as the parent ofXj , and conversely, Xj is called the child ofXi. Similarly,
if a directed path starting from node Xi to node Xj exists, then Xi is said to be an ancestor of Xj

and of every other node located between Xi and Xj in the directed path.

The joint probability distribution associated to a Bayesian networkGwith node setX = {Xi, ..., Xn}
can always be expressed as:

P (x1, . . . , xn) =
∏
i

P (xi|pai), (1)

where pai indicates the parent set of variable Xi in G. The product in Equation (1) derives
from combining the chain rule of probability calculus with the assumption that the conditional
probability of a variable Xi is not sensitive to all its ancestors but only to the variables belonging
to its parent set in the DAG (Pearl, 2000). In other words, it is assumed that a variable Xi is
independent from all its other ancestors, if we know the value of its parents. A joint probability
distribution must admit the factorization of Equation (1) in order to be associated to a Bayesian
network. If a probability function P can be factorized as in Equation (1) relative to a DAG G,
then it is said that G satisfies the Markov property, and P is Markov with respect to G. As a
consequence, given a variable Xi belonging to the node set of a Bayesian network, its parent set
is sufficient for determining the probability distribution of Xi.4

Learnings process When a DAG’s structure is unknown, data-driven structural learning algo-
rithms can be employed to retrieve the structure of the DAG (Kitson et al., 2023). These algo-
rithms use a dataset as input and, under specific conditions, provide a DAG or a set of DAGs as
output. Structural learning algorithms fall into three main families: constraint-based, score-based,

3For a review of how the approach could contribute to the econometric literature, see Hünermund and Bareinboim
(2023).

4It follows that, once the parent set of a node is established, it is possible to obtain a predicted value of the variable
associated to that node employing its conditional distribution given its parents.
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and hybrid. Constraint-based algorithms reveal the graph’s structure by examining conditional
independence relationships in the data. Typically, they start with a fully connected graph and
iteratively check for marginal or conditional independence between variables. If independence
is found, the corresponding edge is removed. On the other hand, score-based algorithms rely
on a scoring function to assess how well a DAG reflects the relations among the variables of the
dataset. They start by computing the score of an initial graph structure, and then modify the
graph by introducing, deleting, or reversing edges. The final output is the configuration with the
highest score. Finally, hybrid algorithms aim to combine the strengths of both score-based and
constraint-based approaches. This integration enhances the robustness of structural learning,
leveraging both methodologies.5

If some prior knowledge concerning the subject matter is available, structural learning algorithms
can also account for this information during the learning procedure. Incorporating domain-
specific knowledge reduces computational time and makes the graph more credible, increasing
the interpretability of the resulting network. In particular, prior knowledge can be incorporated
in the model in the form of forced or forbidden arcs, i.e. of directed relations which must be
present in the DAG, or others which are not allowed during the learning process. In economic
applications such as ours, this feature allows all information from economic theory to be incor-
porated into the model, as well as additional modelling features – like the temporal sequencing
of variables – that make the output more credible in the specific context. Once the structure
of the graph has been learned, the parameters defining the conditional probability distribution
associated to the BN are estimated through the EM algorithm (Moon, 1996).

3.2 A simulation exercise
To validate our proposal for measuring inequality of opportunity, we believe it is necessary to
verify that, at least for simple data generation processes, the new methodology generates IOp
values consistent with those emerging from previously established approaches. Therefore, in this
section, we provide the results of a simulation exercise aimed at comparing the performance of
BNs with respect to some existing approaches. The simulation process starts by extracting sam-
ples of increasing size (from 100 to 20,000 observations, with a step of 400) according to a data
generating process described in panel (b) of Figure 1 and a set of conditional probability tables
available in Appendix tables A.1-A.4.6 According to this data generating process, the father’s ed-
ucation affects his occupation, which directly affects both the financial distress of the household
when the respondent was 14 years old and the labour earnings of the child when adult. The
financial distress of the household is assumed to have no influence – either direct or mediated –
on income. The simulated dataset will therefore reflect all the distributional features encoded in
this simple model.

We proceed by measuring IOp on the simulated data employing five different methods. The
5The most employed constraint-based algorithm is the PC algorithm (Glymour et al., 1991). Algorithms in the

score-based category include the greedy search, simulated annealing, and genetic algorithms (Russell and Norvig, 2016).
Examples of hybrid algorithms include Max-Min Hill Climbing (Tsamardinos et al., 2006) and H2PC (Gasse et al.,
2014).

6We use for the simulation the marginal and the conditional distributions estimated through EU-SILC data for Italy
in 2019 with the appropriate sample weights.

7



Figure 1: Examples of simple data generating processes

(a) DGP underlying a linear regression

Earnings

Father educ. Father occup. Fin. distress

(b) More complex DGP

Earnings

Father educ.

Father occup.

Fin. distress

Note: The figure plots two possible data generating processes (DAG) for labour earnings. The network
in panel (a) mimics the data-generating process assumed by a simple linear regression model with no
interaction.

first one follows the traditional approach implying a reduced-form linear regression of labour
earnings on each circumstance with no interaction (panel a of Figure 1). The second method
employs a Bayesian network that mimics the reduced-form linear regression by imposing again
the structure of panel (a) of Figure 1. This allows to study the behaviour of a BN when it is built
to be as close as possible to a linear regression model. The third, most crucial, method employs
a Bayesian network obtained by applying a structural learning algorithm to the simulated data:
this corresponds to the procedure we propose in this work. To learn the network, we employ a
score-based algorithm called “Tabu Search” (Russell and Norvig, 2016) with a BIC score.7 The
counterfactual distribution of the income is then predicted according to the conditional distribu-
tion of the income given its parents, according to the Markov property embedded in Equation (1).
Finally, the fourth and fifth methods follow the most recent IOp empirical literaure by employing
Conditional Inference Regression Trees and Conditional Inference Random Forests as developed by
Hothorn et al. (2006) and applied in Brunori et al. (2023).8 A Conditional Inference Regression
Tree is a supervised machine learning algorithm aiming at partitioning the regressors’ space to
predict the variability of a dependent variable. The population is partitioned by recursive binary
splitting of the sample into an exhaustive and mutually exclusive set of subgroups (the Romear-
ian types in this context). Given the high variance and strong sample dependence of conditional
trees, a random forest approach can be used to generate robust estimates. A Conditional Infer-
ence Random Forest draws different subsamples of the original data, and computes a tree on
each one.9 IOp is measured in a second step for all the five estimation approaches by computing

7While other choices are possible, Tabu Search is faster and more accurate than most algorithms for both small and
large sample sizes (Scutari et al., 2019). Note that, even if the BN that mimics regression has an imposed structure
while the other one has a learned structure, in both cases the conditional distribution parameters are estimated on
the simulated dataset employing the EM algorithm.

8We are grateful to the Global Equality of Opportunity Estimates (GEOM) team for material, code, and support for
implementing these methods.

9Following Hothorn et al. (2006), we set alpha to 1; the share of each subsample drawn in every iteration is the
default 0.632, and the minimum number of observations allowed in each terminal node is 0.1% of the sample size (or
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the Gini index and the Mean Logarithmic Deviation on the predicted income distribution. The
results are compared in Figure 2.

Figure 2: Convergence of inequality of opportunity indices

(a) Gini Index
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(b) Mean Logarithmic Deviation
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Note: The figure plots the inequality of opportunity indices (Gini index in panel a, mean loga-
rithmic deviation in panel b) computed on the predicted earnings obtained through a reduced-
form linear regression with no interactions (“Regression”), a Bayesian network that assumes
the same relational structure of that regression (“CGBN_forced”), a Bayesian network with a
structure learned from data through a structural learning algorithm (“CGBN_tabu”), a Con-
ditional Inference Regression Trees (“CTree”), and a Conditional Inference Random Forest
(“CForest”). The underlying data generating process is the one in panel (b) of Figure 1, and
the probability distributions are those for Italy as reported in Tables A.1-A.4 in the Appendix.
Random samples of increasing size are drawn with a step of 400 from 100 to 20,000 observa-
tions. Source: Authors’s elaborations on simulated data based on IT-SILC data for 2019.

The two plots highlight how the results of the four methods converge as sample size increases
for both the Gini index (panel a) and the MLD (panel b). These patterns confirm how, at higher
sample sizes, the methods produce almost the same IOp estimates. This is consistent with the
idea that the employed statistical techniques share the same rationale of finding the best way of
10, if the sample size was smaller than 1000). All remaining tuning parameters are set to the default values in the
“cforest” R function in “partykit” (Hothorn et al., 2006).
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predicting the outcome given a set of covariates, under the assumptions implied by each model.
Interestingly, for small samples the learned Bayesian network and the Conditional Tree measure
zero to low levels of inequality: both methods cannot capture heterogeneity in the data when the
sample is too small, and predict only one income value for all the observations.10 With increasing
sample size, they converge to the estimates of the other methods and are very close to each other.
This simple exercise is useful to clarify the main point of this work: the reason we are trying to
return to modelling in measuring IOp is related to a policy objective. We believe that providing
a number, or a ranking, or a time trend, is relevant but not sufficient. Policy needs to know how
that number is generated in society, that is, the process behind the formation of inequality of
opportunity. Without any claim on causality, which is unattainable in such complex contexts and
with the current data availability, we still think structural learning may be the key.

To illustrate the proposal’s potential in this direction, we show below in Figure 3 the tree gener-
ated in the simulation for the largest sample numerosity (n = 20,000). We see that the machine
learning algorithm operates two sequential splits: a first one for paternal occupation, separating
managers from the other two occupational categories, and a second one separating individu-
als with blue-collar and white-collar fathers. The result is a categorisation in three types with
different paternal occupations. The tree is consistent with the generative process of the data in
panel (b) of Figure 1, and with the conditional earnings by paternal occupation in Table A.4 in the
Appendix. The comparison of this conditional tree with the network in Figure 1 is particularly in-
teresting for our purposes: it allows us to highlight the complementarity of the two approaches.
While providing perfectly comparable estimates of IOp (see Figure 2), the two graphs contain
different information. The conditional tree allows us to visualise the types (in Roemer’s sense),
and the result of the independence tests between the groups. On the other side, the network in
panel (b) of Figure 1 reveals the relationships between the variables, and thus the structure of
the influence of circumstances on income. The difference is crucial from a policy point of view.
Indeed, the information in Figure 3 makes it possible to identify the categories of individuals or
households that have a relatively worse outcome due to circumstances beyond their control, and
thus target assistance policies to those groups. Besides, the information from the network allows
to understand which mechanisms have generated the disadvantage, to be able to intervene “at
the roots” of inequality of opportunity.

4 An application to five European countries
We implement an empirical application of our methodological proposal over five European coun-
tries (Poland, Germany, Italy, France, and Sweden) reflecting different configurations of welfare
systems – conservative for Germany and France, familistic for Italy, and socio-democratic for Swe-
den. Such a distinction partially follows the classification of welfare systems in Esping-Andersen
(1990) distinguishing liberal, conservative, and socio-demographic regimes, but takes into account
the peculiarities of the Italian welfare system. Indeed, in addition to the typical corporatism of
conservative regimes (like Germany and France), the Italian welfare system relies strongly on the
10On this point, we verified that the Conditional Tree generated for n = 100 was made of one single “leaf”, i.e. only

one Romerian type is generated.
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Figure 3: Conditional Inference Tree of simulated data
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Note: The figure plots the Conditional Inference Regression Tree generated for a random sam-
ple of 20,000 observations drawn form a distribution based on the data generating process in
panel (b) of Figure 1 and the probability distributions for Italy as reported in Tables A.1-A.4 in
the Appendix. Parametrization: α = 1; the share of each subsample drawn in every iteration
is the default 0.632; the minimum number of observations allowed in each terminal node is
2,000 of the sample size; all remaining tuning parameters are set to the default values in the
“cforest” R function in “partykit” (Hothorn et al., 2006). Source: Authors’s elaborations on
simulated data based on IT-SILC data for 2019 and on the code developed by the GEOM team.

family as a social insurance mechanism. Finally, Poland is itself an interesting case study, being
a country of the former Union of Soviet Socialist Republics (USSR) and part of the Eastern Euro-
pean countries. Beyond such considerations, the general aim of the application is to show how
a learned Bayesian network looks like in the context of inequality of opportunity analysis, and
how it can be used to inform the policy beyond assigning a number to inequality of opportunity.

4.1 Data
The empirical application is entirely based on the 2019 release of the European Union Statistics
on Income and Living Conditions (EU-SILC). Specifically, we use the ad-hoc module issued in
2019 focusing on the intergenerational transmission of disadvantages. It is part of a sub-set
of modules collected periodically (other waves are in 2005 and 2011) that retrieve information
on individuals’ socio-economic background. The variables included in the module capture the
childhood and parental background information of the respondent when he or she was around
14 years old.11 Specifically, our analysis relies on the following background variables: father’s
and mother’s level of education and type of occupation; the type of household in which the
respondent used to live; the number of siblings living at home; the degree of urbanization of the
living area; an indicator of perceived financial distress in the household. Moreover, we exploit the
cohort of birth, the sex, and the country of birth as demographic circumstances. Table 2 below
reports the detailed definition of all the variables included in the model.
11Slight differences might arise for different countries. In general, background information is retrieved for an age

ranging between 12 and 16 years old.
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Table 2: Variable Descriptions

Variable Type Definition

Labour earnings Continuous Annual earnings measured for 2018 at the individual level, coming from
working activities, either as employee or as self-employed, gross of social
security contributions and taxes.

Cohort of birth Categorical Class of cohort of birth: Baby boomers (1959-1969), X Generation (1970-
1979), Millennials (1980-1993).

Sex Categorical Indicator variable taking value 1 if the respondent is a man, and 0 if the
respondent is a woman.

Country of birth Categorical Categorical variable for the location of birth of the respondent: Local, EU,
Extra-EU, Other/Unknown.

Education of father Categorical Categorical variable capturing the highest level of education of the fa-
ther when the respondent was around 14 years old: Low (at most pri-
mary education), Medium (secondary education), High (tertiary educa-
tion), Other/Unknown.

Education of mother Categorical Categorical variable capturing the highest level of education of the mother
when the respondent was around 14 years old: Low (at most primary
education), Medium (secondary education), High (tertiary education),
Other/Unknown.

Occupation of father Categorical Categorical variable capturing the skill level of father’s occupation when
the respondent was around 14 years old, obtained by combining the ac-
tivity status and the ISCO-8 classification of the father’s occupation in EU-
SILC: Unemployed/Inactive, Low-skilled, Medium-skilled, High-skilled,
Other/Unknown.

Occupation of mother Categorical Categorical variable capturing the skill level of mother’s occupation when
the respondent was around 14 years old, obtained by combining the activ-
ity status and the ISCO-8 classification of the mother’s occupation in EU-
SILC: Unemployed/Inactive, Low-skilled, Medium-skilled, High-skilled,
Other/Unknown.

Household type Categorical Categorical variable for the presence of parents in the household when
the individual was around 14 years old: Both parents, One parent, No
parents, Other/Unknown.

Number of siblings Categorical Categorical variable capturing the number of siblings in the household
when the individual was around 14 years old: No or one sibling, Two or
three siblings, Four or more siblings, Other/Unknown.

Urbanization Categorical Categorical variable capturing the level of urbanization of the area the
household lived in when the respondent was around 14 years old: City,
Town/suburb, Rural area, Other/Unknown.

Financial distress Categorical Indicator variable capturing a perceived bad financial situation of the
household when the respondent was around 14 years old.

Note: The table reports the type and definition of the variables used in the application. The sample includes respondents aged
between 25 and 59 who do not declare to be students, retired, or unable to work due to disability. Source: Authors’s elaborations on
EU-SILC data 2019.
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We restrict the sample to respondents aged between 25 and 59. As the reference notion of income,
we employ earnings from labour measured at the individual level in 2018, coming from working
activities, either as employee or as self-employed, gross of social insurance contributions and
taxes. Unemployed and inactive individuals are included with zero labour earnings, unless they
declare to be students, retired, or unable to work due to disability. While the literature usually
adopts household equivalised disposable income, we prefer focusing on individual labour income
(before redistribution and irrespective of the household structure), being our focus the effect of
circumstances on the individual income formation process.12 To make the sample representative
of the country-level population, we appropriately apply the individual sample weights provided
with the survey. Table A.5 reports descriptive statistics for the variables included in the model for
each country.

4.2 Computing IOp through Bayesian networks
We proceed by learning five Bayesian networks – one for each country – through the “Tabu
Search” structural learning algorithm, and then use the obtained networks for measuring in-
equality of opportunity as explained in the methodological section. The Tabu Search algorithm is
implemented employing the extended Bayesian Information Criterion (Foygel and Drton, 2010),
which adds a second penalty to BIC to penalize dense networks, i.e., networks with many edges.
This score ensures that the three networks have a comparable “density” of relations despite the
size of the national samples coming from EU-SILC is different (see Table A.5).

As explained in subsection 3.1, Bayesian networks allow to incorporate previous knowledge on
the data generating process into the model through forced and forbidden arcs. We exploit both
economic theory and the temporal sequence of the variables included in the model to reduce the
number of edges, relating either circumstances with each other or circumstances with labour
earnings. Specifically, we exploit the fact that no variable can influence any preceding one, while
allowing all variables to influence any contemporaneous or subsequent variable. Table 3 reports
the five groups in which we divide the variables according to the period in which we can reason-
ably assume that they emerge.

Table 3: Time sequence of variables

Timeline

Birth Parent education Parent occupation Background at age 14 Present
Cohort of birth Education of father Occupation of father Urbanization Labour earnings
Country of birth Education of mother Occupation of mother Financial distress
Sex Household type

Number of siblings
Note: The table reports the temporal line the authors use to order individual circumstances and labour earnings.In
learning the Bayesian network on the selected sample (see subsection 4.1), this timeline imposes that no variable can
influence any preceding one.
12However, we are aware that the approach has limitations due to possible behavioural responses from anticipating

the effect of redistribution and planning one’s labour supply according to family composition.
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The first group is made of the demographic circumstances: the cohort of birth, the sex, and the
country of birth. Of course, in a cross-section analysis like ours, the cohort of birth is also perfectly
correlated with age. The background variables are divided into three groups: the first one is made
of each parent’s education, the second one of their occupation, and the last one contains the four
variables related to the situation of the respondent’s household when he or she was 14-years-old –
the degree of urbanization in the area, whether the household suffered a bad financial situation,
whether the respondent used to live with both parents or not, and the number of siblings at home.
Finally, the last group is in the present (2018 in our application) and consists of labour income
only. In general, inside each group in Table 3 any relation is possible; however, the variables in
the first group (birth circumstances) cannot influence each other for obvious reasons. Moreover,
to simplify the model we prevent the education of one parent from influencing that of the other,
assuming that the education decision precedes the household formation. In addition to the time-
based constraints, we further add two reasonable forbidden and two forced relations to the model:
each parent’s education level cannot affect the occupation of the other parent, while each parent’s
education level necessarily impacts his or her own occupation.13

4.3 Results
Table 4: Inequality of opportunity estimates in 2018

Country
Index Italy Germany Poland France Sweden
Gini (%) 0.20 (40.8) 0.19 (45.5) 0.16 (35.8) 0.15 (38.2) 0.11 (35.0)
MLD (%) 0.064 (22.4) 0.058 (20.4) 0.043 (18.1) 0.037 (13.0) 0.022 (11.1)

Note: The table reports the estimates of inequality of opportunity (level and percentage of total inequal-
ity) as measured by the Gini index and the Mean Logarithmic Deviation through a Bayesian network for
France, Italy, Germany, Poland, and Sweden, using the appropriate sample weights. The sample includes
respondents aged between 25 and 59 who do not declare to be students, retired, or unable to work due
to disability. Source: Authors’s elaborations on EU-SILC data 2019.

Table 4 reports the estimated levels of IOp for the five countries as measured by the Gini in-
dex and the Mean Logarithmic Deviation of labour earnings predicted through the network of
circumstances.14 The estimated levels of IOp are generally in line with previous findings, explain-
ing between 35% and 46% (for Gini) and between 11% and 22% (for MLD) of overall income
inequality. However, the most valuable characteristic of using a Bayesian network in this frame-
work is the possibility of looking into the network itself. By their very nature, BNs are readable
and the relations that emerge are significant and can be interpreted. Therefore, we look into the
structure of the three networks learned for France (Figure 4), Italy (Figure 5), Germany (Fig-
ure 6), Poland (Figure 7), and Sweden (Figure 8). The structure of a BN allows to immediately
grasp which is the “hierarchy” of circumstances and other variables that influence labour income:
13The results are quantitatively identical if we limit the constraints to those that prevent labor income from in-

fluencing any circumstance and those that do not allow any variable to influence sex, birth cohort and country of
birth.
14As explained in Section 3, we remark that labour earnings predictions have been obtained by employing the

conditional distribution of labour earnings given its parents, according to the learned DAG structure.
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the lower the income variable is in the network, the more complex is its generative process. Also
note that some of the arcs appearing in the networks have been introduced as prior knowledge
(see subsection 4.2), while others have been prohibited.

Table 5: Summary of parent and ancestor variables of income

France Italy Sweden Germany Poland
Demographics
Cohort of birth Parent Parent Parent Parent Ancestor
Country of birth Ancestor Ancestor Ancestor Parent Ancestor
Sex Parent Parent Parent Parent Parent
Background
Education of Father Ancestor Parent Ancestor Ancestor
Education of Mother Ancestor Ancestor Parent Ancestor
Occupation of Father Parent
Occupation of Mother Ancestor Parent Parent
Urbanization
Financial distress
Household type
Number of siblings

Note: The table reports for each country (columns) whether a circumstance (rows) is a “parent”
variable of labor income (a direct determinant), an “ancestor” of it (a determinant mediated by
other circumstances), or neither. A detailed description of the variables included in the model
is available in Table 2 and Table A.5. Source: Authors’s elaborations on EU-SILC data 2019.

Demographic circumstances Table 5 summarizes the direct and indirect relationships with
income that emerge for different countries. We begin by identifying in the graphs the “parents”
of the income variable in the five countries, that is, the circumstances directly related to income,
without mediators.15 Interestingly, for all countries except Germany, income has only three par-
ent variables, while in Germany it has four. Starting from demographic variables, as expected, sex
is in all cases a direct determinant of income.16 The cohort of birth is also a direct determinant
in all countries but for Poland, where its effect is instead mediated by the educational level of the
parents and by mother’s occupation. The country of birth is a parent variable for income only in
Germany, while in Italy its effect is mediated through father’s education, in France through both
parents’ education and occupation, in Poland and Sweden by the educational level of the parents
and by mother’s occupation.17

Background circumstances As regards background variables, the education of the father is a
direct determinant of income in Italy, and his occupation in France. In Germany and Poland, the
15We recall from methodology that, since the learned graph is Markov, it is possible to condense the chains of

conditional dependence into the direct parents only: they convey all the information of their “ancestors”, i.e. of the
variables connected to income through the parent variables.
16When interpreting this result, not that we include in the data inactive respondents with zero earnings declaring

to devote themselves entirely to care activities. Therefore, the income variable also include information on the activity
status.
17In our approach, the country of birth is a categorical variable that indicates whether the individual was born in the

country, immigrated from another EU country, or immigrated from a non-EU country. The approach is thus different
from considering the country of residence as a circumstance itself (Milanovic, 2015), and from the perspective of the
European Union as a single country with several regions (Brandolini, 2007).
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Figure 4: Bayesian network for France in 2018
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Father occ.
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Household Siblings
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Note: The figure plots the Bayesian network for France obtained
through the statistical learning process described in section 3 using
appropriate sample weights. The sample includes respondents aged
between 25 and 59 who do not declare to be students, retired, or un-
able to work due to disability. A detailed description of the variables
included in the model is available in Table 2 and Table A.5. Source:
Authors’s elaborations on EU-SILC data 2019.

education of the mother plays a direct role, and in Poland and Sweden her occupation. How-
ever, in some cases, the other parental education and occupation variables that are not direct
determinants of income are nonetheless its “ancestors”, that is, determinants mediated by other
circumstances. Exceptions are Italy, for which only the father’s education matters, and Germany,
for which only the mother’s education is relevant for income. It is very interesting to note that
all other background variables at age 14, except for parental education and occupation, while
interrelated, do not play any role in the networks in determining income.

Though some similarities emerge, each country reports a specific income formation process and
specific mechanisms of influence for the circumstances. Such comparison should be read in light
of IOp values as well. Indeed, even though some countries might report a similar structure of the
unfairness’ transmission, different levels of IOp might be observed. For example, Italy and Ger-
many have the highest levels of IOp (absolute and relative) in Table 4, but the simplest structure
of inequality of opportunity according to the relations in Table 5.

5 Discussion and conclusion
Part of the complex debate on inequality has been characterized by the attempt to justify in-
terpersonal differences according to social justice criteria. The economic literature has made a
wide range of contributions on this, starting from the work of John Roemer who provided an
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Figure 5: Bayesian network for Italy in 2018
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Note: The figure plots the Bayesian network for Italy obtained through
the statistical learning process described in section 3 using appropri-
ate sample weights. The sample includes respondents aged between
25 and 59 who do not declare to be students, retired, or unable to
work due to disability. A detailed description of the variables included
in the model is available in Table 2 and Table A.5. Source: Authors’s
elaborations on EU-SILC data 2019.

ethical metric for assessing inequality. According to this view, gaps in individual outcomes (such
as income, wealth, etc.) are ethically acceptable to the extent that they emerge from choices for
which individuals can be held accountable, while those that emerge from factors beyond personal
control should be compensated. In the wake of this distinction, various measurement approaches
have been proposed. However, the theoretical spirit of Roemer’s contribution has been overshad-
owed by crucial empirical challenges that have emerged over the years.

In this work, we propose an innovative approach to measure inequality of opportunity that re-
covers the focus on structural relations underlying the original Roemerian approach, while com-
bining it with the estimation effectiveness of recent empirical approaches. The proposal aims to
unravel the complexity of the network of relationships underlying the process linking circum-
stances to adult income. Moreover, in addition to producing an index of unfairness comparable
with previous approaches, it enables to extract policy-oriented evidence. In fact, the adoption
of Bayesian networks (Pearl, 1995) allows to dig up the allocation process that generates such
unfair inequality. Inspecting the network that connects circumstances with each other and with
income, it is possible to identify the channels that activate inequality of opportunity. This innova-
tion makes the methodology informative to the policymakers about which actions can effectively
reduce unfair inequalities.

A simulation exercise allowed us to show the complementarity of the proposed method with the
most widely used, while an empirical application on five European countries in different welfare
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Figure 6: Bayesian network for Germany in 2018
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Note: The figure plots the Bayesian network for Germany obtained
through the statistical learning process described in section 3 using
appropriate sample weights. The sample includes respondents aged
between 25 and 59 who do not declare to be students, retired, or un-
able to work due to disability. A detailed description of the variables
included in the model is available in Table 2 and Table A.5. Source:
Authors’s elaborations on EU-SILC data 2019.

regimes provided an example of the interpretive potential with real data. In the application, we
showed that while the estimates are in line with the literature, the network is also informative
about how the background conditions affect downstream outcomes, uncovering similarities and
differences across countries. The tool can be very useful for comparing countries but also the same
country over time, especially if it has gone through major structural or institutional changes. The
graphical representation of the model might represent a key tool in policy-making, as it enables
a visualization of the network of injustice, that is, the mechanisms underlying unfair allocations
of income that generate inequality of opportunity.

Additional data on circumstances and, possibly, effort would provide more detailed and granular
information on the workings of the income formation process underlying inequality of oppor-
tunity. The emerging map of relationships among variables would be informative both about
the underlying factors relevant to unjust interpersonal gaps and the mechanisms that transmit
their effect to final outcomes in the labour market. The network would emerge as an excellent
policy tool for addressing inequity in two respects. On the one hand, it would make it possible
to understand through what mechanisms (e.g., sector, occupation, labour intensity) background
circumstances influence income in the current generation, enabling the policymaker to intervene
on those mechanisms. On the other hand, it would ease the understanding of which background
characteristics influence income and thus allow to act on the socio-economic endowment of future
parents (e.g., by increasing the level of education today).
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Figure 7: Bayesian network for Poland in 2018
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Note: The figure plots the Bayesian network for Germany obtained
through the statistical learning process described in section 3 using
appropriate sample weights. The sample includes respondents aged
between 25 and 59 who do not declare to be students, retired, or un-
able to work due to disability. A detailed description of the variables
included in the model is available in Table 2 and Table A.5. Source:
Authors’s elaborations on EU-SILC data 2019.

Two lines of research emerge as a natural continuation of this work. A first one concerns the
role of household formation and redistribution in reshaping the map of relations we have shown
in the application. A possible method could encompass the adoption of equivalised household
income and disposable income after taxation and transfers to learn the graph, and study what
happens to the level of inequality of opportunity and to the network when family composition and
the tax and transfer system are taken into account. A second possible line of research concerns
investigating the effect of circumstances beyond individual control on outcome variables other
than income, such as wealth, consumption, but also health. Such an approach may provide a
more complete picture of the mechanisms driving broader concepts of inequality of opportunity.

Other possible extensions of the approach concern policy simulation and ethical comparisons.
Regarding the first aspect, the proposed methodology is suitable for the evaluation of public
interventions. In fact, BNs make it possible to simulate a shock at any node and observe its
propagation through all the arcs of the network. This would be a useful tool to test the impact of
policy measures aimed at reducing the effects of inequality of opportunity. Secondly, the approach
can be used to test the real data generating processes against an existing ethical benchmark, in
the spirit of Andreoli et al. (2019). The network learned from the data can in fact be compared
with a reference network of equality of opportunity through measures of “distance”, which could
then be interpreted as a measure of unfairness in society. The definition of the benchmark could
be “absolute”, reflecting theories of distributional justice, or be “relative”, taken from the views
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Figure 8: Bayesian network for Sweden in 2018
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Note: The figure plots the Bayesian network for Sweden obtained
through the statistical learning process described in section 3 using
appropriate sample weights. The sample includes respondents aged
between 25 and 59 who do not declare to be students, retired, or un-
able to work due to disability. A detailed description of the variables
included in the model is available in Table 2 and Table A.5. Source:
Authors’s elaborations on EU-SILC data 2019.

and opinions of a given society. These ideas are left for future research.
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A Additional figures and tables
Table A.1: Unconditional distribution of father education in Italy

Variable Probability
Low 0.70

Education of father Medium 0.23
High 0.07

Note: The table reports the unconditional distribution of the categor-
ical variable Education of Father (Low for primary education, Medium
for secondary education, High for tertiary education) for Italy, using the
appropriate sample weights. The sample includes respondents aged be-
tween 25 and 59 who do not declare to be students, retired, or unable
to work due to disability. Source: Authors’s elaborations on EU-SILC
data 2019.

Table A.2: Conditional distribution of paternal occupation in Italy

Occupation of father
Blue-collar White-collar Manager

Low 0.37 0.54 0.09
Education of father Medium 0.14 0.46 0.40

High 0.03 0.08 0.89

Note: The table reports the distribution of the categorical variable Occupation of father (Blue-
collar, White-collar, Manager) conditional on the categorical variable Education of father (Low
for primary education, Medium for secondary education, High for tertiary education) for Italy,
using the appropriate sample weights. The sample includes respondents aged between 25 and
59 who do not declare to be students, retired, or unable to work due to disability. Father’s
occupation is obtained by combining the activity status and the ISCO-8 classification reported
in EU-SILC. Blue-collars also include unemployed and inactive fathers. Source: Authors’s elab-
orations on EU-SILC data 2019.

Table A.3: Conditional distribution of financial distress at age 14 in Italy

Financial distress
No Yes

Blue-collar 0.73 0.27
Occupation of father White-collar 0.82 0.18

Manager 0.95 0.05

Note: The table reports the distribution of the categorical variable Occupation of father (Blue-
collar, White-collar, Manager) conditional on the indicator for bad financial situation when the
respondent was at age 14 (Financial distress) for Italy in 2019, using the appropriate sample
weights. The sample includes respondents aged between 25 and 59 who do not declare to
be students, retired, or unable to work due to disability. Father’s occupation is obtained by
combining the activity status and the ISCO-8 classification reported in EU-SILC. Blue-collars
also include unemployed and inactive fathers. Financial distress is obtained by recoding the
variable on the perceived financial situation in the household at age 14 provided by EU-SILC.
Source: Authors’s elaborations on EU-SILC data 2019.
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Table A.4: Conditional distribution of market income in Italy (2018)

Labour earnings (€)
Mean SD

Blue-collar 23,288.52 23,373.86
Occupation of
father

White-collar 27,279.99 25,699.15

Manager 35,131.51 35,371.61

Note: The table reports the mean and standard deviation of Labour earnings in 2018 in Italy
conditional on the categorical variable Occupation of father (Blue-collar, White-collar, Man-
ager), using the appropriate sample weights. The sample includes respondents aged between
25 and 59 who do not declare to be students, retired, or unable to work due to disability.
Labour earnings in Euros is measured at the individual level in the year, coming from work-
ing activities, either as employee or as self-employed, gross of social insurance contributions
and taxes. Father’s occupation is obtained by combining the activity status and the ISCO-8
classification reported in EU-SILC. Blue-collars also include unemployed and inactive fathers.
Source: Authors’s elaborations on EU-SILC data 2019.
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Table A.5: Descriptive Statistics

Variable Poland Germany Italy France Sweden
Labour earnings (€)

Mean 10,161.96 36,094.72 27,672.84 39,766.58 42,045.26
SD 9,661.16 33,544.58 27,908.31 33,373.01 30,165.18

Cohort of birth
1959-1969 0.32 0.46 0.39 0.36 0.36
1970-1979 0.29 0.29 0.32 0.31 0.31
1980-1993 0.39 0.25 0.28 0.33 0.34

Sex
Women 0.50 0.54 0.51 0.52 0.47
Men 0.50 0.46 0.49 0.48 0.53

Country of birth
Local 0.80 0.92 0.87 0.90 0.83
EU 0.00 0.00 0.04 0.03 0.05
Extra-EU 0.00 0.08 0.08 0.08 0.12
Other/Unknown 0.19 0.00 0.00 0.00 0.00

Education of father
Low 0.25 0.09 0.67 0.64 0.33
Medium 0.44 0.47 0.22 0.09 0.27
High 0.06 0.30 0.07 0.14 0.29
Other/Unknown 0.26 0.15 0.04 0.13 0.11

Education of mother
Low 0.27 0.09 0.73 0.68 0.32
Medium 0.41 0.51 0.20 0.11 0.30
High 0.06 0.12 0.04 0.11 0.29
Other/Unknown 0.26 0.27 0.04 0.10 0.09

Occupation of father
Unemployed/Inactive 0.02 0.02 0.03 0.04 0.03
Low-skilled 0.18 0.16 0.25 0.30 0.13
Medium-skilled 0.42 0.39 0.47 0.39 0.35
High-skilled 0.12 0.36 0.21 0.28 0.39
Other/Unknown 0.25 0.07 0.04 0.00 0.10

Occupation of mother
Unemployed/Inactive 0.14 0.32 0.60 0.42 0.16
Low-skilled 0.09 0.12 0.09 0.13 0.08
Medium-skilled 0.38 0.28 0.18 0.31 0.40
High-skilled 0.14 0.19 0.10 0.14 0.30
Other/Unknown 0.25 0.09 0.03 0.00 0.07

Household type
Both parents 0.73 0.93 0.98 0.92 0.77
One parent 0.01 0.00 0.01 0.08 0.05
No parents 0.00 0.00 0.00 0.01 0.00
Other/Unknown 0.25 0.07 0.01 0.00 0.18

Number of siblings
No or one sibling 0.45 0.71 0.78 0.64 0.61
Two or three siblings 0.24 0.19 0.18 0.28 0.29
Four or more siblings 0.05 0.02 0.02 0.08 0.04
Other/Unknown 0.26 0.07 0.01 0.00 0.06

Urbanization
City 0.13 0.22 0.23 0.17 0.26
Town/suburb 0.16 0.29 0.45 0.33 0.43
Rural area 0.46 0.43 0.32 0.50 0.24
Other/Unknown 0.25 0.07 0.01 0.00 0.08

Financial distress
Yes 0.15 0.16 0.18 0.24 0.17
No 0.58 0.76 0.80 0.74 0.77
Other/Unknown 0.26 0.09 0.02 0.02 0.07

Number of observations 17,502 7,222 15,830 7,280 2,234
Weighted population 14,702,540 26,839,698 23,670,086 18,441,987 2,013,365

Note: The table reports summary statistics (mean and standard deviation for labour earnings, and proportion in the sample for the
other variables) for each country using the appropriate sample weights. The sample includes respondents aged between 25 and 59
who do not declare to be students, retired, or unable to work due to disability. Source: Authors’s elaborations on EU-SILC data 2019.
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