
Context-Aware Frequency-Embedding Networks
for Spatio-Temporal Portfolio Selection

Ruirui Liu∗ Huichou Huang† Johannes Ruf‡ Qingyao Wu§

Abstract

Recent developments in the applications of deep reinforce-

ment learning methods to portfolio selection have achieved

superior performance to conventional methods. However,

two major challenges remain unaddressed in these models

and inevitably lead to the deterioration of model perfor-

mance. First, asset characteristics often suffer from low and

unstable signal-to-noise ratios, leading to poor learning ro-

bustness of the predictive feature representations. Second,

the existing literature fails to consider the complexity and

diversity in long-term and short-term spatio-temporal pre-

dictive relations between the feature sequences and portfolio

objectives. To tackle these problems, we propose a novel

Context-Aware Frequency-Embedding Graph Convolution

Network (Cafe-GCN) for spatio-temporal portfolio selec-

tion. It contains three important modules: (1) frequency-

embedding block that explicitly captures the short-term and

long-term predictive information embedded in asset charac-

teristics meanwhile filtering out the noise; (2) context-aware

block that learns multiscale temporal dependencies in the

feature space; and (3) multi-relation graph convolutional

block that exploits both static and dynamic spatial rela-

tions among assets. Extensive experiments on two real-world

datasets demonstrate that Cafe-GCN consistently outper-

forms proposed techniques in the literature.

1 Introduction

Portfolio selection [27, 29] is one of the major invest-
ment activities in the financial industry. In this task,
investors observe the feature sequences of a basket of as-
sets and make sequential portfolio decisions that aim to
maximize long-term returns while minimizing portfolio
risk. Early studies apply conventional machine learn-
ing methods, such as SVMs [14] and random forests [7].
With the rapid development of deep learning, various
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deep neural networks are employed to capture the as-
set dynamics and the temporal dependency of feature
sequences for financial problems, such as CNNs [11],
RNNs [18], and transformers [12]. Moreover, financial
markets exhibit complex and evolving comovement pat-
terns across assets. As a result, spatio-temporal interde-
pendence plays a pivotal role in portfolio selection (see
Section A of the Online Appendix for motivation).

More recent studies aim to capture the dynamic
spatial interdependence, e.g., using dilated convolutions
[39] or attention mechanisms [28] to improve portfolio
performance. However, these frameworks cannot be
well adapted to the complex characteristics of the
financial market. Specifically, the portfolio selection
task still faces two main challenges that confine portfolio
performance: (1) the asset feature sequences have a
low and unstable signal-to-noise ratio, which renders
it difficult for the model to learn robust predictive
feature representations; (2) the feature sequences tend
to exhibit complex long-term and short-term temporal
relations as well as diverse spatial relations.

In this paper, we propose a novel model based on
deep reinforcement learning (DRL), namely Context-
Aware Frequency-Embedding Graph Convolution
Network (Cafe-GCN), to addresses the two men-
tioned challenges in portfolio selection task. The
overall architecture of Cafe-GCN is shown in Fig-
ure 1. The Cafe-GCN primarily stacks multiple context-
aware frequency-embedding (CAFE) spatio-temporal
networks with different dilation rates to learn multi-
scale and diverse spatio-temporal feature representa-
tions that aim to capture the time-varying multi-view
spatio-temporal predictive relations between the ex-
tracted feature sequences and portfolio objectives. It
also considers historical portfolio weights in minimiz-
ing transaction costs across trading periods, and then
directly outputs the current portfolio weights.

Specifically, the CAFE module designed to capture
the spatio-temporal predictive relations of stock feature
sequences consists of three key components: (1) The fre-
quency embedding block transforms the stock feature
sequences from the time domain to the frequency do-
main and learns stock features through a fully connected



layer (FCL). It aims to remove high-frequency noise and
to differentiate long-term predictive information from
short-term predictive information, as fast-moving (slow-
moving) signals correspond to short-term (long-term)
predictability. This block alleviates the problem of low
and unstable signal-to-noise ratios of stock feature se-
quences and increases the learnability of predictive fea-
tures. (2) Standard attention mechanisms [22] per-
form matching between query and key vectors pointwise
along the time dimension. However, this direct point-
wise matching method overlooks the local contextual
information and is susceptible to the influence of noisy
data points, leading to abnormal capture of temporal
features. To overcome this drawback, we propose the
context-aware block that employs dilated convolutions
to extract and further enhance local (short-term) tem-
poral features and a multiscale attention mechanism to
extract and further enhance global (long-term) tempo-
ral features. (3) The multi-relation graph convolutional
block applies graph convolutional networks to extract
multi-relation spatial features that apply industry, sec-
tor, and learnable time-varying adjacency matrices to
capture both static and dynamic spatial relations among
stocks. These three blocks lay a solid foundation for se-
quential portfolio selection.

Our main contributions are summarized as follows:
First, we propose Cafe-GCN, a novel model based on
deep reinforcement learning (DRL) method for spatio-
temporal portfolio selection. Second, we design a CAFE
module that establishes stable predictive relations be-
tween the feature sequences and the portfolio objective
by improving the feature learnability and representa-
tional quality. This is achieved by denoising the fre-
quency embedding that differentiates long-term predic-
tive features from short-term predictive features. Third,
we further enhance the spatio-temporal features by in-
troducing multi-relation spatial features and capturing
multiscale temporal features that consider both static
and dynamic spatial relations meanwhile providing fur-
ther fine-grained local (short-term) and coarse-grained
global (long-term) predictive features. Last, extensive
experiments on two real-world datasets demonstrate
that our proposed model consistently outperforms other
state-of-the-art (SOTA) solutions.

2 Related Work

Standard portfolio selection methods [13, 2] usually rely
on expert knowledge in finance to make investment de-
cisions using statistical analysis or traditional machine
learning techniques. However, these methods heavily
depend on specialized financial knowledge and struggle
to adapt to the complex and changing financial market
environment. With the advancement of deep learning,

numerous data-driven and neural network-based meth-
ods have been proposed to address financial problems
[38, 10, 16, 8, 17]. These methods typically capture tem-
poral and/or spatial asset characteristics from various
multimodal and heterogeneous data sources, including
fundamental price data [10, 24], news headlines [33], so-
cial media [5], relational graphs [30, 32, 3], etc.

2.1 Sequential Portfolio Selection Sequential
portfolio selection methods focus on conducting a time-
series analysis from the asset feature sequences that
capture temporal features, without considering the in-
terconnections between assets (i.e., spatial relations).
Hence, such methods often rely on classical time-
series networks, such as temporal convolutional network
(TCN) [1], long short-term memory (LSTM) [35], and
transformer [22]. Jiang et al. [6] apply a deterministic
policy gradient-based reinforcement learning framework
based on the ensemble of identical independent evalua-
tors (EIIE) to the portfolio selection task. It employs
LSTM and CNN to independently extract temporal fea-
tures from the stock market data, followed by a soft-
max layer to directly output the portfolio weights for
each stock. Ye et al. [31] rely on a pre-trained neural
network to extract temporal features from both market
numeric and news text data for stock trend prediction
and portfolio selection. Qin et al. [15] introduce the
attention-based LSTM (ALSTM) model that incorpo-
rates attention mechanisms into LSTM by allocating
attention at different time steps to capture temporal
features. Zha et al. [37] propose a hierarchical policy-
based reinforcement learning model, in which two in-
dependent agents respectively rely on macro and micro
data to make sequential portfolio decisions.

2.2 Spatio-Temporal Portfolio Selection As spa-
tial relations among assets play a pivotal role in port-
folio selection, many studies explicitly consider cross-
sectional relations in portfolio decisions. Wang et al.
[25] propose an LSTM model with historical state at-
tention (LSTM-HA) that introduces the cross-asset at-
tention network (CAAN) to capture the spatial rela-
tions in addition to the attention-based temporal fea-
ture extraction. Zhang et al. [39] employ both LSTM
and dilated convolutional networks to construct a dual-
pathway model that separately extracts temporal and
spatial features from stock sequences. Ye et al. [30] rely
on graph convolutional networks (GCN) to capture the
relations among stocks and gated recurrent units (GRU)
to learn temporal features for stock movement predic-
tion. Xu et al. [28] propose the relation-aware trans-
former (RAT), that captures local and global spatio-
temporal features at each time point across stocks.



Wang et al. [26] rely on a TCN to extract individual
stock temporal features and an attention-based GCN to
capture spatial relations. Li et al. [9] leverage market
information to automatically guide the spatio-temporal
feature selection. Fan et al. [4] propose a simple MLP-
based architecture that performs predictor mixing, fol-
lowed by time mixing and stock mixing.

3 Problem Setting

At time t, given feature sequencesXt and multi-relation
graphs among stocks G, the portfolio optimization
process aims to train a policy network π that maps
Xt and G to a vector of portfolio weights at, i.e.,
at = π(Xt,G) to maximize the risk-adjusted returns
(see Section B of the Online Appendix).

In the framework of DRL-based portfolio selection,
we consider the portfolio optimization process as a
generalized Markov Decision Process by (S,A,T ,R).
At each time t, the policy network (agent) obtains a
current state st = Xt ∈ S, and then, makes a portfolio
decision according to the current state and previous
portfolio decision at = π(st,at−1) ∈ A with π denoting
the policy network. Finally, the agent gets a reward
from the financial market rt ∈ R while the transition
to the next state is stochastic st+1 ∼ T (st). The policy
network serves as a representative agent that constantly
optimizes its strategy based on the reward sequence.

Under the deep reinforcement learning-based frame-
work of portfolio optimization, the following two general
hypotheses are commonly proposed: (1) The investment
of the representative agent is traded in a constantly
highly liquid market, i.e., any trade can be executed
immediately; (2) The investment of the representative
agent is fairly small relative to the transactions of the
whole market at each point of time and thereby does
not influence market prices.

4 Methods

4.1 The Architecture of Cafe-GCN Stock feature
sequences suffer from low and unstable signal-to-noise
ratio issues and exhibit complex and changing spatio-
temporal features. The proposed Cafe-GCN aims to al-
leviate these issues and capture the denoised multiscale
and diverse spatio-temporal features, i.e., the long-term
and short-term temporal relations as well as diverse
spatial interconnections, for portfolio selection. Fig-
ure 1 illustrates the proposed Cafe-GCN architecture.
Firstly, the model introduces a multi-relation GCN with
static real-world relations in terms of stock industry
and sector categorization along with the dynamically
learnable GCN-based cross-stock relations. The Cafe-
GCN learns multiscale and diverse spatio-temporal in-
terdependence of stock feature sequences by overlaying

multiple CAFE modules with different dilation factors
δ. It progressively expands the local receptive field of
the CAFE to learn the temporal features from short-
term to long-term and enhance the extraction of the
global spatio-temporal interdependence. In addition, it
incorporates the historical portfolio weights and trans-
action costs into the portfolio decision-making through
a temporal attention layer. Then, the decision-making
module takes the local and global spatio-temporal fea-
tures as inputs to output the portfolio weights. Specif-
ically, it flattens the temporal and feature dimensions
of the spatio-temporal features using a flattened layer
and then applies FCLs and a softmax layer to derive
the portfolio weights. In the DRL-based portfolio se-
lection framework, the Cafe-GCN acts as an investment
agent. The portfolio decisions s/he makes are inputs
into the stock market environment and generate a risk-
adjusted reward function R, and s/he optimizes model
parameters based on the reward function through the
optimization process.

4.2 Context-Aware Frequency-Embedding
Network We introduce the CAFE module that aims
to simultaneously learn the multiscale temporal fea-
tures of individual stocks and diverse spatial features
among stocks from stock feature sequences charac-
terized by low and unstable signal-to-noise ratios.
The overall architecture of this module is illustrated
in Figure 2. CAFE is composed of three internal
components, namely (1) a Frequency Embedding Block
(FEB), (2) a Context-Aware Block (CAB), and (3) a
Multi-Relation Graph Convolutional Block (MRGCB).
Moreover, we also apply the residual technique and
layer normalization to construct the CAFE module.
As shown in Figure 1, the Cafe-GCN model includes
three multiscale CAFE modules to capture different
levels and scopes of spatio-temporal features. The
first CAFE takes the initial stock feature sequences
X ∈ RN×∆T×P as inputs, and the subsequent CAFE
takes the outputs of the previous CAFE as inputs.
For convenience, here we uniformly denote the inputs
of different CAFE as the stock feature sequences H.
Then, the forward process of CAFE can be represented
as 

H := FFEL(H)

H := FLN(FCAL(H) +H)

H := FLN(FMRGCL(H) +H),

where FFEL, FCAL, FMRGCL, and FLN denote the fre-
quency embedding layer, context-aware layer, multi-
relation graph convolutional layer, and layer normal-
ization, respectively.
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Figure 1: The architecture of the Context-Aware Frequency Embedding (CAFE) Graph Convolution Network (Cafe-GCN). Firstly,
the model learns the multiscale and diverse spatio-temporal interdependence of stock feature sequences by overlaying multiple CAFE

modules with different dilation factors δ. Meanwhile, it incorporates the historical portfolio weights and further extracts the global

spatio-temporal interdependence that considers historical portfolio weights and transaction costs through a temporal attention layer.
Finally, the decision-making module takes the local and global spatio-temporal features as inputs to output the portfolio weights.

4.2.1 Frequency-Embedding Block The FEB
aims to filter high-frequency noise out of the stock fea-
ture sequences and differentiate long-term predictive
features from short-term predictive features to alleviate
the low and unstable signal-to-noise ratio issue, thereby
improving the efficiency and effectiveness of the subse-
quent spatio-temporal feature extraction based on the
ground that fast-moving (slow-moving) signals corre-
spond to short-term (long-term) predictability. Specifi-
cally, given the stock feature sequencesH ∈ RN×∆T×D,
the FEB first transforms H from the time domain into
the frequency domain using Discrete Fourier Transform
(DFT) [21]. HereD denotes the hidden dimension of the
model, and ∆T/2 + 1 the size of the frequency dimen-
sion. Then the FEB employs a Low Pass Filter (LPF)
to filter out high-frequency noise from the stock fea-
ture sequences. The above process can be represented
as HC = FCL(LPF(DFT(H))), where FCL denotes a
fully-connected layer and HC ∈ CN×(∆T/2+1−M)×D are
the stock feature sequences in the frequency dimension.
Here M is the number of frequencies filtered out by the
LPF.

After the LPF removes M high-frequency features
from the stock features in the frequency dimension,
we transform the frequency domain back to the tem-
poral form with length ∆T through the Inverse Dis-
crete Fourier Transform (IDFT). To this end, it is nec-
essary to perform padding zero on the high-frequency
part of the frequency domain features before apply-

ing IDFT. This process can be expressed as H =
FCL(IDFT(Padding(HC))), where H ∈ RN×∆T×D is
the final output of the FEB.

4.2.2 Context-Aware Block Standard attention
mechanisms [22] involve three FCLs in the feature di-
mension to learn query, key, and value vectors sepa-
rately. Subsequently, feature matching between query
and key vectors is performed pointwise along the time
dimension. However, this direct pointwise matching
method overlooks the local contextual information and
is susceptible to the influence of noisy data points,
leading to the abnormal capture of temporal features.
To overcome this drawback, the CAB block employs
dilated convolutions [34] with a kernel size of 3 and
a dilation rate of δ in the temporal dimension, re-
placing fully connected layers to learn the key vector
K = DconvK(H) ∈ RN×∆T×D and the value vector
V = DconvV (H) ∈ RN×∆T×D, where Dconv denotes
dilated convolution. The key and value vectors learned
in this manner can capture the temporal information of
the local context within the receptive field and mitigate
the influence of noisy data points. Moreover, the di-
lated convolutions are capable of controlling the size of
the local receptive field in the time dimension by adjust-
ing the dilation rate δ, enabling the model to construct
different key and value vectors for learning multiscale
local temporal features.

This method first uses the dilated convolutions



to capture the key and value vectors containing local
contextual information, aiming to mitigate the impact
of noisy data points and introduce local contextual
information. Then an FCL is applied to learn the query
vectors Q = HWQ ∈ RN×∆T×D. Subsequently, the
CAB takes the pointwise matching of query vector Q,
context-aware key vectors, and value vectors as inputs
to learn the global temporal features based on the
attention mechanism

H = softmax

(
QKT

√
D

)
V .

4.2.3 Multi-Relation Graph Convolutional
Block To learn the diverse spatial relations among
stocks, the proposed MRGCB incorporates a dynamic
learnable relation graph into the static realistic relation
graph among stocks. It relies on graph convolutional
networks to learn diverse relational features among
stocks, as illustrated in component (3) of Figure 2.

We use static realistic relation graphs, including the
industry relation graph Gind(V,E) and the sector rela-
tion graph Gsec(V,E), where v ∈ V represents stocks
and e ∈ E represents the relations between stocks. In
the industry/sector relation graph, if stocks v1 and v2
belong to the same industry/sector, it establishes an
edge connection between the two nodes. These static
relation graphs categorize stocks based on their real-
world connections and domain expert knowledge. How-
ever, these static relations cannot capture the fluctua-
tions or temporary shifts in the relations among stocks.
Therefore, we further introduces a learnable stock rela-
tion graph Gdyn(V,E), which can be transformed into
a dynamically updatable parameterized adjacency ma-
trix Adyn ∈ RN×N . This component relies on the
dynamic adjacency matrix to learn the dynamic rela-
tions among stocks. Similarly, static relation graphs
can also be transformed into static industry adjacency
matrix Aind ∈ RN×N and sector adjacency matrix
Asec ∈ RN×N . Given these three types of relation
graphs and the stock features H ∈ RN×∆T×D, the first
step is to reshape H into R∆T×N×D, then using the
graph convolutional networks to extract diverse spa-
tial features. This forward computation process can
be written as H = AdynÂsecÂindHW + b, where
W ∈ RD×D and b ∈ RD are the parameters of the lin-
ear transformation, whereas the normalization formulas
for the industry adjacency matrix and the sector ad-

jacency matrix are denoted by Âind = D
− 1

2

indAindD
− 1

2

ind

and Âsec = D
− 1

2
sec AsecD

− 1
2

sec , respectively, and D is the
degree matrix of the adjacency matrix. Then H is re-
shaped into RN×∆T×D.

4.3 The Decision-Making Process of Cafe-GCN
The context-aware frequency-embedding graph convo-
lution network takes the stock feature sequences X ∈
RN×∆T×P as inputs, stacking three CAFE modules
with different dilation factors δ to capture the multiscale
and diverse spatio-temporal features H ∈ RN×∆T×D.
Subsequently, the Cafe-GCN model introduces his-
torical portfolio weights ah ∈ RN×∆T×1 that con-
sider transaction costs to compute the current port-
folio weights. Specifically, the spatio-temporal fea-
tures H are concatenated with the historical portfo-
lio weights ah. Then, the model learns the query
vector Q, key vector K, and value vector V using
three FCLs, and captures the spatio-temporal interde-
pendence that consider historical portfolio weights and
transaction costs through a standard temporal attention
layer H = Attention(Q,K,V ).

In the decision-making module, Cafe-GCN flattens
the temporal and feature dimensions of the spatio-
temporal feature space and constructs portfolio weights
a ∈ RN through an FCL and a softmax layer as
a = softmax(FCL(Flatten(H))).

4.4 Reinforcement Learning for Portfolio Selec-
tion The proposed Cafe-GCN model is based on a deep
reinforcement learning framework, which interacts with
the stock market environment to optimize model param-
eters. The reinforcement learning optimization method
used in this paper is the Deterministic Policy Gradient
(DPG) as in [20]. The DPG method optimizes model
parameters directly based on a pre-designed reward
(loss) function using gradient ascent (descent). There-
fore, designing a reasonable reward function is crucial
to optimizing the model effectively and efficiently. We

introduce u(t) = a⊤
t yt − ct − η

a⊤
t Σt at

2 , where the first
term in the above equation considers the investment
returns after transaction costs, and the second term is
used for measuring investment risks. Here, at represents
the portfolio weight vector at time t, yt is the vector of
stock returns in the next period, ct denotes the trans-
action cost ratio, and Σt ∈ RN×N is the covariance
matrix of stock returns at time t. The parameter η is
the risk aversion coefficient, where a higher η indicates
a stronger aversion to investment risk, leading to a more
conservative investment style. Conversely, a lower η im-
plies a more aggressive investment style. When η equals
1 with the reward function assumed to be logarithmic, it
transforms to the Sharpe Ratio (SR) [19] as a quadratic
utility function of the first two moments of the portfolio
return distribution. The average risk-adjusted reward
over T periods is then given by R = 1

T

∑T
t=1 u(t).

We take the negative of the reward function to
calculate the loss function L = −R. Subsequently,
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Figure 2: The architecture of the CAFE module. It has three components: FEB, CAB, and MRGCB. In addition, the residual

technique and layer normalization are applied.

it uses gradient descent instead of gradient ascent to
optimize the model parameters.

5 Experiment

5.1 Experimental Settings To evaluate the perfor-
mance of our proposed Cafe-GCN model, we conduct
comprehensive experiments on two real-world stock
datasets, the CSI100 and NASDAQ100 datasets. The
two stock datasets are collected from the China A-share
market and the U.S. NASDAQ market, respectively.
In this section, we first provide information about the
datasets, the data preprocessing process, and the evalu-
ation metrics used for the experiments. Then we briefly
introduce the baseline models and the implementation
details.

5.1.1 Datasets and Preprocessing Each of the
CSI100 and NASDAQ100 datasets consists of sequential
features of 100 stocks from 2011 to 2021. The raw
features of each stock comprise four basic market prices:
open, high, low, and close price. Industry and sector
information for each stock is collected through the
Wind and Bloomberg terminals. Both datasets are
divided into training sets from March 2011 to February
2017, validation sets from March 2017 to February
2019, and test sets from March 2019 to February 2021.
The CSI100 dataset spans 2,433 trading days and the
NASDAQ100 dataset spans 2,517 trading days.

5.1.2 Baselines We compare the Cafe-GCN model
with two major groups of SOTA baseline methods
within the DRL-based framework for portfolio selection,
including: (1) Sequential Portfolio Selection: EIIE
[6], ALSTM [15], SFM [38], DLinear [36], SARL [31]; (2)
Spatio-Temporal Portfolio Selection: GAT [23],
AlphaStock [25], RAT [28], StockMixer [4], MASTER
[9], PPN [39], MGCGRU [30], DeepTrader [26].

5.1.3 Evaluation Metrics DRL-based portfolio se-
lection methods output portfolio weights for each trad-
ing period t based on stock returns yt. The portfolio
return at time t can be calculated as rt = a⊤

t yt − ct.
Therefore, in a test set with T trading period, the model
can continuously output a series of portfolio weights and
obtain returns over multiple periods R = [r1, r2, ..., rT ].
We evaluate our proposed model and competing base-
lines by four performance metrics: Annualized Re-
turn (AR), Sharpe Ratio (SR), Maximum DrawDown
(MDD), and Calmar Ratio (CR) (see Section D of the
Online Appendix)

5.2 Performance Comparisons In this section, we
compare the portfolio selection performance of our pro-
posed Cafe-GCN with that of baseline models using four
evaluation metrics from the experiments with two real-
world datasets (see Section C of the Online Appendix
for implementations). Table 1 presents the experimen-
tal results of each model, where the ↑ symbol next to
each metric indicates that the higher value of the metric,



Table 1: Experiment Results on CSI100 and NASDAQ100 Datasets.

CSI100 NASDAQ100

AR ↑ SR ↑ MDD ↓ CR ↑ AR ↑ SR ↑ MDD ↓ CR ↑

ALSTM 0.134 ± 0.005 0.641 ± 0.034 0.451 ± 0.001 0.303 ± 0.026 1.577 ± 0.062 0.831 ± 0.004 1.161 ± 0.079 1.361 ± 0.038
EIIE 0.169 ± 0.010 0.381 ± 0.043 0.512 ± 0.025 0.332 ± 0.035 1.326 ± 0.133 1.122 ± 0.126 1.096 ± 0.068 1.222 ± 0.197
SFM 0.171 ± 0.010 0.472 ± 0.022 0.498 ± 0.013 0.343 ± 0.072 1.937 ± 0.013 1.072 ± 0.037 0.787 ± 0.004 2.461 ± 0.005

DLinear 0.164 ± 0.001 0.460 ± 0.003 0.389 ± 0.013 0.467 ± 0.071 2.128 ± 0.057 0.863 ± 0.132 0.964 ± 0.073 2.437 ± 0.105
SARL 0.104 ± 0.028 0.448 ± 0.055 0.434 ± 0.031 0.253 ± 0.056 2.131 ± 0.029 1.006 ± 0.145 0.593 ± 0.059 3.593 ± 0.068

GAT 0.205 ± 0.005 0.698 ± 0.026 0.428 ± 0.006 0.463 ± 0.064 3.505 ± 0.238 0.991 ± 0.082 1.078 ± 0.006 3.250 ± 0.241
AlphaStock 0.198 ± 0.007 0.484 ± 0.018 0.488 ± 0.008 0.405 ± 0.072 4.379 ± 0.275 1.089 ± 0.120 0.578 ± 0.084 7.810 ± 1.617

RAT 0.215 ± 0.014 0.887 ± 0.036 0.451 ± 0.013 0.471 ± 0.080 4.129 ± 0.044 1.104 ± 0.036 1.028 ± 0.060 4.031 ± 0.280
StockMixer 0.229 ± 0.015 0.1512 ± 0.012 0.368 ± 0.014 0.627 ± 0.102 4.576 ± 0.497 1.087 ± 0.018 1.284 ± 0.178 3.687 ± 0.901
MASTER 0.249 ± 0.002 0.982 ± 0.026 0.476 ± 0.008 0.524 ± 0.097 4.268 ± 0.017 0.818 ± 0.003 0.939 ± 0.071 4.571 ± 0.362

PPN 0.301 ± 0.010 0.748 ± 0.006 0.594 ± 0.007 0.507 ± 0.011 4.775 ± 0.017 0.747 ± 0.021 0.736 ± 0.064 6.488 ± 0.329
MGCGRU 0.321 ± 0.019 0.556 ± 0.027 0.411 ± 0.063 0.795 ± 0.073 5.191 ± 0.185 0.811 ± 0.125 0.582 ± 0.623 8.916 ± 0.394
DeepTrader 0.365 ± 0.018 0.966 ± 0.031 0.414 ± 0.007 0.905 ± 0.031 6.908 ± 0.744 0.955 ± 0.028 0.735 ± 0.099 9.429 ± 0.263
Cafe-GCN 0.404 ± 0.003 1.060 ± 0.060 0.330 ± 0.018 1.228 ± 0.078 6.251 ± 0.045 1.310 ± 0.006 0.460 ± 0.003 13.590 ± 0.178

the better performance of the model, while the ↓ symbol
means that the lower value of the metric, the better per-
formance of the model. The best result for each metric
is highlighted in bold. To run a credible and fair horse
race, we train, validate, and test each model five times
and take the average figures as the final results. The fig-
ures following the ± symbol in the table represent the
results’ standard deviation of five experiments.

Table 1 presents the performance of Cafe-GCN and
various competing baseline models from the experi-
ments on the CSI100 and NASDAQ100 datasets. First,
we find that the performance of the sequential portfo-
lio selection methods (i.e., ALSTM, EIIE, SFM, DLin-
ear, and SARL) is overall inferior to that of the spatio-
temporal portfolio selection methods (i.e., GAT, Alpha-
Stock, RAT, StockMixer, MASTER, PPN, MGCGRU,
DeepTrader) across the four evaluation metrics in both
datasets. This can be attributed to the fact that spatio-
temporal models not only leverage the temporal depen-
dencies in stock feature sequences but also capture spa-
tial dependencies among stocks using graph convolution
and/or attention mechanisms. These findings validate
the significant role of capturing spatial relations among
stocks for portfolio selection. As shown in Table 1, we
can see from the performance of the models focusing
on spatio-temporal relations that the models that aim
to learn the dynamic spatio-temporal features of stock
sequences, e.g., AlphaStock, PPN, and RAT, notably
outperform those that rely on static relations, e.g., GAT
and MGCGRU, in both datasets. It is evident that cap-
turing the dynamic spatio-temporal interdependence is
the key to satisfying portfolio performance.

As we can see from Table 1, our proposed Cafe-
GCN significantly outperforms all competing baselines
across all four evaluation metrics and two datasets
except for the AR in NASDAQ100 (see Section E of the
Online Appendix for the visualization of accumulative

wealth). Although the Cafe-GCN does not obtain the
best result in the AR in NASDAQ100, it achieves the
lowest MDD and the highest CR and SR, suggesting
that it still has the highest mean-variance efficiency
among all models, i.e., for a unit of risk in terms of
volatility, it always achieves the highest return. Its SR
is 16.8% (7.9%) higher than the runner-up model and its
MDD is 20.4% (10.3%) lower than the runner-up model
in the NASDAQ100 (CSI100) sample. Moreover, its
CR figures imply that the annualized return is expected
to be 13.6 (1.2) times the maximum drawdown of the
portfolio strategy in the NASDAQ100 (CSI100) sample.
The proposed Cafe-GCN shows strong risk mitigation
capacity. These observations reveal the compelling
robustness of the proposed Cafe-GCN in comparison
with the competing baselines, in particular, in the
downside risk protection of the portfolio strategy.

5.3 Ablation Studies This section presents exten-
sive ablation experiments to validate the effectiveness
of each component proposed in the Cafe-GCN. Table 2
shows the ablation experiment results of Cafe-GCN on
both datasets. The symbol * indicates the model setups
of Cafe-GCN.

Frequency-Embedding Block. The proposed
FEB relies on the discrete Fourier transformation to
convert stock sequences from the time domain to the
frequency domain, aiming to remove high-frequency
noise in stock sequences and differentiate long-term
predictive features from short-term predictive features.
It alleviates the negative impact of noise on subsequent
spatio-temporal feature extraction procedures and helps
to establish robust spatio-temporal relations between
the stock features and portfolio objectives. In the table,
the option FEB indicates the use of the component
while w/o indicates that the component is not used.
Compared to the setup that does not use the FEB,



Table 2: Ablation study of Context-Aware Frequency-Embedding Graph Convolution Network

CSI100 NASDAQ100

AR ↑ SR ↑ MDD ↓ CR ↑ AR ↑ SR ↑ MDD ↓ CR ↑

FEB
w/o 0.388 ± 0.006 0.997 ± 0.031 0.380 ± 0.024 1.019 ± 0.093 5.886 ± 0.133 1.106 ± 0.001 0.478 ± 0.010 12.305 ± 0.126
FEB∗ 0.404 ± 0.003 1.060 ± 0.060 0.330 ± 0.018 1.228 ± 0.078 6.251 ± 0.045 1.310 ± 0.006 0.460 ± 0.003 13.590 ± 0.178

CAB
Atten 0.382 ± 0.017 0.973 ± 0.044 0.412 ± 0.028 0.983 ± 0.051 5.973 ± 0.031 1.231 ± 0.126 0.541 ± 0.009 11.981 ± 0.254
CAB∗ 0.404 ± 0.003 1.060 ± 0.060 0.330 ± 0.018 1.228 ± 0.078 6.251 ± 0.045 1.310 ± 0.006 0.460 ± 0.003 13.590 ± 0.178

MRGCB

w/o Ind 0.386 ± 0.009 1.013 ± 0.054 0.364 ± 0.024 1.060 ± 0.063 6.229 ± 0.066 1.152 ± 0.084 0.524 ± 0.052 12.062 ± 0.891
w/o Sec 0.369 ± 0.012 0.992 ± 0.063 0.353 ± 0.089 1.043 ± 0.017 6.237 ± 0.103 0.980 ± 0.031 0.489 ± 0.013 12.755 ± 0.236
w/o Dyn 0.305 ± 0.004 0.752 ± 0.105 0.335 ± 0.021 0.913 ± 0.067 5.731 ± 0.021 0.973 ± 0.038 0.538 ± 0.006 11.753 ± 0.153

All∗ 0.404 ± 0.003 1.060 ± 0.060 0.330 ± 0.018 1.228 ± 0.078 6.251 ± 0.045 1.310 ± 0.006 0.460 ± 0.003 13.590 ± 0.178

its inclusion in the Cafe-GCN leads to considerable
improvements across four performance metrics in both
datasets. This observation confirms the usefulness of
this component and justifies the point of view that fast-
moving (slow-moving) signals correspond to short-term
(long-term) predictability.

Context-Aware Block. The proposed CAB aims
to enhance the ability to learn multiscale temporal fea-
tures and mitigate the impact of noise in stock se-
quences on point-to-point matching in standard atten-
tion mechanism. To validate the importance of CAB in
the Cafe-GCN, we compare experiments using CAB and
those using the standard attention mechanism (‘Atten’
in Table 2) to learn the temporal features. The results
demonstrate that using CAB to learn multiscale tem-
poral information of stock sequences is essential for im-
proving portfolio returns and reducing portfolio risks.
In particular, performance metrics such as MDD and
CR that measure the downside risk indicate that com-
pared to using standard attention mechanism, CAB
achieves significant improvements in risk mitigation in
both datasets. These findings confirm the effectiveness
of CAB in further reducing the negative impacts of noisy
data points and generating high-quality multiscale tem-
poral predictive features for the portfolio selection task.

Multi-Relation Graph Convolutional Block.
To capture diverse spatial relations among stocks, we
propose the MRGCB. This component introduces in-
dustry and sector relation graphs and learns the time-
varying relations among stocks through dynamic re-
lation graphs. It integrates the features of corre-
lated stocks through graph convolution networks to en-
hance the informativeness and responsiveness of spa-
tial features for portfolio decision-making. To validate
the effectiveness of the static industry and sector re-
lation graphs as well as the dynamic relation graph
in MRGCB, we compare four different model setups.
Specifically, ‘w/o Ind’, ‘w/o Sec’, and ‘w/o Dyn’ indi-
cate scenarios where the model does not use the industry
relation graph, sector relation graph, and dynamic rela-
tion graph, respectively, to learn spatial relations. ‘All’

in the table represents the scenario where all relation
graphs are used.

Compared to using all relation graphs, the portfo-
lio performance of the Cafe-GCN without industry or
sector relation graphs deteriorates in both datasets. It
is worth noticing that when the dynamic relation graph
is not used, the portfolio performance of the Cafe-GCN
considerably declines by larger margins. Specifically,
the average decrease in AR, SR, and CR metrics across
both datasets is 16.4%, 27.3%, and 19.5%, respectively.
As for the MDD metric, it performs similarly in the
CSI100 dataset but drops by 16.9% in the NASDAQ100
dataset. Without dynamic relation graphs, the model
can only build spatial relations through static relation
graphs, which obviously cannot adapt to the evolving
financial market states. These observations emphasize
the paramount importance of the time-varying spatial
relations. Overall, all three types of relation graphs in
the MRGCB help the model learn diverse spatial rela-
tions among stocks to improve portfolio performance.

6 Conclusion

In this paper, we propose a novel context-aware
frequency-embedding graph convolutional network for
spatio-temporal portfolio selection. This method trans-
forms the stock feature sequences using a frequency-
embedding block that not only removes high-frequency
noise but also distinguishes long-term predictive fea-
tures from short-term predictive features. In addition,
the context-aware block extracts comprehensive multi-
scale temporal features while the multi-relation graph
convolutional block captures diverse static and dynamic
spatial relations. Our proposed method significantly
outperforms other baseline methods in two real-world
datasets. Extensive ablation experiments demonstrate
the effectiveness of different components in the proposed
model.
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Online Appendix for Context-Aware Frequency-
Embedding Networks for Spatio-Temporal Portfolio Se-
lection
Ruirui Liu∗ Huichou Huang† Johannes Ruf‡ Qingyao
Wu§

A Motivation Demonstration

As shown in Figure 3, Stock B and Stock C are clas-
sified in the same industry and sector. Their feature
sequences exhibit compelling similarities in trends and
fluctuations, depending on the measuring domain and
scale. Capturing these spatio-temporal features is criti-
cal to reveal the predictive relations between the feature
sequences and portfolio objectives.

B Details for Problem Setting

We consider N ‘stocks’, one of them representing a cash
asset.

Feature Sequences: At time t, the features of
stock i are denoted by xt,i ∈ RP . The features
of all stocks are denoted by xt = [xt,1, ...,xt,N ] ∈
RN×P . The feature sequences are denoted by Xt =
{xt−∆T , ...,xt−1} ∈ RN×∆T×P , where ∆T is the look-
back window size.

Stock Relation Graphs: The relationship be-
tween stocks is described by a graph G(V,E). Each
node v ∈ V represents a stock, and each edge e ∈ E
between two nodes means that the two corresponding
stocks are related. When the graph is a weighted graph,
the edge weights represent the degree of relation be-
tween the two stocks.

Stock Returns: The percentage change in price
at time t, i.e., 1-period stock returns, are represented

as yt =
xc

t+1

xc
t

− 1 ∈ RN , where xc
t denotes the stock’s

closing price.
Portfolio Weights: The portfolio decision at time

t is represented by a vector of portfolio weights at =
[at,1, ..., at,N ] ∈ RN

+ , where at,i ≥ 0 and
∑N

i=1 at,i = 1.
Here, at,i denotes the proportion of wealth invested in
the stock i at time t. We assume at,i ≥ 0, i.e., do not
allow short-selling.

Portfolio Returns: The portfolio returns after
transaction costs at time t are given by rt = aty

⊤
t − ct,

where ct is the product of the transaction costs in basis
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Figure 3: Stock B and stock C are classified in the same industry
and sector. Their feature sequences exhibit similar trends and
fluctuations, and we aim for the model to capture as many similarities
as possible in the dynamic spatio-temporal features of these two
stocks.

points (bps) and the changes in portfolio weights.

C Implementation Details

The proposed Cafe-GCN and baseline models are imple-
mented with PyTorch. For the experimental parameter
settings, the lookback window size of feature sequence
∆T is set to 30, and the portfolio trading cost is set
to 30 bps (recall that short-selling is not allowed). Re-
garding the design of hyperparameters for Cafe-GCN,
the hidden dimension of the model D is set to 32, the
number of frequencies filtered out by the LPF M is set
to 3, the kernel size of the dilated convolution is 3, and
the dilation rates of the three dilated convolutions in the
Cafe-GCN are set to 1, 2, and 3, respectively. For the
training process, we use the Adam optimizer to optimize
the model with a learning rate of 0.02 in 200 training
epochs, and the risk-aversion coefficient η is set to 1. As
for the competing baselines, we follow the implementa-
tions of the original papers, and if necessary, adapt the
setup to the datasets for the portfolio selection task.

D Details for Evaluation Metrics

(1) Annualized Return (AR): annualized mean of
the daily portfolio returns, i.e. AR = mean(R)× 252.
(2) Sharpe Ratio (SR): risk-adjusted return. The
SR is calculated as the annualized return divided by
the annualized standard deviation of the daily portfolio

returns, i.e., SR = mean(R)
std(R) ∗

√
252.

(3) Maximum DrawDown (MDD): largest loss
from peak to trough in the test period, i.e., MDD =
maxte>ts(

∑ts
t=1 rt −

∑te
t=1 rt).

(4) Calmar Ratio (CR): measurement of how much
the MDD is covered by the portfolio strategy’s annual-
ized return over the test period, i.e., CR = AR

MDD .



E Visualization of Accumulative Wealth

Here we visualize the accumulative wealth of all com-
pared portfolio strategies in two datasets in Figure 4.
To better compare the proposed Cafe-GCN with the
competing baselines, the returns to the baseline portfo-
lio strategies are normalized to the same risk level (in
terms of portfolio volatility) as Cafe-GCN. In the NAS-
DAQ100 dataset, the Cafe-GCN model significantly
outperforms other competing models. In the CSI100
dataset, most of the portfolio strategies have suffered
dramatic losses in recent years while the portfolio per-
formance of Cafe-GCN exhibits strong resilience in the
crash and high-volatility market states.

(a) CSI100

(b) NASDAQ100

Figure 4: The accumulative wealth of the Cafe-GCN versus the
competing baselines.
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