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Abstract—Chunking theory is among the most established 

theories in cognitive psychology. However, little work has been 

done to connect the key ideas of chunks and chunking to the 

neural substrate. The current study addresses this issue by 

investigating the convergence of a cognitive CHREST model 

(the computational embodiment of chunking theory) and its 

neuroscience-based counterpart (based on deep learning). Both 

models were trained from raw data to categorise novel stimuli 

in the real-life domains of literature and music. Despite having 

vastly different mechanisms and structures, both models largely 

converged in their predictions of classical writers and 

composers – in both qualitative and quantitative terms. 

Moreover, the use of the same chunk/engram activation 

mechanism for CHREST and deep learning models 

demonstrated functional equivalence between cognitive chunks 

and neural engrams. The study addresses a historical feud 

between symbolic/serial and subsymbolic/parallel processing 

approaches to modelling cognition. The findings also further 

bridge the gap between cognition and its neural substrate, 

connect the mechanisms proposed by chunking theory to the 

neural network modelling approach, and make further inroads 

towards integrating concept formation theories into a Unified 

Theory of Cognition (Newell, 1990).  

Keywords—chunking, symbolic, deep learning, subsymbolic, 

CHREST (key words) 

I. INTRODUCTION 

The brain is often said to be the most complex object in the 
known universe. There are multiple levels of investigating 
brain functions: starting from the subatomic relations between 
particles, to the molecular level, to whole neurons that 
generate action potentials, to networks of networks that link 
various brain regions, to cognition and behaviour that emerge 
from all of these multilevel relations (Purves et al., 2013). 
How do we approach this level of complexity? 

The approach of cognitive psychology was to unravel the 
mechanisms that underlie cognition starting with the top levels 
(cognition and behaviour). For example, experiments on 
human processing have shed light on the cognitive functions 
of human attention, long-term and short-term memory 
modules (LTM and STM, respectively), and their 
interconnectedness with the perceptual apparatus. 
Neuroscience, in turn, focused on the investigation of the 

lower-level neural functions (e.g., synapses, neuronal 
structure, firing rates, and refractory periods) and their 
relationship to higher cognition. Understandably, both levels 
of explanation rely on different sets of assumptions and 
proposed mechanisms. 

While many of the findings remain in the shape of verbal 
theories, a sizable part has been captured via computational 
formalisms (Anderson & Lebiere, 1998; Laird, Lebiere, & 
Rosenbloom, 2017; Newell, 1990; Ritter, Tehranchi, & Oury, 
2019). Computational formal models form a solution to the 
problem of “magic parameters” associated with purely verbal 
theories and integrate proposed mechanisms into a more 
unified whole (Byrne, 2012; Lane & Gobet, 2012a; Newell, 
1990).  

The currently ongoing AI revolution is powered by formal 
models of artificial neural networks (ANNs, historically 
known under umbrella terms of connectionism and, more 
recently, deep learning) (Hambling, 2020; Jo, Nho, & Saykin, 
2019; Mnih et al., 2013; Silver et al., 2016; Silver et al., 2017; 
Vaswani et al., 2017). Deep learning is also commonly used 
in psychological models (e.g., Battleday, Peterson, & 
Griffiths, 2020; Hoffman, McClelland, & Lambon Ralph, 
2018; Sanders & Nosofsky, 2020). Indeed, its set of 
fundamental mechanisms was largely developed and refined 
through research in neuroscience and psychology (Hahnloser 
et al., 2000; Hinton & McClelland, 1987; Hinton et al., 2012; 
McCulloch & Pitts, 1943; Nair & Hinton, 2010; Rosenblatt, 
1958, 1962; Rumelhart, Hinton, & Williams, 1986). A review 
of computational neuroscience models concluded that despite 
the problem of oversimplification, deep learning models can 
already provide profound insights into the processing of the 
brain (Richards et al., 2019). 

On the cognitive psychology side, one of its most 
established theories – chunking theory – has been also 
embodied in computational cognitive architectures, first 
EPAM (Feigenbaum, 1963; Richman, Staszewski, & Simon, 
1995) and now CHREST (Chunking Hierarchy REtrieval 
STructures) (Gobet, 1993, 2000; Gobet & Lane, 2012; Gobet 
& Simon, 2000). Chunking theory’s key idea – a chunk – is 
defined as a meaningful unit of information made from 
elements that have strong associations between each other 
(e.g., several digits making up a telephone number). Hence, 



chunking is the process of forming and updating chunks in the 
cognitive system (Simon, 1974). Although the chunks 
themselves vary between people due to personal differences, 
the chunking mechanism is mostly invariant across domains, 
individuals and cultures (Chase & Simon, 1973; Gobet et al., 
2001; Miller, 1956). 

Since its emergence in 1959, cognitive chunking has been 
found to be central in verbal learning (Feigenbaum & Simon, 
1984; Richman & Simon, 1989; Richman, Simon, & 
Feigenbaum, 2002), perception and memory systems involved 
in expert behaviour (Gobet & Simon, 2000; Richman et al., 
1996; Richman et al., 1995; Simon & Chase, 1973; Simon & 
Gilmartin, 1973), concept learning and categorisation 
(Bennett, Gobet, & Lane, 2020; Lane & Gobet, 2012b), 
developmental abilities and cognitive decline due to ageing 
(Mathy et al., 2016; R. Smith, Gobet, & Lane, 2007), 
acquisition of grammar in children (Freudenthal et al., 2016; 
Gegov et al., 2012), and the list goes on. Thus, the idea of a 
chunk is one of the key ideas in all of cognitive psychology. 

One classic example of chunking theory is the finding that 
stronger chess players are able to recall more novel chess 
positions from a given chessboard when compared to weaker 
players, but this effect is much more pronounced when the 
said novel positions come from an actual game, and not just 
randomly placed chess pieces. According to CHREST – a 
computational model based on chunking – this is due to the 
experts possessing more chunks in their LTM (Gobet & 
Simon, 1996) (see Figure 1). 

 

Figure 1. Recollection of game and random chess positions as a 

function of ELO rating in humans and number of chunks in 

CHREST. From Gobet and Simon (1996). 

The neural basis of chunking was investigated using 
neuroimaging techniques. It was found that experts possess 
large domain-specific knowledge structures that activate in the 
areas of the brain associated with episodic LTM memory. 
While novices primarily rely on the prefrontal cortex to form 
new primitives and update their shallow chunking networks, 
experts show less activation in the prefrontal areas, but large 
activations in the medial temporal lobe, presumably due to 
rapid utilisation of large knowledge structures (see Figure 2) 
(for a review, see Guida et al., 2012). While these findings 
were important for establishing a link between chunking and 
the neural function, they were presented in a form of a verbal 
theory that was difficult to operationalise, e.g., using a 
connectionist model of chunking.  

The current paper aims to address this issue by 
investigating the correspondence between the rigorous 

cognitive CHREST model that is based on chunking and a 
neuroscience-based model based on deep learning. 

Figure 2. Experts’ brains (on the right) have more activations in the 

temporal regions associated with LTM, and fewer activations in the 

prefrontal STM regions when compared to novices (on the left). 

Darker shades of green signify stronger activation. Adapted from 

Guida et al. (2012). 

II. CHREST AND DEEP LEARNING 

CHREST is a self-organising computer model that simulates 
human learning processes via interacting cognitive 
mechanisms and structures. For CHREST, learning implies 
gradual growth of a network of chunks in LTM, a process 
influenced both by the environmental stimuli and the data that 
have already been stored (Gobet & Lane, 2012). CHREST’s 
STM structure allows for additional ways to create links 
between chunks, such as linking chunks across visual and 
verbal modalities. 

Another way to present CHREST is to say that it is 
analogous to deep learning – both in terms of its power and 
simplicity, with the caveat that CHREST’s level of 
investigating the brain function starts with the top level 
(cognition and behaviour) as opposed to neural mechanisms. 
With regard to power, like the multi-layer artificial neural 
nets, CHREST is an example of a universal function 
approximator (Fredkin, 1960; Gobet, 1996; Hornik, 
Stinchcombe, & White, 1989). Thus, like deep learning, 
CHREST is capable of classifying complex multidimensional 
stimuli while learning from raw data, using both supervised 
and unsupervised approaches.  

As for simplicity, like deep learning, CHREST is very 
simple at its core. While a perceptron is an idealised model of 
a neuron, CHREST presents an idealised model of a cognitive 
system. But, where deep learning relies on linear algebra, 
partial differentials and the differentiation chain rule, 
CHREST relies on a different set of formalisms. They include 

 

Figure 3. Some of the core neural (on the left) and cognitive 

mechanisms (on the right), and their respective formalisms (below) 

in deep learning and CHREST respectively. The microscopy image 

was taken from Olexik (2015). 

 



graph data structures, first-in-first-out queues, with the whole 
system being trained by a process of chunking that is 
functionally equivalent to deep learning’s backpropagation. 
(Backpropagation is the process of adjusting synaptic weights 
based on the error rate of the artificial neural network 
(Rumelhart et al., 1986)). Chunks are operationalized as graph 
nodes and chunking is the process of adding new data to the 
LTM (see Figure 3). This is done via two psychologically 
plausible cognitive processes: discrimination and 
familiarisation. Discrimination is the process of adding a new 
node to the network. Familiarisation updates existing nodes 
with new information. 

An important difference between CHREST and 
connectionism/deep learning is that CHREST is an example 
of a symbolic architecture, while the connectionist neural nets 
are subsymbolic (the question of which approach better 
models cognition was hotly debated) (Simon, 1991). In 
practice, this means that CHREST’s patterns are meaningful 
and are represented as symbols (i.e., text) for objects inside 
(cognition) and outside (input) the architecture. This is in 
contrast to deep learning, where, for example, meaningful 
input text is converted into numbers which are then 
manipulated by the internal functions to generate a desired 
output (see Figure 4). We should also add that CHREST is 
different to many symbolic models (like “expert systems”) 
and is closer to deep learning in its focus on perception as the 
primary driver of intelligence. Gobet and Lane (2012) offer an 
in-depth introduction to the chunking theory; for deep 
learning, see LeCun, Bengio, and Hinton (2015).  

 

Figure 4. Representations in cognitive, ANN and biological systems. 

From left to right: a chunk with letter “A” in CHREST; numerical 

neural heatmap corresponding to letter “A” in a deep learning 

model; biological neuronal engram corresponding to “safe place” 

in an optogenetically modified mouse (from Liu, Ramirez, and 

Tonegawa (2013)). Yellow colour represents strong positive 

activations and dark blue represents strong negative activations. 

III. CONCEPTS AND CHUNKS 

As was mentioned above, chunking plays a crucial role in a 
wide range of cognitive phenomena. We focused on chunking 
in concept learning/categorisation as this field is particularly 
complex, and, “in some way, everything is concepts” 
(Murphy, 2002, p. 3). 

What are concepts? One definition is that concepts are 
“mental representations of classes of things”, with “classes of 
things“ themselves being categories (Murphy, 2002). 
Historically, the psychological literature on concept formation 
was dominated by formal models that operated on artificial 
categories with  a few and often binary dimensions (e.g., 
Anderson, 1991; Love, Medin, & Gureckis, 2004; Nosofsky, 
2011), or natural categories that were pre-processed (into a 
few and often binary dimensions) (e.g., Nosofsky et al., 2017; 
Nosofsky et al., 2018). This led to reformulating the definition 
of concepts as either prototypes (summary descriptions) 
(Frixione & Lieto, 2012), clusters of specific instances 
(exemplars) (Nosofsky, 2011), or clusters based on Bayesian 

inference (Anderson, 1991) and other clustering algorithms 
(Murphy, 2002). More recently, a number of psychological 
deep learning models moved towards processing raw natural 
categories, for example, classifying real-life images using 
their pixel data (Battleday et al., 2020; Sanders & Nosofsky, 
2020), or finding false sentences (e.g., “fur has cat”) in a 
natural language text (Bhatia & Richie, 2022). Moreover, 
Battleday et al. (2020) concluded that intuitions about theory 
and model performance for low-dimensional categories do not 
transfer to higher-dimensional ones. 

Chunking theory’s CHREST has also been used to model 
concept learning in tasks with high-dimensional real-life 
complexity. One CHREST model was able to categorise novel 
chess positions as one of two types of opening – a French, or 
a Sicilian (in chess, an opening concerns the first 10-20 moves 
of a game, with there being billions of potential different 
sequences of moves) (Lane & Gobet, 2012b). A more recent 
CHREST model was able to categorise novel literature pieces 
and music scores by predicting their respective author or 
composer (Bennett et al., 2020). The latter model was also 
notable for being domain general. For example, while the 
chess model relied on chess-specific heuristics/mechanisms 
that were hand-crafted by a chess expert (e.g., one of the 
heuristics guided model’s attention towards chess pieces 
under attack), the literature and music categorisation did not 
have such pre-built knowledge structures and feature 
detectors. Instead, the model automatically formed chunking 
hierarchies during the learning phase (exposure to different 
literature and music pieces). During the test phase, the model 
automatically activated the largest of the formed chunks to 
“vote” for a category. In broader terms, this meant that a 
concept (e.g., a mental representation such as “Mozart” or 
“Homer”) was a collection of chunks in a cognitive LTM-like 
structure – as operationalised by chunking theory’s CHREST. 

IV. THE PRESENT STUDY 

The present study intended to establish the level of 
convergence between the chunking theory and 
connectionism/deep learning. We replicated and compared 
CHREST’s artificial category learning performance, as well 
as literature and music categorisation experiment, with a deep 
learning model. While deep learning models have a rich 
history in text classification, with over 150 models built in 
recent years alone (Minaee et al., 2020), models of music 
scores classification are less numerous. Dor and Reich (2011) 
analysed MIDI data and achieved over 90% accuracy on 
classification of composer pairs (e.g., Bach or Chopin, Bach 
or Mozart). Herremans, Martens, and Sörensen (2015) 
achieved over 80% accuracy on a 3-way classification of a 
large dataset containing MIDI music by Bach, Beethoven and 
Haydn. However, both of the studies above relied on hand 
engineered musical features such as “melodic fifth 
frequency”, “note count feature” and “melodic octave 
frequency”, instead of training from raw music score data. 
Indeed, Dor and Reich (2011) considered classification of raw 
music scores to be impossible for the then current machine 
learning methods. 

The approach of the current study included training 
linguistic and non-linguistic domains in one pass (i.e. 
simultaneous learning of both the literature authors and music 
composers – as was done in the CHREST study). Also, the 
training sets were kept to raw data only. To our knowledge, 
this approach is novel. We should also note that our deep 
learning model is meant to be supplementary to CHREST 



research – while our model is not trivial, it makes no claim to 
state-of-the-art categorisation performance. Instead, it was 
designed to aid comparison and to provide important 
theoretical neuroscience context to the state-of-the-art 
cognitive model of concept learning (CHREST). We trained 
both CHREST and deep learning models on the same set of 
unabridged works by various authors and composers. We 
tested categorisation on previously unseen pieces produced by 
the same authors and composers. 

V. METHOD 

A. The Training and Testing 

The training and testing procedure was meant to mostly 
replicate the experiment by Bennett et al. (2020). There were 
10 categories altogether, with 6 literature authors (Homer, 
Chaucer, Shakespeare, Scott, Dickens, Joyce) and 4 music 
composers (Bach, Mozart, Beethoven, Chopin). For each 
category (i.e., a literature author or a music composer), the 
training set contained approximately 300Kb of text in total.  

The test dataset was expanded from the original study’s 50 
pieces of literature and music – to 120 pieces (60 literature 
pieces and 60 music scores; these were not part of the training 
set). This was done both to further test the CHREST model 
and to broaden the scope of comparison to the ANN model. 

B. CHREST Model 

Our CHREST model architecture was replicated from the 

original experiment by Bennett et al. (2020): it once again 

contained an LTM data structure that acquired chunks through 

learning, an STM structure that allowed to create category 

naming links between chunks, and a sliding attention window. 

The model also had a “chunk activation” mechanism: if there 

are m categories, the vector of categories is c =[𝒄𝟏  , 𝒄𝟐  , … 

𝒄𝒎  ], the vector of category specific chunk activations is 

a=[𝒂𝟏  , 𝒂𝟐  , … 𝒂𝒎  ] and the confidence of a prediction that a 

stimulus belongs to category 𝒄𝒊  would be calculated using the 

equation  

𝐶(𝑐𝑖  |𝑥) = 𝑎𝑖  /  ∑(𝑎𝑘)

𝑚

𝑘=1

 

where 𝐶(𝑐𝑖   |𝑥) is confidence that the category is 𝑐𝑖  , given a 
literature or music stimulus x; 𝑎𝑖  is the LTM chunks’ 
activation corresponding to that category, and the summation 
part being the sum of chunk activations across all m 
categories. See Bennett et al. (2020) for the full details of 
CHREST categorisation model. 

C.  Deep Learning Model 

A common way to model sequence processing in neural 
networks is with a recurrent type of neural architecture, also 
referred to as Recurrent Neural Networks (RNN) (Elman, 
1990). Our model was also of this type. An RNN neuron has 
an axon that branches and outputs signal into that neuron 
itself, as well the subsequent neurons. Concretely, RNN 
neuron’s output at time t is ℎ𝑡 = 𝑅𝑒𝐿𝑈(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 ), 
where 𝑅𝑒𝐿𝑈 is the threshold activation function (see below 
for more details), 𝑥𝑡 is the input at time t, 𝑊𝑥ℎ is the synapse 
weight between the input and the neuron, ℎ𝑡−1 is the output of 
that neuron at the previous time step t-1, and the 𝑊ℎℎ is the 
synapse weight between the neuron’s output and itself. The 
backward propagation of RNN is also known as “backward 
propagation through time” (Elman, 1990), but, despite the 
added time component, the basic logic remains the same.  

As was mentioned above, simple off-the-shelf RNNs 
could not categorise raw music scores – presumably due to the 
network “forgetting” input that is above approximately ten 
time steps (Bengio, Frasconi, & Schmidhuber, 2001; 
Goodfellow, Bengio, & Courville, 2016). Thus, our model 
was enriched with four additional psychologically plausible 
mechanisms.  

Firstly, the model featured random shutdown of neurons 
(also known as “Dropout”) (Hinton et al., 2012). This can be 
viewed as an approximation for the neural refractory period – 
the short period of time when the neuron may not fire again 
(Deutsch, 1964). Functionally, the dropping out of neurons 
from the learning process prevents overfitting and excessive 
synaptic co-adaptation to patterns. Indeed, recent 
neuroscience research suggests that artificially inducing 
higher levels of neuronal dropout in biological brains (e.g., via 
Deep Brain Stimulation) can both disrupt and improve 
memory (Tan et al., 2020). 

Secondly, the activation function for the neurons was 
chosen to be “ReLU” (rectified linear unit f(x) = max(0,x)). 
Originally proposed as a more biologically plausible depiction 
of the neural threshold function that is analogue as well as 
digital in nature (Hahnloser et al., 2000), ReLU became one 
of the key drivers behind the breakthrough with training 
artificial neural networks with many layers (Nair & Hinton, 
2010). Because ReLU is so similar to a linear function – while 
being non-linear – it significantly diminished gradient 
saturation (and the ensuing vanishing gradient problem) that 
was associated with the traditional neural activation function 
sigmoid(x) and its variants like the tanh(x).  

Our third addition was the “sliding attention window” – as 
it was used with CHREST. The sliding attention window 
passed the retrieved short word sequences to the model and 
the model generated a vote/prediction for each of the 
sequences.  

 The fourth addition was the “LTM activation” mechanism 
that aimed to resolve conflicts between votes for different 
categories. As the model generated category “votes”, these 
votes were then aggregated and the overall winner was 
declared by the confidence formula. The multidomain 
confidence criterion was calculated by the same formula as 
was used in CHREST model and still had the aim of resolving 
conflicting “voting” among category representations. The 
important difference was that, this time, the voting conflict 
was among different neural activations/engrams (as opposed 
to different cognitive chunks with CHREST): 

𝐶(𝑐𝑖  |𝑥) = 𝑎𝑖  / ∑(𝑎𝑘)

𝑚

𝑘=1

 

where 𝐶(𝑐𝑖|𝑥) is confidence that category (i.e., author or 
composer) is 𝑐𝑖  , given a novel literature or music stimulus x; 
𝑎𝑖  is the neural engrams’ activation score corresponding to 
that category (i.e., author or composer), and the summation 
part being the sum of neural engram activations across all m 
categories. 

 Training and testing text files were converted to numeric 
vectors using the TensorFlow Tokenizer library to streamline 
processing. It should be noted that text vectorisation was done 
in the name of convenience – despite the psychological 
questionability of such a mechanism. The plausibility of the 
overall model would not be affected by this particular decision 



as artificial neural nets are capable of character recognition at 
approximately human level of performance (LeCun et al., 
1999). The order of the training samples was randomised. No 
notes or words were removed from either training or testing 
patterns. 

The model had around 8.5 million trainable parameters 
and was trained for 20 epochs. The vocabulary size was set to 
50,000; the size of the attention window was set to 20 
words/chords/notes; the embedding dimension was set to 1. 

In all other aspects, the current experiment was a complete 
replica of the CHREST music and literature categorisation 
experiment discussed above. 

See https://github.com/Voskod for Python3 source code;  
for Java implementation of CHREST with graphical user 
interface and more documentation see www.chrest.info. 

VI. RESULTS  

Both CHREST and deep learning models were able to learn 
complex categories in the real-world music and literature 
domains. They required no ad hoc additions to the core 
architecture in order to simultaneously process music or 
literature specific nuances. The descriptive statistics for both 
models are summarised in Table 1. 

CHREST’s categorisation performance was substantially 
above chance – of the 120 tests across 10 categories (implying 
12 correct answers by pure chance), 83 were classed correctly. 
Within modalities, CHREST correctly categorised 41 out of 
60 literature works and 42 out of 60 music scores. The deep 
learning model’s categorisation performance was also 
substantially above chance – of the 120 tests across 10 
categories, 93 were classed correctly. 

CHREST and ANN models made similar quantitative 
predictions. The CHREST model had the highest true 
predictions for Bach, Mozart, and Beethoven in music and 
Chaucer, Homer, Shakespeare, and Dickens in literature. Bach 
and Chaucer had the highest confidence scores for their 
respective modalities. Chopin and Joyce had the lowest 
confidence scores as well as the lowest true prediction rates. 
The same pattern of results was true for the deep learning 
model. One notable outlier was the discrepancy on the Walter 
Scott category, where CHREST had 4/10 correct predictions 
while the deep learning model had a 9/10 score. 

There were no mistakes across modalities by either model 
– literature was never categorised as music and vice versa. 
This implies that while the models were taught to classify 10 
types of regularities, they formed (empirically) distinct 
memory chunks/engrams that separate the domains of music 
and literature – as was evident from the overall winning 
confidence scores. However, while CHREST had no 
activations across modalities, they were occasionally present 
for the deep learning model. For example, the first four Scott 
pieces generated various activations across literature authors 
but had zero activations for any music composer. On the other 
hand, some stimuli did generate exactly that kind of “multi-
modality” engram activation pattern. For instance, Mozart’s 
Fantasia in D activated an engram that was made up from 
76% of Mozart’s representations, but also with 3% of Joyce’s 
(see Table 2). 

VII. DISCUSSION 

A. Summarising the Results  

Both cognitive and neural models were able to learn real-life 
highly multidimensional categories while learning from raw 
data only, without bootstrapping to pre-made knowledge 
structures and feature detectors. 

The comparison of the performance obtained by the CHREST 
and deep learning models provides for intriguing analysis and 
warrants further investigation. From a high-level perspective, 
both models demonstrated the capability of learning concepts 
in complex, dissimilar domains (linguistic in the case of 
literature and non-linguistic in the case of music).  

Beyond the qualitative similarity, the CHREST and deep-
learning models also made similar quantitative predictions. 
CHREST and deep learning also share functional similarities. 
This was demonstrated using the same activation mechanism 
for both CHREST and deep-learning models. Indeed, the 
proposed activation formula/code was completely 
interchangeable between the models and required no 
adjustment to measure the activation of chunks or the 
activation of neural engrams. In this technical sense, cognitive 
chunks may be said to be equivalent to neural engrams. The 
attention window mechanism was also similar for the two 
types of models.   

Nevertheless, this similarity of the two models was not 
absolute. While CHREST had no cross-modality activations 
at all, the deep-learning model had slight (mostly around 1-
5%) activations on some of the cross-modal representations. 
This being said, the overall distinct clustering of literature and 
music was true for both models. The occasional and mostly 
small cross modal activations of the deep-learning model may 
need further investigation: while the result above may 
represent statistical noise of the artificial neurons, similar 
mechanism may also potentially elucidate the complex 
phenomenon of synaesthesia (Ward & Simner, 2022). 

B. Constraining the Infinite Space of Candidate Theories  

One potential criticism of our study is that having two models 
arriving at similar behaviour by different means does not 
necessarily imply that the models are equivalent in any but the 
broadest sense. Indeed, in a trivial example where x = 2 and 
f(x) = 4, it does not make sense to talk about the equivalence 
of functions such as f(x) = 2x; f(x) = x3 – x2; f(x) = 4*sin(𝜋 / 
x), and so on. Of the similarly infinite number of functions that 
may potentially represent a working cognitive system, which 
one did nature choose to make a human categorise a novel 
music piece as a “Beethoven”? Similarly, to what extent can 
psychological models claim convergence with humans and  

Table 1. Categorisation performance summary for CHREST and 

deep learning models. 

 

 

 

CHREST Deep Learning

Accuracy rate (%) Mean confidence Accuracy rate (%) Mean confidence

Music Bach 100 0.50 93 0.56

Beethoven 93 0.44 87 0.46

Chopin 20 0.31 27 0.34

Mozart 67 0.42 67 0.52

Literature Chaucer 100 0.50 100 0.85

Dickens 70 0.26 100 0.49

Homer 90 0.31 100 0.58

Joyce 20 0.17 40 0.37

Scott 40 0.20 90 0.39

Shakespeare 90 0.34 90 0.50

https://github.com/Voskod
http://www.chrest.info/


 

with each other? To put it yet another way, given two points 
“A” and “B”, there is an infinite number of paths that lead 
from point “A” to point “B”; how would we decide on which 
path to take? On the one hand, there is no real answer – a 
“solution” that is commonly known as Hume’s problem of 
induction (Hume, 1748). We relied on three pragmatic means 
to address this problem in the current study.  

Firstly, the simplest answer would be to choose the path 
that satisfies some other constraints. For example, the shortest 
path, a path through the gates “X”, “Y”, “Z” and so on. In 
terms of choosing a psychologically plausible computational 
approach, one should choose a method that satisfies multiple 
constraints – e.g., postdicting past psychological experimental 
data as well as predicting findings that have not yet been 
reported (Newell, 1990). Our CHREST and deep-learning 
models both satisfy these constraints as they incorporate 
fundamental psychological mechanisms and structures, and 
are rooted in decades of psychological research. For example, 
our CHREST model features the STM, LTM, chunking, 
familiarisation, discrimination, association and attention; 
while our ANN model has dendrites, axons, threshold 

  

activation and a refractory period. While not the focus of the 
current study, CHREST family of models also successfully 
simulates human timings and learning rates in a variety of 
cognitive experiments (Gobet, Lane, & Lloyd-Kelly, 2015). 
As was mentioned above, a recent Nature review concluded 
that deep learning models offer profound insights into the 
working of the brain (Richards et al., 2019). This means that, 
in terms of the “path from A to B” analogy above, our models 
not only connect the “A” and “B”, but also pass the “X”, “Y”, 
“Z” gates/constraints that are relevant to psychology. This is 
unlike other hypothetical models of categorisation (e.g., 
semantic parsers, support vector machines, etc) that connect 
the “A” and “B” without passing the gates and thus make up 
the unconstrained infinite space of candidate models. More 
broadly, this aspect forms a crucial difference between 
computer science (where all models are “equal” as long as 
they succeed at a task) and psychology (where 
“psychologically plausible” models are desired). For instance, 
Deep Blue is not considered to be a psychologically plausible 
model of human chess playing (Gobet, 1997a) due to its 
reliance on brute search, but AlphaZero is more psychological 
in how it relies on pattern recognition (as well as incorporating 

Table 2. An excerpt of individual categorisation confidence scores by CHREST and deep learning models. Red colour signifies zero memory 

activation and darker shades of green signify stronger activation. Numbers in bold denote the highest confidence prediction on a given novel 

test. 

 CHREST model

Author File Chaucer Dickens Homer Joyce Scott Shakespeare Bach Beethoven Chopin Mozart Correct

Mozart A Piece For Piano K176 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.16 0.03 0.21 FALSE

Adagio In B Flat 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.04 0.29 0.55 TRUE

Fantasia In C K.475 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.20 0.28 0.38 TRUE

Fantasia In D, K397 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.06 0.31 0.58 TRUE

K309 Piano Sonata N10 1mov 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.24 0.11 0.22 FALSE

Scott Talisman Part 2 0.05 0.22 0.21 0.08 0.26 0.17 0.00 0.00 0.00 0.00 TRUE

Talisman Part 3 0.05 0.21 0.20 0.14 0.25 0.16 0.00 0.00 0.00 0.00 TRUE

Talisman Part 4 0.11 0.21 0.21 0.10 0.16 0.22 0.00 0.00 0.00 0.00 FALSE

Talisman Part 5 0.11 0.17 0.26 0.11 0.17 0.19 0.00 0.00 0.00 0.00 FALSE

The Lay Of The Last Minstrel 0.04 0.13 0.11 0.15 0.17 0.39 0.00 0.00 0.00 0.00 FALSE

Beethoven Piano Sonata N08 Op13 1mov 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.44 0.14 0.10 TRUE

Piano Sonata N08 Op13 3mov 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.32 0.12 0.11 FALSE

Piano Sonata N09_1 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.50 0.10 0.06 TRUE

Piano Sonata N09_2 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.51 0.09 0.06 TRUE

Piano Sonata N10 1mov 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.41 0.08 0.09 TRUE

Joyce A_Portrait_Of_The_Artist _1 0.05 0.25 0.14 0.24 0.20 0.11 0.00 0.00 0.00 0.00 FALSE

A_Portrait_Of_The_Artist _2 0.04 0.20 0.14 0.24 0.21 0.16 0.00 0.00 0.00 0.00 TRUE

A_Portrait_Of_The_Artist _3 0.02 0.23 0.20 0.23 0.10 0.21 0.00 0.00 0.00 0.00 TRUE

Finnegans_Wake_1 0.12 0.12 0.19 0.18 0.10 0.29 0.00 0.00 0.00 0.00 FALSE

Finnegans_Wake_2 0.13 0.16 0.18 0.09 0.16 0.29 0.00 0.00 0.00 0.00 FALSE

Deep Learning model

Author File Chaucer Dickens Homer Joyce Scott Shakespeare Bach Beethoven Chopin Mozart Correct

Mozart A Piece For Piano K176 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.14 0.05 0.24 FALSE

Adagio In B Flat 0.00 0.00 0.02 0.10 0.00 0.01 0.01 0.08 0.16 0.61 TRUE

Fantasia In C K.475 0.00 0.00 0.00 0.05 0.00 0.01 0.01 0.09 0.40 0.43 TRUE

Fantasia In D, K397 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.21 0.76 TRUE

K309 Piano Sonata N10 1mov 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.46 0.11 0.18 FALSE

Scott Talisman Part 2 0.00 0.13 0.20 0.04 0.51 0.11 0.00 0.00 0.00 0.00 TRUE

Talisman Part 3 0.00 0.11 0.09 0.05 0.54 0.21 0.00 0.00 0.00 0.00 TRUE

Talisman Part 4 0.00 0.15 0.15 0.09 0.38 0.24 0.00 0.00 0.00 0.00 TRUE

Talisman Part 5 0.00 0.11 0.25 0.05 0.38 0.22 0.00 0.00 0.00 0.00 TRUE

The Lay Of The Last Minstrel 0.04 0.02 0.07 0.11 0.26 0.48 0.00 0.00 0.02 0.00 FALSE

Beethoven Piano Sonata N08 Op13 1mov 0.00 0.00 0.00 0.02 0.00 0.02 0.13 0.38 0.14 0.30 TRUE

Piano Sonata N08 Op13 3mov 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.42 0.05 0.10 FALSE

Piano Sonata N09_1 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.49 0.18 0.16 TRUE

Piano Sonata N09_2 0.00 0.00 0.00 0.00 0.00 0.02 0.23 0.58 0.12 0.05 TRUE

Piano Sonata N10 1mov 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.40 0.05 0.15 FALSE

Joyce A_Portrait_Of_The_Artist _1 0.00 0.45 0.07 0.35 0.11 0.02 0.00 0.00 0.01 0.01 FALSE

A_Portrait_Of_The_Artist _2 0.00 0.47 0.01 0.34 0.09 0.09 0.00 0.00 0.00 0.00 FALSE

A_Portrait_Of_The_Artist _3 0.00 0.38 0.04 0.46 0.07 0.04 0.00 0.00 0.00 0.00 TRUE

Finnegans_Wake_1 0.00 0.42 0.05 0.41 0.03 0.09 0.00 0.00 0.00 0.00 FALSE

Finnegans_Wake_2 0.03 0.41 0.03 0.34 0.06 0.12 0.00 0.00 0.00 0.00 FALSE



some neural mechanisms) (Gobet & Waters, 2023; Silver et 
al., 2017).  

The second important constraint is the inherent difficulty 
of problems that were long considered to be “ill-posed”, yet 
routinely solved by the brains/minds of various organisms – 
such as inverse optics and inverse kinematics (Palmer, 1999; 
Pizlo, 2001). Musical and literature categorisation is one type 
of this “ill-posed” problem. Psychological models of concept 
learning traditionally struggled with such tasks and resorted to 
either artificial categories with a few dimensions (e.g., 
Braunlich & Love, 2022; Nosofsky, 2011), pre-processed 
natural categories into a few dimensions (e.g., Konovalova & 
Le Mens, 2018; Nosofsky, 2011), or bootstrapping to hand-
crafted knowledge structures such as semantic dictionaries 
(e.g., Lieto, 2019). More recently, there was a move to 
combine psychological models with deep learning, where 
ANNs do the heavy lifting of learning from raw data 
(Battleday et al., 2020). In the current study, both models learn 
from highly multidimensional raw data without bootstrapping, 
with CHREST performing all the learning required with its 
own mechanisms.  

 The third crucial constraint is the “single algorithm 
hypothesis”, which proposes that visual, auditory, motor, and 
somato-sensory cortices utilise approximately the same 
algorithm to extract approximately one type of data structure 
from various types of information (i.e., visual, auditory, 
motor, etc) (Hawkins & Blakeslee, 2004; Mountcastle, 1978). 
In this context, the similarity between CHREST and deep 
learning is constrained in two important ways. Firstly, chunks-
based and engrams-based models converged in classification 
of relatively dissimilar complex domains. Secondly, both 
approximations of this “single algorithm” shared a common 
activation mechanism which works on both cognitive chunks 
and neural engrams. Having said that, of course, a conclusive 
guarantee that the models’ overlap provides a unique 
explanation is impossible (Lakatos, 1970). See Lieto (2022) 
for more discussion on “function only” (functionalist) versus 
“function + constraints” (structural) models as well as a more 
general framework of evaluating bio-inspired models. 

C. Future Research and Conclusions  

We focused on one of the most complex, yet most 
fundamental psychological processes – concept learning. 
Future research, while utilising a similar methodology, may 
focus on other cognitive phenomena that involve chunking 
(e.g., working memory, expertise, acquisition of grammar, 
verbal learning, reasoning, and the list goes on) to further 
ground chunking mechanisms in the neural substrate. For 
example, it has been established that human working memory 
contains around seven chunks at a time (Baddeley, 1986; 
Miller, 1956; Robbins, 1995); and, that human experts’ LTM 
typically possess between one to five hundred thousand 
chunks with information specific to their domain (Gobet & 
Simon, 1998; Richman et al., 1996). One natural extension of 
the current study would be to adapt the chunk/engram 
activation mechanisms proposed in the current paper to 
translate the above work on chunking to connectionist models. 
Such work would be of obvious benefit to both psychology 
and AI. On the psychology side, this would further bridge 
cognitive psychology, the neuroimaging studies of chunking 
(Guida et al., 2012) and computational neuroscience.  On the 
AI side, establishing chunking mechanisms in deep learning 
architectures would allow for better interpretability of the 
models.  

  The correspondence of chunking and other, non-RNN, 
deep learning architectures also warrants further investigation. 
We chose the RNNs as they have deep roots in psychology 
(this was important for the constraint saturation aspects that 
were discussed above). RNNs may also be considered to be 
closely related to CNNs (Convolutional Neural Networks) 
(LeCun et al., 1999), LSTMs (Long Short-term Memory) 
(Hochreiter & Schmidhuber, 1997) and GRUs (Gated 
Recurrent Units) (Cho et al., 2014) – indeed, our current 
engram activation mechanism is compatible with all of these 
architectures.  On the other hand, the latest advancements in 
deep learning – based on the transformer architecture 
(Vaswani et al., 2017) – are radically different in important 
ways (e.g., in modelling of the attention function) and require 
a separate study. 

The current study addresses a long historical feud between 
the symbolic/serial processing and subsymbolic/parallel 
processing approaches to modelling cognition. Generally, the 
focus on perception and bottom up processes is attributed to 
the subsymbolic approach, while the focus on heuristics, 
symbol manipulation and high levels of abstraction is 
considered to be the way of the symbolic approach (for a 
review, see Lieto, 2021). It is important to note that such 
differentiation was not universally accepted. Indeed, Simon 
and Newell considered perception to be a vital component in 
symbolic models of intelligence, together with a physical 
symbol system (Newell, 1990; Simon, 1981). Our CHREST 
model also adheres to their view (which is natural, as it is 
closely related to their models). However, contrary to Simon’s 
intuitions (Simon, 1991, pp. 81-83) and more in line with 
Newell’s thinking (Newell, 1990, p. 487), our results 
demonstrate both serial and parallel approaches to be 
convergent in important ways (with cognitive chunks and 
neural engrams being equivalent in a narrow technical sense), 
and with there being multiple levels of explicit representation 
– a mind-level representation and a brain-level representation.  

 To conclude, the current paper further bridges the gap 
between cognition and its neural substrate by demonstrating 
profound convergence between a rigorous cognitive 
psychology-based model and its neuroscience-based 
counterpart. Our findings connect the mechanisms proposed 
by chunking theory to the neural network modelling approach, 
and make further inroads towards a Unified Theory of 
Cognition (Newell, 1990). 
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