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a b s t r a c t

The semi-random graph process is an adaptive random graph
process in which an online algorithm is initially presented an
empty graph on n vertices. In each round, a vertex u is presented
to the algorithm independently and uniformly at random. The
algorithm then adaptively selects a vertex v, and adds the edge
uv to the graph. For a given graph property, the objective of
the algorithm is to force the graph to satisfy this property
asymptotically almost surely in as few rounds as possible.

We focus on the property of Hamiltonicity. We present
an adaptive strategy which creates a Hamiltonian cycle in αn
rounds, where α < 1.81696 is derived from the solution to a
system of differential equations. We also show that achieving
Hamiltonicity requires at least βn rounds, where β > 1.26575.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

The semi-random graph process was suggested by Peleg Michaeli, introduced formally in 2020 [1],
nd studied recently [2–9], especially in the context of Hamiltonian cycles [8,10–12]. It is an
xample of an adaptive random graph process, in that an algorithm has partial control over which
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random edges are added in each step. Specifically, the algorithm begins with the empty graph G0 on
vertex set [n] = {1, . . . , n}, and in each step (or round) t ∈ N, a vertex ut is chosen independently
nd uniformly at random (u.a.r.) from [n]. The algorithm is online, in that it is given the graph
t−1 and vertex ut and must select a vertex vt ∈ [n] \ {ut} and add the edge (ut , vt ) to Gt−1 to
orm Gt . Thus, it decides on vt without full knowledge of which vertices will be randomly drawn
n the future. In this paper, the goal of the online algorithm is to build a multigraph satisfying a
iven graph property P as quickly as possible. Clearly, if the online algorithm chooses vt u.a.r. for
≥ 1 consecutive rounds, then this is the Erdős–Rényi random graph process with multi-edges. The
ain focus in the literature is understanding how through intelligent decision-making, the online
lgorithm can speed up the appearance of certain graph properties P .
While the semi-random graph process has been studied extensively in recent years, discrete

processes in which an algorithm has partial control over its random steps have been studied
previously. One of the first such examples is the work of Azar et al. [13] in the context of the
in-packing problem. By allowing an algorithm a small amount of adaptivity, Azar et al. proved that
he maximum load on any bin can be reduced by an exponential factor in comparison to a purely
andom (and non-adaptive) strategy. This phenomena has since been described as the ‘‘power of
two choices’’.

The Achlioptas process is another example of an adaptive random process; it was proposed by
imitris Achlioptas and first formally studied in [14]. The Achlioptas process, too, begins with the
mpty graph G0 on vertex set [n]. In each round t ∈ N, the online algorithm is presented two
istinct edges e1t , e

2
t drawn u.a.r. from the edges on vertex set [n] that were not previously chosen

i.e., not in Gt−1). The online algorithm then chooses precisely one of e1t , e
2
t , and then adds it to

Gt−1, yielding the graph Gt . In contrast to the semi-random process, the objective first considered
n [14] is to delay the construction of a graph satisfying a property P for as many rounds as possible.
chlioptas asked what can be done if P corresponds to the existence of a giant component (i.e., a
onnected component of size Ω(n)). Bohman and Frieze analysed a greedy strategy which does not
uild a giant component for 0.535n rounds, which is strictly larger than the threshold at which a
iant component appears in the Erdős–Rényi random graph process [15]. Improvements have since
een made on determining the optimal algorithm for delaying the appearance of a giant component.
he best known lower bound of 0.829n is due to Spencer and Wormald [16], and the best known
pper bound of 0.944n is due to Cobârzan [17]. Numerous works have studied other properties and
xtensions of the Achlioptas process. Most related to our work is [18], whose goal is to force Gt to

be Hamiltonian as quickly as possible. We refer the reader to the introduction of [19] for an in-depth
overview of the literature on the Achlioptas process.

1.1. Definitions

We now introduce some definitions and notation for the semi-random graph process. We
ormalize an online algorithm using a strategy S. A strategy S specifies for each n ≥ 1, a
equence of functions (st )∞t=1, where for each t ∈ N, st (u1, v1, . . . , ut−1, vt−1, ut ) is a distribution
n [n] \ {ut} which depends on the vertex ut , and the history of the process up until step t − 1
i.e., u1, v1, . . . , ut−1, vt−1). Then, vt is chosen according to this distribution, and (ut , vt ) is added to
GS
t−1(n), the multigraph constructed by S after the first t − 1 steps. If st is an atomic distribution,
hen vt is determined by u1, v1, . . . , ut−1, vt−1, ut . We denote by (GS

i (n))
t
i=0 the sequence of random

ultigraphs obtained by following the strategy S for t steps, and we shorten GS
t (n) to Gt or Gt (n)

hen clear.
Suppose P is an increasing (i.e., monotone) graph property. Given a strategy S and a constant

< q < 1, let mP (S, q, n) be the minimum t ≥ 0 for which P[Gt ∈ P] ≥ q, where mP (S, q, n) := ∞

f no such t exists. Define

mP (q, n) = inf
S

mP (S, q, n),

where the infimum is over all strategies on [n]. As P is increasing, for each n ≥ 1, if 0 ≤ q1 ≤ q2 ≤ 1,
hen m (q , n) ≤ m (q , n). Thus, the function q ↦ → lim sup m (q, n) is non-decreasing, so the
P 1 P 2 n→∞ P

2
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CP := lim
q→1−

lim sup
n→∞

mP (q, n)
n

(1)

is guaranteed to exist. The goal is typically to compute upper and lower bounds on CP for various
roperties P .

Remark 1. Note that although CP is well defined for all increasing properties, it only gives useful
nformation if CP is not equal to 0 or ∞, i.e., if a linear number (in n) of steps is necessary and
ufficient to construct some graph in P . If CP is equal to 0 or ∞ then the property is not linear and
he definition (1) should be adapted, scaling mP (q, n) by an appropriate function of n rather than
itself in the denominator.

1.2. Main results: Upper bound

In this paper, we focus on the property of having a Hamiltonian cycle, which we denote by HAM. It
as shown in [20] that the well-known 3-out process generates a random graph that is Hamiltonian
.a.s. (asymptotically almost surely, i.e., with probability tending to 1 as n → ∞). The very first

paper on the semi-random process, [1], showed that it can simulate the k-out process, from which
t follows that CHAM ≤ 3. A new upper bound was obtained in [10] in terms of an optimal solution
o an optimization problem whose value is believed to be at most 2.61135 by numerical support.

The upper bound CHAM ≤ 3 obtained by simulating the 3-out process is non-adaptive. That is,
he strategy does not depend on the history of the semi-random process. The improvement in [10]
s adaptive but in a weak sense. The strategy consists of four phases, each lasting a linear number
f rounds, and the strategy is adjusted only at the end of each phase: for example, the algorithm
ight identify vertices of low degree, and then focus on them during the next phase.
In the proceedings version [11] of this paper, a fully adaptive strategy was proposed: at every

tep t , it pays attention to Gt−1 and ut . As expected, such a strategy creates a Hamiltonian cycle
ubstantially faster, and it improves the upper bound from 2.61135 to 2.01678. A neat improvement
n [12] brings the upper bound down to 1.84887. In this paper, we combine all the ideas together
to reduce it further, to 1.81701.

Theorem 1.1. CHAM ≤ α ≤ 1.81701, where α is derived from a system of differential equations.
The numerical results presented in this paper were obtained using the Julia programming

anguage [21]. We would like to thank BogumiłKamiński from SGH Warsaw School of Economics
or helping us to implement it. The program is available online.1

1.3. Main results: Lower bound

Let us now turn to the lower bound. As observed in [1], if Gt has a Hamiltonian cycle, then Gt
as minimum degree at least 2; thus CHAM ≥ CP = ln 2 + ln(1 + ln 2) ≥ 1.21973, where P is the
roperty of having minimum degree 2. In [10], this was shown to not be tight: it was increased
y a numerically negligible 10−8. By investigating some specific structures generated by the semi-
andom process, containing many edges that cannot simultaneously belong to a Hamiltonian cycle,
e improve the lower bound of ln 2 + ln(1 + ln 2) ≥ 1.21973 to 1.26575. (This bound was already
eported in the proceedings version [11] of this paper.) This is a much stronger bound than that
n [10], the structures exploited are different, and the proof is simpler.

Theorem 1.2. Let f (s) = 2 + e−3s(s + 1)
(
1 −

s2
2 −

s3
3 −

s4
8

)
+ e−2s

(
2s +

5s2
2 +

s3
2

)
− e−s (3 + 2s),

nd let β ≈ 1.26575 be the positive root of f (s) − 1 = 0. Then, CHAM ≥ β .

1 https://math.torontomu.ca/~pralat/
3
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1.4. Further related works

The seminal paper [1] showed that the semi-random graph process is general enough to simulate
everal well-studied random graph models by using appropriate strategies. In the same paper, the
rocess was studied for various natural properties such as having minimum degree k ∈ N or having
 fixed graph H as a subgraph. In particular, it was shown that a.a.s. one can construct H in less
han n(d−1)/dω rounds where d ≥ 2 is the degeneracy of G and ω = ω(n) is any function that tends
o infinity as n → ∞. This property was recently revisited in [4], where a conjecture from [1]
as proven for any graph H: a.a.s. it takes at least n(d−1)/d/ω rounds to create H . The property of
aving cliques of order tending to infinity as n → ∞ was investigated in [22]. In [7], k-factors and
-connectivity were studied.
Another property studied in the context of semi-random processes is that of having a perfect

matching, which we denote by PM. Since the 2-out process has a perfect matching a.a.s. [23], and
the semi-random process can simulate the 2-out process, we immediately get that CPM ≤ 2. By
simulating the semi-random process with another random graph process known to have a perfect
atching a.a.s. [24], the bound can be improved to 1+ 2/e < 1.73576 [1]. This bound was recently

mproved by investigating another fully adaptive algorithm [3], giving the current best bound of
PM < 1.20524. The same paper improves the lower bound observed in [1] of CPM ≥ ln(2) > 0.69314

to CPM > 0.93261. While the optimal value of CPM remains unknown, a general purpose theorem
is proven in [6] that identifies a sufficient condition for a property P to have a sharp threshold.
When P is HAM or PM, [6] uses the theorem to establish the existence of sharp thresholds for these
properties.

Let us now discuss what is known about the property of containing a given spanning graph H as
 subgraph. It was asked by Noga Alon whether for any bounded-degree H , one can construct a copy
f H a.a.s. in O(n) rounds. This question was answered positively in a strong sense in [2], in which
t was shown that any graph with maximum degree ∆ can be constructed a.a.s. in (3∆/2 + o(∆))n
ounds and, if ∆ = ω(log(n)), in (∆/2+o(∆))n rounds. Note that these upper bounds are asymptotic
n ∆; when ∆ is constant in n, such as for perfect matchings and Hamiltonian cycles, they give no
oncrete bound.
Other adaptive random graph processes and variants of the semi-random graph process have

een considered in the literature. The semi-random tree process is introduced in [5], where in each
ound, a random spanning tree of Kn is presented to the algorithm, who chooses one of the edges
o keep. In [25], k random vertices rather than just one are offered, and the algorithm chooses one
f them before creating an edge. In [6], a general definition of an adaptive random graph process is
roposed. By parameterizing it appropriately, one recovers the Achlioptas process, the semi-random
raph process, as well as the models of [5,25]. In [26], the vertices offered by the process follow a
andom permutation. Finally, hypergraphs are investigated in [4,8,9].

2. Proof of Theorem 1.1

2.1. Algorithmic preliminaries

In this section, we introduce some notation/terminology as well as the basic ideas used in the
design of all of our strategies. We say that vertex x ∈ [n] is covered by ut arriving at round t , or that
ut lands on x, provided ut = x. The main ingredient for proving Theorem 1.1 is to specify a strategy
hich keeps ‘‘extending’’ or ‘‘augmenting’’ a path P – as will be explained momentarily – as well as
uilding a collection Y of edges, all vertex-disjoint from one another and P , until all edges in Y are
oined to P and P becomes Hamiltonian. Then, with a few more steps (just o(n)), the Hamiltonian
ath P can be completed into a Hamiltonian cycle.
Suppose that after t ≥ 0 steps, we have constructed the graph Gt which contains the path Pt and

he collection Yt of disjoint edges. Let V (Pt ) and V (Yt ) denote respectively the vertices in Pt and in
t , and Ut the vertices in neither. Denote the (induced) distance between vertices x, y ∈ V (Pt ) on
he path Pt by dPt (x, y). We also define dPt (x,Q ) := minq∈Q dPt (x, q), for x ∈ V (Pt ) and Q ⊆ V (Pt ). In
tep t + 1, ut+1 ∈ Ut , V (Yt ), or V (Pt ):
4
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• If ut+1 ∈ Ut , we extend the collection Yt by choosing vt+1 to be a different vertex in Ut and
adding ut+1vt+1 to Yt . (If |Ut | = 1, we simply ‘‘pass’’ on the round, choosing vt+1 arbitrarily and
not using ut+1vt+1 for the construction of the Hamiltonian cycle. However, this is unlikely to
happen until the very end of the process, when we apply a different strategy; see Section 2.4.)
We call such a move a (greedy) Y-extension.

• If ut+1 ∈ V (Yt ), an extension of Pt can be made by appending the Yt edge on ut+1 to an end
of Pt , and deleting it from Yt . Such a move is called a (greedy) path extension.

• If ut+1 ∈ V (Pt ) we cannot perform a greedy path extension, but we can still choose vt+1 in a
way that will help us extend the path in future rounds. Specifically, choose vt+1 ∈ Ut ∪ V (Yt )
to be an isolated vertex or an edge endpoint; it could be chosen uniformly at random, though
we will use a more efficient strategy. Consider a future round i > t where ui+1 happens
to be a path neighbour of ut+1 (i.e., dPi (ut+1, ui+1) = 1). In this case, if vt+1 ∈ Ui is an
isolated vertex, set vi+1 = vt+1, and replace the path edge {ut+1, ui+1} with the length-2 path
(ut+1, vt+1 = vi+1, ui+1), thus making P one edge longer. If vt+1 ∈ V (Yi) belongs to an isolated
edge, choose vi+1 to be its neighbour, and replace the path edge {ut+1, ui+1} with the length-
3 path (ut+1, vt+1, vi+1, ui+1), making P two edges longer. Call either of these cases a path
augmentation.

2.2. Proof overview

In order to prove Theorem 1.1, we analyse a strategy which proceeds in three distinct stages.
In the first stage, we execute DegreeGreedy, an algorithm which makes greedy Y-extensions
nd path extensions whenever possible, and otherwise sets up path augmentation operations for

future rounds in a degree-greedy manner. During the execution of DegreeGreedy some edges are
coloured red or blue to help keep track of when these augmentations can be made. We use two
colours, namely red and blue, to distinguish between edges which are added randomly (red) and
greedily (blue). In step t + 1, vt+1 is chosen amongst Ut ∪ V (Yt ) that are incident with the least
number of blue edges. This degree-greedy decision is done to minimize the number of coloured
vertices which are destroyed when path augmentations and extensions are made in later rounds.
This stage lasts for N phases, where N is any non-negative integer that may be viewed as the
parameter of the algorithm (here a phase is a contiguous set of steps shorter than the full stage).
For the claimed (numerical) upper bound of Theorem 1.1, N is set to 100. Setting smaller values of
the parameter N–in particular, setting N = 0–yields an algorithm that is easier to analyse. Setting
N > 100 can slightly improve the bound in Theorem 1.1, but the gain is rather insignificant.

The output of the first phase are P and Y that have been constructed, together with the set
of red edges (all blue edges will be discarded). The second stage takes (P,Y, E) as input, and

executes a procedure called FullyRandomized, an algorithm which makes greedy Y-extensions
r path extensions whenever possible, and otherwise chooses vt+1 randomly amongst Ut ∪ V (Yt ).
e execute FullyRandomized until we are left with εn vertices in Ut ∪ V (Yt ), where ε = ε(n)

ends to 0 as n → ∞ arbitrarily slowly. (In practice, one can set ε to be an arbitrarily small
ositive number when running this algorithm.) At this point, we proceed to the final stage where a
lean-up algorithm is run, which uses merely path augmentations. Using well-known concentration
nequalities we prove that a Hamiltonian cycle can be constructed in an additional O(

√
εn) = o(n)

teps.
In Section 2.3, we first describe FullyRandomized, as it is easier to state and analyse than

DegreeGreedy. Moreover, if we take N = 0, which corresponds to executing FullyRandomized
from the beginning, then we will be left with a path on all but εn vertices after α∗n steps where α∗

≤

.84887. This is exactly the upper bound obtained in [12]. Our third stage clean-up algorithm from
ection 2.4 allows us to complete the Hamiltonian cycle in another o(n) steps. Thus, Sections 2.3 and

2.4 provide a self-contained proof of an upper bound on CHAM of α∗
≤ 1.84887 (see Theorem 2.6).

fterwards, in Section 2.5 we formally state and analyse our first stage algorithm. This is the most
echnical section of the paper, as DegreeGreedymakes decisions in a more intelligent manner than
FullyRandomized which necessitates more random variables in its analysis. By executing these
hree stages in the aforementioned order, we attain the claimed upper bound of Theorem 1.1.
5
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2.3. A fully randomized algorithm

The algorithm takes a tuple (P,Y, E) as input where

• P is a path on a subset of vertices in [n];
• Y is a set of pairs of vertices in [n] \ V (P);
• E is a set of red edges; each red edge has exactly one endpoint on P and no two edges in E

are adjacent to the same vertex in P; moreover, these endpoints are at distance at least 3 on
the path from each other.

In order to simplify the analysis, we begin the semi-random graph process from round t = 0 with
the initial graph G0 induced by (P,Y, E). Note that if N = 0, then G0 is the empty graph on [n]. We
ncourage the reader to keep this case in mind on a first read through.
When considering Gt , a certain subset of its edges will be coloured red. This helps us define

ertain vertices used by our algorithm for path augmentations. A vertex x ∈ V (Pt ) is one-red
rovided it is adjacent to precisely one red edge of Gt . Similarly, x ∈ V (Pt ) is two-red, provided
t is adjacent to precisely two red edges of Gt . Throughout the execution of FullyRandomized,
each vertex in V (Pt ) is incident with at most two red edges. We denote the sets of one-red vertices
and two-red vertices by L1

t and L2
t , respectively, and refer to Lt := L1

t ∪ L2
t as the red vertices of

Gt . By definition, L1
t and L2

t are disjoint. Initially, P0 = P , Y0 = Y , L2
0 = ∅, and L1

0 is set to be the
set of vertices in V (P) that are incident with a red edge in E . It will also be convenient to maintain
a set of permissible vertices Qt ⊆ V (Pt ) which specifies which uncoloured vertices on the path can
e turned red. In order to simplify our analysis, we specify the size of Qt and ensure that it only

contains vertices of path distance at least 3 from the red vertices on Pt . Formally:

(i) |Qt | = max{|V (Pt )| − 5|Lt |, 0}.
(ii) If Lt ̸ = ∅, then each x ∈ Qt satisfies dPt (x,Lt ) ≥ 3.

When Lt = ∅, we simply take Qt = V (Pt ). Otherwise, since |{x ∈ V (Pt ) : dPt (x,Lt ) ≤ 2}| ≤ 5|Lt |, we
can maintain these properties by initially taking {x ∈ V (Pt ) : dPt (x,Lt ) ≥ 3}, and then (if needed)
arbitrarily removing |{x ∈ V (Pt ) : dPt (x,Lt ) ≥ 3}| − max{|V (Pt )| − 5|Lt |, 0} vertices from it.

Upon the arrival of ut+1, there are five main cases our algorithm must handle. The first three
cases involve extending Pt or Yt , whereas the latter two describe what to do when it is not possible
o extend the path in the current round, and how the one-red and two-red vertices are created.

(1) If ut+1 lands within Ut , then choose vt+1 u.a.r., and greedily extend Yt unless |Ut | = 1.
(2) If ut+1 lands in V (Yt ), then greedily extend Pt .
(3) If ut+1 lands at path distance one from some x ∈ Lt , then augment Pt via an arbitrary red

edge of x.
(4) If ut+1 lands in Qt , then choose vt+1 u.a.r. amongst Ut ∪ V (Yt ), and colour ut+1vt+1 red. This

case creates a one-red vertex.
(5) If ut+1 lands in L1

t , then choose vt+1 u.a.r. amongst Ut and colour ut+1vt+1 red. This case
converts a one-red vertex to a two-red vertex.

In all the remaining cases, we choose vt+1 arbitrarily, and interpret the algorithm as passing on the
ound, meaning the edge ut+1vt+1 will not be used to construct a Hamiltonian cycle. In particular,
the algorithm passes on rounds in which ut+1 lands at path distance two from some x ∈ Lt . This
guarantees that no two red vertices are at distance two from each other and so when ut+1 lands
next to a red vertex, this neighbouring red vertex is uniquely identified. Let us say that a red vertex
is well-spaced, provided it is at distance at least 3 on the path from all other red vertices, and it
is not an endpoint of Pt . Observe that each well-spaced red vertex yields precisely two vertices on
Pt where a path augmentation involving ut+1 can occur. By construction, all but at most 2 of the
algorithm’s red vertices are well-spaced. The step t + 1 of the algorithm when ut+1 is drawn u.a.r.
from [n] is formally described by the FullyRandomized algorithm. Specifically, we describe how
the algorithm chooses vt+1, how it constructs Pt+1, and how it adjusts the colours of Gt+1, thus
updating L1 and L2.
t t

6
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Algorithm FullyRandomized . Step t + 1.

1: if ut+1 ∈ Ut and |Ut | ≥ 2 then ▷ greedily extend Yt
2: Let vt+1 be a uniformly random vertex in Ut \ {ut+1}.
3: Set Pt+1 = Pt and Yt+1 = Yt ∪ {ut+1vt+1}.
4: else if ut+1y ∈ Yt for some y then ▷ greedily extend Pt
5: Let vt+1 be an arbitrarily chosen endpoint of Pt .
6: Set V (Pt+1) = V (Pt ) ∪ {ut+1, y}, E(Pt+1) = E(Pt ) ∪ {ut+1vt+1, ut+1y}.
7: Set Yt+1 = Yt \ {ut+1y}.
8: Uncolour all of the edges adjacent to ut+1 or y.
9: else if dPt (ut+1,Lt ) = 1 then ▷ path augment via red vertices

10: Let x ∈ Lt be the (unique) red vertex adjacent to ut+1
1: Denote xy ∈ E(Gt ) an arbitrary red edge of x.
2: if y ∈ Ut then
3: Set vt+1 = y.
4: Set V (Pt+1) = V (Pt ) ∪ {vt+1} and E(Pt+1) = (E(Pt ) ∪ {xvt+1, ut+1vt+1}) \ {ut+1x}.
5: Set Yt+1 = Yt
6: Uncolour all of the edges adjacent to r .
7: else if yy′

∈ Yt for some y′ then
18: Set vt+1 = y′

19: Set V (Pt+1) = V (Pt ) ∪ {y, vt+1}, E(Pt+1) = (E(Pt ) ∪ {xy, yvt+1, ut+1vt+1}) \ {ut+1x}.
20: Set Yt+1 = Yt \ {yvt+1}

21: Uncolour all of the edges adjacent to y or vt+1.
22: end if
23: else
24: if ut+1 ∈ Qt ∪ L1

t then ▷ construct red vertices or pass
25: Choose vt+1 u.a.r. from Ut ∪ V (Yt ).
26: Colour ut+1vt+1 red. ▷ construct a one-red or two-red vertex
27: else ▷ pass on ut+1vt+1
28: Choose vt+1 arbitrarily from [n].
29: end if
30: Set Pt+1 = Pt ; Yt+1 = Yt .
31: end if
32: Update Ut+1 and Lt+1.
33: Update Qt+1, if needed, such that |Qt+1| = |V (Pt+1)| − 5|Lt+1|.

We define the random variables X(t) = |V (Pt )|, L1(t) = |L1
t |, L2(t) = |L2

t |, L(t) = |Lt | =

1(t) + L2(t), and Y (t) = |V (Yt )| = 2|Yt |. Note that L(t) is an auxiliary random variable which
e define only for convenience, and Y (t) denotes the number of vertices incident to edges in Yt .
The input (P,Y, E) of FullyRandomized is the output of DegreeGreedy, and thus is random-

zed. Our analysis of the execution of FullyRandomized relies on the fact that (P,Y, E) has a
certain distribution. To be specific, recall that L1

0 is the set of vertices on P incident with an edge
in E . Then, conditional on P , |Y|, and L1

0, the following properties are satisfied by (P,Y, E):

(O1) Y is uniform over all possible |Y| pairs of vertices in [n] \ V (P);
(O2) E is uniform over all possible set of edges joining L1

0 and [n] \ V (P) such that every vertex in
L1

0 is incident with exactly one edge in E .

We shall prove that these properties hold in Section 2.7. Using these properties, together with
he specification of FullyRandomized, we first show that our random variables cannot change
drastically in one round. We use ∆ to denote the one step changes in our random variables
i.e., ∆X(t) := X(t + 1) − X(t)).
7
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Lemma 2.1 (Boundedness Hypothesis – FullyRandomized). With probability 1 − O(n−1),

max{|∆X(t)|, |∆L1(t)|, |∆L2(t)|, |∆Y (t)|} = O(log n)

for all 0 ≤ t ≤ 3n − |E| with n − X(t) ≥ n/ log n.

Proof. Note that, by design, the path can only increase its length but it cannot absorb more than
wo vertices in each round. Hence, the desired property clearly holds for the random variable X(t).
The same holds for Y (t). To estimate the maximum change for the random variables L1(t) and L2(t),
e need to upper bound the number of red edges adjacent to any particular vertex v ∈ Ut ∪ V (Yt ).
bserve that due to (O2) and how the red edges are randomly selected, if we condition on Ut∪V (Yt ),
hen this is stochastically upper bounded by Bin(t + |E|, |Ut ∪ V (Yt )|−1). Since t + |E| ≤ 3n, and
we have assumed that there are at least n/ log n vertices in Ut ∪ V (Yt ), the number of red edges
adjacent to v is stochastically upper bounded by the binomial random variable Bin(3n, log n/n) with
expectation 3 log n. It follows immediately from Chernoff’s bound that with probability 1− O(n−3),
the number of red edges adjacent to v is O(log n), and so the desired bound holds by union bounding
over all 3n2 vertices and steps. □

Let us denote Ht = (X(i), L1(i), L2(i), Y (i))0≤i≤t . Note that Ht does not encompass the entire
istory of the random process after t rounds (i.e., G0, . . . ,Gt , the first t + 1 graphs appearing in
he sequence generated by the process). The distribution of (P,Y, E) together with the technique of
eferred information exposure permit a tractable analysis of the random positioning of vt when ut
s red. In particular, as we only expose Y (t) instead of Yt , Yt has the same distribution (conditional
n Ht ) as first exposing the set of vertices in [n] \V (Pt ), then uniformly selecting a subset of vertices
n [n] \ V (Pt ) of cardinality Y (t), and then finally taking a uniformly random perfect matching over
he Y (t) vertices (i.e. pair the Y (t) vertices into Y (t)/2 disjoint edges). Similarly, conditional on
1(t) and L2(t), we may first expose L1

t and L2
t , and then choose their neighbours joined by a red

dge uniformly from [n] \ V (Pt ). Moreover, this process (of choosing the ends of red edges lying in
n] \ V (Pt )) is independent of the process of choosing and pairing vertices for Yt . We observe the
ollowing expected difference equations.

Lemma 2.2 (Trend Hypothesis – FullyRandomized). For each t ≥ 0, if n − X(t) ≥ n/ log n, then by
etting Γ (t) = 1 + Y (t)/(n − X(t)) and A(t) = 2Y (t)/(n − X(t)),

E[∆X(t) | Ht ] =
2Y (t)
n

+
2L(t)
n

· Γ (t) + O(log n/n) (2)

E[∆Y (t) | Ht ] = −
2Y (t)
n

+
2(n − X(t) − Y (t))

n
−

2L(t)
n

· A(t) + O(log n/n) (3)

E[∆L1(t) | Ht ] =
X(t) − 5L(t)

n
−

2L1(t)
n

+
2L1(t)

n

(
2L2(t)

n − X(t)
−

L1(t)
n − X(t)

)
· Γ (t)

+
2L2(t)

n
+

2L2(t)
n

(
2L2(t)

n − X(t)
−

L1(t)
n − X(t)

)
· Γ (t) −

L1(t)
n

+
2Y (t)
n

·

(
2L2(t)

n − X(t)
−

L1(t)
n − X(t)

)
+ O(log n/n) (4)

E[∆L2(t) | Ht ] =
L1(t)
n

−
2L2(t)

n
· A(t) −

2L1(t)
n

·
2L2(t)

n − X(t)
· B(t)

−
2L2(t)

n
−

2L2(t)
n

·
2L2(t)

n − X(t)
· Γ (t) + O(log n/n). (5)

Proof. As discussed earlier, the FullyRandomized algorithm ensures that at time t there are at
ost 2 red vertices which are not well-spaced. Thus, since our expected differences each allow for a
(log n/n) term, without loss of generality, we can assume that all our red vertices are well-spaced.
8
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Note also that all our explanations below assume that we have conditioned on Ht .
When path augmentation occurs via a red edge incident to a vertex x on Pt , we first expose r

(the other end of the red edge) which is distributed uniformly over all vertices in [n] \ V (Pt ), and
then we expose whether r is in V (Yt ). In the case that r is in V (Yt ) we expose y which is paired to
r in Yt .

The first expected difference is easy to see. Observe that there are three disjoint cases where
∆X(t) is nonzero. Case 1: ut+1 lands on a vertex in V (Yt ). In this case ∆X(t) is 2, and this event
occurs with probability Y (t)/n. Case 2: ut+1 is next to a red vertex x (i.e. a vertex in Lt ) on Pt , and
path augmentation is performed via a red edge xr where r ∈ Ut . In this case, ∆X(t) = 1 and the
probability of this event is (2L(t)/n) · (1 − Y (t)/(n − X(t))), where 2L(t)/n is the probability that
dPt (ut+1,Lt ) = 1, and 1−Y (t)/(n−X(t)) is the probability that r ∈ Ut conditional on r ∈ [n] \V (Pt ).
ase 3: same as case 2 but r ∈ V (Yt ). In this case, ∆X(t) = 2 and the probability of this event is
2L(t)/n) · (Y (t)/(n − X(t))). Combining all three cases together we obtain (2).

The remaining equations are obtained in a similar manner. In what follows, we explain the event
for which each term in the equations accounts for as E[∆Z(t) · 1A] where Z ∈ {Y , L1, L2}.
In the second equation, −2Y (t)/n is the contribution from the case where ut+1 lands on V (Yt );

−2L(t)/n) · A(t) corresponds to the event that ut+1 lands on a neighbour of some x ∈ Lt on Pt , and
he path augmentation is performed via a red edge xr where r ∈ V (Yt ). Finally, 2(n−X(t)−Y (t))/n
corresponds to the event that ut+1 lands on a vertex in Ut .

In the third equation, the term (X(t)−5L(t))/n is the contribution from the case where ut+1 lands
on Qt . In the case where ut+1 lands on a vertex neighbouring some x ∈ L1

t on Pt (which occurs with
probability 2L1(t)/n) the contribution to ∆L1(t) can come from two sources: (a) x is removed from

1
t after the path augmentation and thus it contributes −1 to ∆L1(t); (b) one or two vertices will be

added to Pt , which results in uncolouring of all red edges incident to them, and which consequently
contributes to ∆L1(t). Note that 2L2(t)/(n − X(t)) is the expected number of two-red vertices that
become one-red when a vertex r ∈ Ut ∪ V (Yt ) is moved to Pt . Similarly, L1(t)/(n − X(t)) is the
xpected number of one-red vertices that get removed from L1

t due to moving a certain vertex
∈ Ut ∪V (Yt ) to Pt . Finally, B(t) is the expected number of vertices in Ut ∪V (Yt ) that will be added
o Pt .

The next two terms (in the second line of third equation) correspond to the symmetric case:
t+1 lands on a vertex neighbouring some x ∈ L2

t on Pt (which occurs with probability 2L2(t)/n)
ith the same two sources that contribute to ∆L1(t). The term −L1(t)/n corresponds to the case
here ut+1 lands on a vertex x ∈ L1

t which results in moving x from L1
t to L2

t+1.
Finally, the last term (2Y (t)/n)(2L2(t) − Lt (t))/(n − X(t)) is the contribution from moving two

vertices from Ut ∪ V (Yt ) to Pt in the case where ut+1 lands on a vertex in V (Yt ).
For the last equation, L1(t)/n accounts for ut+1 landing on a vertex in L1

t , and a one-red vertex
becomes two-red. The term −2L2(t)A(t)/n accounts for the case where ut+1 lands on a vertex in
V (Yt ). In this case (which occurs with probability Y (t)/2) 2 vertices are moved from V (Yt ) to Pt ,
each of which will be resulting in uncolouring 2L2(t)/(n−X(t)) red edges incident to vertices in L2

t
in expectation.

The third and the fifth terms together in the equation account for the case where ut+1 lands on a
eighbour of Lt , where one or two vertices in Ut∪V (Yt ) are moved to Pt after the path augmentation,
ach resulting in uncolouring 2L2(t)/(n − X(t)) red edges incident to L2

t in expectation. The fourth
erm accounts for the case where ut+1 lands on a vertex neighbouring a vertex x ∈ L2

t , resulting in
he removal of x from L2

t after the path augmentation. □

In order to analyse FullyRandomized, we shall employ the differential equation method [27].
This method is commonly used in probabilistic combinatorics to analyse random processes that
evolve step by step. The step changes must be small in relation to the entirety of the discrete
structure. For instance, in our application, this refers to adding one edge at a time to the graph on
n vertices. The method allows us to derive tight bounds on the associated random variables which
hold a.a.s. at every step of the random process. We refer the reader to [28] for a gentle introduction
o the methodology.

Recall that FullyRandomized takes input (P,Y, E). Let X(0), Y (0), L1(0) denote the number of
ertices on P , the number of vertices incident to edges in Y , and the number of vertices incident
9
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with E , respectively. We prove in Section 2.7 that there exist some constants x̂, ŷ, ℓ̂1 such that
X(0)/n − x̂|, |Y (0)/n − ŷ|, |L1(0)/n − ℓ̂1| ≤ λ for some λ = o(1). Initially, there are no two-red
ertices, that is, we will always set L2(0) = 0. Let us now fix a sufficiently small constant ε > 0,
nd define the bounded domain

Dε := {(s, x, y, ℓ1, ℓ2) : −1 < s < 3, −1 < x < 1 − ε , |ℓ1| < 2, |ℓ2| < 2}.

Consider the system of differential equations in variable s with functions x = x(s), y = y(s), ℓ1 =

ℓ1(s), and ℓ2 = ℓ2(s):

x′
= 2y + 2(ℓ1 + ℓ2)λ (6)

y′
= −2y + 2(1 − x − y) − 2(ℓ1 + ℓ2)a (7)

ℓ′

1 = x − 5(ℓ1 + ℓ2) − 2ℓ1 + (2ℓ1λ + 2ℓ2λ + 2y) ·
2ℓ2 − ℓ1

1 − x
+ 2ℓ2 − ℓ1 (8)

ℓ′

2 = ℓ1 − 2ℓ2a − (2ℓ1 + 2ℓ2)λ ·
2ℓ2
1 − x

− 2ℓ2, (9)

where λ(s) = 1+y(s)/(1−x(s)) and a(s) = 2y(s)/(1−x(s)). The right-hand side of each of the above
equations is Lipchitz on the domain Dε . Define

TDε = min{t ≥ 0 : (t/n, X(t)/n, Y (t)/n, L1(t)/n, L2(t)/n) /∈ Dε}.

Now, the ‘Initial Condition’ of Theorem A.1 is satisfied with values (0, x̂, ŷ, ℓ̂1, 0) and some λ =

(1). Moreover, the ‘Trend Hypothesis’ and ‘Boundedness Hypothesis’ are satisfied with some δ =

(log n/n), β = O(log n) (with failure probability γ = o(1) throughout the process) by Lemmas 2.1
and 2.2. Thus, for every δ > 0, X(t) = nx(t/n) + o(n), Y (t) = ny(t/n) + o(n), L1(t) = nℓ1(t/n) + o(n)
nd L2(t) = nℓ2(t/n) + o(n) uniformly for all t0 ≤ t ≤ (σ (ε) − δ)n, where x, y, ℓ1 and ℓ2 are the
nique solution to (6)–(9) with initial conditions x(0) = x̂, y(0) = ŷ, ℓ1(0) = ℓ̂1, and ℓ2(0) = 0, and

σ (ε) is the supremum of s to which the solution can be extended before reaching the boundary of
Dε .

Lemma 2.3 (Concentration of FullyRandomized’s Random Variables). For every δ > 0, a.a.s. for all
0 ≤ t ≤ (σ (ε) − δ)n,

max
{
|X(t) − x(t/n)n|, |Y (t) − y(t/n)n|, |L1(t) − ℓ1(t/n)n|, |L2(t) − ℓ2(t/n)n|

}
= o(n).

As Dε ⊆ Dε′ for every ε > ε′, σ (ε) is monotonically nondecreasing as ε → 0. Thus,

α∗
:= lim

ε→0+
σ (ε) (10)

exists. It is clear that |L1(t)/n|, |L2(t)/n|, and |Y (t)/n| are all bounded by 1 for all t and thus, when
t/n approaches α∗, either X(t)/n approaches 1 or t/n approaches 3. Formally, we have the following
proposition.

Proposition 2.4. For every ε > 0, there exists δ > 0 such that a.a.s. one of the following holds.

• X(t) > (1 − ε)n for all t ≥ (α∗
− δ)n;

• α∗
= 3.

The ordinary differential equations (6)–(9) do not have an analytical solution. In both cases,
= 0 and N = 100, numerical solutions show that α∗ < 1.85. (For N = 0, α∗

≈ 1.84887.) Thus,
y the end of the execution of FullyRandomized, there are εn unsaturated vertices (i.e. vertices

not in Pt ) remaining, for some ε = o(1).

2.4. A clean-up algorithm

Suppose that we are presented a path P on (1−ε)n vertices of [n], where 0 < ε = ε(n) < 1/1000.
The assumption on ε is a mild but convenient one. We will apply the argument for ε = o(1). In this
10
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section, we provide an algorithm for the semi-random graph process which absorbs the remaining
n vertices into P to form a Hamiltonian path, after which a Hamiltonian cycle can be constructed.
he whole procedure takes O(

√
εn + n3/4 log2 n) = o(n) further steps in the semi-random graph

rocess. Moreover, the algorithm is self-contained in that it only uses the edges of P in its execution.

Lemma 2.5 (Clean-up Algorithm). Let 0 < ε = ε(n) < 1/1000, and suppose that P is a path on
1−ε)n vertices of [n]. Then, given P initially, there exists a strategy for the semi-random graph process
hich builds a Hamiltonian cycle from P in O(

√
εn + n3/4 log2 n) steps a.a.s.

Remark 2. The constant hidden in the O(·) notation does not depend on ε. The strategy used in the
lean-up algorithm is similar to that in FullyRandomized but the analysis is done in a much less
accurate way, as we only need to prove an o(n) bound on the number of steps required to absorb
εn vertices, assuming ε = ε(n) → 0 as n → ∞.

Proof of Lemma 2.5. Let j0 = εn. For each k ≥ 1, let jk = (1/2)jk−1 if jk−1 > n1/4, and let jk = jk−1−1
otherwise. Clearly, jk is a decreasing function of k. Let τ1 be the smallest natural number k such that
k ≤ n1/4. Let τ be the natural number k such that jk = 0. It is easy to check that τ1 = O(log n) and
= O(n1/4).
We use a clean-up algorithm, which runs in iterations. The kth iteration repeatedly absorbs

k−1 − jk vertices into P , leaving jk unsaturated vertices (vertices that have not been added to P)
in the end. The kth iteration of the clean-up algorithm works as follows.

(i) (Initializing): Uncolour all vertices in the graph;
(ii) (Building reservoir): Let mk :=

√
ε(1/2)k/2n for k ≤ τ1 and mk :=

√
n if τ1 < k ≤ τ . Add

mk semi-random edges as follows. If ut lands on an unsaturated vertex, a red vertex, or a
neighbour of a red vertex in P , then let vt be chosen arbitrarily. The edge utvt will not be
used in our construction. Otherwise, colour ut red and choose an arbitrary vt among those
unsaturated vertices with the minimum number of red neighbours. Colour utvt red. Note that
each red vertex is adjacent to exactly one red edge;

(iii) (Absorbing via path augmentations): Add semi-random edges as follows. Suppose that ut lands
on P and at least one neighbour of ut on P is red. (Otherwise, vt is chosen arbitrarily, and this
edge will not be used in our construction.) Let x be such a red vertex (if ut has two neighbours
on P that are red, then select one of them arbitrarily). Let y by the neighbour of x such that
xy is red, and let vt = y. Extend P by deleting the edge xut and adding the edges xy and yut .
Uncolour all red edges incident to y and all red neighbours of y (which, of course, includes
vertex x).

Notice that, in each iteration, mk ≥ n1/2. Indeed, this is true for τ1 < k ≤ τ . On the other hand,
f k ≤ τ1, then jk = εn(1/2)k and so mk =

√
njk ≥

√
n (in fact, mk = Ω(n5/8)).

Let Tk denote the length of the kth iteration of the clean-up algorithm. It remains to prove that
.a.s.

∑
k≤τ Tk = O(

√
εn + n3/4 log2 n). Let Rk be the number of red vertices obtained after step (ii)

of iteration k. Clearly, Rk ≤ mk. On the other hand, each ut is coloured red with probability at least
1 − jk−1/n − 3mk/n ≥ 1 − ε − 3

√
ε ≥ 0.95. Hence, Rk can be stochastically lower bounded by the

inomial random variable Bin(mk, 0.95). By the Chernoff bound, with probability at least 1 − n−1,
k ≥ 0.9mk, as mk ≥ n1/2.
First, we consider iterations k ≤ τ1. Let R̃k be the number of red vertices at the end of step (iii).

ote that the minimum degree property of step (ii) ensures that each unsaturated vertex is adjacent
o at most Rk/jk−1 + 1 ≤ mk/jk−1 + 1 red vertices. Moreover, exactly jk−1 − jk = (1/2)jk−1 vertices
re absorbed in step (iii). As a result,

R̃k ≥ Rk −

(
mk

jk−1
+ 1

)
·
jk−1

2
≥ 0.9mk −

mk

2
−

jk−1

2
≥ 0.3mk,

as jk−1 = 2jk ≤ 2
√

εmk ≤ 0.1mk. It follows that throughout step (iii), there are at least 0.3mk red
ertices. Thus, for each semi-random edge added to the graph during step (iii), the probability that
11
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a path extension can be performed is at least 0.3mk/n = 0.3
√

ε(1/2)k/2. Again, by the Chernoff
bound, with probability at least 1− n−1, the number of semi-random edges added in step (iii) is at
ost

2(jk−1 − jk) ·
2k/2

0.3
√

ε
≤ 7

√
ε(1/2)k/2n.

Combining the number of semi-random edges added in step (ii), it follows that with probability at
least 1 − n−1, Tk ≤ mk + 7

√
ε(1/2)k/2n = 8

√
ε(1/2)k/2n.

Next, consider iterations τ1 < k ≤ τ . In each iteration, exactly one unsaturated vertex gets
bsorbed. The number of semi-random edges added in step (ii) is mk = n1/2. We have argued above
hat with probability at least 1 − n−1, Rk ≥ 0.9mk. Thus, for each semi-random edge added to the
raph, the probability that a path extension can be performed is at least 0.9mk/n = 0.9n−1/2. By the
hernoff bound, with probability at least 1− n−1, the number of semi-random edges added in step
iii) is at most n1/2 log2 n. Thus, with probability at least 1−n−1, Tk ≤ n1/2

+n1/2 log2 n ≤ 2n1/2 log2 n.
By taking the union bound over all k ≤ τ , since τ = O(n1/4), it follows that a.a.s.∑

k≤τ

Tk ≤

∑
k≤τ1

8
√

ε(1/2)k/2n +

∑
τ1<k≤τ

2n1/2 log2 n = O(
√

εn + n3/4 log2 n).

We have shown that a.a.s. by adding O(
√

εn+n3/4 log2 n) additional semi-random edges we can
onstruct a Hamiltonian path P . To complete the job and turn it into a Hamiltonian cycle, let u and

v denote the left and, respectively, the right endpoint of P . We proceed in two stages. In the first
stage, add n1/2 log n semi-random edges utvt where vt is always u, discarding any multiple edges
that could possibly be created. For each such semi-random edge utu, colour the left neighbour of ut
on P blue. In the second stage, add n1/2 log n semi-random edges utvt where vt is always v. Suppose
that some ut = x is blue in the second stage. Then, a Hamiltonian cycle is obtained by deleting xy
from P and adding the edges xv and uy, where y is the right neighbour of x on P . By the Chernoff
bound, a.a.s. a semi-random edge added during the second stage hits a blue vertex, completing the
proof. □

By setting N = 0 we immediately get an algorithm which a.a.s. constructs a Hamiltonian cycle
n α̂n steps, where α̂ ≤ 1.84887. To obtain the better bound in Theorem 1.1, we set N = 100, and
he execution of DegreeGreedy will be analysed in the next subsection.

Theorem 2.6. CHAM ≤ α̂ ≤ 1.84887, where α̂ is defined in (10) with initial conditions for (6)–(9) set
y x(0) = y(0) = ℓ1(0) = ℓ2(0) = 0.

Proof. This follows from Proposition 2.4, the numerical value of α∗, and Lemma 2.5. □

2.5. A degree-greedy algorithm

Let us suppose that after t ≥ 0 steps, we have constructed the graph Gt which contains the
path Pt and a collection of vertex disjoint edges Yt where V (Yt ) ⊆ [n] \ V (Pt ). We refer to V (Pt )
respectively, [n] \ V (Pt )) as the saturated (respectively, unsaturated) vertices of [n].

As before, our algorithm uses path augmentations, and we colour the edges and vertices of Gt
o help keep track of when these augmentations can be made. We now use two colours, namely
ed and blue, to distinguish between edges which are added randomly (red) and greedily (blue).
ur blue edges will be chosen so as to minimize the number of blue edges destroyed by path
ugmentations in future rounds.
We say that x ∈ V (Pt ) is blue, provided it is adjacent to a single blue edge of Gt , and no red

dge. Similarly, x ∈ V (Pt ) is red, provided it is adjacent to a single red edge of Gt , and no blue edge.
inally, we say that x ∈ V (Pt ) is magenta (mixed), provided it is adjacent to a single red edge, and a
ingle blue edge. We denote the blue vertices, red vertices, and magenta (mixed) vertices by Bt ,Rt
nd Mt , respectively, and define Lt := Bt ∪Rt ∪Mt to be the coloured vertices. By definition, Bt ,Rt
nd M are disjoint. It will be convenient to once again define U as the vertices not in P or any
t t t

12
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edge of Yt . Finally, we maintain a set of permissible vertices Qt which indicate which vertices of the
ath are allowed to be coloured blue. Specifically, using the same reasoning as before, we ensure
he following:

(i) |Qt | = max{|V (Pt )| − 5|Lt |, 0}.
(ii) If Lt ̸ = ∅, then each x ∈ Qt satisfies dPt (x,Lt ) ≥ 3.

Upon the arrival of ut+1, there are six main cases our algorithm must handle. The first three
cases involve extending Pt or Yt , whereas the latter three describe how to add edges so that the
ath can be extended in later rounds.

(1) If ut+1 lands in Ut and |Ut | ≥ 2, then choose vt+1 u.a.r. amongst Ut \ {ut+1} and extend Yt .
(2) If ut+1 lands in V (Yt ), then greedily extend Pt .
(3) If ut+1 lands at path distance one from x ∈ Lt , then augment Pt via a coloured edge of x,

where a blue edge is taken over a red edge if possible.
(4) If ut+1 lands in Qt , then choose vt+1 u.a.r. amongst those vertices of Ut with minimum blue

degree. The edge ut+1vt+1 is then coloured blue, and a single blue vertex is created.
(5) If ut+1 lands in Rt , then choose vt+1 u.a.r. amongst those vertices of Ut with minimum blue

degree. The edge ut+1vt+1 is then coloured blue, and a single red vertex is converted to a
magenta (mixed) vertex.

(6) If ut+1 lands in Bt , then choose vt+1 u.a.r. amongst Ut and colour ut+1vt+1 red. This case
converts a blue vertex to a magenta vertex.

In all the remaining cases, we choose vt+1 arbitrarily, and interpret the algorithm as passing on
he round. As in FullyRandomized, we ensure that all of the algorithm’s coloured vertices are
at path distance at least 3 from each other, and we define a coloured vertex to be well-spaced in
the same way. Step t + 1 of the algorithm when ut+1 is drawn u.a.r. from [n] is formally described
by the DegreeGreedy algorithm. We describe how the algorithm chooses vt+1, how it constructs
t+1 and Yt+1, and how it adjusts the colours of Gt+1, thus updating Bt ,Mt and Rt . Note that red

vertices are only created when the blue edges of magenta vertices are uncoloured as a side effect
f path extensions and augmentations (see lines 8 and 25 of DegreeGreedy).
For each t ≥ 0, define the random variables X(t) := |V (Pt )|, B(t) := |Bt |, R(t) := |Rt |,

M(t) := |Mt |, L(t) := |Lt | = B(t) + R(t) + M(t), and Y (t) := |V (Yt )|. For each q ≥ 0 define
Dq(t) to be the number of unsaturated vertices adjacent to precisely q blue edges. We define the
topping time τq to be the smallest t ≥ 0 such that Dj(t) = 0 for all j < q, and Dq(t) > 0. It is easy
o check that τq is well-defined and is non-decreasing in q. By definition, τ0 = 0. Let us refer to
hase q as those t such that τq−1 ≤ t < τq. Observe that during phase q, each unsaturated vertex
i.e., vertex of [n] \ V (Pt )) has blue degree q − 1 or q.

2.6. Analysing phase q

Suppose that τq−1 ≤ t < τq. It will be convenient to denote D(t) := Dq−1(t). Given k1, k2 ≥ 0,
e say that y ∈ [n] \ V (Pt ) is of type (k1, k2), provided it is adjacent to k1 blue edges within Bt and
2 blue edges within Mt . Similarly, x ∈ Bt ∪ Mt is of type (k1, k2), provided its (unique) blue edge
onnects to a vertex of type (k1, k2). We denote the number of unsaturated vertices of type (k1, k2)
y Ck1,k2 (t), the blue vertices of type (k1, k2) by Bk1,k2 (t), and the magenta (mixed) vertices of type
k1, k2) by Mk1,k2 (t). Observe that Bk1,k2 (t) = k1 · Ck1,k2 (t) and Mk1,k2 (t) = k2 · Ck1,k2 (t). Moreover,
j(t) =

∑
k1,k2 :

k1+k2=j
Ck1,k2 (t).

In Section 2.8, we inductively define the functions x, r, y and ck1,k2 for k1 + k2 ≥ 0, as well as a
constant σq ≥ 0, such that the following lemma holds:

Lemma 2.7. A.a.s. τq ∼ σqn for every 0 ≤ q ≤ N.2 Moreover, at step τq, a.a.s.

X(τq) ∼ x(σq)n, R(τq) ∼ r(σq)n, Y (τq) ∼ y(σq)n,
Ck1,k2 (τq) ∼ ck1,k2 (σq)n for all (k1, k2) where k1 + k2 = q.
2 For functions f = f (n) and g = g(n), f ∼ g is shorthand for f = (1 + o(1))g .13
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Algorithm DegreeGreedy . Step t + 1.

1: if ut+1 ∈ Ut and |Ut | ≥ 2 then ▷ greedily extend Yt
2: Choose vt+1 u.a.r. from Ut \ V (Yt ) ∪ {ut+1}.
3: Set Pt+1 = Pt and Yt+1 = Yt ∪ {ut+1vt+1}.
4: else if ut+1y ∈ Yt for some y then ▷ greedily extend the path
5: Let vt+1 be an arbitrarily chosen endpoint of Pt .
6: Update Pt+1 from Pt by adding edges ut+1vt+1 and ut+1y.
7: Set Yt+1 = Yt \ {ut+1y}.
8: Uncolour all of the edges adjacent to ut+1 or y.
9: else if d(ut+1,Lt ) = 1 then ▷ path augment via coloured vertices

10: Let x ∈ Lt be the (unique) coloured vertex adjacent to ut+1
1: if x is red then
2: Denote xy ∈ E(Gt ) the red edge of x.

13: else ▷ x is blue or magenta
4: Denote xy ∈ E(Gt ) the blue edge of x.

15: end if
16: if y ∈ Ut then
17: Set vt+1 = y
8: Update Pt+1 from Pt by adding edges ut+1vt+1, vt+1x and removing edge ut+1x.
9: Set Yt+1 = Yt .
0: else if yy′

∈ Yt then
21: Set vt+1 = y′

2: Update Pt+1 from Pt by adding edges ut+1vt+1, vt+1y, yx and removing edge ut+1x.
3: Set Yt+1 = Yt \ {yy′

}

4: end if
5: Uncolour all of the edges adjacent to y (as well as y′ if applicable).

26: else ▷ construct coloured vertices or pass
27: if ut+1 ∈ Qt ∪ Rt then
28: Choose vt+1 u.a.r. from the vertices of Ut of minimum blue degree.
29: Colour ut+1vt+1 blue. ▷ create a blue or magenta vertex
30: else if ut+1 ∈ Bt then
31: Choose vt+1 u.a.r. from Ut .
32: Colour the edge ut+1vt+1 red. ▷ create a magenta vertex
33: else ▷ pass on using edge ut+1vt+1
34: Choose vt+1 arbitrarily from [n].
35: end if
36: Set Pt+1 = Pt ,Yt+1 = Yt .
37: end if
38: Update Qt+1 if needed, such that |Qt+1| = |V (Pt+1)| − 5|Lt+1|. ▷ update permissible vertices

Although the method in the proof of Lemma 2.7 is similar to that of Lemmas 2.1, 2.2, 2.3 and
Proposition 2.4, the analysis is much more intricate and involved. We postpone the proof until
fterwards, and first complete the proof of Theorem 1.1.

2.7. Proving Theorem 1.1 assuming Lemma 2.7

Proof of Theorem 1.1. Set N = 100. By Lemma 2.7, the execution of DegreeGreedy ends at some
step t0 ∼ σNn. Moreover, X(t0) ∼ x(σN )n, Y (t0) ∼ y(σN )n, R(t0) ∼ r(σN )n and M(t0) ∼ m(σN )n.
Numerical computations show that σN ≈ 1.80249. Let P be the path constructed after the first t0
rounds, Y be the edges of Yt0 , and E be the red edges adjacent to the vertices of Mt0 ∪ Rt0 . By the
definition of DegreeGreedy, in particular by the way that Y is extended, and the way that the
t

14
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red edges are created, Y has the uniform distribution over all possible |Y| pairs over vertices that
re not on the path P; and for each red edge, its end that is not on the path P is also uniformly
istributed. Thus, (P,Y, E) has the distribution required for the analysis of FullyRandomized. Let

x̂ := x(σN ) ≈ 0.99991
ŷ := y(σN ) ≈ 0.0000029724

ℓ̂1 := m(σN ) + r(σN ) ≈ 0.00019429.

Then, x̂, ŷ, and ℓ̂1 satisfy |P| ∼ x̂n, |Y| ∼ ŷn and |E| ∼ ℓ̂1n. (The final equation holds since each
ertex of Mt0 ∪ Rt0 is adjacent to one red edge.)
We next execute FullyRandomized with initial input (P,Y, E). Let α∗ be as defined in (10)

here the initial conditions to the differential equations (6)–(9) are set by x(0) = x̂, ℓ1(0) = ℓ̂1 and
ℓ2(0) = 0. Numerical computations show that α∗

≈ 0.014468. By Proposition 2.4 and the fact that
α∗ < 3, the execution of the first two stages (DegreeGreedy and FullyRandomized) finishes at
ome step (σN + α∗

+ o(1))n ≤ 1.81696n, and the number of unsaturated vertices remaining is
(n). Finally, the clean-up algorithm constructs a Hamiltonian cycle with an additional o(n) steps
y Lemma 2.5. The theorem follows. □

2.8. Proving Lemma 2.7

We once again must first argue that our random variables cannot change drastically in one round
uring phase q.

Lemma 2.8 (Lipschitz Condition – DegreeGreedy). If |∆C(t)| := max k1,k2∈N∪{0}:
k1+k2∈{q−1,q}

|∆Ck1,k2 (t)|, then

ith probability 1 − O(n−1),

max{|∆X(t)|, |∆C(t)|, |∆R(t)|, |∆Y (t)|} = O(log n)

for all τq−1 ≤ t < τq with n − X(t) = Ω(n).

Proof. Since q ≤ N is a constant which does not depend on n, we can apply the same argument to
ound the red edges of each ∆Ck1,k2 (t) as in Lemma 2.1, and then union bound over all k1, k2 ≥ 0
uch that k1 + k2 ∈ {q − 1, q}. □

Let Ht denote the history of the above random variables during the first t rounds. We now state
he conditional expected differences of our random variables, where we assume that τq−1 ≤ t < τq
s such that n − X(t) = Ω(n). It will be convenient to define auxiliary random variables A(t) :=

Y (t)/(1 − X(t)) and Γ (t) := 1 + Y (t)/(1 − X(t)). Then,

E[∆X(t) | Ht ] =
2Y (t)
n

+
2L(t)
n

Γ (t) + O(1/n) (11)

and

E[∆Y (t) | Ht ] = −
2Y (t)
n

+ 2
(
1 −

X(t) − Y (t)
n

)
−

2L(t)
n

A(t). (12)

We omit the proofs of (11) and (12), as the derivation is the same as the analogous equations of
Lemma 2.2. For the remaining random variables, we state the expected differences and derive them
afterwards.

First, consider ∆R(t):

E[∆R(t) | Ht ] =
Y (t)
n

(
2M(t)

n − X(t)
−

2R(t)
n − X(t)

)
−

2(B(t) + M(t))
n

R(t)Γ (t)
n − X(t)

+

∑
j,h:

2Bj,h(t)
n

(
h +

Y (t)
n − X(t)

M(t)
n − X(t)

)

j+h∈{q−1,q}

15
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∑
j,h:

j+h∈{q−1,q}

2Mj,h(t)
n

(
h +

Y (t)
n − X(t)

M(t)
n − X(t)

)

−
2R(t)
n

(
1 +

R(t)Γ (t)
n − X(t)

)
+

2R(t)
n

M(t)Γ (t)
n − X(t)

−
R(t)
n

+ O(1/n). (13)

If k1 + k2 = q − 1, then ∆Ck1,k2 (t) satisfies:

E[∆Ck1,k2 (t) | Ht ] =
Y (t)
n

(
2Mk1−1,k2+1(t)

n − X(t)
· 1k1>0 −

2Ck1,k2 (t)
n − X(t)

−
2Mk1,k2 (t)
n − X(t)

)
+

2(B(t) + M(t))
n

(
Mk1−1,k2+1(t)

n − X(t)
· 1k1>0 −

Mk1,k2 (t)
n − X(t)

)
Γ (t)

−
2(B(t) + M(t))

n
A(t)
2

Ck1,k2 (t)
n − X(t)

−
2Bk1,k2 (t)

n
−

2Mk1,k2 (t)
n

+
2R(t)
n

(
Mk1−1,k2+1(t)

n − X(t)
· 1k1>0 −

Mk1,k2 (t)
n − X(t)

−
Ck1,k2 (t)
n − X(t)

)
Γ (t)

−
(X(t) − 5L(t))

n
Ck1,k2 (t)
D(t)

−
R(t)
n

Ck1,k2 (t)
D(t)

+
Bk1+1,k2−1(t)

n
· 1k2>0 −

Bk1,k2 (t)
n

+ O(1/n). (14)

When k1 + k2 = q, two terms from the above expression are modified slightly, and have their signs
reversed:

E[∆Ck1,k2 (t) | Ht ] =
Y (t)
n

(
2Mk1−1,k2+1(t)

n − X(t)
· 1k1>0 −

2Ck1,k2 (t)
n − X(t)

−
2Mk1,k2 (t)
n − X(t)

)
+

2(B(t) + M(t))
n

(
Mk1−1,k2+1(t)

n − X(t)
· 1k1>0 −

Mk1,k2 (t)
n − X(t)

)
Γ (t)

−
2(B(t) + M(t))

n
A(t)
2

Ck1,k2 (t)
n − X(t)

−
2Bk1,k2 (t)

n
−

2Mk1,k2 (t)
n

+
2R(t)
n

(
Mk1−1,k2+1(t)

n − X(t)
· 1k1>0 −

Mk1,k2 (t)
n − X(t)

−
Ck1,k2 (t)
n − X(t)

)
Γ (t)

+
(X(t) − 5L(t))

n
Ck1−1,k2 (t)

D(t)
+

R(t)
n

Ck1,k2−1(t)
D(t)

+
Bk1+1,k2−1(t)

n
· 1k2>0 −

Bk1,k2 (t)
n

+ O(1/n). (15)

In order to prove the expected differences, we analyse the expected values of the random
ariables ∆R(t) and ∆Ck1,k2 (t) when ut+1 lands in a subset A ⊆ [n] for a number of choices of
. More precisely, we derive tables for E[∆R(t) · 1ut+1∈A | Ht ] and E[∆Ck1,k2 (t) · 1ut+1∈A | Ht ] when
⊆ [n] varies across a number of subsets. Since these are disjoint subsets of [n], and the random
ariables are 0 if ut+1 lands outside of these subsets, we can sum the second column entries to
et the claimed expected differences. Note that the entries of our tables do not contain the often
ecessary O(1/n) term.
In all our below explanations, we abuse notation and simultaneously identify our random

variables as sets (i.e., Ck1,k2 (t) denotes the set of unsaturated vertices of type (k1, k2) after t steps).

Proof Sketch of Table 1. We provide complete proofs only of row entries 2 and 3, as the remaining
ntries follow similarly.
In order to see the second entry, expose the blue edges adjacent to Mt , and the red edges

djacent to Rt . If we then fix an arbitrary edge yy′
∈ Yt , we know that it is distributed u.a.r. amongst

[n]\V (Pt )
)
. Thus, in expectation there are 2M(t)/(n− X(t)) blue edges adjacent to the vertices of yy′.
2

16
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Table 1
Expected changes to ∆R(t).
A ⊆ [n] E[∆R(t) · 1ut+1∈A | Ht ]

Ut 0
V (Yt ) Y (t)

n

(
2M(t)
n−X(t) −

2R(t)
n−X(t)

)
Path distance 1 from Bt −

2B(t)
n

R(t)Γ (t)
n−X(t) +

∑
j,h:

j+h∈{q−1,q}

2Bj,h(t)
n

(
h +

Y (t)
n−X(t)

M(t)
n−X(t)

)
Path distance 1 from Mt −

2M(t)
n

R(t)Γ (t)
n−X(t) +

∑
j,h:

j+h∈{q−1,q}

2Mj,h(t)
n

(
h +

Y (t)
n−X(t)

M(t)
n−X(t)

)
Path distance 1 from Rt −

2R(t)
n

(
1 +

R(t)Γ (t)
n−X(t)

)
+

2R(t)
n

M(t)Γ (t)
n−X(t)

Rt
−R(t)

n

Now, if ut+1 lands on y or y′, then a path augmentation is made, and these blue edges are destroyed,
thus converting 2M(t)/(n−X(t)) blue vertices to red vertices in expectation. Since this event occurs
with probability Y (t)/n, this accounts for the Y (t)

n
2M(t)
n−X(t) term. An analogous argument applies to the

−Y (t)
n

2R(t)
n−X(t) term.

Consider now the third row entry, where we shall first derive the −
2B(t)
n

R(t)
n−X(t)

(
1 +

Y (t)
n−X(t)

)
term.

uppose that b is a blue vertex, with blue edge bx. Observe that there are R(t)/(n− X(t)) red edges
djacent to x in expectation. Thus, R(t)

n−X(t) red edges are destroyed in expectation if ut+1 lands next
o a blue vertex. Since ut+1 lands next to a blue vertex with probability 2B(t)/n, the −

2B(t)
n

R(t)
n−X(t)

erm follows. The −
2B(t)
n

R(t)
n−X(t)

Y (t)
1−X(t) term follows by observing that x = y for some yy′

∈ Yt with
probability Y (t)

1−X(t) . When this occurs, by computing the expected number of red edges adjacent to
′, an additional 2B(t)

n
R(t)

n−X(t) red edges are destroyed in expectation. These two cases account for the

−
2B(t)
n

R(t)
n−X(t)

(
1 +

Y (t)
n−X(t)

)
term.

We now derive the term:∑
j,h:

j+h∈{q−1,q}

2Bj,h(t)
n

(
h +

Y (t)
n − X(t)

M(t)
n − X(t)

)
.

Suppose that ut+1 lands next to a blue vertex of Bj,h(t), which occurs with probability 2Bj,h(t)/n.
Let b be such a vertex, and denote its blue edge by bx. Now, by definition, there are h magenta
ertices whose blue edge is also incident to x. We claim that all h of these magenta vertices will be
eclassified as red vertices provided the following event occurs:

• All the red edges of these h magenta vertices are not adjacent to x.

The latter occurs with probability
(
1 −

1
n−X(t)

)h
= 1−O(1/n), since h is a constant, and n− X(t) =

(n). By summing over j, h ∈ {q − 1, q}, this yields the expression
∑

j,h:
j+h∈{q−1,q}

2hBj,h(t)
n + O

( 1
n

)
, and

the
∑

j,h:
j+h∈{q−1,q}

2Bj,h(t)
n

Y (t)
n−X(t)

M(t)
n−X(t) term follows similarly. □

Consider now ∆Ck1,k2 (t), where k1 + k2 = q − 1.

Proof Sketch of Table 2. Assume that k1, k2 are both non-zero, as this is the most involved case.
e provide complete proofs of row entries 2,5 and 6.
We begin with row entry 2. Observe that ut+1 lands on a vertex of an edge of Yt , say yy′, with

probability Y (t)/n. At this point, a path augmentation occurs, and yy′ is added to the current path
Pt , thus destroying the red and blue edges adjacent to y and y′. We claim that

E[∆Ck1,k2 (t) | Ht , {ut+1 ∈ V (Yt )}] =
2Mk1−1,k2+1(t)

n − X(t)
· 1k1>0 −

2Ck1,k2 (t)
n − X(t)

−
2Mk1,k2 (t)
n − X(t)

.

17
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Table 2
Expected changes to ∆Ck1,k2 (t) for k1 + k2 = q − 1.

A ⊆ [n] E[∆Ck1,k2 (t) · 1ut+1∈A | Ht ]

Ut 0
V (Yt ) Y (t)

n

(
2Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
2Ck1 ,k2 (t)
n−X(t) −

2Mk1 ,k2 (t)
n−X(t)

)
Path distance 1 from Bt

2B(t)
n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1 ,k2 (t)
n−X(t)

)
Γ (t) −

2B(t)
n

A(t)
2

Ck1 ,k2 (t)
n−X(t) −

2Bk1 ,k2 (t)
n

Path distance 1 from Mt
2M(t)

n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1 ,k2 (t)
n−X(t)

)
Γ (t) −

2M(t)
n

A(t)
2

Ck1 ,k2 (t)
n−X(t) −

2Mk1 ,k2 (t)
n

Path distance 1 from Rt
2R(t)
n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1 ,k2 (t)
n−X(t) −

Ck1 ,k2 (t)
n−X(t)

)
Γ (t)

Qt −
(X(t)−5L(t))

n
Ck1 ,k2 (t)

D(t)

Rt −
R(t)
n

Ck1 ,k2 (t)
D(t)

Bt −
Bk1 ,k2 (t)

n +
Bk1+1,k2−1(t)

n · 1k2>0

Let us focus on the −
2Ck1,k2 (t)
n−X(t) −

2Mk1,k2 (t)
n−X(t) term. In order to see this, fix an unsaturated vertex

c of type (k1, k2). We shall prove that c is destroyed (i.e., removed from Ck1,k2 (t)) with probability
(k2+1)/(n−X(t))+O(1/n2), conditional on Ht and {ut+1 ∈ V (Yt )}. By summing over all c ∈ Ck1,k2 (t)
and using the fact that k2 · Ck1,k2 (t) = Mk1,k2 (t), this yields the −

2Ck1,k2 (t)
n−X(t) −

2Mk1,k2 (t)
n−X(t) term. The

2Mk1−1,k2+1(t)
n−X(t) term follows similarly, where reclassifying unsaturated vertices of type (k1 −1, k2 +1)

to type (k1, k2) causes Ck1,k2 (t) to increase.
Let us now prove the above claim regarding c ∈ Ck1,k2 (t), where we condition on Ht and ut+1 = y

or some yy′
∈ Yt in the below explanations. Suppose that m1, . . . ,mk2 are the magenta neighbours

f c of type (k1, k2). By definition, cmi is coloured blue, and each mi also has a red edge mixi for
= 1, . . . , k2. Observe that if either y or y′ is equal to c , then c will be added to the path (and thus
estroyed). Similarly, if xi is added to the path, then the edge mixi is no longer red. In particular, mi
s converted to a blue vertex, and so the type of c is reclassified as (k1 + 1, k2 − 1). In either case, c
s destroyed. Now, x1, . . . , xk2 are distributed u.a.r. and independently amongst [n] \ V (Pt ), and so
he vertices c, x1, . . . , xk2 are distinct with probability

∏k2
i=1

(
1 −

i
n−X(t)

)
= 1 − O(1/n), where we

have used the fact that k2 is a constant and n− X(t) = Ω(n). Moreover, yy′ is distributed u.a.r. and
ndependently amongst

(
[n]\V (Pt )

2

)
. Thus, conditional on the vertices c, x1, . . . , xk2 being distinct, c is

destroyed with probability
2(k2 + 1)
n − X(t)

−

(k2+1
2

)(n−X(t)
2

) =
2(k2 + 1)
n − X(t)

− O(1/n2).

As such, c is destroyed with the claimed probability of 2(k2 + 1)/(n − X(t)) + O(1/n2).
Consider row entry 6. We begin by deriving the expression:

2R(t)
n

(
1 +

Y (t)
1 − X(t)

) (
−

Mk1,k2 (t)
n − X(t)

−
Ck1,k2 (t)
n − X(t)

)
. (16)

First, condition on the event when ut+1 lands at path distance one from some (red) vertex r ∈ Rt .
This occurs with probability 2R(t)/n. Let rx be the unique red edge of r , where x ∈ [n] \V (Pt ). We also
condition on the event that x = y for some yy′

∈ Yt , which occurs with probability Y (t)/(1− X(t)).
Observe that when these events occur, DegreeGreedy adds x and y′ to the path Pt via a path
ugmentation, and thus destroys the red and blue edges adjacent to x and y′.
Fix a vertex c ∈ Ck1,k2 (t). Conditional on the above events, we claim that c is destroyed with

robability 2(k2 + 1)/(n− X(t))+O(1/n2). To see this, observe that xy′ is distributed u.a.r. amongst
[n]\V (Pt )

2

)
. Thus, the same argument used to derive row entry 2 applies in this case. By summing

ver all c ∈ Ck1,k2 (t) (and multiplying by 2R(t)/n and Y (t)/(1 − X(t))), this yields the term
2R(t) Y (t)

(
−

2Mk1,k2 (t)
−

2Ck1,k2 (t)
)

.

n 1 − X(t) n − X(t) n − X(t)

18
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Table 3
Expected changes to ∆Ck1,k2 (t) for k1 + k2 = q.

A ⊆ [n] E[∆Ck1,k2 (t) · 1ut+1∈A | Ht ]

Ut 0
V (Yt ) Y (t)

n

(
2Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
2Ck1 ,k2 (t)
n−X(t) −

2Mk1 ,k2 (t)
n−X(t)

)
Path distance 1 from Bt

2B(t)
n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1 ,k2 (t)
n−X(t)

)
Γ (t) −

2B(t)
n

A(t)
2

Ck1 ,k2 (t)
n−X(t) −

2Bk1 ,k2 (t)
n

Path distance 1 from Mt
2M(t)

n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1 ,k2 (t)
n−X(t)

)
Γ (t) −

2M(t)
n

A(t)
2

Ck1 ,k2 (t)
n−X(t) −

2Mk1 ,k2 (t)
n

Path distance 1 from Rt
2R(t)
n

(
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 −
Mk1 ,k2 (t)
n−X(t) −

Ck1 ,k2 (t)
n−X(t)

)
Γ (t)

Qt
(X(t)−5L(t))

n
Ck1−1,k2 (t)

D(t)

Rt
R(t)
n

Ck1 ,k2−1(t)
D(t)

Bt −
Bk1 ,k2 (t)

n +
Bk1+1,k2−1(t)

n · 1k2>0

In order to complete the derivation of (16), we consider the event when x is not a vertex of an edge
f Yt . In this case, we only need to account for the red and blue edges destroyed when x is added
o the path. This yields the following term:

2R(t)
n

(
1 −

Y (t)
1 − X(t)

) (
−

Mk1,k2 (t)
n − X(t)

−
Ck1,k2 (t)
n − X(t)

)
.

The remaining term 2R(t)
n

(
1 +

Y (t)
1−X(t)

)
Mk1−1,k2+1(t)

n−X(t) · 1k1>0 missing from (16) follows by a similar
argument, where we destroy vertices of Ck1−1,k2+1(t) to create new vertices of Ck1,k2 (t).

Let us now consider row entry 6 when ut+1 lands on a permissible vertex x ∈ Qt . Clearly, this
vent occurs with probability |Qt |/n = (X(t) − 5L(t))/n. In this case, the algorithm chooses vt+1
.a.r. amongst D(t), the unsaturated vertices of minimum degree q − 1, and colours the edge xvt+1

blue. Thus, if we fix c ∈ Ck1,k2 (t), then c will be chosen with probability 1/D(t) since k1+k2 = q−1.
n this case, c gains a blue edge connected to a blue vertex, and thus will be reclassified as type
k1 + 1, k2). Thus, each c ∈ Ck1,k2 (t) will be reclassified with probability X(t)−5L(t)

n
1

D(t) . By summing

ver all c ∈ Ck1,k2 (t), we get the −
(X(t)−5L(t))

n
Ck1,k2 (t)

D(t) term. □

Finally, when k1 + k2 = q, the expressions in rows 6 and 7 are modified slightly.

Proof Sketch of Table 3. The explanations for the case of k1 + k2 = q are identical to those of
k1 + k2 = q − 1, except that vertices of type (k1, k2) are created (instead of destroyed) when ut+1
atisfies ut+1 ∈ Qt or ut+1 ∈ Rt . □

We are now ready to inductively prove Lemma 2.7. Firstly, when q = 0, by definition τ0 = 0,
nd so σ0 := 0 trivially satisfies the conditions of Lemma 2.7. Let us now assume that q ≥ 1 and for

each of 0 ≤ i ≤ q−1 we have defined σi and functions x, r, y and cj,h on [0, σi] for each j, h ≥ 0 with
j + h = i, and Lemma 2.7 holds for all 0 ≤ i ≤ q − 1. We shall define σq which satisfies σq > σq−1,
extend each x, r, y and cj,h to [0, σq], and define new functions ck1,k2 on [0, σq] for k1 + k2 = q. We
shall then prove that these functions satisfy the assertion of Lemma 2.7 with respect to τq and σq,
hich will complete the proof of the lemma.
Fix a sufficiently small constant ε > 0, and define the bounded domain Dε as the points

(s, x, y, r, (cj,h)j+h∈{q−1,q}) such that

σq−1 − 1 < s < 3, |x| < 1 − ε , |y| < 2, |r| < 2, |cj,h| < 2, ε <
∑

j,h: j+h=q−1

cj,h < 2.

It will be convenient to define auxiliary functions to simplify our equations below. Specifically, set
bk1,k2 = k1 · ck1,k2 and mk1,k2 := k2 · ck1,k2 , as well as b =

∑
j,h:

j+h∈{q−1,q}
bj,h and m =

∑
j,h:

j+h∈{q−1,q}
mj,h.

inally, set ℓ = b + m + r and d =
∑

j,h:
j+h=q−1

cj,h, as well as γ = 1 + y/(1 − x) and a = 2y/(1 − x).
bserve the following system of differential equations:
19



A. Frieze, P. Gao, C. MacRury et al. European Journal of Combinatorics 126 (2025) 104122

b

a
‘
‘

a
a

x′
= 2(y + ℓγ ) (17)

y′
= −2y + 2 (1 − x − y) − 2aℓ, (18)

and

r ′
= y

(
2m

1 − x
−

2r
1 − x

)
− 2(b + m)

rγ
1 − x

+

∑
j,h:

j+h∈{q−1,q}

2bj,h

(
h +

y
1 − x

m
1 − x

)

+

∑
j,h:

j+h∈{q−1,q}

2mj,h

(
h +

y
1 − x

m
1 − x

)

− 2r
(
1 +

rγ
1 − x

)
+ 2r

mγ

1 − x
− r + O(1/n). (19)

If k1 + k2 = q − 1, then:

c ′

k1,k2 = y
(
2mk1−1,k2+1

1 − x
· 1k1>0 −

2ck1,k2

1 − x
−

2mk1,k2

1 − x

)
+ 2(b + m)

(
mk1−1,k2+1

1 − x
· 1k1>0 −

mk1,k2

1 − x

)
γ

− 2(b + m)
a
2
ck1,k2

1 − x
− 2bk1,k2 − 2mk1,k2

+ 2r
(
mk1−1,k2+1

1 − x
· 1k1>0 −

mk1,k2

1 − x
−

ck1,k2

1 − x

)
γ

− (x − 5ℓ)
ck1,k2

d
− r

ck1,k2

d
+ bk1+1,k2−1 · 1k2>0 − bk1,k2 . (20)

Otherwise, that is, if k1 + k2 = q, then:

c ′

k1,k2 = y
(
2mk1−1,k2+1

1 − x
· 1k1>0 −

2ck1,k2

1 − x
−

2mk1,k2

1 − x

)
+ 2(b + m)

(
mk1−1,k2+1

1 − x
· 1k1>0 −

mk1,k2

1 − x

)
γ

− 2(b + m)
a
2
ck1,k2

1 − x
− 2bk1,k2 − 2mk1,k2

+ 2r
(
mk1−1,k2+1

1 − x
· 1k1>0 −

mk1,k2

1 − x
−

ck1,k2

1 − x

)
γ

+ (x − 5ℓ)
ck1−1,k2

d
+ r

ck1,k2−1

d
+ bk1+1,k2−1 · 1k2>0 − bk1,k2 . (21)

The right-hand side of each of the above equations is Lipchitz on the domain Dε , as d is bounded
elow by ε, and |x| < 1 − ε. Define

TDε := min{t ≥ 0 : (t/n, X(t)/n, Y (t)/n, R(t)/n, (Ck1,k2 (t)/n)k1+k2∈{q,q−1}) /∈ Dε}.

By the inductive assumption, the ‘Initial Condition’ of Theorem A.1 is satisfied for some λ = o(1)
nd values σq−1, x(σq−1), r(σq−1) and cj,h(σq−1), where cj,h(σq−1) := 0 for j + h = q. Moreover, the
Trend Hypothesis’ is satisfied with δ = O(1/n), by the expected differences of (11)–(15). Finally, the
Boundedness Hypothesis’ is satisfied with β = O(log n) and β ′

= O(n−1) by Lemma 2.8. Thus, by
Theorem A.1, for every ξ > 0, a.a.s. X(t) = nx(t/n)+o(n), R(t) = nr(t/n)+o(n), Y (t) = ny(t/n)+o(n)
nd Ck1,k2 (t) = nck1,k2 (t/n)+ o(n) uniformly for all σq−1n ≤ t ≤ (σ (ε)− ξ )n, where x, r, y and ck1,k2
re the unique solution to (17)–(21) with the above initial conditions, and σ (ε) is the supremum

of s to which the solution can be extended before reaching the boundary of D . This immediately
ε
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yields the following lemma.

Lemma 2.9 (Concentration of DegreeGreedy’s Random Variables). For every ξ > 0, a.a.s. for all
τq−1 ≤ t ≤ (σ (ε) − ξ )n and k1, k2 ≥ 0 such that k1 + k2 ∈ {q, q − 1},

max{|X(t) − x(t/n)n|, |Y (t) − y(t/n)n|, |R(t) − r(t/n)n|, |Ck1,k2 (t) − ck1,k2 (t/n)n|} = o(n).

As Dε ⊆ Dε′ for every ε > ε′, σ (ε) is monotonically nondecreasing as ε → 0, and so
q := limε→0+ σ (ε) exists. Moreover, the derivatives of the functions x, r, y and ck1,k2 are uniformly
ounded on (σq−1, σq), as d =

∑
j,h:

j+h=q−1
cj,h, so cj,h/d ≤ 1 for j + h = q − 1. This implies that the

unctions are uniformly continuous, and so (uniquely) continuously extendable to [σq−1, σq]. The
ollowing limits thus exist:

x(σq) := lim
s→σq−

x(s) (22)

y(σq) := lim
s→σq−

y(s) (23)

r(σq) := lim
s→σq−

r(s) (24)

ck1,k2 (σq) := lim
s→σq−

ck1,k2 (s). (25)

The random variables |R(t)/n|, |Y (t)/n| and |Ck1,k2 (t)/n| for k1 + k2 ∈ {q, q − 1} are bounded by
1 for all t . Thus, when t/n approaches σq, X(t)/n approaches 1, t/n approaches 3, or D(t)/n :=∑

j,h:
j+h=q−1

Cj,h(t)/n approaches 0. Formally, we have the following proposition:

Proposition 2.10. For every ε > 0, there exists ξ > 0 such that a.a.s. one of the following holds.

• D(t) < εn for all t ≥ (σq − ξ )n;
• X(t) > (1 − ε)n for all t ≥ (σq − ξ )n;
• σq = 3.

The ordinary differential equations (17)–(21) again do not have an analytical solution. However,
umerical solutions show that σq < 3, and x(σq) < 1. Thus, after executing DegreeGreedy for
= σqn + o(n) steps, there are D(t) < εn vertices of type q − 1 remaining for some ε = o(1). At
his point, by observing the numerical solution (22)–(25) at σq, we know that there exists some
absolute constant 0 < p < 1 such that (X(t) − 5L(t))/n ≥ p, where we recall that L(t) counts the
otal number of coloured vertices at time t . Hence, at each step, some vertex of type q−1 becomes
f type q with probability at least p. Thus, by applying Chernoff’s bound, one can show that a.a.s.

after another O(εn/p) = o(n) rounds, all vertices of type q − 1 are destroyed. It follows that a.a.s.
|τq/n − σq| = o(1), and so Lemma 2.7 is proven.

3. Proof of Theorem 1.2

Suppose that Gt is the graph constructed by a strategy after t rounds, whose edges are (ui, vi)ti=1.
hen proving Theorem 1.2, it is convenient to refer to the random vertex ui as a square, and vi as
circle so that every edge in Gt joins a square with a circle. Recall that for a vertex x ∈ [n], we

say that the square ui lands on x, or that x is hit/covered by ui. We extend the analogous terminology
o circles.

We begin with the following observations. Suppose that H is a Hamiltonian cycle created in the
rocess. Then,

(O1) H uses exactly n squares;
(O ) H uses at most 2 squares on each vertex;
2
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(O3) Suppose (ui, vi) is an edge of Gt , and vi received at least two squares. Then, either H uses at
most one square on vi, or H does not contain the edge (ui, vi).

The first two observations above are straightforward. For (O3), notice that if H uses exactly 2 squares
n vi, then these 2 squares correspond to 2 edges in H that are incident to vi. Moreover, neither of
hese edges can be (ui, vi), as ui is the square of (ui, vi). Thus, the edge (ui, vi) cannot be used by H
s vi has degree 2 in H .
Define Zx as the number of squares on vertex x ∈ [n]. The observation (O2) above indicates the

onsideration of the random variable

Z =

n∑
x=1

(
1Zx=1 + 2 · 1Zx≥2

)
= 2n −

n∑
x=1

(
2 · 1Zx=0 + 1Zx=1

)
,

which counts the total number of squares that can possibly contribute to H , truncated at 2 for each
ertex. List (O3) above indicates the consideration of the following two sets of structures. Let W1

be the set of pairs of vertices (x, y) at time t such that

(a) x receives its first square at some step i < t , and y receives the corresponding circle in the
same step;

(b) no more squares land on x after step i;
(c) at least two squares land on y after step i.

Let W2 be the set of pairs of vertices (x, y) at time t such that

(a) x receives a square at some step i < t , and y receives the corresponding circle in the same
step;

(b) x receives exactly two squares (the other square may land on x either before or after step i);
(c) at least two squares land on y after step i.

Note that for every (x, y) ∈ W1, at most 2 squares on x and y together can be used in H , although
and y together contribute 3 to the value of Z . Similarly, for every (x, y) ∈ W2, at most 3 squares
n x and y together can be used in H , although x and y together contribute 4 to the value of Z . We
rove the following upper bound on the total number of squares that can possibly contribute to the
onstruction of H .
Let

T1 = {((x1, y1), (x2, y2)) ∈ W1 × W2 : y1 = x2}
T2 = {((x1, y1), (x2, y2)) ∈ W2 × W2 : y1 = x2}.

Let W := |T1| + |T2|.

Claim 3.1. The total number of squares contributing to H is at most Z − |W1| − |W2| + W.

Proof of Claim 3.1. By the discussions above, the total number of squares contributing to H is at
ost Z− |W1| − |W2| +Z ′ where Z ′ accounts for double counting caused by distinct (x1, y1), (x2, y2) ∈

1 ∪ W2 where {x1, y1} ∩ {x2, y2} ̸ = ∅. We bound Z ′ by W by considering the following cases.
Case 1: We first consider the case that (x1, y1), (x2, y2) ∈ W1 where (x1, y1) ̸ = (x2, y2) and

x1, y1} ∩ {x2, y2} ̸ = ∅. The only possible situation is y1 = y2. In this case, only 2 squares out of
he four squares on x1, x2 and y1 that were counted by Z can contribute to H; hence there is no
ouble counting (i.e. the offset is −2 as correctly carried out in −|W1| − |W2|).
Case 2: The second case involves ((x1, y1), (x2, y2)) ∈ W1 × W2 where {x1, y1} ∩ {x2, y2} ̸ = ∅. By

efinition, x1 ̸ = x2 and x1 ̸ = y2. We consider the two possible subcases:
Case 2’, x2 = y1: In this case, there are 5 squares on the three vertices x1, y1 = x2, and y2 that

ere counted by Z , and at most 4 can contribute to H by using the two squares on y1 = x2 and
the two squares on y2. Thus, each such structure causes one double counting and this explains the
erm |T | in W ;
1
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Case 2’’, y1 = y2: In this case, there are 5 squares on the three vertices x1, x2, and y1 = y2 that
were counted by Z , and at most 3 can contribute to H . Thus, there is no double counting in this
subcase.

Case 3: The third case involves (x1, y1), (x2, y2) ∈ W2 where (x1, y1) ̸ = (x2, y2) and {x1, y1} ∩
x2, y2} ̸ = ∅. We consider the two possible subcases:

Case 3’, y1 = x2 (and symmetrically y2 = x1): in this subcase, at most 5 squares out of the 6
squares on the three vertices that were counted by Z can be used to construct H (by using two
squares on x1; two squares on y2 and one square on y1 = x2). Note also that for the two pairs of
edges (x1, y1) and (x2, y2) considered here, we may always label them so that y1 = x2. This explains
the |T2| term in W .

Case 3’’, y1 = y2 or x1 = x2: at most 4 squares out of the 6 squares on the three vertices that
ere counted by Z can be used to construct H; thus there is no double counting in this case. □

The random variable Z is well understood. From the limiting Poisson distribution of the number
f squares in a single vertex, we immediately get that, a.a.s., Z ∼ (2 − 2e−s

− e−ss)n for s := t/n.
We will estimate the expectation of |W1|, |W2|, |T1|, |T2| as well as the concentration of these

random variables. However, concentration may fail if the semi-random process uses a strategy
which places many circles on a single vertex. Intuitively, placing many circles on a single vertex is
not a good strategy for quickly building a Hamiltonian cycle, as it wastes many edges. To formalize
this idea, let µ :=

√
n (indeed, choosing any µ such that µ → ∞ and µ = o(n) will work). We say

hat a strategy for the semi-random process is µ-well-behaved up until step t , if no vertex receives
ore than µ circles in the first t steps. In [3, Definition 3.2 – Proposition 3.4], it was proven that it is
ufficient to consider µ-well-behaved strategies in the first t = O(n) steps for establishing a lower
ound on the number of steps needed to build a perfect matching. These definitions and proofs can

be easily adapted for building Hamilton cycles in an obvious way. We thus omit the details and
only give a high-level explanation below.

The key idea is that within t = O(n) steps of any semi-random process, the number of vertices
that received more than µ circles is at most O(n/µ) = o(n). Therefore, if a Hamiltonian cycle C
s built in t steps, then the subgraph H of C induced by the set S of vertices that received at
ost µ circles in Gt is a collection of paths spanning all vertices in S which must also contain
− O(n/µ) = (1 − o(1))n edges. We call such a pair (S,H) an approximate Hamiltonian cycle. It

ollows from the above argument that it takes at least as long time to build a Hamiltonian cycle
s to build an approximate Hamiltonian cycle. It is then easy to show by a coupling argument
hat if a strategy builds an approximate Hamiltonian cycle in t = O(n) steps, then there exists a
ell-behaved strategy that builds an approximate Hamiltonian cycle in t steps as well. Note that
bservations (O2)–(O3) hold for approximate Hamiltonian cycles, and (O1) holds for approximate
amiltonian cycles with n replaced by (1− o(1))n. Thus, the following condition has to be satisfied
t the time when an approximate Hamiltonian cycle is built:

Z − |W1| − |W2| + W ≥ (1 − o(1))n.

We now estimate the sizes of W1, W2, T1, and T2 in the semi-random process when executing a
ell-behaved strategy S. Crucially, the sizes of these sets do not rely on the decisions made by S.

Recall that (GS
s )s≥0 denotes the sequence of graphs produced by S.

Lemma 3.2. Suppose S is µ-well-behaved. For every t = Θ(n), a.a.s. the following holds in GS
t ,

Z − |W1| − |W2| + W ∼ f (s)n,

where s := t/n and f (s) is defined as in Theorem 1.2.

Proof. Suppose S is µ-well-behaved until time t = Θ(n). We shall prove that a.a.s. the following
roperties hold for GS

t :

|W1| ∼ n
∑ 1

n

(
1 −

1
n

)t ∑ 1
n2

(
1 −

1
n

)j2
(26)
i≤t i<j1<j2≤t
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o
1
(
t
i
t

W
n

e

o
f

y
s

c

|W2| ∼ n
∑

i1<i2≤t

1
n2

(
1 −

1
n

)t
⎛⎝ ∑

i1<j1<j2≤t

1
n2

(
1 −

1
n

)j2
+

∑
i2<j1<j2≤t

1
n2

(
1 −

1
n

)j2
⎞⎠ (27)

|T1| ∼ n
∑
i≤t

1
n

(
1 −

1
n

)t ∑
i<j1<j2≤t

1
n2

(
1 −

1
n

)t

×

⎛⎝ ∑
j1<h1<h2≤t

1
n2

(
1 −

1
n

)h2
+

∑
j2<h1<h2≤t

1
n2

(
1 −

1
n

)h2
⎞⎠ (28)

|T2| ∼ n
∑

i1<i2≤t

1
n2

(
1 −

1
n

)t ∑
i1<j1<j2≤t

1
n2

(
1 −

1
n

)t

×

⎛⎝ ∑
j1<h1<h2≤t

1
n2

(
1 −

1
n

)h2
+

∑
j2<h1<h2≤t

1
n2

(
1 −

1
n

)h2
⎞⎠

+

∑
i1<i2≤t

1
n2

(
1 −

1
n

)t ∑
i2<j1<j2≤t

1
n2

(
1 −

1
n

)t

×

⎛⎝ ∑
j1<h1<h2≤t

1
n2

(
1 −

1
n

)h2
+

∑
j2<h1<h2≤t

1
n2

(
1 −

1
n

)h2
⎞⎠ . (29)

We prove (26) and briefly explain the expressions in (27)–(29) whose proofs are similar to that
f (26). Fix a vertex x ∈ [n] and a square ui for i ≤ t . The probability that ui lands on x in step i is
/n. Condition on this event. The probability that x receives no squares in any steps other than i is
1 − 1/n)t−1

∼ (1 − 1/n)t . Let y be the vertex which the strategy chooses to pair ui with. Fix any
wo integers i < j1 < j2 ≤ t , the probability that y receives its first two squares at times j1 and j2
s asymptotically n−2(1 − 1/n)j2 . Summing over all possible values of i, j1, j2 and multiplying by n,
he number of choices for x, gives E|W1|.

For concentration of |W1| we prove that E|W1|
2

∼ (E|W1|)2. For any pair of ((x1, y1), (x2, y2)) in
1 × W1, either x1, y1, x2, y2 are pairwise distinct, or y1 = y2. It is easy to see that the expected
umber of pairs where x1, y1, x2, y2 are pairwise distinct is asymptotically

n2
∑
i1≤t
i2≤t

1
n2

(
1 −

1
n

)2t ∑
i1≤j1<j2≤t
i2≤h1<h2≤t

1
n4

(
1 −

1
n

)j2+h2
∼ (E|W1|)2.

The expected number of pairs where y1 = y2 is at most µn as there are most n choices for x1 and
given (x1, y1), there can be at most µ choices for (x2, y2) since S is µ-well-behaved. Since µ = o(n),
µn = o(n2) which is o((E|W1|)2). Thus we have verified that E|W1|

2
∼ (E|W1|)2 and thus by the

second moment method, a.a.s. |W1| ∼ E|W1|.
The proofs for the expectation and concentration of |W2|, |T1| and |T2| are similar. We briefly

xplain the expressions in (27)–(29):
In (27), i1 and i2 denote the two steps at which x receives a square. Since there are two squares

n x, there are two choices of circles, namely vi1 and vi2 . The two summations over (j1, j2) accounts
or the two choices of vi1 and vi2 , depending on which is to be covered by two squares. Thus, j1 and
j2 denote the steps where the first two squares on vi1 or vi2 arrive.

In (28), i denotes the step where x1 receives its only square; j1 and j2 denote the two steps where
1 = x2 receives its two squares. Hence, there are two choices for y2, and h1 and h2 denote the two
teps of the first two squares y2 receives.
In (29), i1 and i2 denote the two steps where x1 receives its two squares – hence there are two

hoices for y1. Integers j1 and j2 denote the two steps where y1 = x1 receives its two squares –
hence there are two choices for y . Finally, h and h denote the steps where y receives its first
2 1 2 2
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F
s
i
g
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f
t
t

a
f
e

two squares.
By applying the above equations, we deduce that for t = sn,

|W1| ∼ ne−s
∫ s

0
dx

∫ s

x
dy1

∫ s

y1

e−y2dy2 = ne−s
(
1 −

e−ss2

2
− e−ss − e−s

)
|W2| ∼ ne−s

∫ s

0
dx1

∫ s

x1

dx2

(∫ s

x1

dy1

∫ s

y1

e−y2dy2 +

∫ s

x2

dy1

∫ s

y1

e−y2dy2

)
= ne−s

(
s − e−ss2 −

e−ss3

2
− e−ss

)
|T1| ∼ ne−2s

∫ s

0
dx

∫ s

x
dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ s

z1

e−z2dz2

)
= ne−2s

(
−1 + s −

e−ss3

3
−

e−ss2

2
−

e−ss4

8
+ es

)
|T2| ∼ ne−2s

∫ s

0
dx1

∫ s

x1

dx2

∫ s

x1

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ t

z1

e−z2dz2

)
+ ne−2s

∫ s

0
dx1

∫ s

x1

dx2

∫ s

x2

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ s

z1

e−z2dz2

)
= ne−2s

(
−s + s2 − e−ss

(
s4

8
+

s3

3
+

s2

2
− 1

))
.

It follows now that Z − |W1| − |W2| + W ∼ f (s)n where we recall that

f (s) = 2 + e−3s(s + 1)
(
1 −

s2

2
−

s3

3
−

s4

8

)
+ e−2s

(
2s +

5s2

2
+

s3

2

)
− e−s (3 + 2s) .

This finishes the proof of the lemma. □

Proof of Theorem 1.2. Recall that β is the positive root of f (s) = 1. Then, for every ε > 0,
− |W1| − |W2| +W ≤ (1−O(ε))n a.a.s. in GS

(β−ε)n for any µ-well-behaved S . Therefore, CHAM ≥ β . □

4. Conclusion and open problems

We have made significant progress on reducing the gap between the previous best upper and
ower bounds on CHAM. That being said, we do not believe that any of our new bounds are tight.
or instance, in the case of our lower bound, one could study the appearance of more complicated
ubstructures which prevent any strategy from building a Hamiltonian cycle. One way to likely
mprove the upper bound would be to analyse an adaptive algorithm whose decisions are all made
reedily. In the terminology of DegreeGreedy, when a (second) square lands on a blue vertex,
hoose the edge greedily chosen amongst unsaturated vertices of minimum blue degree (as opposed
o u.a.r.). Unfortunately, it seems challenging to analyse this algorithm via the differential equation
ethod.
Another direction is to understand which graph properties exhibit sharp thresholds. Given

roperty P , the definition of CP ensures that there exists a strategy S∗ such that for all ε > 0, GS∗

t (n)
atisfies P a.a.s. for t ≥ (CP +ε)n. On the other hand, GS∗

t (n) may satisfy P with constant probability
or t ≤ (CP −ε)n without contradicting the definition of CP . For P to have a sharp threshold means
hat, for every strategy S and ε > 0, if t ≤ (CP −ε)n then, a.a.s., GS

t (n) does not satisfy P . It is known
hat for basic properties, such as minimum degree k ≥ 1, sharp thresholds do exist [1]. Moreover,
in [2] it was shown that if H is a spanning graph with maximum degree ∆ = ω(log n), then the
ppearance of H takes (∆/2 + o(∆))n rounds, and H (deterministically) cannot be constructed in
ewer than ∆n/2 rounds. However, in general it remains open as to whether or not a sharp threshold
xists when H is sparse (i.e., ∆ = O(log n)). Recently, the third author and Surya developed a general
25
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(

machinery for proving the existence of sharp thresholds in adaptive random graph processes [6].
Applied to the semi-random graph process, they show that sharp thresholds exist for the property of
being Hamiltonian and the property of containing a perfect matching. This provides some evidence
that sharp thresholds do exist when ∆ = O(log n), and we leave this as an interesting open problem.

Appendix. The differential equation method

In this section, we provide a self-contained non-asymptotic statement of the differential equation
ethod. The statement combines [29, Theorem 2], and its extension [29, Lemma 9], in a form

convenient for our purposes, where we modify the notation of [29] slightly. In particular, we
ewrite [29, Lemma 9] in a less general form in terms of a stopping time T . We need only check the
‘Boundedness Hypothesis’ (see below) for 0 ≤ t ≤ T , which is exactly the setting of Lemmas 2.1
and 2.8. A similar theorem is stated in [30, Theorem 2].

Suppose we are given integers a, n ≥ 1, a bounded domain D ⊆ Ra+1, and functions (Fk)1≤k≤a
here each Fk : D → R is L-Lipschitz-continuous on D for L ≥ 0. Moreover, suppose that R ∈ [1, ∞)
nd S ∈ (0, ∞) are any constants which satisfy max1≤k≤a |Fk(x)| ≤ R for all x = (s, y1, . . . , ya) ∈ D
nd 0 ≤ s ≤ S.

Theorem A.1 (Differential Equation Method, [29]). Suppose we are given σ -fields F0 ⊆ F1 ⊆ · · · , and
for each t ≥ 0, random variables (Yk(t))1≤k≤a which are Ft-measurable. Define TD to be the minimum
t ≥ 0 such that

(t/n, Y1(t)/n, . . . , Yk(t)/n) /∈ D.

Let T ≥ 0 be an (arbitrary) stopping time3 adapted to (Ft )t≥0, and assume that the following conditions
old for δ , β , γ ≥ 0 and λ ≥ δ min{S, L−1

} + R/n:

(i) The ‘Initial Condition’: For some (0, ŷ1, . . . , ŷa) ∈ D,

max
1≤k≤a

|Yk(0) − ŷkn| ≤ λn.

(ii) The ‘Trend Hypothesis’: For each t ≤ min{T , TD − 1},

|E[Yk(t + 1) − Yk(t) | Ft ] − Fk(t/n, Y1(t)/n, . . . , Ya(t)/n)| ≤ δ .

(iii) The ‘Boundedness Hypothesis’: With probability 1 − γ ,

|Yk(t + 1) − Yk(t)| ≤ β ,

for each t ≤ min{T , TD − 1}.

Then, with probability at least 1 − 2a exp
(

−nλ2

8Sβ2

)
− γ , we have that

max
0≤t≤min{T ,σn}

max
1≤k≤a

|Yk(t) − yk(t/n)n| < 3λ exp(LS)n, (30)

where (yk(s))1≤k≤a is the unique solution to the system of differential equations

y′

k(s) = Fk(s, y1(s), . . . , ya(s)) with yk(0) = ŷk for 1 ≤ k ≤ a, (31)

and σ = σ (ŷ1, . . . , ŷa) ∈ [0, S] is any choice of σ ≥ 0 with the property that (s, y1(s), . . . , ya(s)) has
∞-distance at least 3λ exp(LS) from the boundary of D for all s ∈ [0, σ ).

Remark 3. Standard results for differential equations guarantee that (31) has a unique solution
yk(s))1≤k≤a which extends arbitrarily close to the boundary of D.

3 The stopping time T ≥ 0 is adapted to (F ) , provided the event {τ = t} is F -measurable for each t ≥ 0.
t t≥0 t
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