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Abstract—A common goal in cognitive science involves 

explaining/predicting human performance in experimental 

settings. This study proposes a single GEMS computational 

scientific discovery framework that automatically generates 

multiple models for verbal learning simulations. GEMS 

achieves this by combining simple and complex cognitive 

mechanisms with genetic programming. This approach evolves 

populations of interpretable cognitive agents, with each agent 

learning by chunking and incorporating long-term memory 

(LTM) and short-term memory (STM) stores, as well as 

attention and perceptual mechanisms. The models simulate two 

different verbal learning tasks: the first investigates the effect of 

prior knowledge on the learning rate of stimulus-response (S-R) 

pairs and the second examines how backward recall is affected 

by the similarity of the stimuli. The models produced by GEMS 

are compared to both human data and EPAM – a different 

verbal learning model that utilises hand-crafted task-specific 

strategies. The models automatically evolved by GEMS 

produced good fit to the human data in both studies, improving 

on EPAM’s measures of fit by almost a factor of three on some 

of the pattern recall conditions. These findings offer further 

support to the mechanisms proposed by chunking theory 

(Simon, 1974), connect them to the evolutionary approach, and 

make further inroads towards a Unified Theory of Cognition 

(Newell, 1990).  

Keywords—chunking, evolution, GEMS, LTM, STM, 

CHREST 

I. INTRODUCTION 

As computational and Artificially Intelligent tools impact 
creative fields in increasingly disruptive ways, it is important 
to consider the opportunities and likely impact of such tools in 
the creative field of scientific discovery. In this paper, we 
present a tool, GEMS, which supports the creative problem 
solving, theory building and desire for understanding of a 
human scientist with the speed, precision and various 
strengths of AI. Our approach asks the human scientist to 
define basic cognitive operators, which create a space of 
candidate models, and specify the experiments and related 
criteria by which models will be evaluated: in this paper, we 
define a space of chunking-based computational models and 
seek good models of a verbal learning task. The GEMS system 
then generated a variety of candidate models, all with a high 

 
1 Equally contributing authors. 

level of fit to the target criteria set by the human scientist: 
typically, the range and variety of generated models far exceed 
that which could be developed by hand. The generated models 
can then be analysed and interpreted by the human scientist to 
uncover overall patterns and develop innovative theoretical 
insights. 

The development of cognitive models may be divided into 
two stages. The first stage involves building the basic 
structures and mechanisms that represent the workings of a 
real cognitive system – such as long-term memory (LTM), 
short-term memory (STM), attention, and chunking. The 
second stage involves tuning the models to simulate a specific 
behaviour, for example, by specifying attentional and learning 
strategies.  

Both stages require a number of assumptions with regard 
to the cognitive/psychological mechanisms that are involved 
in various experimental settings. This often leads to 
experimenters’ bias, with researchers inadvertently 
overlooking potentially influential mechanisms at play. 
Another problem is that models are typically designed to fit a 
specific behavioural dataset, with each subsequent additional 
task requiring hand-crafted changes to the model.  

 In this paper, we demonstrate how evolutionary 
programming can be combined with a complex cognitive 
architecture to automatically generate candidate 
computational models in a typical cognitive psychology 
experiment – these models are represented as computer 
programs in GEMS. We demonstrate how such models can 
improve on hand-crafted alternatives, all while addressing the 
crucial issues of constrained variability and individual 
differences in psychology. We use Genetic Programming 
(GP) (Koza, 1992) to search a space of candidate models. The 
fitness function guiding this search is designed to find models 
which simulate the behaviour of human participants. Unlike 
many studies that involve the GP approach, this fitness 
function evaluates models’ performance on a simulated 
psychology experiment, instead of a typical pure input-output 
mapping for the program. As human participants do not 
achieve 100% success in our example tasks, the “best” models 
are those that replicate this less-than-perfect accuracy. Also, 
as human responses take a certain amount of time, a simulated 



time for the program to convert each input into an output must 
be measured and compared with the observed response time. 
We combine these two performance aspects in our models. 
With all that said, GEMS is still a machine learning system – 
albeit one that learns to produce models of cognition using 
evolution. 

 Another important contribution of the current study is the 
integration of a complex cognitive-based psychological 
architecture and a genetic programming system into a single 
whole. Typically, models based on GP and genetic algorithms 
produce long and complex programs/strategy sets, but their 
inherent cognitive structures are often rudimentary and lack 
simulations of the LTM and perceptual apparatus (for 
example, see Bartlett et al., 2023; Gunaratne & Patton, 2022). 
Here, we combine GP, as instantiated in GEMS, with the 
CHREST cognitive architecture; therefore, we keep the 
inherent complexity of the psychological structures and 
mechanisms characterising verbal learning, while adding the 
automaticity of task-specific strategy discovery. 

In sum, the contribution of the present paper is threefold: 
first, we propose a single modelling framework that minimises 
experimenter’s bias (inherent in hand-crafting task-specific 
learning strategies) by automatically generating cognitive 
models; second, the generated models will account for 
humans’ suboptimal learning routines and response times; 
third, the generated models will perform tasks that require 
complex cognitive structures and mechanisms – including 
STM, LTM, chunking, and attention. 

 GP often generates a large number of candidate models: 
we will select a small set of the best fitting, understandable 
and qualitatively different models – thus also presenting the 
proof-of-concept solution to the issue of individual differences 
in the strategies used to carry out the task. 

 

II. GEMS 

 
Cognitive modelling involves the development of 

computational models to explain a target human behaviour. 
These computational models are typically developed within 
established frameworks, such as the symbolic approach 
outlined by Simon (1981) or the connectionist framework 
advocated by Rumelhart & McClelland (1986). GEMS aligns 
with the symbolic, information-processing approach, in which 
each individual cognitive model is defined by a control 
program interpreted within a simplified cognitive architecture. 
The basic architecture of GEMS, which resembles a program 
synthesis system, is shown in Figure 1. 

At the heart of GEMS lies Genetic Programming (GP) 
(Koza, 1992). Within our meta-modelling system, GP relies 
on a set of operators serving as fundamental building blocks 
for constructing cognitive models. (For example, one operator 
might place an item into STM, while another could match two 
items within STM.) These operators, akin to basic functions 
or operations implemented as programming functions, play a 
pivotal role in accurately simulating cognitive processes 
across the components of the cognitive architecture. Domain 
experts meticulously select these operators, assigning relevant 
semantics and timings based on pertinent research literature. 
The choice of operators is also contingent on the specific 
experiment being simulated; for instance, for a short-term 
memory task, long-term memory operators may not be 

necessary. The process of natural selection may further 
remove unnecessary operators during evolution, contradicting 
the experimenter's initial assumptions (Bartlett et al., 2023; 
Frias-Martinez & Gobet, 2007). 

 GP generates numerous programs by combining these 
operators. The combination of these operators potentially 
results in a vast search space for programs, which expands 
exponentially as the number of operators increases. 
Harnessing the capabilities of GP as a potent parallel search 
algorithm, GEMS initiates multiple searches to discover 
optimal models closely resembling human behaviour. Each 
cognitive model is interpreted within a simplified cognitive 
architecture, incorporating task-specific input/output 
components, a short-term memory, and a long-term memory. 
A clock monitors each model’s time during tasks. While 
executing the program and interpreting the operators, actions 
are performed using the simplified cognitive architecture. 
Together, this architecture and the protocol of the experiment 
are termed the model evaluation environment. 

GP is an evolutionary search technique, starting with a 
population of candidate solutions that evolve gradually 
through multiple iterations until a termination condition, such 
as a predefined number of iterations, is met. This evolution 
process is inspired by biological evolution, with candidate 
solutions selected based on their fitness. New candidates 
emerge from existing ones through crossover and mutation 
processes, respectively combining and modifying solutions. 

Since GP operates as a fitness-guided search algorithm, 
GEMS must utilise a fitness evaluation mechanism for the 
models – this is given by the human cognitive scientist 
running the simulation. Unlike many other machine learning 
algorithms, GEMS employs a simulation of a scientific 
experiment to assess program fitness. While typical machine 
learning algorithms evaluate program performance based on 
an input-output mapping, GEMS acknowledges that human 
subjects do not always achieve perfect success. Therefore, the 
“best” model for GEMS is one that reflects this imperfect 
accuracy. Additionally, as human responses take time, the 
program’s simulated time for processing inputs and 
generating outputs must be measured and compared to the 
actual response time. These two factors are essential when 
evaluating a model’s performance. 

At the end of the GP process, GEMS will have produced a 
large population of candidate solutions. However, the 
multitude of evolved candidates and the presence of dead code 

Figure 1. A high-level overview of GEMS. GEMS takes as 

inputs initial models (programs), cognitive operators and 

experimental data and then proceeds to evolve populations 

of models. 



(functionally similar segments with different content) and 
genuine variations obscure the range and interpretability of 
interesting solutions. To enhance the comprehensibility of 
candidate programs, post-processing steps are implemented to 
distil fewer, higher-quality solutions (Lane et al., 2022). These 
steps involve removing dead code and time-only code, as well 
as clustering models based on syntactic similarity. This 
process reduces the number of solutions and categorizes them 
into distinct groups, thereby improving understanding. 

We will now describe the cognitive architecture CHREST, 
which will provide cognitive operators accessing long-term 
memory either for learning or for recognising patterns. 

 

III. CHREST 

 CHREST (Chunking Hierarchy and REtrieval STructures) 
(Gobet, 1993, 2000; Gobet & Lane, 2012; Gobet & Simon, 
2000) is a computational cognitive model that simulates 
human learning and is based on the chunking theory, a well-
established theory in cognitive psychology (Chase & Simon, 
1973; Gobet et al., 2001; Simon, 1974). 

The key concept of the chunking theory, a “chunk”, can be 
defined as a meaningful unit of information constructed from 
elements that have strong associations between each other, 
such as a cluster of digits making up a phone number. Thus, 
“chunking” involves forming and updating these meaningful 

units in the LTM (Gobet, Lloyd-Kelly, & Lane, 2016; Simon, 
1974). Although the specific content of chunks may vary 
between individuals, chunking mechanisms are largely 
consistent across domains, individuals, and cultures (Chase & 
Simon, 1973; Gobet et al., 2001; Miller, 1956; Simon, 1974). 

CHREST operationalized chunks as nodes in a graph data 
structure that represents LTM, with chunking being the 
process of adding new data to LTM (Gobet, 1993, 2000; 
Gobet & Lane, 2012; Gobet & Simon, 2000). Chunking is 
performed via two psychologically plausible cognitive 
processes: discrimination and familiarisation. Discrimination 
is the process of adding a new node to the LTM network. 
Familiarisation updates existing nodes with new information. 
Thus, learning is influenced both by the environmental stimuli 
and the data that have already been stored (Gobet & Lane, 
2012). CHREST’s other major cognitive structure – the pool 
of STM stores – allows for additional ways to create links 
between chunks, such as linking chunks across visual, verbal 
and action modalities, or linking stimuli and responses within 
a single modality. 

Researchers using chunking theory have empirically 
established time durations for its core cognitive operations, 
with discrimination taking around ten seconds, familiarisation 
taking two seconds, and recognition of a pattern requiring 
approximately one hundred milliseconds. These time costs are 
based on empirical data (Card, Moran, & Newell, 1983; 
Feigenbaum & Simon, 1984) and were mostly tested in the 
simulation of chess experiments (De Groot & Gobet, 1996; 
Gobet & Simon, 2000). 

EPAM, CHREST and related models have been applied to 
predict and simulate behaviour in verbal learning research 
(Feigenbaum, 1959; Feigenbaum & Simon, 1984; Richman & 
Simon, 1989; Richman, Simon, & Feigenbaum, 2002). They 
have also been used to shed light on perception and the 
fundamental mechanisms of concept formation (Bennett, 
Gobet, & Lane, 2020; Lane & Gobet, 2012), problem solving 
(Lane, Cheng, & Gobet, 2000), acquisition of language and 
syntactic categories (Freudenthal et al., 2016), emotion 
processing in problem gambling (Schiller & Gobet, 2014), 
developmental trends and cognitive decline due to ageing 
(Mathy et al., 2016; Smith, Gobet, & Lane, 2007), expert 
behaviour (Gobet & Simon, 2000; Richman et al., 1996; 
Richman, Staszewski, & Simon, 1995; Simon & Gilmartin, 
1973), and various other phenomena (see Figure 2). 

For further details of the chunking theory and CHREST, 
refer to Gobet and Lane (2012). The interaction of GEMS and 
CHREST is presented in Figure 3. 

 

Figure 3. A high-level overview of GEMS, with indication of where 

it interfaces with CHREST. 

Figure 2. A high-level overview of CHREST. Its LTM is capable of chunking complex stimuli from multiple dissimilar domains. 

 



IV. VERBAL LEARNING 

As mentioned above, chunking plays a crucial role in a 
wide range of cognitive phenomena. In the current paper, we 
focus on chunking in verbal learning, as research in this field 
has been fundamental to the development of cognitive 
architectures. Also, verbal learning tasks are sufficiently 
taxing to require complex cognitive modelling, and yet simple 
enough to be computationally efficient in multiple populations 
of hundreds of evolving cognitive agents. For example, the 
current tasks are impossible for the previous models of GEMS 
and their rudimentary LTM, STM, perceptual and attentional 
mechanisms.  

Verbal learning (VL) tasks typically entail teaching lists of 
paired stimulus-response (S-R) nonsense syllables to human 
participants, with the aim to uncover the fundamental laws of 
learning. Notable examples of verbal learning research 
include the “magic number 7 (plus or minus two)” study that 
established the STM capacity to be around seven chunks 
(Miller, 1956), and the study of the primacy-recency effect 
(where people were found to make fewest mistakes at the 
beginning and at the end of a memorised sequence) (McCrary 
& Hunter, 1953). Another significant yet less known 
contribution of verbal learning research lies in its role in 
shaping and refining mechanisms of cognitive models such as 
EPAM and CHREST.  Indeed, Richman et al. (2002) reported 
that various versions of EPAM had captured at least 20 
regularities that were identified by research into human rote 
learning. For example, EPAM was able to reproduce the 
primacy-recency serial position curve that describes people’s 
tendency to remember first and last items better than middle-
of-the-list ones (Feigenbaum, 1963; McCrary & Hunter, 
1953). Similarly, single-shot learning (Rock, 1957) was 
explained and simulated by EPAM (Gregg & Simon, 1967) – 
it was dependant on the complexity/simplicity of the stimuli 
(as determined by a chunks composition and availability in the 
LTM) and upon the attentional strategy of the participant. 
Other examples of verbal learning simulations include the 
similarity interference effects (Hintzman, 1968, 1969) and 
forgetting. An example of the former includes the finding that 
humans (and EPAM) produced more errors in S-R learning 
trials when the stimuli – nonsense consonant trigrams – were 
similar to each other (e.g. “ZIK” and “ZYJ”) than when they 
were dissimilar. Examples of the latter are the established 
“know-forget-know” cycle, which occurs during the learning 
of a single list, and “retroactive inhibition”, which  happens 
when learning a second list disrupts memory of a first list 
(Feigenbaum & Simon, 1962; Thune & Underwood, 1943). 

One surprising result from verbal learning experiments 
was that prelearning of stimuli was not as helpful to the human 
learner as prelearning of responses (Chenzoff, 1962; Richman 
et al., 2002). The EPAM verbal learning model suggests that 
this is because responses need to be learnt completely, while 
the stimuli can be learnt partially as long as the learnt 
representations make it possible to discriminate a given 
stimulus from other stimuli (e.g., learning only the first letter 
of the nonsense trigram “CET” is sufficient to discriminate it 
from “JYT”).  

 While the above research was important for establishing 
and linking rigorously defined cognitive mechanisms and 
structures, one of its shortcomings was its dependence on 
learning strategies that were handcrafted by psychology 
experts. For example, EPAM’s (and CHREST’s – which 
inherited most of EPAM’s mechanisms) default S-R learning 

strategy was pre-defined as “learn stimulus as little as 
possible, before switching attention to the response; learn the 
response fully” (e.g., with the pair “XEJ” – “BIJ”, only learn 
letter “X” from the “XEJ” stimulus, but learn the response 
“BIJ” fully). Despite this hand-crafting, the EPAM models 
often did not fit the human data very well; for example, the 
difference between EPAM and the human learning error rates 
differed by almost a factor of three for recall of the low-
similarity stimuli (see Table 3). 

V. CURRENT STUDY 

 The current study aims to simulate two verbal learning 
tasks reported by Chenzoff (1962) and  Hintzman (1969), and 
simulated by EPAM (Richman et al., 2002). Crucially, using 
GEMS to generate CHREST models will allow us to move 
away from hand-crafting task-specific attentional and learning 
strategies, account for individual differences, and optimise the 
fit of the models to the human data. 

VI. METHOD 

The human data for this project were taken from previous 

research: an investigation of the effect of pattern 

prefamiliarisation (i.e., prior knowledge) on learning rates 

(Chenzoff, 1962), and a study into the effect of stimuli 

similarity on memorisation and backward recall (Hintzman, 

1969). The EPAM data – which is the current state-of-the-art 

for these simulations – were taken from Richman et al. 

(2002). 

A. The Effect of Prefamiliarisation of Stimuli and 

Responses 

Chenzoff’s (1962) study simulated the effect of prior 
knowledge/prefamiliarisation on the learning rate. Four 
experimental conditions were devised, varying the familiarity 
(F) and unfamiliarity (U) with both stimuli and responses: F-
F, U-F, F-U, and U-U. For example, F-F means that both 
stimuli and responses were familiar to the model; U-F means 
that the stimuli were unfamiliar, but the responses were 
familiar.  

Ten stimulus – response pairs of nonsense CVC 
(consonant vowel consonant) trigrams were used in each 
condition. The stimulus trigrams were: VOD, HAX, CEM, 
KIR, SIQ, FEP, BAJ, LOZ, TUW, and YUG. The 
corresponding response trigrams were: XIL, TOQ, WEP, 
DUF, MIZ, JUK, NAS, HOV, BIR, and GAC. Thus, the 
complete list of possible S-R pairs was: VOD-XIL, VOD-
TOQ, …, YUG-GAC.  

Familiarity was manipulated during the first (i.e., the 
prelearning) part of the experiment. Depending on the 
experimental condition, models were trained either with the 
stimuli, the responses, both, or nothing at all. Like with the 
original human experiment, training stopped when the models 
had memorised the entire training list.  

During the second part of the experiment, models were 
tasked with learning a S-R association list for all four 
experimental conditions. The experiment stopped when the 
models gave the correct response to each of the stimuli. The 
total number of trials and learning time was recorded for each 
of the four conditions, as well as converted into the ratio of the 
F-F condition. 



 

B. The Effect of Stimulus Similarity on Backward Recall 

 Hintzman’s (1969) study was interested in humans’ ability 
to recall a stimulus from the response. There were two 
experimental conditions: low similarity and high similarity. 
The low similarity stimuli were the following nonsense 
trigrams: SPP, JCL, PDR, HHN, CRB, GGJ, NBH, MJS, 
FSG, BNF, VFD, DMC, RVM, and LLV. The high similarity 
stimuli were: BDH, BDJ, BDL, BFH, BFJ, BGL, BGH, CDJ, 
CDL, CFH, CFJ, CFL, CGH, and CGJ. Each of the stimuli 
trigrams corresponded to a response – a random number 
ranging from 2 to 15. The models had to learn the correct 
response to each of the stimuli. For example, SPP-2 or CGJ-
14. As in the human experiments, training stopped when 
models accurately responded to all stimuli, e.g., responding 
“2” when presented with “SPP”. 

The test phase involved presenting models with the 
responses and asking them to recall the corresponding stimuli. 
The resulting recall error rate was then recorded for both high 
similarity and low similarity stimuli. 

VII. PROCEDURE  

 In order to automatically generate verbal learning 
strategies and find high-quality variants, CHREST models 
were evolved by GEMS. Every simulation consisted of a 
population of initially random CHREST-based models being 
presented with a verbal learning task. The operators included 
prog-x, attend-stimulus, recognise-and-

learn-stimulus, attend-response, recognise-

stimulus, recognise-and-learn-response, 

learn-and-link, repeat-2, and wait (for one or two 

seconds) (see Table 1). The models were trained on a “per 
condition” basis (see above), with a population size of 200 and 
100 generations; the mutation rate was set to 0.05; there were 
independent runs for all conditions. The fitness function was 
calculated as a function of correct recall and the absolute 
difference between the total learning time/recall ratios for 
humans and for GEMS. In the beginning of the cycle, each 
agent picked the operators randomly. The agents with the 
highest fitness (i.e., whose behaviour matched human data 
most closely) passed on their strategies to the next generation 
directly (possibly with some mutation) or with crossover with 
another agent. The cycle continued until the agents reached 
the 100th generation. 

 

 

 

 

VIII. RESULTS  

 The results of the best GEMS verbal learning models are 
presented in Table 2 and Table 3. GEMS was able to achieve 
a good fit to the human data in the simulation of both 
Chenzoff’s effect of prior knowledge and Hintzman’s 
backward recall studies. The tables also include the results of 
EPAM-VI (Richman et al., 2002).  

Table 2. The ratios of error rates in S-R pairs with respect to the F-

F condition for humans (Chenzoff, 1962), EPAM VI, and GEMS. 

(Key: F stands for familiar pattern, U stands for unfamiliar pattern.  

 

Table 3. Percentage of correctly recalled stimuli in a backward 

recall task – for humans (Hintzman, 1969), EPAM VI, and GEMS. 

 

 A sample strategy for the learning of the S-R list in the 
simulation of the prefamiliarisation experiment is presented in 
Figure 4; a sample strategy for the learning of the S-R list in 
the backward recall experiment is shown in Figure 5. 
Concretely, the program shown in Figure 4 is applied for each 
presentation of a S-R pair. Initially, just the stimulus is shown, 
and we can see from the second statement (attend-

stimulus) that this is attended to, and the model then 

proceeds to devote a lot of cognitive operations and time to 
learn the stimulus. The response is only available to the model 
towards the end of the time period, and we can see the model 
attending to the response at the end. The previous stimulus and 
response will then be present in the model’s STM before the 
next cycle, which is why the first statement is to LEARN-
AND-LINK the previous stimulus-response pair. Of course, 
the program in the U-F condition has familiar responses (these 

Condition People EPAM VI GEMS 

F-F 1 1 1 

U-F 1.2 1.9 1.2 

F-U 1.6 2.8 1.3 

U-U 1.8 3.7 1.6 

Condition People EPAM VI GEMS 

High-

Similarity 
72 76 72 

Low-

Similarity 
34 13 36 

Operator Function Type

PROG-X a sequence of 2, 3 or 4 subprograms Syntax

REPEAT2 repeats a subprogram 2 times Syntax

ATTEND-STIMULUS place the stimulus value into input slot 1 Input

ATTEND-RESPONSE place the response value into input slot 2 Input

REC-AND-LEARN-ST calls CHREST's recognise-and-learn-pattern function to learn a stimulus LTM

REC-AND-LEARN-RES calls CHREST's recognise-and-learn-pattern function to learn a response LTM

RECOGNISE-ST calls CHREST's recognize-pattern function to locate a pattern in long-term memory LTM

LEARN-AND-LINK calls CHREST's learn-and-link-two-patterns function to associate stimulus with response LTM

RESPOND retrieve the linked pattern using the stimulus and assign it to the model's output slot Output

WAIT-X advances model-clock (in ms): 1000 or 2000 Time

Table 1. Overview of GEMS operators. Each operator type had a time cost (in milliseconds, ms) as follows:  input (100 

ms), output (140 ms), LTM (2,000 ms for familiarisation, 10,000 ms for discrimination), and syntax (0 ms). 



are prelearnt), so the model does not have to work so hard to 
learn them, and this is reflected in the program.  

 The backward recall program (in Figure 5) is much more 
varied in its attentional and learning strategies. This is because 
low similarity stimuli allowed it to pass training without fully 
learning them (this aspect of our simulation turned out to be 
similar to EPAM’s). Thus, during the test phase, the model 
had to split its learning between mostly focusing on the 
stimulus initially, and then devoting most of its cognitive 
operations to learning and linking the responses (albeit in a 
less rigid fashion when compared to EPAM). 

 

 

 

For the prefamiliarisation experiment, the r2 is 0.89 and the 
RMSE is 0.2. (These were not calculated for the backward 
recall experiment as there are only two data points.) 

We should note that we are reporting only the best models, 
while many models achieved similarly high fit.  

Please see https://github.com/Voskod/GEMS for the code 
and the best models for all of the experimental conditions. 

IX. DISCUSSION 

A. Summarising the Results  

 The current study makes three important contributions. 
First, the models generated by GEMS moved away from hand-
crafted learning strategies that were used in previous verbal 
learning research. Indeed, while EPAM prescribed one 
approach to S-R tasks (Richman et al., 2002), our evolved 
models developed a wide range of strategies. For example, 
EPAM had rigid rules for its attention function (e.g., try 
learning just the first letter of a stimulus before proceeding to 
learn the response in full). On the other hand, the learning 
strategies used by the GEMS-generated models were much 

more varied, with attention oscillating between a stimulus and 
a response multiple times. This provides a concrete example 
of our second contribution – how GEMS’ automatic theory 
discovery helps to reduce experimenter’s biases. We should 
also note that, despite our use of the genetic programming 
approach, the models generated by GEMS still conform to the 
central tenet of cognitive architectures – the same architecture 
was used for both experiments. 

Third, the models generated by GEMS did a good job of 
simulating human data with regard to the error percentage in 
stimuli recall, and accounted for the data better than EPAM-
IV. For example, humans’ error rate with low-similarity 
stimuli was 34 percent, while for the EPAM-IV model this 
was approximately 13 percent (despite its hand-crafted verbal 
learning task-specific strategies). This is in contrast to the 
models generated by GEMS, which produced a group of 
strategies with an error rate of 36 percent.  

B. Interpretability of Cognitive Models 

The models (programs) evolved by GEMS share one of 
EPAM’s strengths – they are not “black boxes” and work 
directly from the  definitions of the operators; this is unlike the 
connectionist and Bayesian models that are often used in 
cognitive science. Thus, GEMS models are readily 
interpretable – both in terms of their underlying structures and 
the produced sets of cognitive strategies. The produced 
programs allow for both high and low-level analysis. For 
instance, glancing through the program in Figure 4 could 
result in a summarising statement like “the model was mostly 
focused on the stimuli and not the responses”. At the same 
time, the details of timings and the order of cognitive 
operations could also be gleaned by a more careful analysis of 
the output. As an interesting sidenote, the attention shifts 
displayed by GEMS-generated models may also be in line 
with research into saccadic eye movement and the underlying 
attention function (Cajar et al., 2016). 

C. Verbal Learning, CHREST, and Cognitive Architectures 

 Our choice of Verbal Learning was dictated by its 
computational simplicity, yet sufficient psychological 
complexity. Indeed, VL simulations share most cognitive 
mechanisms with much more complex CHREST simulations 
(e.g., concept learning, acquisition of syntactic categories by 
children, cognitive decline due to ageing, etc.) that were 
referenced in the CHREST section above. Thus, the problem 
of generalizing from an overly simplistic VL experimental 
setting to real-life complexity is arguably mitigated. (But, 
where each model takes several hours of real time training for 
learning of complex natural concepts, simulation of VL tasks 
is orders of magnitude faster – an important factor when 
evolving hundreds of models.) In other words, while it is true  
that intuitions about theory and model performance for low-
dimensional stimuli do not necessarily transfer to higher-
dimensional ones (Battleday, Peterson, & Griffiths, 2020), our 
simulations allowed us to sidestep this issue by utilising the 
same chunking operators that are used in the state of the art 
cognitive models that work with real-life complexity (e.g., 
Bennett et al., 2020; Freudenthal et al., 2016). 

The largely shared mechanisms (i.e., familiarisation, 
discrimination, LTM node structure, and STM structure) 
between EPAM and the newer chunking theory-based models 
mean that their hand-crafted approach to (and simulated 
performance on) VL tasks would also be largely identical. 
Thus, our findings are likely to directly apply not just to 

Figure 4. One of the strategies in the final population of models that 

learnt S-R pairs in the U-F pattern familiarity condition (Chenzoff’s 

experiment). See the Results section for an explanation of the program 

tree. 

               (PROG4 (LEARN-AND-LINK) 

                 (PROG4 (ATTEND-STIMULUS) 

                   (PROG4 (ATTEND-STIMULUS) (ATTEND-STIMULUS) 

                     (PROG3 (ATTEND-STIMULUS) (LEARN-AND-LINK) (LEARN-AND-LINK)) 

                  (LEARN-AND-LINK)) 

                  (RECOGNISE-ST) (LEARN-AND-LINK)) 

                 (PROG2 (ATTEND-STIMULUS) 

                     (PROG4 (LEARN-AND-LINK) (LEARN-AND-LINK) 

                      (REC-AND-LEARN-RES) (RESPOND))) 

                 (PROG2 (WAIT-2000) (ATTEND-RESPONSE)))  

(PROG4 
                (PROG4 

                   (PROG4 (ATTEND-STIMULUS) 

                   (PROG3 (REC-AND-LEARN-RES) (RECOGNISE-ST) (RESPOND)) 

                   (WAIT-1000) (REPEAT2 (RECOGNISE-ST) (ATTEND-RESPONSE))) 

                 (WAIT-2000) (REC-AND-LEARN-RES) (ATTEND-RESPONSE)) 

                (REC-AND-LEARN-RES) 

                (PROG4 (REPEAT2 (LEARN-AND-LINK) (REC-AND-LEARN-RES)) 

                (ATTEND-RESPONSE) (LEARN-AND-LINK) 

                (REPEAT2 (WAIT-2000) (WAIT-2000))) 

                (PROG4 (LEARN-AND-LINK) (RESPOND) (RESPOND) 

                  (PROG4 

                    (PROG4 (LEARN-AND-LINK) (ATTEND-RESPONSE) (LEARN-AND-LINK) 

                     (LEARN-AND-LINK)) 

                   (REPEAT2 (ATTEND-RESPONSE) (REC-AND-LEARN-RES)) 

                  (ATTEND-RESPONSE) 

                  (PROG3 (REC-AND-LEARN-RES) (RECOGNISE-ST) (RESPOND)))))  

Figure 5. One of the strategies in the final population of models 

that learnt S-R pairs in the low-similarity condition (Hintzman’s 

backward recall experiment). See the Results section for an 

explanation of the program tree. 

 



EPAM, but also to its direct descendants – cognitive 
architectures such as CIPAL (Jessop et al., 2024), MOSAIC 
(Freudenthal et al., 2016) and CHREST (Gobet & Lane, 2012; 
Bennett et al., 2020).  The broader aspects of our findings are 
also likely to apply to non-chunking theory-based cognitive 
architectures that are hand-tuned for specific tasks (e.g., ACT-
R, Soar, and LIDA). 

D. Future Research and Conclusions  

 Our study may be subject to three important extensions in 
future research. Firstly, individual differences form an 
important aspect of psychology that is often absent from 
psychological models fit to “the average participant” data. 
This may be misleading as such data may obscure patterns at 
the level of the individual participant (Gobet, 2017; Newell, 
1973; Vanpaemel & Storms, 2008). Our GEMS framework 
demonstrated that there may be multiple solutions (models) 
that satisfy a particular set of constraints. This is in line with 
research on individual differences in psychology – there is not 
a single  cognitive system in nature, there is inherent 
variability. Of course, this variability is constrained. For 
example, individual bees vary in their social behaviour, as do 
humans, but the intraspecies variability is bounded by species-
specific physiological and cognitive structures (Crespi, 2014, 
2017; Rubenstein & Hofmann, 2015). In our case, the evolved 
agents shared the basic cognitive mechanisms and structures 
(as operationalised by CHREST), but differed in their 
approaches to S-R learning. For example, one model in the 
final population had a S-R learning strategy that contained 43 
cognitive operations, while another model contained 24 
operations. Our study is a rigorous demonstration of how the 
informational environment may shape both the cognitive 
strategies and the population of cognitive agents. Future 
research may extend our in-principle demonstration to link 
GEMS-generated models to the behaviour of individual 
participants.  

 Secondly, the computationally fast, yet psychologically 
complex verbal learning experimental paradigm may be once 
again utilised to design and tune cognitive architectures and 
human-like machine intelligence models. Our current focus 
was on the learning functions, but memory decay and memory 
interference experiments would be highly suited to VL, as 
would GEMS’ automatic search and optimisation of cognitive 
strategy space. A concrete example of such a study would be 
the semi-automatic “Speed of Forgetting” (SoF) curve 
parameters’ estimation, given ACT-R cognitive operators and 
human VL experiment data on forgetting. While the structure 
and the shape of forgetting curves’ functions continues to 
generate debate (e.g., Capik et al., 2024; Sense et al., 2016), 
GEMS could help by semi-automatically searching the SoF 
problem space.  Of course, the VL paradigm is not a 
requirement for GEMS – it is just one instance of the kind of 
data for which it can generate models – and future studies may 
utilise completely different data, for example in natural 
concept learning/forgetting tasks. 

 Thirdly, the current findings offer new possibilities in 
computational scientific discovery relative to most other 
machine learning tools that are typically used in cognitive 
science. For example, existing cognitive architectures (e.g., 
CHREST, ACT-R, Soar, etc) may be used to create the initial 
set of models/theories and cognitive operators in GEMS. 
When combined with human experimental data and a 
selection fitness function, GEMS would then generate new 
models – a process that can be more efficient than the 

experimenter’s manual search through the potential model 
space. Furthermore, GEMS allows the combining of operators 
from multiple cognitive architectures into a single 
evolutionary pool, thus allowing for otherwise rare “cross-
breeding” of models. 

One potential criticism is that our models produced 
suboptimal learning strategies in order to fit the longer 
durations of human learning. There are two ways of 
addressing this criticism. Firstly, it raises a question: 
suboptimal with respect to what? Of course, a simple 
algorithm could rote learn an entire S-R list in one trial. But, 
adding slow learning rates, limited capacity of the STM and 
interaction of old and new knowledge in the LTM makes it 
necessary for the critic to show what is the optimal learning 
rate under these conditions – which is not trivial. Moreover, 
satisficing learning routines have long been known in 
psychology – e.g., as a form of “bounded rationality” (Simon, 
1991).  

Another potential criticism of the current modelling 
approach is “overfitting” – overly complex models achieve 
near perfect scores on training sets but have poor 
generalisability beyond the currently simulated data.  (Tetko, 
Livingstone, & Luik, 1995). This study followed the advice of 
Simon (1992) and attempted to address the issue by doubling 
the ratio of data explained/free parameters – the same free 
parameters were used  in all conditions of both the experiment 
on the role of prior knowledge and the backward recall task. 
Our models did not exhibit overfitting symptoms (the 
resulting programs were relatively short and psychologically 
meaningful); however, future research with bigger data sizes 
may be necessary to address the generalisability issue more 
fully. For example, one future extension to the current study 
would be to replicate EPAM’s simulation of other verbal 
learning experiments without resorting to hand-crafting task-
specific strategies.  

To conclude, our study further integrates 
genetic/evolutionary aspects with a complex cognitive model 
and demonstrates a way to automate the discovery of task-
specific cognitive processes. More broadly, our findings offer 
further support for the mechanisms proposed by chunking 
theory, connecting them to the evolutionary approach, and 
making further inroads towards a Unified Theory of Cognition 
(Newell, 1990). 
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