

ORIGINAL ARTICLES

Health State Utility Values in Children and Adolescents with Disabilities: A Systematic Review

Lucy Kanya, PhD¹, Nana Anokye, PhD², Ahmad Hecham Alani, PharmD¹, Nandini Jayakumar, MSc³, and Jennifer M. Ryan, PhD^{2,4}

Objectives To (1) provide a comprehensive summary of the methods used to obtain health state utility values (HSUVs) from children and adolescents with disabilities (CAD), (2) describe the administration and psychometric properties of these methods in children and adolescents with disabilities, and (3) report summary statistics for HSUVs obtained from each method.

Study design English-language studies from MEDLINE (via PubMed), Psychlnfo, Scopus, CINAHL Plus, EconLit, and Embase were searched from inception to November 2024. Two reviewers independently screened titles, abstracts, and full texts. Studies were included if they used direct or indirect methods to measure HSUVs, reported utilities and/or psychometric properties of these measures, and involved CAD aged 0-19 years. Two reviewers independently extracted study details including sample descriptors, instruments used, and summary statistics. Studies quality was assessed using a novel tool derived from 3 validated checklists.

Results Of the 3541 screened articles, 31 met inclusion criteria. Only 2 studies used direct methods, such as time trade-off, visual analog scale, and standard gamble, whereas 29 employed generic measures (eg, EuroQol 5 Dimensions, Health Utilities Index 3) with diverse preference elicitation methods. Excessive dependence on proxy respondents was noted, and psychometric properties of generic measures were mixed.

Conclusions Inconsistent HSUVs reporting and limited data availability are common. Reported HSUV summary statistics may be inaccurate if methodologies are unsuitable for the population. This review emphasizes the need for validated instruments to assess HSUVs in CAD. (*J Pediatr 2025;15:200139*).

isability is defined as a challenge in functioning across body, personal, or societal levels, stemming from the interaction between an individual's health condition and contextual factors such as negative attitudes, inaccessible buildings, and lack of social support.^{1,2} Approximately 5% of children worldwide experience moderate or severe disability,² necessitating research on effective interventions to enhance activity and participation outcomes.³ Decisions on adopting health care interventions typically are informed by evaluations of cost-effectiveness, where net costs are assessed in the context of improvement in health outcomes. Cost-utility analysis (CUA) is a common approach for evidence-based decision-making in health care interventions, comparing costs with quality-adjusted life years. Quality-adjusted life years measure the quantity of life years and the quality of life using health state utility values (HSUVs), ranked from 0 (indicating a state equivalent to being dead) to 1 (representing full health). HSUVs can be obtained through 2 broad categories of methods. Direct methods, like time tradeoff (TTO) and standard gamble (SG), engage individuals in assessing and assigning scores to health states.⁴ Indirect methods use generic measures of health-related quality of life (eg, EuroQol 5 dimensions questionnaire [EQ-5D]) and derive utility values using scoring algorithms on the basis of preferences from the general population.⁴ Generic measures typically are recommended for use in economic evaluations, as they allow for comparison across different health conditions.⁵ Data collection for CUA should be robust, transparent, and systematic to enhance evidence reliability.^{5,6} However, reviews identified potential validity issues with generic HSUVs measures in adults with physical disabilities.^{7,8}

Limited information is available on HSUVs among children and adolescents with disabilities (CAD), including the psychometric properties of measures in this population. Understanding these methods is crucial for interpreting CUA findings and

AQoL	Assessment of Quality of Life	EQ-5D-Y	EuroQol-5 Dimension Youth
CAD	Children and adolescents with	HRQoL	Health-related quality of life
	disabilities	HSUVs	Health State Utility Values
CHQ-PF50	Child Health Questionnaire-	HUI	Health Utilities Index
	Parent Form 50	HUI-2	Health Utilities Index 2
CHU-9D	Child Health Utility 9D	HUI-3	Health Utilities Index 3
CUA	Cost-utility analysis	SG	Standard gamble
EQ-5D	EuroQol 5 Dimensions	TTO	Time trade-off
EQ-5D-3 L	EuroQol 5 Dimensions 3 Level	VAS	Visual analog scale
EQ-5D-5 L	EuroQol 5 Dimensions 5 Level		

From the ¹Department of Health Policy, London School of Economics and Political Science, London, United Kingdom; ²Institute of Environment, Health and Societies, Brunel University, London, United Kingdom; ³Department of Sociology, University of Cambridge, Cambridge, United Kingdom; and ⁴School of Physiotherapy, RCSI University of Medicine and Health Sciences, Dublin, Ireland

2950-5410/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1016/j.jpedcp.2025.200139

Volume 15 • 🔳 2025

informing research and practice. The objectives of this review are to describe methods used to obtain HSUVs in CAD, including how they are administered, describe psychometric properties of these methods in CAD, and report summary statistics for HSUVs among CAD obtained from each method.

Methods

The study design was informed by published recommendations for reviewing HSUVs.⁹⁻¹¹ The protocol for this review was registered with the International Prospective Register of Systematic Reviews (CRD42018086574) and published.¹² Reporting of the review adhered to the PRISMA guidelines.¹³

Search Strategy

We conducted a comprehensive search of the following databases from inception to September 3, 2023: MEDLINE (via PubMed), PsychInfo, Scopus, CINAHL Plus, EconLit, and Embase. The search was updated to include studies published up to November 8, 2024. Reference lists of key papers also were screened for additional references. The search strategy was developed on the basis of a pilot search of the literature and included various combinations of key words and subject headings related to children and adolescents (eg, infant, newborn, child, and adolescent), health utility terms (eg, EQ-5D, TTO, SG), and disability terms (eg, disabled, impairment). The search strategies were adapted for each database. An example of our search strategy was previously published.¹²

Eligibility Criteria

We included studies of any design that were reported in English and (1) reported HSUVs among CAD derived from both direct (eg, SG, TTO, visual analog scale [VAS]) and indirect methods (eg, EuroQol EQ-5D and its variants, Child Health Utility 9D [CHU-9D], Assessment of Quality of Life [AQoL], Health Utilities Index [HUI], and Quality of Well-Being [QWB]. among others.); and/or (2) reported the psychometric properties of measures used to obtain HSUVs in CAD; and (3) included CAD aged 0-19 years. Studies that included adolescents and adults with disabilities also were included if data could be extracted for adolescents separately or if the overall mean age of the sample was <18 years. We included studies involving children and adolescents with intellectual impairment, physical impairment, developmental disability, sensory impairments, and multiple impairments. We excluded reviews, commentaries, unpublished theses, and conference abstracts.

Data Screening and Extraction

Screening and data extraction were completed by 4 reviewers. Titles and abstracts were screened independently by 2 reviewers. The full texts of potentially eligible studies were obtained and independently screened by 2 reviewers. Data extraction was conducted independently by 2 reviewers. Disagreements between the reviewers were resolved through discussion.

We used a standardized form to extract data on study aims and methods including study design, setting, sampling method; sample characteristics including age, sex, race, socioeconomic status, diagnosis, type of disability, disability severity; methods used to obtain HSUVs including instrument, mode of administration, data source, time points, length of time to complete or administer; psychometric properties of the instrument in CAD with disabilities including validity, reliability, responsiveness; and summary statistics for HSUVs. This form was created and piloted by 2 reviewers. The International Society for Quality of Life Research minimum standards for patient-reported outcome measures guided the data-extraction items, including information on reliability, validity, and burden of patientreported outcome measures.¹⁴ In addition, select data extraction items from the Checklist for REporting VAlua-Tion StudiEs were used, such as description of instrument attributes, sampling method, response rate, and reasons for excluding respondents or observations.¹⁵ Because of the broad objectives of this review, not all data extraction items on the Checklist for REporting VAluaTion StudiEs checklist were applicable to all included studies.

Quality Assessment

Quality assessment was conducted independently by 2 single reviewers and disagreements resolved through discussion. Because of the absence of an existing suitable checklist, reviewers independently assessed study quality using a novel checklist derived from 3 sources. The first source was the Standards of the Systematic Review of Utilities for Cost-Effectiveness checklist, created by an ISPOR Good Practices for Outcomes Research Task Force and which provides recommendations for synthesizing HSUVs for costeffectiveness models.¹⁶ The second source offered guidance on systematic literature review for HSUVs identification/selection.⁹ The third source was a quality appraisal analysis of systematic literature reviews for HSUVs.17 The derived checklist encompassed items such as study population, inclusion/exclusion criteria, administration details (eg, responder, assessor training), sample size, response rate, missing data, and discussion of potential bias and generalizability of findings. The checklist was piloted, adjusted as needed prior to its application in the study. Studies were assessed using a 14-item tool, scoring each study on the basis of "yes" (1 point), "somewhat" (0.5 points), or "no/not clear" (0 points) answers. This nuanced scoring considered the extent to which each criterion was met.

Data Analysis

The characteristics of the included studies, methods used to obtain HSUVs and their administration, and psychometric properties of the methods in CAD were narratively summarized. Summary statistics for HSUVs were reported according to disability type, ie, intellectual impairment, physical impairment, developmental disability, sensory impairment,

Figure. PRISMA 2020 flow diagram.

and multiple impairments. Given the clinical heterogeneity observed in the identified studies, particularly in terms of the type and severity of disability, a narrative synthesis approach was adopted to summarize the findings. Further, on the basis of expert review, the authors determined that providing a single estimate for each condition was not clinically useful nor sufficiently robust, considering the diversity of the identified studies.

Results

The Figure summarizes the selection process. After we removed duplicates, 3541 titles and abstracts were screened, and 249 full texts obtained for evaluation. Subsequently, 31 studies¹⁸⁻⁴⁵ were eligible for inclusion in the review. Quality assessment scores ranged from 4 to 12, out of 14 points, with a mean score of 9 (Appendix). Among these studies, 39% (n = 12)^{18,19,22,23,26,28,35,37,41,42,46,47} were deemed high quality (scores of 10 or greater), whereas 6 were of lower quality,^{21,25,38-40,48} (scoring 7 or lower). Common quality issues included the lack of assessor training in tool administration in 65% of studies (n = 20); missing data without explanation (39%, n = 12);inadequate justification of sample sizes (48%, n = 15), and failure to discuss potential sources of bias, including attempts to minimize bias (45%, n = 14).

Study Characteristics

Table I summarizes the included studies. These were conducted in 18 countries: France, Germany, Italy, Lithuania, the Netherlands, Ireland, Saudi Arabia, Spain, Sweden, United Kingdom, Canada, US, Brazil, China, India, Israel, Thailand, and Australia.¹⁸⁻⁴⁵ The studies involved 12 663 participants (range: 12-4016). Among them, 24 were cross-sectional studies, ^{19-33,36-38,40,44-48} 6 were randomized controlled trials, ^{34,35,39,41-43} and 1 was a CUA.¹⁸ The most commonly assessed conditions were deafness or hearing impairment, (n = 11),^{18,20-24,28,30,36,38,40} cerebral palsy (n = 8),^{23-25,29,39,40,44,45} and autism spectrum disorders/ autism (n = 7).^{24,26,30,41,44,46,47} The age range was reported in 19 studies (61%). Participant ages ranged from 11 months to 18 years in all studies.

Assessment of Health-Related Quality of Life (HRQoL) Utility Values

Among the 31 studies included, response rates ranged from 40% to 100%. The reasons for nonresponse were not reported for most studies. When provided, the reasons cited included participants' limited ability to self-report, refusal to participate, inaccessibility of participants, and failure to return questionnaires. The review identified a diverse range of measures used to assess HSUVs in CAD (**Table II**). Only 2 studies used direct methods (TTO, VAS, SG),^{18,23} in

	-	•	
	-	-	

Authors	Year	Country	Study design	Description of children	Condition(s) covered	Respondent	Measure(s)
Cheng et al ¹⁸	2000	US	CUA	n = 78; mean (SD) age 7.5 (4.5) y; 46% female	Profoundly deaf	Parent	HUI; TTO; VAS
Tilford et al ¹⁹	2005	US	Cross-sectional	n = 98; mean (SD) age 9.3 (4.6) y; range 2-17 years; 61.2% female	Spina bifida	Caregiver	HUI-2
Barton et al ²⁰	2006	UK	Cross-sectional	n = 2858	Hearing loss	Parent	HUI-3
Sach et al ²¹	2007	UK	Cross-sectional	n = 216; mean (SD) age 9.3 (3.6) y; 50.5% female	Hearing loss	Parent	EQ-5D
Rosenbaum et al ⁴⁵	2007	Canada	Cross-sectional	n = 203; mean (SD) age 16 (1.8) y; 45.3% female	Cerebral palsy	Child or parent	HUI-3
Smith-Olinde et al ²²	2008	US	Cross-sectional	n = 103; mean (SD) age 7.3 (1.9) y; range 5-10 y; 48.5% female	Hearing loss	Caregiver	HUI-3; QWB
Carroll et al ²³	2009	US	Cross-sectional	n = 4016	Bilateral vision loss; cerebral palsy; hearing loss; "mental retardation"; monocular blindness	Parent	SG; TTO
Petrou et al ²⁴	2009	UK	Cross-sectional	n = 2236; age range 5-16 y; 50.4% female	Autism spectrum disorders; learning disabilities; severe learning disabilities/global developmental delay; learning and physical disabilities; Down syndrome; cerebral palsy; unspecified motor disorders; head injury; vision disorders and blindness; deafness; deafness with other impairments; speech disorders	Caregiver	HUI-3
Young et al ²⁵	2010	Canada	Cross-sectional	n = 129; mean (SD) age 15.5 (1.4) 7: range 13-17 7	Cerebral palsy	Child or parent	AQoL; HUI-3
Tilford et al ²⁶	2012	US	Cross-sectional	n = 150; mean (SD) age 8.6 (3.3) 7; range 4-17 7; 14.7% female	Autism spectrum disorder	Caregiver	HUI-3; QWB
Petrou et al ²⁷	2013	UK; Ireland	Cross-sectional	n = 79; median age 10.9 7; range 10.1-11.1 7: 44.3% female	Neurodevelopmental disability	Parent	HUI-2; HUI-3
Kulpeng et al ²⁸	2013	Thailand	Cross-sectional	n = 173; mean (SD) age 10 (3) 7; range 5-14 7; 38% female	Hearing loss; "mild mental retardation"; "severe mental retardation"; "mental retardation combined with epilepsy"	Caregiver or caregiver/child pair	EQ-5D; HUI-2; HUI-3
Burström et al ²⁹	2014	Sweden	Cross-sectional	n = 71; mean (SD) age 12.0 (3.1) 7; range 7-17 7; 60.6% female	Arthrogryposis multiple congenital; myelomeningocele; cerebral palsy; orthopedic lower-limb deformities; juvenile idiopathic arthritis; achondroplasia	Child	EQ-5D-Y
Domellöf et al ³⁰	2014	Sweden	Cross-sectional	n = 175; mean age 11.7 7; range 7-17 7; 32.6% female	Intellectual disabilities; autism spectrum disorders; movement disorders; hearing disabilities	Child or parent	EQ-5D-Y
Chevreul et al ³¹	2015	France	Cross-sectional	n = 53; mean (SD) age 10.3 (4.3) 7: 11.3% female	Fragile X syndrome	Caregiver	EQ-5D-5 L
Chevreul et al ³²	2016	France	Cross-sectional	n = 25; mean (SD) age 6.8 (4.9) 7: 52% female	Pradar-Willi syndrome	Parent	EQ-5D-5 L
Landfeldt et al ³³	2016	Germany; Italy: UK: US	Cross-sectional	n = 770; ≥5 7; 100% male	Duchenne muscular dystrophy	Child or parent	HUI
Hind et al ³⁴	2017	UK	RCT	n = 12; mean (SD) age 8.6 (1.7) 7; range 7-13 7: 100% male	Duchenne muscular dystrophy	Child	CHU-9D
Ramanan et al ³⁵	2019	UK	RCT	n = 90; mean (SD) 8.90 (3.9) 7; 78%	Uveitis associated with juvenile	Parent or caregiver	HUI-3

Table I. Continu	ed						
Authors	Year	Country	Study design	Description of children	Condition(s) covered	Respondent	Measure(s)
Le et al ³⁶	2020	Australia	Cross-sectional	 (a) Children with typical (n = 886) and low language abilities (n = 126); n = 1012; mean (SD) age 4.2 (0.1) 7; 46% female (b) Children with congenital hearing loss; n = 108; mean (SD) age 5.3 (0 & 7, 55% females) 	(a) Typical and low language abilities(b) Congenital hearing loss	Child or parent	HUI-3; PedsQL
Kirkham et al ³⁷	2020	Germany; Italy; Spain; UK	Cross-sectional	n = 286; mean (SD) age 8.8 (3.8) 7; range 3-16 7	Learning disability associated with epilepsy	Clinician, parent and child	EQ-5D-3 L
Nair et al ³⁸	2020	India	Cross-sectional	 (a) Patients with Usher syndrome: patients; n = 27; mean age 2.9 7; range 11 mo to 4.7 7 (b) Patients without Usher syndrome: n = 30; mean age 4.1 7; range 1.8- 6 7 	Usher syndrome (hearing and vision loss)	Not clear	HUI-3
Tonmukayakul et al ³⁹	2020	Australia	RCT	n = 76; mean (SD) age 9:7 (3:0) 7; range 6-15 7: 53% female	Cerebral palsy	Parent or caregiver	CHU-9D
Liu et al ⁴⁰	2021	New Zealand	Cross-sectional	n = 127; corrected age 7 7; 47% female	 Children born <30 weeks' gestation or <1500 g birth weight with NDI categorized as mild and severe NDI cases: Mild NDI is determined by certain criteria related to cognitive and motor skills Severe NDI encompassed a broader range of criteria, including factors like very low IQ, significant motor challenges, cerebral palsy, hearing impairment requiring aids, or severe visual impairment. 	Caregiver	CHQ-PF50; HUI-2
Randell et al ⁴¹	2022	UK	RCT	n = 138; mean (SD) age 7.87 (1.73) 7; 21% female	Autism	Caregiver	EQ-5D-5 L
van Westrhenen et al^{42}	2023	Netherlands	RCT	n = 53; mean (SD) age 9.7 (±3.6) 7; range 4-16: 45% females	Learning disability associated with	Caregiver	EQ-5D-5 L
Khan et al ⁴³	2023	US; Israel	RCT	n = 21; mean (SD) age 15 (1.3) 7; range 13-17; 48% females	Angelman syndrome	Child or parent	EQ-5D; EQ-5D VAS
Da Costa et al ⁴⁴	2023	Brazil	Cross-sectional	n = 86; range 5-12; a) Developmental disabilities (n = 52); mean (SD) age 7.5 (\pm 2) 7; 33% females; b) Typical development (n = 34); mean (SD) age 7.1 (\pm 2.1) 7; 50% females	Cerebral palsy; Down syndrome, Myelomeningocele; Congenital malformations; and autism, among others	Caregiver	PedsQL
Bukhari and Zawawi ⁴⁶ Blackmore et al ⁴⁸	2024 2024	Saudi Arabia Australia	Cross-sectional Cross-sectional	n = 79 ages 13-18 7 n = 28 (30 caregivers reporting on 28 shiftern) ages 8, 22 7	Hearing loss Intellectual disability	Children Caregivers	HEAR-QL EQ-5D-Y-5L
Downs et al ⁴⁷	2024	Australia	Cross-sectional	n = 234 ages 4-18 7	Intellectual disability	Caregivers	EQ-5D-Y-5L

Health State Utility Values in Children and Adolescents with Disabilities: A Systematic Review

NDI, neurodevelopmental impairments; RCT, randomized controlled trial.

2025

Volume 15

contrast to an array of 13 different indirect methods used across the other studies. Notably, the most frequently used indirect method was Health Utilities Index 3 (HUI-3; 11 studies),^{20,22,24-28,35,36,38,45} followed by Health Utilities Index 2 (HUI-2; 4 studies),^{19,27,28,40} EuroQol 5 Dimensions 5 Level (EQ-5D-5 L; 6 studies), 31, 32, 41, 42, 46, 47 and EQ-5D (3 studies).^{21,28,43} Pediatric Quality of Life Inventory (PedsQL), EuroQol-5 Dimension Youth (EQ-5D-Y), QWB, CHU-9D, and HUI were each used in 2 studies.^{22,26,29,30,33,34,36,39,44,46} The remaining measures, including Hearing Environments and Reflection of Qualityof-Life questionnaire, EuroQol 5 Dimensions 3 Level (EQ-5D-3 L), EQ-5D VAS, Child Health Questionnaire-Parent Form 50 (CHO-PF50), and AQoL, were each employed once.^{25,37,40,43} Further details on the methods used to derive and score the HSUVs from these measures are available in Tables II and III.

In specific populations, such as children with sensory impairment (12 studies), 2 studies employed direct methods (TTO, VAS, and SG),^{18,23} whereas the most frequently used indirect method was the HUI-3 (7 studies).^{20,22,24,28,35,36,38} The EQ-5D and HUI-2 were each used in 3 studies.^{21,28,48} Other methods, including CHQ-PF50, EQ-5D-Y, HUI, PedsQL, and QWB, also were employed.^{22,30,36,40,46} In studies focusing on children with speech or language disorders (3 studies), HSUVs were measured using the HUI-3 in 2 studies,^{24,36} whereas other methods such as CHQ-PF50, HUI-2, and PedsQL also were employed.^{24,36,40} For children with primary physical impairments, such as cerebral palsy and spina bifida (9 studies),^{19,23-25,29,33,34,39,45} only one study employed direct methods (SG and TTO).²³ HUI-3 was used in 3 studies,^{24,25,45} and CHU-9D was used in 2 studies.^{34,39} Other methods, such as AQoL, EQ-5D-Y, HUI, and HUI-2 were also employed.^{19,25,29,33} For children and adolescents with autism spectrum disorder (5 studies), 2 studies employed the HUI-3,24,26 whereas the remaining studies used a variety of measures including EQ-5D-Y, EQ-5D-5 L, PedsQL, and QWB.^{26,30,41,44} For children with intellectual impairment (4 studies), HSUVs were assessed using diverse direct and indirect measures, including SG, TTO, HUI-3, EQ-5D-3 L, and EQ-5D-5 L.^{23,24,37,42,46,47} For children with developmental disabilities (8 studies), 3 studies used the HUI-3,^{24,26,27} 2 applied the HUI-2,^{27,40} and 2 incorporated the EQ-5D-5 L.^{31,32} The remaining studies employed a variety of measures, including other variants of the EQ-5D (such as EQ-5D and EQ-5D VAS),43 as well as PedsQL, QWB, CHQ-PF50,^{26,40,43} and Hearing Environments and Reflection of Quality-of-Life questionnaire.48

Despite this diversity, some studies did not reference the scoring algorithm used or describe the method used in detail. Those that did provide this information often used an algorithm on the basis of the preferences of the general population, as this is typical for utility instruments like the HUI and EQ-5D. These algorithms reflect public preferences and, in some cases, may vary by countryspecific value sets for use in CUAs. Furthermore, some studies employed different versions of the same generic measure (eg, EQ-5D-3 L, EQ-5D-5 L, and EQ-5D VAS), potentially affecting result comparability.

Administration Methods

A parent or caregiver was the only respondent in the majority of studies (n = 19, 61%).^{18-24,26,27,31,32,35,39-42,44,46,47} In 6 studies, the respondent was either a child or parent.^{25,30,33,36,43,45} The child was the respondent in only 3 studies.^{29,34,48} The respondent was not reported in 1 study.³⁸ One study included a combination of clinicians, parents, and/or children,³⁷ whereas another study involved a caregiver/child pair as the respondent.²⁸

In 10 studies, researchers obtained HSUVs through interviews.^{23-25,30,39,41,42,45,46,48} Postal questionnaires were employed in 7 studies,^{24,26,28,32,33,46,48} whereas online questionnaires were employed in 6.^{21,22,29,37,43,47} Three studies used self-administered questionnaires completed in clinical settings.^{27,31,34} In 1 study, participants had the option to complete the questionnaire either in a clinical setting or via postal delivery.²⁰ The remaining studies (n = 7, 25%) did not specify the methodology used to elicit HSUVs.

The type of missing data varied across different measures. However, these missing data could be attributed to factors such as participant dropout, loss to follow-up, or incomplete responses by the participants. For HUI-3 and HUI-2, missing data ranged from 0% to $20.7\%^{20,25,26,35,45}$ and 0% to $18.4\%,^{19,25}$ respectively. The EQ-5D had the lowest rate of missing data (0% to 1%),^{21,25} whereas the EQ-5D-Y had slightly greater rates of missing data (2.8%-4.2%).^{29,30} For EQ-5D-5 L missing data ranged between 17% and 28.3%.^{32,42} The CHU-9D had the greatest rate of missing data, up to 43%, attributed to self-reporting limitations.³⁶ One study reported no missing data for the QWB.²⁶

Psychometric Properties of the Methods Used to Obtain Health State Utility Values

Thirteen studies reported the validity of instruments to obtain health service utility values. Table IV details the construct validity (convergent and/or known-groups validity) of HUI-3, HUI-2, HUI (mark not stated), AQoL, QWB, EQ-5D, EQ-5D-5 L, EQ-5D-Y, and CHU-9D among CAD. Eight studies evaluated the construct validity of the HUI-3,^{20,22,25-28,36,45} and 3 evaluated the construct validity of the HUI-2.^{19,27,28} The QWB^{22,26} and EQ-5D-Y^{29,30} were each examined in 2 studies, whereas 1 study assessed the EQ-5D,²⁵ AQoL,²⁵ HUI (mark not stated),³³ and CHU-9D.³⁹ There was some evidence of construct validity for all generic measures. HSUVs from HUI-3, HUI-2, AQoL, QWB, and EQ-5D were significantly correlated with HRQoL on other generic measures.^{25,28,36,45} However, weak correlations were observed between HUI-3 and a condition-specific measure for cerebral palsy,²⁵ as well as between CHU-9D utility scores and the Cerebral Palsy Quality of Life Questionnaire.³⁶ Weak correlations were also noted between HUI-3 and PedsQL domains for children with language and/or hearing disabilities.⁴⁴ Further analysis indicated significant correlations between

Table II. Me	thods used fo	r obtaining utility val	ues
Types	Number of studies, No.	Included authors using this method	Year
Direct methods			
TT0	2	Carroll et al ²³	2009
		Cheng et al ¹⁸	2000
SG	1	Carroll et al ²³	2009
VAS	1	Cheng et al ¹⁸	2000
Indirect methods		-	
HUI-3	11	Barton et al ²⁰	2006
		Rosenbaum et al ⁴⁵	2007
		Smith-Olinde et al ²²	2008
		Petrou et al	2009
		Young et al ²⁵	2010
		Tilford et al ²⁶	2012
		Petrou et al ²⁷	2013
		Kulpeng et al ²⁸	2013
		Ramanan et al ³⁵	2019
		Le et al	2020
		Nair et al	2020
HUI-2	4	lilford et al	2005
		Petrou et al ²⁸	2013
		Kulpeng et al	2013
	C	Liu et al	2021
EQ-3D-3 L	0	Chevreul et al	2015
		Bandell et al ⁴¹	2010
		van Westrhenen et al ⁴²	2022
		Downs et al ⁴⁷	2024
		Blackmore et al ⁴⁸	2024
EQ-5D	3	Sach et al ²¹	2007
		Kulpeng et al ²⁸	2013
		Khan et al ⁴³	2023
PedsQL	2	Le et al ³⁶	2020
		Da Costa et al ⁴⁴	2023
EQ-5D-Y	2	Burström et al ²⁹	2014
		Domellöf et al ³⁰	2014
QWB	2	Smith-Olinde et al ²²	2008
		Tilford et al ²⁶	2012
CHU-9D	2	Hind et al ³⁴	2017
	-	Tonmukayakul et al	2020
HUI	2	Cheng et al	2000
		Landfeldt et al	2016
EQ-5D-3 L	1	KIRKNAM et al	2020
EQ-5D VAS	1	knan et al	2023
UHU-PF50	1	Liu et al 25	2021
	1	roung et al Bukhari and Zawawi ⁴⁶	2010
NEAK-UL	I	DUKITATI ATIU ZAWAWI	2024

HSUVs from HUI-3, HUI, AQoL, and QWB and severity in children with developmental disability, sensory impairment, and physical impairment,^{20,21,24-26} except for those with autism.³² No studies were identified that reported the content, criterion validity or responsiveness of the instruments in CAD. One study⁵² reported reliability coefficients of 0.94 for HUI-2, 0.86 for EQ-5D and 0.87 for HUI-3 in CAD.

Summary Statistics of Reported Health State Utility Values

Tables V and **VI** report the HSUVs of children and adolescents by disability type. However, in 4 studies, HSUVs were not available.^{23,27,28,30} There was variation in reported HSUVs across measures, even for children and

adolescents with the same condition and severity. It should be noted that these ranges may reflect differences in study design, populations, or the instruments used, making comparisons across studies potentially misleading. For example, the range of (-0.13 to 0.95; Table V) for individuals with primary physical impairments includes data from a cross-sectional study of children with cerebral palsy and a randomized controlled trial involving children with Duchenne muscular dystrophy.^{25,34} For those with sensory impairment, mean values ranged from 0.25 to 0.99 (Table V).^{18,35} Among those with speech or language disorders, one study reported mean values ranging from 0.72 to 0.85 (Table V),³⁶ whereas another study documented a median of 0.53 (Table V).^{24,25,34} Similarly, mean values for children and adolescents with autism spectrum disorders spanned from 0.58 to 0.84 (Table VI).^{26,41} For children and adolescents with intellectual impairment, mean values fell within the range of 0.5-0.9 (Table VI).^{37,42} Lastly, for individuals with developmental disabilities, mean values ranged from 0.42 to 0.76 (**Table VI**).³¹

Discussion

This systematic review synthesizes literature on measures used to assess HSUVs in CAD and provides summary statistics for the reported HSUVs. A wide range of measures were used, including both direct methods such as TTO, SG, and VAS, and indirect methods like EQ-5D and HUI, among others. Administration methods varied across studies, from interviews to postal or online questionnaires, with some studies lacking specification, highlighting a lack of standardization in data collection. Furthermore, the wide variation in HSUVs across different types of impairments suggests potential challenges in drawing accurate conclusions from CUA of CAD and may result in inadequately informed decisions regarding healthcare interventions.

The validity of HSUVs can be impacted by factors such as who administers the instrument, their training, the mode of administration, and the respondent.⁴⁷ The majority of included studies identified the respondent, with only three studies using children as exclusive respondents,^{29,34,48} and one involved a caregiver-child dyad.²⁸ Heavy reliance on proxies to elicit HSUVs in CAD also raises concerns about the accuracy and generalizability of the resulting estimates. In fact, more than one-half of the studies $(61\%, n = 19)^{18-24,26,27,31,32,35,39-42,44,46,47}$ used a parent or caregiver as the proxy respondent despite evidence that children and adolescents can complete utility assessments.⁵³ Furthermore, only 4 studies reported training assessors,^{23,25,31,45} leaving unanswered questions about the respondents' comprehension of the instrument and the accuracy of their responses.

Our findings indicate a tendency to use adult-specific methods to obtain HSUVs among CAD, aligning with patterns observed in previous published literature.^{23,54} None

Volume 1

Table III. Scorin	g method used to obtain utility values				
Measure	Method used	Authors	Year	Included authors using this method	Year
HUI-2	Canadian scoring function	Furlong et al ⁴⁹	2002	Kulpeng et al ²⁸	2013
	UK adult population	McCabe et al ⁵⁰	2005	Petrou et al ²⁷	2013
	Algorithms for assigning preference scores	Not provided		Tilford et al ¹⁹	2005
	developed using community samples				
	Normative reference population	HealthActCHQ	2013	Liu et al ⁴⁰	2021
HUI-3	Canadian general population preferences for health status	Feeny et al ⁵¹	2002	Petrou et al ²⁴	2009
				Petrou et al ²⁷	2013
				Barton et al ²⁰	2006
				Tilford et al ²⁶	2012
	Unclear	Feeny et al	1996	Young et al ²⁵	2010
	Canadian general population preferences for health status	Furlong et al	1998	Rosenbaum et al ⁴⁵	2007
				Ramanan et al ³⁵	2019
	Canadian scoring function	Furlong et al ⁴⁹	2002	Kulpeng et al ²⁸	2013
	Algorithms for assigning preference scores developed using community samples	Not provided		Smith-Olinde et al ²²	2008
	Canadian population preference weights	Drummond et al	2001	Le et al ³⁶	2020
	Not stated	Not provided		Nair et al ³⁸	2020
HUI	General adult population	Not provided		Cheng et al ¹⁸	2000
	General public	Horsman et al	2003	Landfeldt et al ³³	2016
AQoL	Not stated	Hawthorne et al	2001	Young et al ²⁵	2010
		Hawthorne et al	1999		
EQ-5D	Not stated	Not provided		Sach et al ²¹	2007
	Thai algorithm	Tongsiri et al	2011	Kulpeng et al ²⁸	2013
	Not stated	Not provided		van Westrhenen et al42	2023
EQ-5D-3 L; EQ-5D-Y	UK-specific weightings	Dolan et al	1995	Kirkham et al ³⁷	2020
EQ-5D-5 L	European adult population	Van Hout et al	2012	Chevreul et al	2015
				Chevreul et al ³²	2016
	Not stated	Not provided		Randell et al ²	2022
				Downs et al	2024
			0014	Blackmore et al	2024
EQ-5D; EQ-5D VAS	US population preference weights	Szende et al	2014	Khan et al	2023
Peasul	Canadian population preference weights	Drummond et al	2001		2020
014/D	NOT STATED	Not provided		Da Costa et al	2023
MAR	community sample	Not provided			2008
				Tilford et al ²⁰	2012
CHU-9D	Australian adolescent population-specific scoring algorithm	Ratcliffe et al	2001	Tonmukayakul et al ³⁹	2020
	Not stated	Not provided		Hind et al ³⁴	2017
HEAR-QL	Not stated	Not stated		Bukhari & Zawawi ⁴⁶	2024
					_

of the studies used direct preference elicitation from CAD. In fact, the majority of studies employed generic measures, with only 4 using instruments that have been validated for use in children and adolescents (CHU-9D and EQ-5D-Y).^{29,30,34,39} Although the lack of appropriate tools in the field may justify the use of nonchild and adolescent specific instruments, their validity and generalizability in eliciting HSUVs is uncertain. Moreover, the scoring methods employed to derive HSUVs were also a matter of concern. Eight studies incorporated preferences obtained from either the general population or adults,^{20-23,25,33,42,44} which may not accurately reflect the preferences/values of CAD. This variation significantly hinders the generalizability of the findings. Of significant concern too is the absence or inadequate use of childspecific preferences. For instance, the techniques used to derive utility scores were not reported in a study that employed the child-specific CHU-9D.38 This, in turn, can potentially compromise evidence underpinning the cost-effectiveness of healthcare interventions and resource

allocation decisions. However, there is a lack of consensus on optimal approaches for eliciting and measuring HSUVs, which may explain the variability across studies.⁵² It is therefore imperative to establish a consensus to ensure reliable and comparable outcomes across studies of CAD.

The psychometric properties of the generic measures used in CAD were mixed, with some measures showing good construct validity for specific diagnoses, whereas others did not. Consistent with recent reviews on generic childhood multi-attribute utility instruments, evidence for psychometric instruments in CAD is primarily available for the HUI-3, with known-groups validity as the most frequently assessed property. Similar gaps in evidence were observed for instrument reliability in CAD. Notably, no psychometric data were found for the Sixteen-/Seventeen-dimensional (16D/17D)-HRQoL instruments, Adolescent Health Utility Measure, Child Health Utility 6 Dimensions, Child Health and Social Care Services Pediatric Scale, Infant Quality of Life Instrument, or Teen Assessment of Neurodevelopmental

Table IV. Psych	ometric properties	s of gen	eric measures		
			Vali	dity*	
Measures	Authors	Years	Convergent and/or known- groups validity	Construct	Missing data*
HUI-3	Young et al ²⁵	2010	Strong correlation with AQoL, Moderate correlation with EQ-	Utility strongly associated with severity of motor impairment	No missing data
	Kulpeng et al ²⁸	2013	Strong correlation with HUI-2, Moderate correlation with EQ-	-	-
	Smith-Olinde et al ²²	2008	No difference between QWB and HUI-3 utility scores	Utilities declined with increasing hearing loss and increasing severity of hearing loss for children without cochlear implant	-
	Rosenbaum et al ⁴⁵	2007	Weak correlation with the quality-of-life Instrument for People with Developmental Disabilities	Utility strongly associated with severity of motor impairment	2%participants had missing data for ≥1 domains
	Le et al ³⁶	2020	Moderate correlation between HUI-3 and PedsQL overall scores in the full general population sample, as well as in children with low language, but not in children with congenital hearing loss ³⁶ Low correlations observed between each of the HUI-3 and the PedsQL domains in the general population, as well as in the groups of children with low language or congenital hearing loss	Children with low language had lower HRQoL than their peers with typical language, as evidenced by the HUI-3 scores (6% difference in the general population and 19% and 30% differences in children with congenital hearing loss) The PedsQL scores did not show significant HRQoL differences between children with and without low language in either cohort	
	Petrou et al ²⁷	2013	–	Difference in utility between children with and without neurodevelopmental disability ²⁷	
	Tilford et al ²⁶	2012	-	Utility not associated with Autism Diagnostic Observation Schedule calibrated severity score ²⁶	2.7% participants had missing utility value ²⁶
	Barton et al ²⁰	2006	-	_	20.7% participants had missing data for ≥1 domains
HUI-2	Young et al ²⁸ Kulpeng et al ²⁸	2010 2013	- Strong correlation with HUI-3 Moderate correlation with EQ- 5D	-	No missing data -
	Petrou et al ²⁷	2013	-	Difference in utility between children with and without neurodevelopmental disability	-
	Tilford et al ¹⁹	2005	-	Difference in utility between children with and without spina bifida Utility declined with increasing severity of lesion	18.4% of participants had missing data for ≥1 domains
	Young et al ²⁵	2010	-	-	No missing data ²⁵
HUI (mark not stated)	Landfeldt et al ³³	2016	-	Utility associated with disease progression and caregivers' rating of the child's current health ³³	-
AQoL	Young et al ²⁵	2010	Strong correlation with HUI-3	Utility moderately associated with severity of motor impairment	-
QWB	Smith-Olinde et al ²²	2008	No difference between QWB and HUI-3 utility scores	Utility declined with increasing severity of hearing loss for children without cochlear implant	-
	Tilford et al ²⁶	2012	-	Utility not associated with Autism Diagnostic Observation Schedule calibrated severity score	No participants had missing utility value
					(continued)

Table IV. Con	tinued				·
			Vali	dity*	
Measures	Authors	Years	Convergent and/or known- groups validity	Construct	Missing data*
EQ-5D EQ-5D-5 L	Sach et al ²¹ Chevreul et al ³² van Westrhenen et al ⁴²	2007 2016 2023		- - -	0.5% participants missing data 17% participants missing data 24.5% participants had missing data at baseline and 28.3% at the follow-up
	Downs et al ⁴⁷	2024	EQ-5D-Y-5L is suitable for assessing HRQoL in children with intellectual disability, with limitations in EQ-VAS stability and some dimensions.	Strong validity for mobility, self- care, and pain dimensions; fair to moderate test-retest reliability; variable EQ-VAS performance	Less than 1% missing data
	Blackmore et al ⁴⁸	2024	EQ-5D-Y-5L shows basic validity but lacks comprehensiveness for HRQoL in children with intellectual disability; further adaptation recommended.	-	Missing data reported as 'minimal'
EQ-5D-Y	Burström et al ²⁹	2014	"Feeling worried, sad or unhappy" dimension negatively moderately associated with psychological well-being dimension in KIDSCREEN "Mobility" dimension not associated with physical well- being dimension of KIDSCREEN Moderate correlations between Visual Analogue Scale and KIDSCREEN HRQoL index, self-rated general health item and life satisfaction ladder	"Some" or "a lot of" problems on any dimension was reported by 82.9% of children with disability, compared with 36.6% of children in general population	4.2% of participants had missing values for ≥1 dimension
	Domellöf et al ³⁰	2014	_	Between diagnostic group	2.8% of participants had missing
CHU-9D	Tonmukayakul et al ³⁹	2020	Weak correlation between the overall Cerebral Palsy Quality of Life Questionnaire-Child score and the CHU-9D utility scores At the domain level, the participation and emotional wellbeing domains showed a moderate positive correlation with the CHU-9D scores, while the feelings and social wellbeing domains demonstrated strong positive correlations No significant correlations were found between the CHU- 9D scores and the access to service domain The pain domain had a negative but non-significant correlation with the CHU-9D scores	Greater upper-limb impairment was associated with lower HRQoL. However, the relationship was weak and may be due to the fact that more than half of the participants had mild upper- limb impairment	Values for 21 differision Up to 43% of participants had missing data as many had limited ability to self-report
HEAR-QL	Bukhari and Zawawi ⁴⁶	2024	Discriminatie validity established with the HEAR-QL tool	Normal hearing group had the highest QoL scores, followed by the CI group, with the untreated hearing loss group scoring the lowest.	Not reported

*Some of the studies did not report details for convergent validity, construct validity, or missing data for their reported HSUVs.

Table V. Health state utility values for children and adolescents with sensory impairment, speech or language disorders, primary physical disability

Authors	Year	Condition	Method	Sample size, No.*	Mean (SD)*	Median (IQR)*
Sensory impairment						
Carroll et al ²³	2009	Mild hearing loss	SG	-	0.92 (0.16)	0.99
		Mild hearing loss	TT0	-	0.93 (0.17)	0.99
Smith-Olinde et al ²²	2008	Mild/moderate hearing loss	HUI-3	22	0.71 (0.18)	-
Carroll at al ²³	2000	Mild/moderate hearing loss	C QWB	22	0.65 (0.12)	-
Galloll et al	2009	Moderate hearing loss	TTO	_	0.91 (0.18)	0.99
Barton et al ²⁰	2006	Moderate hearing loss	HUI-3	260	0.68	-
Smith-Olinde et al ²²	2008	Moderate/severe hearing loss	HUI-3	34	0.62 (0.22)	-
		Moderate/severe hearing loss	QWB	34	0.59 (0.11)	-
Carroll et al ²³	2009	Severe hearing loss	SG	-	0.86 (0.19)	0.94
Dorton at al ²⁰	2006	Severe hearing loss		-	0.86 (0.20)	0.94
Barton et al-	2006	Severe nearing loss Profound bearing loss (AHL 96-105 dB)	HUI-3 HUI-3	404 250	0.62	_
		Profound hearing loss (AHL >105 dB)	HUI-3	290	0.35	_
Smith-Olinde et al ²²	2008	Severe/profound hearing loss (no implant)	HUI-3	19	0.54 (0.22)	_
		Severe/profound hearing loss (no implant)	QWB	19	0.55 (0.07)	-
Cheng et al ¹⁸	2000	Profound deafness (no implant)	VAS	78	0.59	-
		Profound deafness (no implant)	TT0	40	0.75	-
Smith Olindo at al^{22}	2000	Protound deatness (no implant)	HUI	22	0.25	-
Simui-Oinide et al	2008	Hearing loss		103	0.62 (0.20)	_
Petrou et al ²⁴	2009	Deafness	HUI-3	103	-	0 41
Smith-Olinde et al ²²	2008	Severe/profound hearing loss (implant)	HUI-3	28	0.61 (0.16)	_
		Severe/profound hearing loss (implant)	QWB	28	0.61 (0.09)	-
Barton et al ²⁰	2006	Hearing loss with implant	HUI-3	403	0.58	10db
Cheng et al ¹⁸	2000	Profound deafness (implant)	VAS	78	0.86	50 dbSPL
		Profound deafness (implant)	TTO	40	0.97	22.5 SPL
Sach at al ²¹	2007	Protound deatness (implant)		40 215	0.64	-
Petrou et al ²⁴	2007	Deafness with other impairments	HIII-3	15	0.00 (0.17)	0.40
Carroll et al ²³	2009	Mild bilateral vision loss	SG	-	0.89 (0.18)	0.40
		Mild bilateral vision loss	TT0	-	0.91 (0.19)	0.99
		Moderate bilateral vision loss	SG	-	0.85 (0.22)	0.94
		Moderate bilateral vision loss	TT0	-	0.86 (0.21)	0.94
		Severe bilateral vision loss	SG	-	0.81 (0.22)	0.89
Lo at al ³⁶	2020	Severe bilateral vision loss		-	0.81 (0.22)	0.89
Le el al	2020	Congenital hearing loss (overall)	HUI-3	58	0.08 (0.20)	0.74 (0.56-0.65)
		Concenital hearing loss (low language ability)	HUI-3	43	0.60 (0.24)	0.62 (0.53-0.75)
		Congenital hearing loss (overall)	PedsQL	108	0.75 (0.17)	0.78 (0.65-0.88)
		Congenital hearing loss (typical language ability)	PedsQL	58	0.77 (0.17)	0.79 (0.72-0.89)
		Congenital hearing loss (low language ability)	PedsQL	43	0.72 (0.17)	0.76 (0.62-0.88)
Petrou et al ²⁴	2009	Vision disorders and blindness	HUI-3	39	-	0.47
Carroll et al-	2009	Monocular blindness	56 TTO	-	0.88 (0.17)	0.96
Bamanan et al ³⁵	2019	Mild or moderate uveitis: adalimumab group (baseline)	HII-3		0.69 (0.17)	0.90
namanan ot a	2010	Mild or moderate uveitis: placebo group (baseline)	HUI-3	21	0.87	_
		Mild or moderate uveitis; adalimumab group (18 mo)	HUI-3	48	0.94	-
22		Mild or moderate uveitis; placebo group (18 mo)	HUI-3	21	0.99	-
Nair et al ³⁸	2020	Patients with Usher syndrome	HUI-3	27	0.43	-
Bukhari and Zawawi ⁴⁰	2024	Normal hearing group	HEAR-QL	30		
		UHL nearing group		25		
Speech or language disorders		Modelate nearing loss	HLAN-QL	24		
Petrou et al ²⁴	2009	Speech disorders	HUI-3	25	_	0.53
Le et al ³⁶	2020	Children with low language ability	HUI-3	126	0.85 (0.15)	0.88 (0.76-1)
		Children with low language ability	PedsQL	126	0.72 (0.17)	0.76 (0.62-0.88)
Primary physical disability						
Rosenbaum et al ⁴⁵	2007	Cerebral palsy	HUI-3	196	0.42 (0.41)	0.42
Young et al	2010	Cerebral palsy	HUI-3	129	0.30 (0.43)	-
Petrou et al ²⁴	2000	Cerebral palsy		129	0.28 (0.34)	 0.27
Rosenbaum et al ⁴⁵	2005	Cerebral nalsy (GMECS level I)	HUI-3	60	0.84 (0 20)	-
Young et al ²⁵	2010	Cerebral palsy (GMFCS level I)	HUI-3	28	0.67 (0.32)	-
ů –		Cerebral palsy (GMFCS level I)	AQoL	28	0.58 (0.31)	-
Rosenbaum et al ⁴⁵	2007	Cerebral palsy (GMFCS level II)	HUI-3	33	0.50 (0.31)	-
Young et al ²⁵	2010	Cerebral palsy (GMFCS level II)	HUI-3	15	0.59 (0.35)	-
						(continued)

Table V. Continued						
				Sample		
Authors	Year	Condition	Method	size, No.*	Mean (SD)*	Median (IQR)*
		Cerebral palsy (GMFCS level II)	AQoL	15	0.53 (0.34)	_
Carroll et al ²³	2009	Mild cerebral palsy	SG	-	0.87 (0.20)	0.96
Carroll et al ²³	2009	Mild cerebral palsy	TT0	-	0.88 (0.19)	0.96
		Moderate cerebral palsy	TT0	-	0.76 (0.26)	0.86
Rosenbaum et al45	2007	Cerebral palsy (GMFCS level III)	HUI-3	27	0.39 (0.21)	-
Young et al ²⁵	2010	Cerebral palsy (GMFCS level III)	HUI-3	23	0.43 (0.39)	-
		Cerebral palsy (GMFCS level III)	AQoL	23	0.31 (0.32)	-
Carroll et al ²³	2009	Severe cerebral palsy	SG	-	0.60 (0.28)	0.50
45		Severe cerebral palsy	TT0	-	0.55 (0.33)	0.50
Rosenbaum et al ⁴⁵	2007	Cerebral palsy (GMFCS level IV)	HUI-3	46	0.16 (0.26)	-
Young et al ²⁵	2010	Cerebral palsy (GMFCS level IV)	HUI-3	32	0.08 (0.25)	_
5		Cerebral palsy (GMFCS level IV)	AQoL	32	0.06 (0.12)	-
Rosenbaum et al ⁴⁵	2007	Cerebral palsy (GMFCS level V)	HUI-3	30	-0.08 (0.23)	-
Young et al ²⁵	2010	Cerebral palsy (GMFCS level V)	HUI-3	28	-0.13 (0.19)	_
U U		Cerebral palsy (GMFCS level V)	AQoL	28	0.01 (0.07)	_
		Cerebral palsy (health state C)	HUI-2	-	0.40 (0.11)	0.40
Tonmukayakul et al ³⁹	2020	Cerebral palsy	CHU-9D	43	0.863 (0.124)	_
-		Cerebral palsy (MACS: mild)	CHU-9D	21	0.918 (0.084)	-
		Cerebral palsy (MACS: moderate and severe)	CHU-9D	25	0.825 (0.133)	_
		Cerebral palsy (BFMF: mild)	CHU-9D	30	0.901 (0.816)	-
		Cerebral palsy (BFMF: moderate and severe)	CHU-9D	11	0.813 (0.143)	-
		Cerebral palsy (NHDC: mild)	CHU-9D	20	0.872 (0.118)	-
		Cerebral palsy (NHDC: moderate and severe)	CHU-9D	18	0.858 (0.119)	-
		Cerebral palsy (GMFCS: mild)	CHU-9D	30	0.891 (0.108)	-
		Cerebral palsy (GMFCS: moderate and severe)	CHU-9D	11	0.839 (0.160)	-
Tilford et al ¹⁹	2005	Spina bifida	HUI-2	80	0.55 (0.24)	-
		Spina bifida (sacral lesion, least severe)	HUI-2	34	0.61 (0.26)	-
		Spina bifida (lower lumbar lesion)	HUI-2	27	0.54 (0.19)	-
		Spina bifida (thoracic lesion, most severe)	HUI-2	19	0.45 (0.25)	-
Petrou et al ²⁴	2009	Unspecified motor disorders	HUI-3	81	0.24	-
Hind et al ³⁴	2017	Duchenne muscular dystrophy (control group; baseline)	CHU-9D	3	0.92 (0.07)	0.89 (0.87-1.00)
		Duchenne muscular dystrophy (intervention group; baseline)	CHU-9D	8	0.77 (0.23)	0.88 (0.59-0.94)
		Duchenne muscular dystrophy (control group; follow-up)	CHU-9D	1	0.95	0.95
		Duchenne muscular dystrophy (intervention group; follow-up)	CHU-9D	8	0.87 (0.09)	0.87 (0.82-0.95)

AHL, average hearing level; BFMF, Bimanual Fine Motor Function; GMFCS, Gross Motor Function Classification System; MACS, Manual Ability Classification System; NHDC, Neurological Hand Deformity Classification; uHL, untreated hearing loss.

*Some of the studies did not report details such as sample size (No.), mean (SD), or median (IQR) for their reported HSUVs.

Disabilities Index in the context of CAD.^{30,55,56} In terms of construct validity, there was a moderate-to-good agreement observed between EQ-5D, HUI-2, and HUI-3,23,31 but remained unestablished for HUI-3.32 Although the latter tool is not child or adolescent specific, the construct validity was established for all HUI instruments (HUI, HUI-2 and HUI-3).^{20,21,24-26,31,39,44} Furthermore, while convergent validity was established between the QWB and the HUI-3, construct validity was not established when compared with Autism Diagnostic Observation Schedule.²⁶ The Autism Diagnostic Observation Schedule was shown to possess good sensitivity, specificity, and predictive ability in children and adolescents, indicating that it is a preferred tool over generic instruments.^{55,57} Therefore, generic instruments may not be appropriate for assessing disease severity in both general and child/adolescent populations, as they are not designed to capture specific aspects of disease severity. Consequently, it is plausible that the absence of construct validity in AQoL is attributable to the use of child and parent pairs as respondents, rather than relying solely on the children's self-reports. These findings underscore the importance of carefully considering the survey respondent when assessing HSUVs.

Conducting HSUVs relevant to children is acknowledged to be challenging,^{58,59} since children aged around 7-10 years of age are unable to understand the tasks and make a choice.⁶⁰ This raises questions about the accuracy and appropriateness of using their own preferences in health technology assessments. However, the more pressing issue is the ethical concerns in health state valuation among children. Some topics in the valuation tasks could be sensitive to the adolescent. For example, the state of being dead can pose ethical dilemmas and may cause distress, especially for adolescents.⁶¹

There is an ongoing debate between the use of proxy (eg, parents or caregivers) vs self-report data in HSUV of children. Although adolescents (aged 11-17) may be able to undertake tasks like pairwise comparisons and best-worst scaling, younger children (under 10) are less capable of completing these tasks independently.^{49,59} Researchers

Autism spectrum disorders Petrou et al ²⁴ 2 Tilford et al ²⁶ 2 Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2009 2012 2022	Autism spectrum disorders Autism spectrum disorder Autistic disorder Asperger's disorder Autism spectrum disorder Autism spectrum disorder Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	HUI-3 HUI-3 HUI-3 QWB QWB QWB EQ-5D-5 L EQ-5D-5 L	105 146 110 13 150 114 13 69	- 0.66 (0.23) 0.64 (0.23) 0.79 (0.16) 0.59 (0.16) 0.58 (0.16) 0.62 (0.15) 0.84	0.41 0.74-0.88
Petrou et al ²⁴ 2 Tilford et al ²⁶ 2 Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2009 2012 2022	Autism spectrum disorders Autism spectrum disorder Autism spectrum disorder Asperger's disorder Autism spectrum disorder Autism spectrum disorder Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	HUI-3 HUI-3 HUI-3 QWB QWB QWB EQ-5D-5 L	105 146 110 13 150 114 13 69	- 0.66 (0.23) 0.64 (0.23) 0.79 (0.16) 0.59 (0.16) 0.58 (0.16) 0.62 (0.15) 0.84	0.41 0.74-0.88
Tilford et al ²⁶ 2 Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2012	Autism spectrum disorder Autism spectrum disorder Asperger's disorder Autism spectrum disorder Autism spectrum disorder Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	HUI-3 HUI-3 HUI-3 QWB QWB QWB EQ-5D-5 L EQ-5D-5 L	146 110 13 150 114 13 69	0.66 (0.23) 0.64 (0.23) 0.79 (0.16) 0.59 (0.16) 0.58 (0.16) 0.62 (0.15) 0.84	- - - - - 0.74-0.88
Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2022	Autistic disorder Autistic disorder Autistic disorder Autistic disorder Autistic disorder Autistic disorder Autistic disorder Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	HUI-3 HUI-3 QWB QWB EQ-5D-5 L EQ-5D-5 L	110 13 150 114 13 69	0.64 (0.23) 0.79 (0.16) 0.59 (0.16) 0.58 (0.16) 0.62 (0.15) 0.84	- - - 0.74-0.88
Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2022	Asperger's disorder Asperger's disorder Autistic disorder Autistic disorder Autistic disorder Autistic disorder Autistim and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	HUI-3 QWB QWB QWB EQ-5D-5 L EQ-5D-5 L	13 150 114 13 69	0.79 (0.16) 0.59 (0.16) 0.58 (0.16) 0.62 (0.15) 0.84	 0.74-0.88
Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2022	Autism spectrum disorder Autistic disorder Autistic disorder Autistic disorder Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	QWB QWB QWB EQ-5D-5 L EQ-5D-5 L	150 114 13 69	0.79 (0.16) 0.59 (0.16) 0.58 (0.16) 0.62 (0.15) 0.84	 0.74-0.88
Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2022	Autistit spectralni disorder Autistit disorder Asperger disorder Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	QWB QWB EQ-5D-5 L EQ-5D-5 L	150 114 13 69	0.39 (0.16) 0.58 (0.16) 0.62 (0.15) 0.84	 0.74-0.88
Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2022	Autistic disorder Asperger disorder Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	QWB QWB EQ-5D-5 L EQ-5D-5 L	114 13 69	0.58 (0.16) 0.62 (0.15) 0.84	 0.74-0.88
Randell et al ⁴¹ 2 Downs et al ⁴⁷ 2	2022	Asperger disorder Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	EQ-5D-5 L EQ-5D-5 L	13 69 25	0.82 (0.15) 0.84	0.74-0.88
Downs et al ⁴⁷ 2	2022	Autism and sensory processing difficulties (control group; baseline) Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	EQ-5D-5 L	09 26	0.84	0.74-0.88
Downs et al ⁴⁷ 2		Autism and sensory processing difficulties (control group; 6 mo) Autism and sensory processing difficulties (control group; 12 mo)	EQ-5D-5 L	25		
Downs et al ⁴⁷ 2		Autism and sensory processing difficulties (control group; 12 mo)		ათ	0.84	0.73-0.88
Downs et al ⁴⁷ 2		12 1110)	EQ-5D-5 L	24	0.78	0.69-0.88
Downs et al ⁴⁷ 2		Aution and concern processing		60	0.77	0 72 0 00
Downs et al ⁴⁷ 2		difficulties (intervention group: baseline)	EQ-3D-3 L	09	0.77	0.72-0.88
Downs et al ⁴⁷ 2		Autism and sensory processing difficulties (intervention	EQ-5D-5 L	48	0.77	0.74-0.88
Downs et al ⁴⁷ 2		group; 6 mo) Autism and sensory processing difficulties (intervention	EQ-5D-5 L	36	0.84	0.71-0.88
Downs et al ⁴⁷ 2		group; 12 mo)				
	2024	Intellectual disability, including autism spectrum disorder, cerebral palsy, Down syndrome, and other genetic	EQ-5D-5 L	234	_	-
		conditions				
Blackmore et al ⁴⁸ 2	2024	Intellectual disability, including autism spectrum disorder, Down syndrome, and cerebral	EQ-5D-5 L	28	_	-
		palsy				
Intellectual impairments						
Petrou et al ²⁴ 2	2009	Learning disabilities	HUI-3	251	_	0.40
Carroll et al ²³ 2	2009	"Mild mental retardation"	SG	_	0.84 (0.20)	0.91
	2000	"Mild mental retardation"	TTO	_	0.83 (0.23)	0.01
		"Mild mental retardation"	SG	_	0.00 (0.20)	0.86
		"Mild mental retardation"		_	0.79 (0.22)	0.00
		"Soucro montal retardation"	50 50	-	0.79 (0.23)	0.07
		"Severe mental retardation"		-	0.59 (0.27)	0.50
Detrois et el ²⁴	0000	Severe mental retardation	110	-	0.51 (0.32)	0.50
Petrou et al ⁻² 2	2009	global developmental delay Down's syndrome	HUI-3	118	_	0.39
Kirkham et al ³⁷ 2	2020	Learning disabilities—reported by clinician	EQ-5D-3 L proxy version	279	0.52 (0.41)	0.71 (-0.594, 1)
		Learning disabilities—reported by parent	EQ-5D-3 L proxy version	277	0.51 (0.39)	0.69 (-0.594, 1)
		Learning disabilities—reported by patient Learning disabilities—reported	EQ-5D-3 L and EQ-5D-Y	85 58	0.74 (0.29)	0.81 (-0.166, 1) 0.80 (-0.166, 1)
		by patient aged 7-12 7 Learning disabilities-reported by	EQ-5D-3 L	27	0.78 (0.27)	(0.151, 1)
van Westrhenen et al ⁴² 2	2023	patient aged 13-16 y Learning disabilities associated	EQ-5D-5 L	53	0.9	-
		Learning disabilities associated with Epilepsy (follow-up)	EQ-5D-5 L	53	0.9	-
Developmental disabilities Petrou et al ²⁴ 2	2009	Learning and physical	HUI-3	81	_	0.12
Da Costa et al ⁴⁴ 2	2023	disabilities Children with developmental	PedsQL	52	-	0.538 (0.174-0.81)
Khan et al ⁴³ 2		Adolescents with Angelman syndrome	EQ-5D	21	0.42 (0.20)	0.49 (0.06-0.74)
	2023	-				,

Table VI. Continued											
Authors	Year	Condition	Method	Sample size, No.*	Mean (SD)*	Median (IQR)*					
Chevreul et al ³¹	2015	Fragile X syndrome	EQ-5D-5 L	53	0.46 (0.23)	_					
Chevreul et al ³²	2016	Pradar-Willi syndrome	EQ-5D-5 L	10	0.51 (0.33)	-					
Tilford et al ²⁶	2012	Pervasive developmental disorder	HUI-3	23	0.70 (0.24)	-					
		Pervasive developmental disorder	QWB	23	0.62 (0.18)	-					
Petrou et al ²⁷	2013	Neurodevelopmental disability	HUI-2	79	0.76	-					
		Neurodevelopmental disability	HUI-3	79	0.65	-					
Liu et al ⁴⁰	2021	Neurodevelopmental impairment	HUI-2	60	Not provided	0.92 (0.83, 0.96)					
		Neurodevelopmental impairment	CHQ-PF50 - Physical summary score	60	48.0 (13.1)	-					
		Neurodevelopmental impairment	CHQ-PF50 - Psychosocial summary score	60	45.9 (9.5)	-					

*Some of the studies did not report details such as sample size (No.), mean (SD), or median (IQR) for their reported HSUVs.

observed inconsistencies between valuation using adolescent and adult participants. For example, when using the selfreported best-worst scaling approach for the valuation of CHU-9D states, the worst choices were far less consistent than the best choices among adolescents compared with adults.⁵⁰ Researchers recommended that HSUVs of children should be considered valid in the tailored methods that account for children's developmental stages, an appropriate group for preferences (eg, children, adolescents, or adults) for aligning with the broader discussions on resource allocation and health equity for younger populations.⁵⁰

This review underscored the potential ableism inherent in the current HSUV measures, which may equate lower functional capacity with diminished quality of life.⁵⁶ Such assumptions could inadvertently lower HSUVs for CAD, contrasting with the nuanced realities of these individuals' lives.⁵¹ This systemic bias necessitates a re-evaluation of how HSUVs are conceptualized and measured, ensuring they capture the lived experiences of those with disabilities, rather than relying on normative expectations of function and health.

Despite limitations, noteworthy findings emerged regarding the variability of HSUVs across different disability types. The lowest reported HSUVs, reaching as low as -0.13, were observed in children with primary physical disabilities.²⁵ Conversely, children with sensory impairments, autism spectrum disorders, intellectual impairments, and speech or language disorders generally exhibited HSUVs greater than 0.7.^{20-24,26,35-38,41,42,46} Interestingly, children with primary physical impairments consistently demonstrated lower HSUVs compared with those with other impairments, with mean values ranging from -0.13 to 0.95.^{25,34} Although there were some similarities in reported HSUVs within each disability group, considerable variation was observed across different measures and severity levels. These findings underscore the nuanced impact of disability on a child's HRQoL, influenced by factors such as the nature and severity of the disability, as well as the specific measures used.

Our quality assessment revealed a need to improve the methodological quality of studies assessing HSUVs, aligning with conclusions of other systematic reviews.⁵⁸⁻⁶⁰ However, our assessment is limited by the absence of systematic

evaluation tools to assess the methodologic quality of utility studies. A need for comprehensive tools has been recognized.⁶¹ Other limitations of this review include the exclusion of non–peer-reviewed publications such as unpublished theses and conference presentations, and non-English studies, which may have included relevant information. The limited number of studies for each disability type and the heterogeneity in the studies, such as differences in the instruments used, also contribute to challenges in interpreting the results, making it difficult to generalize the findings to other populations with similar disabilities.

Health utility assessments have rarely been conducted or published in low and middle-income settings, making it unclear whether preference values from high-income settings would apply in those countries. In addition, future research is required to evaluate the impact of the methods used for deriving preference values to enhance their effectiveness. In summarizing the instruments validated for use in this population group, we have also identified those that have not yet been validated. We hope that the identification of these knowledge gaps will encourage and direct future instruments validation research efforts.

Conclusions

This systematic review provides valuable insights into the measurement of HSUVs in children and adolescents with diverse disability types, holding significant implications for health policy and decision-making, particularly in economic evaluations of health care interventions for CAD. Careful selection of appropriate methodologies and respondents to elicit HSUVs for CAD is crucial to ensure the collected data is reliable and effectively informs decisions aimed at enhancing their lives. Priority should be placed on the developing and validating HSUV measures tailored to CAD, which are devoid of ableist biases and truly reflective of unique health experiences. We further advocate for methodologies that capture a broad spectrum of health states specific to diverse disabilities, fostering the development of measures that advance, rather than hinder, health equity.

CRediT authorship contribution statement

Lucy Kanya: Writing – review & editing, Writing – original draft, Validation, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Nana Anokye: Writing – review & editing, Writing – original draft, Validation, Methodology, Funding acquisition, Formal analysis, Conceptualization. Ahmad Hecham Alani: Writing – review & editing, Writing – original draft, Visualization, Validation, Project administration, Methodology, Investigation, Formal analysis. Nandini Jayakumar: Writing – review & editing, Validation, Formal analysis, Data curation. Jennifer M. Ryan: Writing – review & editing, Writing – original draft, Validation, Supervision, Methodology, Formal analysis, Conceptualization. ■

Declaration of Competing Interest

This review was supported by a Research Catalyst Award from the Institute of Environment, Health and Societies, Brunel University London and a Researcher Development Fund from the London School of Economics and Political Science. None of the funders was involved in the design and conduct of the study. The authors have no conflicts of interest to declare.

Submitted for publication Jul 3, 2024; last revision received Jan 7, 2025; accepted Jan 8, 2025.

Reprint requests: Lucy Kanya, PhD, Department of Health Policy, London School of Economics and Political Science, 6 Portugal St, London WC2A 2HJ, United Kingdom. E-mail: I.kanya@lse.ac.uk

References

- 1. Leonardi M, Bickenbach J, Ustun TB, Kostanjsek N, Chatterji S. The definition of disability: what is in a name? Lancet 2006;368:1219-21.
- World Health Organization (WHO). World report on disability summary. 2011. Accessed March 16, 2024. https://iris.who.int/bitstream/ handle/10665/70670/WHO_NMH_VIP_11.01_eng.pdf?sequence=1
- 3. World Health Organization (WHO). International Classification of Functioning, Disability, and Health (ICF). 2024. Accessed March 16, 2024. https://www.who.int/standards/classifications/international-class ification-of-functioning-disability-and-health
- EuroQol Research Foundation. EQ-5D-3L User Guide. EuroQol Research Foundation. 2018. Accessed April 16, 2023. https://euroqol. org/publications/user-guides
- National Institute for Health and Care Excellence. Guide to the methods of technology appraisal 2013. National Institute for Health and Care Excellence (April):1-93. 2013. Accessed April 16, 2023. http://www.nice. org.uk/media/D45/1E/GuideToMethodsTechnologyAppraisal2013.pdf
- Kaltenthaler E, Tappenden P, Paisley S, Squires H. NICE DSU Technical support document 13: Identifying and reviewing evidence to inform the conceptualisation and population of cost-effectiveness models. NICE DSU Technical Support Document. 2011. Accessed April 16, 2023. www.nicedsu.org.uk
- 7. Whitehurst DGT, Noonan VK, Dvorak MFS, Bryan S. A review of preference-based health-related quality of life questionnaires in spinal cord injury research. Spinal Cord 2012;50:646-54.
- Kuspinar A, Mayo NE. A review of the psychometric properties of generic utility measures in multiple sclerosis. Pharmacoeconomics 2014;32:759-73.

- **9.** Papaioannou D, Brazier J, Paisley S. Systematic searching and selection of health state utility values from the literature. Value Health 2013;16: 686-95.
- Papaioannou D, Brazier J, Paisley S. Nice DSU technical support document 9: the identification, review and synthesis of health state utility values from the literature. London: Report by the Decision Support Unit; 2010. p. 1-64.
- Zechmeister-Koss I, Schnell-Inderst P, Zauner G. Appropriate evidence sources for populating decision analytic models within health technology assessment (HTA): a systematic review of HTA manuals and health economic guidelines. Med Decis Making 2014;34:288-99.
- Kanya L, Anokye N, Ryan JM. Health state utility values among children and adolescents with disabilities: protocol for a systematic review. BMJ Open 2018;8:2.
- **13.** Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009;62:1006-12.
- 14. Reeve BB, Wyrwich KW, Wu AW, Velikova G, Terwee CB, Snyder CF, et al. ISOQOL recommends minimum standards for patient-reported outcome measures used in patient-centered outcomes and comparative effectiveness research. Qual Life Res 2013;22:1889-905.
- **15.** Xie F, Pickard AS, Krabbe PFM, Revicki D, Viney R, Devlin N, et al. A checklist for reporting valuation studies of multi-attribute utility-based instruments (CREATE). Pharmacoeconomics 2015;33:867-77.
- **16.** Brazier J, Ara R, Azzabi I, Busschbach J, Chevrou-Séverac H, Crawford B, et al. Identification, review, and use of health state utilities in costeffectiveness models: an ISPOR good practices for outcomes research task force report. Value Health 2019;22:267-75.
- 17. Muchadeyi MT, Hernandez-Villafuerte K, Schlander M. Quality appraisal for systematic literature reviews of health state utility values: a descriptive analysis. BMC Med Res Methodol 2022;22:1-20.
- Cheng AK, Rubin HR, Powe NR, Mellon NK, Francis HW, Niparko JK. Cost-utility analysis of the cochlear implant in children. JAMA 2000;284: 850-6.
- 19. Tilford JM, Grosse SD, Robbins JM, Pyne JM, Cleves MA, Hobbs CA. Health state preference scores of children with spina bifida and their caregivers. Qual Life Res 2005;14:1087-98.
- Barton GR, Stacey PC, Fortnum HM, Summerfield AQ. Hearingimpaired children in the United Kingdom, IV: cost-effectiveness of pediatric cochlear implantation. Ear Hear 2006;27:575-88.
- **21.** Sach TH, Barton GR. Interpreting parental proxy reports of (health-related) quality of life for children with unilateral cochlear implants. Int J Pediatr Otorhinolaryngol 2007;71:435-45.
- 22. Smith-Olinde L, Grosse SD, Olinde F, Martin PF, Tilford JM. Health state preference scores for children with permanent childhood hearing loss: a comparative analysis of the QWB and HUI3. Qual Life Res 2008;17:943-53.
- Carroll AE, Downs SM. Improving decision analyses: parent preferences (utility values) for pediatric health outcomes. J Pediatr 2009;155:21-5.e5.
- 24. Petrou S, Kupek E. Estimating preference-based health utilities index mark 3 utility scores for childhood conditions in England and Scotland. Med Decis Making 2009;29:291-303.
- 25. Young NL, Rochon TG, McCormick A, Law M, Wedge JH, Fehlings D. The health and quality of life outcomes among youth and young adults with cerebral palsy. Arch Phys Med Rehabil 2010;91:143-8.
- **26.** Tilford JM, Payakachat N, Kovacs E, Pyne JM, Brouwer W, Nick TG, et al. Preference-based health-related quality-of-life qutcomes in children with autism spectrum disorders: a comparison of generic instruments. Pharmacoeconomics 2012;30:661-79.
- Petrou S, Johnson S, Wolke D, Marlow N. The association between neurodevelopmental disability and economic outcomes during mid-childhood. Child Care Health Dev 2013;39:345-57.
- 28. Kulpeng W, Sornsrivichai V, Chongsuvivatwong V, Rattanavipapong W, Leelahavarong P, Cairns J, et al. Variation of health-related quality of life assessed by caregivers and patients affected by severe childhood infections. BMC Pediatr 2013;13:122.
- 29. Burström K, Bartonek A, Broström EW, Sun S, Egmar AC. EQ-5D-Y as a health-related quality of life measure in children and adolescents with

functional disability in Sweden: testing feasibility and validity. Acta Paediatr 2014;103:426-35.

- **30.** Domellöf E, Hedlund L, Ödman P. Health-related quality of life of children and adolescents with functional disabilities in a northern Swedish county. Qual Life Res 2014;23:1877-82.
- **31.** Chevreul K, Berg Brigham K, Brunn M, des Portes V, Serrano-Aguilar P, Linertová R, et al. Fragile X syndrome: economic burden and health-related quality of life of patients and caregivers in France. J Intellect Disabil Res 2015;59:1108-20.
- 32. Chevreul K, Berg Brigham K, Clément MC, Poitou C, Tauber M. Economic burden and health-related quality of life associated with Prader–Willi syndrome in France. J Intellect Disabil Res 2016;60:879-90.
- **33.** Landfeldt E, Lindgren P, Bell CF, Guglieri M, Straub V, Lochmüller H, et al. Health-related quality of life in patients with Duchenne muscular dystrophy: a multinational, cross-sectional study. Dev Med Child Neurol 2016;58:508-15.
- **34.** Hind D, Parkin J, Whitworth V, Rex S, Young T, Hampson L, et al. Aquatic therapy for children with duchenne muscular dystrophy: a pilot feasibility randomised controlled trial and mixed-methods process evaluation. Health Technol Assess 2017;21:1-120.
- **35.** Ramanan AV, Dick AD, Jones AP, Hughes DA, McKay A, Rosala-Hallas A, et al. Adalimumab in combination with methotrexate for refractory uveitis associated with juvenile idiopathic arthritis: a RCT. Health Technol Assess 2019;23:1-139.
- **36.** Le HND, Petersen S, Mensah F, Gold L, Wake M, Reilly S. Health-related quality of life in children with low language or congenital hearing loss, as measured by the PedsQL and health utility index mark 3. Value Health 2020;23:164-70.
- **37.** Kirkham FJ, Vigevano F, Raspall-Chaure M, Wilken B, Lee D, Le Reun C, et al. Health-related quality of life and the burden of prolonged seizures in noninstitutionalized children with epilepsy. Epilepsy Behav 2020;102:106340.
- 38. Nair G, Dham R, Sekhar A, Kumar RS, Kameswaran M. Cochlear implantation in children with Usher's syndrome: a South Asian experience. Indian J Otolaryngol Head Neck Surg 2020;72:140-4.
- **39.** Tonmukayakul U, Imms C, Mihalopoulos C, Reddihough D, Carter R, Mulhern B, et al. Health-related quality of life and upper-limb impairment in children with cerebral palsy: developing a mapping algorithm. Dev Med Child Neurol 2020;62:854-60.
- Liu GXH, Harding JE. Caregiver-reported health-related quality of life of New Zealand children born very and extremely preterm. PLoS One 2021;16:e0253026.
- Randell E, Wright M, Milosevic S, Gillespie D, Brookes-Howell L, Busse-Morris M, et al. Sensory integration therapy for children with autism and sensory processing difficulties: the SenITA RCT. Health Technol Assess 2022;26:1-140.
- **42.** van Westrhenen A, Lazeron RHC, van Dijk JP, Leijten FSS, Thijs RD. Multimodal nocturnal seizure detection in children with epilepsy: a prospective, multicenter, long-term, in-home trial. Epilepsia 2023;64:2137-52.
- **43.** Khan N, Cabo R, Burdine RD, Tan WH, Keary CJ, Ochoa-Lubinoff C, et al. Health-related quality of life and medication use among individuals with Angelman syndrome. Qual Life Res 2023;32:2059-67.
- 44. Da Costa IGR, Brugnaro BH, Lima CRG, Kraus de Camargo O, Fumincelli L, Pavão SL, et al. Perceived social support and quality of life of children with and without developmental disabilities and their caregivers during the COVID-19 pandemic in Brazil: a cross-sectional study. Int J Environ Res Public Health 2023;20:4449.

- 45. Rosenbaum PL, Livingston MH, Palisano RJ, Galuppi BE, Russell DJ. Quality of life and health-related quality of life of adolescents with cerebral palsy. Dev Med Child Neurol 2007;49:516-21.
- **46.** Blackmore AM, Mulhern B, Norman R, Reddihough D, Choong CS, Jacoby P, et al. How well does the EQ-5D-Y-5L describe children with intellectual disability? "There's a lot more to my child than that she can't wash or dress herself". Value Health 2024;27:190-8.
- **47.** Downs J, Norman R, Mulhern B, Jacoby P, Reddihough D, Choong CS, et al. Psychometric properties of the EQ-5D-Y-5L for children with intellectual disability. Value Health 2024;27:776-83.
- **48.** Bukhari AF, Zawawi F. The impact of hearing loss and cochlear implantation on the quality of life in children. Int J Pediatr Otorhinolaryngol 2024;184:112069.
- **49.** Xiong X, Dalziel K, Huang L, Rivero-Arias O. Test-retest reliability of EQ-5D-Y-3L best-worst scaling choices of adolescents and adults. Value Health 2023;26:50-4.
- **50.** Ratcliffe J, Huynh E, Stevens K, Brazier J, Sawyer M, Flynn T. Nothing about us without us? A comparison of adolescent and adult health-state values for the child health utility-9D using profile case best-worst scaling. Health Econ 2016;25:486-96.
- Mannor KM, Needham BL, Oh IH, Papadimitriou C, Berghs M. The study of ableism in population health: a critical review. Front Public Health 2024;12:1383150.
- 52. Zhang Y, Alonso-Coello P, Guyatt GH, Yepes-Nuñez JJ, Akl EA, Hazlewood G, et al. GRADE Guidelines: 19. Assessing the certainty of evidence in the importance of outcomes or values and preferences—risk of bias and indirectness. J Clin Epidemiol 2019;111:94-104.
- **53.** Chen YW, Lin PH, Fang TY, Wu CC, Wang PC, Wang H, et al. Health utilities of bilateral severe-to-profound hearing loss with assistive devices. Healthcare (Basel) 2023;11:1649.
- Oostenbrink R, Moll HA, Essink-Bot ML. The EQ-5D and the Health Utilities Index for permanent sequelae after meningitis: a head-to-head comparison. J Clin Epidemiol 2002;55:791-9.
- 55. Kwon J, Smith S, Raghunandan R, Howell M, Huynh E, Kim S, et al. Systematic review of the psychometric performance of generic childhood multi-attribute utility instruments. Appl Health Econ Health Policy 2023;21:559-84.
- 56. Kim SH, Lord C. New autism diagnostic interview-revised algorithms for toddlers and young preschoolers from 12 to 47 months of age. J Autism Dev Disord 2012;42:82-93.
- 57. Dawoud D, Lamb A, Moore A, Bregman C, Rupniewska E, Paling T, et al. Capturing what matters: updating NICE methods guidance on measuring and valuing health. Qual Life Res 2022;31:2167-73.
- **58.** Ratcliffe J, Couzner L, Flynn T, Sawyer M, Stevens K, Brazier J, et al. Valuing Child Health Utility 9D health states with a young adolescent sample: a feasibility study to compare best-worst scaling discrete-choice experiment, standard gamble and time trade-off methods. Appl Health Econ Health Policy 2011;9:15-27.
- **59.** Rowen D, Mukuria C, Powell PA, Wailoo A. Exploring the issues of valuing child and adolescent health states using a mixed sample of adolescents and adults. Pharmacoeconomics 2022;40:479-88.
- **60.** Juniper EF, Guyatt GH, Feeny DH, Griffith LE, Ferrie PJ. Minimum skills required by children to complete health-related quality of life instruments for asthma: comparison of measurement properties. Eur Respir J 1997;10:2285-94.
- **61.** Yi MS, Britto MT, Wilmott RW, Kotagal UR, Eckman MH, Nielson DW, et al. Health values of adolescents with cystic fibrosis. J Pediatr 2003;142: 133-40.

Appendix. Quality assessment checklist																
Reference	Year	1. Was the study aim and objectives clearly specified?	2. Was the sample comprehensively described	3. Was the sample representative of the target population as described in the aim	4. Were the inclusion and exclusion criteria explicit?	5. Was the condition described including severity?	6. Was the recruitment of study participants well defined?	7. Are response rates reported?	8. Was the sample size justified?	9. Was sufficient detail provided regarding the administration of the method	10. Were assessors trained in the administration of the method if appropriate	11. Were reasons for missing data explained?	12. Do the authors discuss potential sources of bias and attempt to minimize bias (eg, by adjusting for confounding)?	13. Do the authors discuss if the findings are generalizable to the source population (ie, externally valid?)	14. Do authors declare potential conflicts of interest?	Overall score
Cheng et al ¹⁸	2000	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Not clear	Yes	Not clear	No	Yes	SW*	Yes	10.5
Tilford et al ¹⁹	2005	Yes	Yes	Yes	Yes	Yes	SW	Yes	SW	Yes	Not clear	SW	Yes	Yes	Yes	11.5
Barton et al ²⁰	2006	Yes	SW	Yes	Yes	Yes	Not clear	Yes	Not clear	Yes	Not clear	Yes	Not clear	SW	Yes	9
Sach et al ²¹	2007	Yes	SW	Yes	SW	No	Not clear	Not clear	Yes	SW	No	No	Yes	No	Yes	6.5
Rosenbaum et al ⁴⁵	2007	Yes	SW	Yes	Yes	No	SW	Yes	Not clear	Yes	Yes	Yes	No	No	Yes	9
Smith-Olinde et al ²²	2008	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Not clear	Yes	Not clear	Yes	Yes	Yes	Yes	12
Petrou et al ²⁴	2009	Yes	Yes	Not clear	Yes	Not clear	Not clear	Yes	Not clear	SW	Not clear	Yes	Yes	Yes	Yes	8.5
Carroll et al ²³	2009	Yes	Yes	Yes	SW	Yes	Yes	Yes	Yes	Yes	Yes	No	SW	No	Yes	11
Young et al ²⁵	2010	Yes	SW	Yes	No	Yes	SW	Yes	Yes	No	No	No	No	No	Yes	7
Tilford et al ²⁶	2012	Yes	Yes	Yes	Yes	Yes	SW	Yes	Not clear	Yes	Not clear	SW	Not clear	Yes	Yes	10
Petrou et al ²⁷	2013	Yes	Yes	Yes	Yes	Yes	Not clear	Yes	Not clear	Yes	Not clear	No	Yes	No	No	8
Kulpeng et al ²⁸	2013	Yes	Yes	Not clear	Yes	Yes	Yes	Yes	Not clear	Yes	Yes	No	Yes	SW	Yes	10.5
Domellöf et al ³⁰	2014	Yes	SW	Yes	Yes	No	SW	Yes	Not clear	Yes	Not clear	SW	No	Yes	Yes	8.5
Burström et al ²⁹	2014	Yes	Yes	No	SW	Yes	Yes	Yes	SW	Yes	No	Yes	No	Yes	No	9
Chevreul et al ³¹	2015	Yes	SW	Yes	Yes	No	Yes	Yes	Not clear	Yes	Not clear	No	No	Yes	Yes	8.5
Landfeldt et al ³³	2016	Yes	SW	No	Yes	Yes	Yes	Yes	SW	Yes	Not clear	Not clear	No	Yes	ves	9
Chevreul et al ³²	2016	Yes	SW	Yes	Yes	No	Yes	Yes	Not clear	Yes	Not clear	No	Yes	Yes	Yes	9.5
Hind et al ³⁴	2017	Yes	SW	Yes	Yes	No	Yes	Not clear	Yes	SW	Not clear	Not clear	SW	Yes	Yes	8.5
Ramanan et al ³⁵	2019	Yes	Yes	SW	Yes	Yes	Yes	SW	Yes	Yes	SW	Not clear	No	Yes	Yes	10.5
Le et al ³⁶	2019	Yes	Yes	Yes	Yes	Yes	Yes	Not clear	SW	Yes	Not clear	Not clear	Yes	SW	No	9
Kirkham et al ³⁷	2020	Yes	SW	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Not clear	SW	SW	Not clear	Yes	10.5
Tonmukavakul et al ³⁹	2020	Yes	Yes	SW	Not clear	Yes	Not clear	No	Not clear	Yes	Not clear	Yes	Not clear	SW	No	6
Nair et al ³⁸	2020	Yes	SW	SW	Yes	Yes	Not clear	No	Not clear	Not clear	Not clear	No	No	No	No	4
liu et al ⁴⁰	2021	Yes	SW	SW	Not clear	Yes	SW	No	No	Yes	Not clear	Not clear	No	Yes	No	5.5
Randell et al ⁴¹	2022	Yes	Yes	Yes	Yes	Yes	Yes	Not clear	Yes	Yes	SW	Yes	Yes	Yes	No	11.5
Khan et al ⁴³	2023	Yes	Yes	Yes	Yes	Yes	Not clear	Not clear	Yes	SW	Yes	Not clear	SW	SW	Yes	9.5
van Westrhenen et al ⁴²	2023	Yes	Yes	Yes	Yes	Yes	Not clear	Yes	Yes	SW	Yes	Yes	SW	No	Yes	11
Da Costa et al ⁴⁴	2023	Yes	Yes	Yes	Yes	SW	Yes	Not clear	Yes	Yes	Yes	Not clear	No	No	No	8.5
Downs et al ⁴⁷	2024	Yes	SW	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Not clear	No	Yes	Yes	10.5
Blackmore et al ⁴⁶	2024	Yes	SW	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Not clear	No	Yes	Yes	10
Bukhari and Zawawi ⁴⁸	2024	Yes	SW	Yes	Yes	Yes	Yes	Yes	No	Yes	SW	Not clear	SW	Yes	Yes	10

SW, Somewhat.