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Abstract 
We study infectious diseases in a spatial epidemiology model with forward-looking individuals 
who weigh disease environments against economic opportunities when moving across regions. 
This endogenous mobility allows regions to share risk and health resources, resulting in 
positive epidemiological externalities for regions with high R0s. We develop the Normalized 
Hat Algebra to analyze disease and mobility dynamics. Applying our model to US data, we 
find that cross-state mobility controls that hinder risk and resource sharing increase COVID-
19 deaths and decrease social welfare. Conversely, by enabling “self-containment” and “self-
healing,” endogenous mobility reduces COVID-19 infections by 27.6% and deaths by 22.1%. 
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1 Introduction

The 2019 novel coronavirus (COVID-19) pandemic has caused an enormous loss of life world-
wide. In response, governments around the world implemented widespread restrictions on internal
movement and international travel (see Figure 1). These mobility control policies come with sig-
nificant economic costs, leaving policymakers struggling to balance the health benefits and the
economic burdens created by these controls. However, evaluating the costs and benefits of mobil-
ity control policies presents significant challenges. Their true policy effects are often intertwined
with people’s behavioral responses to infectious diseases (Fang et al., 2020; Goolsbee and Syver-
son, 2021). In addition, epidemiological processes exhibit highly non-linear dynamics, rendering
estimations based on simplistic (log-) linear trajectories inadequate (Baldwin, 2020).

Figure 1: Number of Countries with COVID-19 Travel Restrictions

Data source: Oxford COVID-19 Government Response Tracker (OxCGRT).

In this paper, we build a spatial epidemiological model with forward-looking agents to address
these challenges. The model captures people’s behavioral responses to epidemiological condi-
tions and accounts for the intrinsic non-linearity of infectious diseases. The model generates new
insights into epidemiological externalities and enables policy evaluations through counterfactual
simulations. Our key findings are as follows. First, although cross-region mobility exposes people
to infectious diseases in other regions, which constitutes a negative epidemiological externality, en-
dogenous mobility creates positive epidemiological externalities by allowing regions to share risk
and medical resources. This works through both a “self-containment” effect, wherein susceptible
people move away from regions with high infection rates to regions with low infection rates, and
a “self-healing” effect, which occurs when infected people move to regions with higher recovery
or lower death rates than other regions. Second, when applying our model to data from the United
States (US), we find that, without cross-state mobility control policies, COVID-19 infections in
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the US would have increased by 10.80%, but COVID-19 deaths would have dropped by 55.1%.
By enabling the “self-containment” and “self-healing” effects, our model indicates that endoge-
nous cross-region mobility reduces infections by 27.6% and deaths by 22.1% when compared to
a model with exogenous mobility. Finally, our simulation results indicate that there may be no
middle ground concerning an optimal mobility control policy. Policymakers may prefer to imple-
ment mobility control as strictly as possible in the face of fatal infectious diseases and as loosely
as possible when dealing with highly transmissible but less deadly diseases like seasonal flu and
COVID-19 Omicron. Overall, our analyses reveal the complex nature of cross-region mobility
control policies and call for caution in their implementation.

The framework we develop is a multi-region Susceptible-Infected-Recovered-Deceased (SIRD)
model that incorporates interactions between human mobility and epidemiological dynamics. It
encompasses two fundamental mechanisms from the epidemiology and economic geography lit-
erature. First, the virus is transmitted by contact between susceptible and infected people. In the
presence of human mobility, both local and cross-region contacts generate new infections.1 We
assume that the probability of infection (infection rate) depends on the density of susceptible and
infected individuals, which varies endogenously across regions and over time. Infected individuals
either recover or die, and the probability of recovery (recovery rate) and the probability of death
(death rate) differ across regions.2 Second, individuals are forward-looking when moving across
regions. They account for mobility costs, which depend on containment policies, and for factors
that determine expected utilities at their destinations (Artuç et al., 2010; Caliendo et al., 2019;
Redding and Rossi-Hansberg, 2017). In the presence of infectious diseases, individuals trade off
variations in infection, recovery, and death rates and economic opportunities across regions when
choosing an optimal destination. For example, the expected utility of susceptible individuals is a
weighted average of utilities of infected and susceptible people, with the weight determined by in-
fection rates, discounted by the inter-temporal discount rate, and mobility costs. We find evidence
supporting both model mechanisms using US data covering the COVID-19 pandemic.

The model makes novel predictions about mobility, disease dynamics, and containment policy.
First, the model predicts that cross-region mobility depends on the disease environment and that
it varies across individuals and over time. For example, we show that susceptible individuals’
mobility rate declines with a higher infection rate at their destination. In other words, susceptible
individuals avoid moving to high-risk areas. This prediction is consistent with cross-state mobility

1An extensive body of epidemiological literature incorporates spatial mobility into the SIRD model, which typ-
ically adopts a statistical approach to cross-region mobility (e.g., Balcan et al., 2009; Chinazzi et al., 2020). Some
agent-based studies examine individual mobility decisions (e.g., Eubank et al., 2004; Longini Jr et al., 2005) but do
not consider the forward-looking nature of mobility decisions.

2These variations may result from differences in medical resources across regions. Our model could be easily
extended to incorporate time-variant recovery and death rates, but we do not have sufficient data to estimate them. We
therefore assume these rates to be time-invariant.
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patterns observed in the US during the COVID-19 pandemic.
Second, we show that endogenous cross-region mobility generates a positive epidemiologi-

cal externality: regions share risk and medical resources, enabling “self-containment” and “self-
healing” effects. We characterize properties of the basic reproduction number, i.e., the expected
number of new cases generated by an infected individual at the outbreak (Allen and Van den Driess-
che, 2008; Diekmann et al., 2010), which is called the global R0 in our setup with multiple regions
(Antràs et al., 2023). We show that global R0 falls between the maximum and minimum values of
local R0s, with the local R0 representing the basic reproduction number of a region under mobility
autarky. In contrast, the model by Antràs et al. (2023) predicts that the open-economy global R0

exceeds the maximum local R0s. They therefore posit that globalization may make pandemics
more likely to occur because cross-region interactions expose people to foreign epidemics. In our
model, regions further share risk and medical resources by allowing susceptible people to move
away from regions with high infection rates (a “self-containment” effect) and allowing infected
people to move to regions with high recovery or low death rates (a “self-healing” effect), both of
which tend to reduce global infections and deaths.3 Therefore, although the epidemiological exter-
nality negatively affects regions with low local R0s (i.e., regions with low infection rates and high
recovery rates), it positively affects regions with high local R0s (i.e., regions with high infection
rates and low recovery rates).

Third, we show that in the presence of cross-region mobility, global R0 declines whenever
transmission rates (probability of infection upon contact between infected and susceptible individ-
uals) decrease or removal rates (the sum of death and recovery rates) increase in any region. The
above result provides a rationale for prioritizing disease control in the region with the highest local
R0: if the pandemic can be controlled there, it can be controlled globally. This result suggests all
regions matter for disease control when people can move across regions. Due to epidemiological
externality, improved infectious disease control in any region contributes to global disease control.

Beyond examining R0 and disease dynamics at the outbreak, we develop a new method – the
“Normalized Hat Algebra” (NHA) – to study the full dynamics of the model. Existing methods to
solve quantitative spatial models, such as the “Exact Hat Algebra” for static models (Dekle et al.,
2007; Redding and Rossi-Hansberg, 2017) and the “Dynamic Hat Algebra (DHA)” for dynamic
models (Caliendo et al., 2019), cannot be used for our model. The main difficulty is that infection
rates depend on the distributions of individuals across regions, which change endogenously over
time. This makes it impossible to follow Caliendo et al. (2019) to solve the model in terms of
relative time differences.4 To overcome this hurdle, we develop the NHA which normalizes vari-

3We view our analysis as complementary to Antràs et al. (2023). Their analysis fits the global context, as people
typically cannot enjoy medical resources in other countries. Our analysis fits the domestic context, as people typically
have access to medical resources when moving to other regions within the same country.

4Our model can be solved using DHA in the special case where infection rates are constant over time.

3



ables by their corresponding steady-state values and solves the model in terms of the normalized
variables. Although this method requires knowledge of the steady-state equilibrium, it enables
us to compute transitional dynamics and conduct counterfactual simulations without knowing all
model fundamentals along the transitional path. Simulation results indicate that the epidemic and
mobility dynamics are highly non-linear: there can be multiple waves of infections, and mobility
flows between regions can overshoot or undershoot their steady-state levels.

Applying the NHA, we quantitatively evaluate COVID-19 containment policies in the US
through the lens of an estimated model of 50 US states and Washington, DC. Relying on struc-
tural equations derived from the model, we first use COVID-19 epidemiological data and high-
frequency mobility data from PlaceIQ (Couture et al., 2022) to estimate the effect of mobility
control policies on cross-state mobility costs, and the effect of local containment policies on the
transmission rate. Our estimations imply that a one-point increase in mobility control by a given
state raises the cross-state mobility cost by about 1.60%, and a one-point increase in local contain-
ment policy decreases the transmission rate by about 0.30%.5

Armed with other model parameters estimated for 2020, including the steady-state equilibrium
calibrated to match the pre-pandemic US economy, we conduct policy evaluations by simulating
the estimated baseline economy and three counterfactual scenarios: i.) exogenous mobility, with
cross-state mobility rates fixed at the pre-pandemic level; ii.) no cross-state COVID-19 mobility
control policies; and iii.) no local COVID-19 containment policies. The main findings from our
analysis are as follows. First, the comparison between the baseline economy and scenario i re-
veals that without endogenous mobility, there would have been 31.3 million more infections and
1.28 million more deaths. Intuitively, with endogenous mobility, there is a “self-containment” ef-
fect that deters people from moving to states with high infection rates. Additionally, there is a
“self-healing” effect that encourages people to move to states with high recovery and low death
rates. As both effects tend to reduce infections and deaths, it is vital not to impede them during
a pandemic. Second, when comparing the baseline economy and scenario ii, we find that without
cross-state mobility controls, there would have been 8.9 million more infections but 2.50 million
fewer deaths. Mobility control policies reduce contact among people across states, thus leading to
fewer infections, but they also dampen the self-healing effect and increase deaths. Due to higher
death tolls and mobility costs, welfare declines in the presence of cross-state mobility control.
Third, when examining scenario iii, we find that local containment policies effectively flatten the

epidemic curve. Without such policies, infections would have risen more sharply, and an additional
62.8 million infections would have occurred. In addition, there would have been 1.33 million more

5Mobility control policies include travel recommendations and travel restrictions. Local containment policies
include measures such as closures of schools, workplaces, and public transport. We follow Hale et al. (2021) in
digitizing the policies imposed by US states. Appendix Table B.1 provides a detailed list of these policies.
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deaths, close to the number from scenario i. We therefore find that endogenous mobility contributes
greatly to saving lives, playing a role comparable to local containment policies.

We make several contributions to the literature. First, we contribute to the literature that bridges
economics and epidemiological models. Building on compartmental models in epidemiology, ex-
isting studies examine quarantines and testing (Berger et al., 2020; Piguillem and Shi, 2022), infor-
mation disclosure (Argente et al., 2022), lockdowns (Acemoglu et al., 2021; Alvarez et al., 2021;
Fajgelbaum et al., 2021), and the economic impact of COVID-19 (Arellano et al., 2023; Atkeson,
2020; Eichenbaum et al., 2021). The studies most similar to ours are Argente et al. (2022), Bisin
and Moro (2022), and Antràs et al. (2023), which also explore spatial interactions during a pan-
demic. The unique feature of our framework is that we model heterogeneous and forward-looking
agents who optimize their mobility decisions. While Argente et al. (2022) assume that susceptible,
recovered, and infected people all have the same mobility rate, we consider the different mobility
problems they face. In addition, in their model, mobility reacts to the pandemic only via mobil-
ity costs, which they assume to depend directly on the number of cases disclosed. In our model,
the pandemic affects mobility by shaping people’s expected utility. Bisin and Moro (2022) study
within-city mobility and assume that individuals follow exogenous behavioral rules, whereas our
modeled individuals optimize their cross-region mobility choices. Finally, Antràs et al. (2023)
consider spatial interactions via international trade without people changing locations while we
study human mobility explicitly.6 As mentioned above, this leads to very different predictions on
the global R0 and epidemiological externality.

We also contribute to the quantitative economic geography literature (Allen and Arkolakis,
2014; Caliendo et al., 2019; Kleinman et al., 2023; Monte et al., 2018; Redding and Rossi-
Hansberg, 2017; Tombe and Zhu, 2019). The key innovation of our model is that individuals
can switch types and face different mobility problems in subsequent periods. The switching prob-
ability is time-variant, endogenous, and depends on the distribution of individuals. This makes
existing quantitative methods for dynamic mobility models, e.g., Caliendo et al. (2019), unsuitable
for our study.7 Thus, we also make a methodological contribution by developing the NHA, which
can be used to solve other models similar to ours. For example, our method can be applied to study
spatial labor markets wherein workers search for jobs across markets and can switch between being
employed and unemployed, the probability of which changes endogenously over time.8

6Similar to Antràs et al. (2023), Giannone et al. (2022) also consider the spatial diffusion of infectious disease via
trade. They adopt a reduced-form relationship between trade and mobility flows.

7Caliendo et al. (2021) extend the study of Caliendo et al. (2019) to models with multiple types of agents. They
study the mobility of workers with different, but fixed, skills.

8There are studies that examine job searches across space, although in a static environment (e.g., Manning and
Petrongolo, 2017). There is also an established body of literature on dynamic job searches (e.g., Rogerson et al.,
2005), which typically ignores mobility across space. Recent research has begun modeling spatial mobility dynamics
but with a focus on the steady state (Schmutz and Sidibé, 2019).
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Finally, we contribute to the literature on infectious disease policies. There is substantial evi-
dence that non-pharmaceutical policies are effective in containing viruses and flattening epidemic
curves (Hsiang et al., 2020; Maier and Brockmann, 2020) and that these policies have nuanced
welfare implications (Adda, 2016; Argente et al., 2022; Farboodi et al., 2021; Giannone et al.,
2022). Our framework allows us to separate policy effects from behavioral responses, account-
ing for the intrinsically non-linear process of disease dynamics. Consistent with previous findings
(Fang et al., 2020; Farboodi et al., 2021; Goolsbee and Syverson, 2021), we find a substantial
behavioral effect in reducing infections and deaths. Different from these studies, we emphasize
that there is a “self-healing” effect that prompts infected people to move to high-recovery and low-
death regions, other than a “self-containment” effect, which induces susceptible people to move
away from regions with high infection risk. While the latter mainly reduces infections, the former
lowers the death toll. In addition, when we examine optimal cross-region mobility control policies,
we find that the long-run optimal cross-region mobility control policy may have no middle ground:
a benevolent policymaker who optimizes aggregate welfare across regions prefers mobility con-
trols that are either as strict as possible or as loose as possible. This finding differs from previous
studies, which tend to find interior solutions for optimal policies (Acemoglu et al., 2021; Fajgel-
baum et al., 2021; Giannone et al., 2022). If an infectious disease becomes less deadly or more
transmittable, a policymaker is more likely to prefer loose mobility controls, which may rationalize
the loosening of COVID-19 mobility control policies over time, as observed in Figure 1.

The rest of the paper is organized as follows. Section 2 presents the stylized facts that motivate
our model. Section 3 sets up the model and discusses analytical results on R0 and mobility. Section
4 introduces the NHA and presents simulation findings on disease and mobility dynamics. Section
5 applies the model to the US, calibrates it with the data, and conducts policy evaluations by coun-
terfactual simulations. Section 6 discusses the optimal mobility control policy and the extensions
and limitations of our model. Section 7 concludes the paper.

2 Motivating Stylized Facts

This section provides three stylized facts about pandemics, containment policies, and human mo-
bility. We first show how COVID-19 containment policies and infection risks vary across regions
and change over time. We then present two facts on the interaction between cross-region human
mobility and the COVID-19 pandemic. These facts motivate our model in the subsequent section.

2.1 Data

These facts are generated using three COVID-19 datasets, which will also be used to quantify our
theoretical model later.
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Epidemiological Data Our COVID-19 epidemiological data are from the COVID Tracking Project

(Miller and Curry, 2020). We collect the daily number of confirmed cases, recovery cases, and
deaths for each US state. We aggregate the daily data to build a panel dataset at the state and
bi-week levels from January 2020 to August 2021.

Containment Policy Data The OxCGRT, i.e., Oxford Covid-19 Government Response Tracker
(Hale et al., 2021), collects COVID-19 containment policies across the world at national and sub-
national level. From OxCGRT, we obtained 8 policy measures at the state level under the contain-
ment and closure policies category for the US, which are listed as C1-C8 in appendix Table B.1.
We classify these 8 measures into two types: local containment policies and cross-region mobility
control policies. Local containment policies include closings of schools/universities, workplaces,
and public transport, cancellations of public events, and orders to stay home (C1-C6). Cross-
region mobility control policies include restrictions on internal movement between cities/regions
(C7) and restrictions on international travel (C8). Numbers are assigned to each measure to capture
its stringency. For example, the mobility restriction indicator equals 0 when the local government
implements no restrictions, 1 when the government recommends against traveling across regions,
and 2 when cross-region movement is restricted. Following Hale et al. (2021), we construct state-
level policy indexes by first re-scaling each of the policy measures by its maximum value to create a
score between 0 and 100, and then creating composite policy indicators for each state by averaging
across the sub-policy indexes.

Mobility Data We use anonymous smartphone location data from PlaceIQ to measure human
mobility. PlaceIQ data tracks mobile phone users’ location over time and records smartphone
devices “pinging” in a given geographic unit on a given day. Using this data, Couture et al. (2022)
compute a daily measure of location exposure index (LEX), which is the fraction of active phones
in a geographic unit on a day that was active in another geographic unit at any point in the last 14
days. We get the daily state-to-state LEX measure and aggregate it to a biweekly frequency in two
ways: 1). the average within each bi-week, and 2). the maximum within each bi-week.

2.2 Results

Fact 1. Infection rates and COVID-19 containment policies vary significantly across regions

and over time.

Figure 2 (a) shows the evolution of the US COVID-19 infection rate, measured by the number
of new cases within each bi-week divided by the US population.9 As we can see, the infection rate
varies over time in a highly non-linear way: there were multiple waves of infection. Figure 2 (b)
plots the cumulative infection rate for each state, measured by the number of cumulative infected

9We obtain the national and state-level population data from the 2020 United States Census.
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Figure 2: COVID-19 Pandemic and Containment Policies in the US

(a) (b)

(0.130,0.151]
(0.120,0.130]
(0.100,0.120]
[0.038,0.100]
No data

Cumulative Infection Rate

(c) (d)

Notes: Figure (a) plots the stringency of local containment and mobility control policies averaged across US states
and the national infection rate. Figure (b) plots cumulative infection rates: cumulative infected cases (till August
2021) over the state population. Figures (c) and (d) plot the average local containment and mobility control policy
indexes from January 2020 to August 2021.

cases divided by the state population, which varies significantly across US states. The inland and
southern states tend to have higher cumulative infection rates than the northern and coastal states.

COVID-19 containment policies also demonstrate substantial time and spatial variations. Fig-
ure 2 (a) also shows the local containment policies (C1-C6) and mobility control policies averaged
across states (C7 and C8). We find that state governments imposed stringent local containment and
cross-state mobility policies at the outbreak of the pandemic. Over time, they gradually relaxed
these policies. Figure 2 (c) and (d) plot the average local containment and mobility control policies
for each state, which differ substantially across states. Overall, inland states tend to adopt more
lenient containment policies than coastal states.
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Table 1: Cross-State Mobility and the Number of New Cases

(1) (2) (3) (4)
Dependent variable ln (number of new cases)∑

j ̸=i m
max
ji ln(NewCasesj,t−1) 0.374***

(22.695)∑
j ̸=i m

mean
ji ln(NewCasesj,t−1) 0.394***

(23.017)∑
j ̸=i m

max
ji ln(CumulativeCasesj,t−1) 0.159***

(13.737)∑
j ̸=i m

mean
ji ln(CumulativeCasesj,t−1) 0.171***

(13.973)
Stringency Indext−1 -0.004* -0.004* -0.002 -0.002

(-1.766) (-1.742) (-0.629) (-0.623)
Observations 2,040 2,040 2,040 2,040
R-squared 0.971 0.972 0.943 0.943
BiWeek FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes

Notes: This table estimates the effect of interstate mobility on state-level COVID-19 cases in the US. The de-
pendent variable is the logarithm of the number of new cases in state i during a two-week period. We use four
measures of local exposure to outside cases caused by interstate mobility (columns 1-4). They combine two mea-
sures of initial interstate mobility and two measures of outside cases. The two measures of initial bilateral mobility
are mmax

ji and mmean
ji , the maximum and average daily mobility rate from state j to state i in the initial period,

respectively. Two measures of outside cases are used: ln(NewCasej,t−1) and ln(CumulativeCasej,t−1), the
logarithm of the lagged number of new cases and cumulative number of cases in origin state j, respectively. The
Stringency Indext−1 measures the stringency of closure policies, ranging from 0 to 100 at the state and bi-
weekly levels. The numbers in parentheses are robust t-statistics with standard errors two-way clustered at the
state and biweekly levels. Significance is indicated by *, **, and *** at the 0.1, 0.05, and 0.01 levels, respectively.

Fact 2. People fleeing from areas with infectious disease outbreaks tend to increase the number

of cases in their destinations.

Considering the impact of mobility on pandemics, an intuitive question is whether having peo-
ple moving from states with more cases leads to an increase in local cases.10 To examine that, we
first merge the three datasets discussed above to form a panel covering 50 US states and DC at the
cross-section across 40 bi-weeks from January 2020 to August 2021. The summary statistics of
the data are shown in appendix Table B.2. Panel A is at the state-pair biweekly level, while Panel
B is at the biweekly state level. Using the data, we estimate the following equation:

ln(yi,t) = a0 + a1
∑

j ̸=i
m0

ji ln(casesj,t−1) + a2StringencyIndexi,t−1 + dt + Si + νi,t, (1)

where yi,t is the number of newly confirmed COVID-19 cases in state i at a bi-week t, Stringency
Indexi,t−1 captures the lagged average containment and cross-region mobility control policies of

10Similarly, Glaeser et al. (2022) study the effect of within-city mobility changes on local cases at zip code levels.
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state i,11 dt is the time-fixed effect that absorbs time-varying shocks at the national level, and Si

is the state-fixed effect that absorbs state-specific time-invariant factors.
∑

j ̸=i m
0
ji ln(casesj,t−1)

measures the exposure of state i to the pandemic in other states due to inter-state human mobility.
m0

ji is the share of people moving from state j to state i in the initial period of our sample, which
is the second bi-week of January 2020, before the outbreak of the pandemic. We use two measures
to measure m0

ji: the maximum daily mobility flows during a bi-week period, and the average
daily mobility flows. We use casesj,t−1 to capture the severity of the pandemic at an origin state
j, of which there are two measures: the number of new cases in period t − 1, and the number
of cumulative cases by period t − 1. Interacting the two measures of casesj,t−1 with the two
measures of m0

ji, we have four approaches to measuring a state i’s exposure to the pandemic in
other states, which corresponds to the four columns in Table 1. Across all columns, we find that
having incomers from states with more cases is significantly associated with more local cases. The
effect of mobility exposure weighted in terms of the lagged number of new cases appears to be
larger than the cumulative number of cases.

Fact 3. People avoid moving to areas with high infection rates.

The above result indicates that mobility has a strong effect on the pandemic. A natural follow-
up question is whether mobility responds to the pandemic. To check that, we examine interstate
mobility flows in the US before and during the COVID-19 pandemic using the following empirical
specification:

mij,t = b0 + b1Infectioni,t−1 + b2Infectionj,t−1 + b3MobilityRestrictioni,t−1 (2)

+ b4MobilityRestrictionj,t−1 +
∑

k
βkXij,k + dt +Oi +Dj + ξij,t,

where mij,t is the number of state i people moving to state j in a bi-week t relative to state
j’s population. The key variables of interest are Infectioni,t−1 and Infectionj,t−1, which cap-
tures infection rates at the origin state and destination state in the lagged period. We control for
MobilityRestrictioni,t−1 and MobilityRestrictionj,t−1, which are mobility restrictions (see C7
in Table B.1) imposed by the origin and destination states, respectively. We also include gravity
variables (Xij,k), time fixed effect (dt), and origin and destination fixed effects (Oi and Dj). We
estimate the model using Poisson Pseudo Maximum Likelihood (PPML), to deal with zeros in the
mobility data and potential heteroskedasticity (Silva and Tenreyro, 2006).

The results are presented in Table 2. Columns (1) and (2) use the maximum daily mobility
flows during each bi-week as the dependent variable, and columns (3) and (4) use the average
during the same period. Across all columns, we find that higher infection rates at the destination

11It is the average of C1 - C8 in Table B.1. Lagged variables are used to ease potential endogeneity concerns that
containment policies could be affected by the severity of the disease in a region.
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Table 2: Infection Risk and State-to-State Mobility

(1) (2) (3) (4)

Dependent variable Max mobility Average mobility
new infection rate of origin -0.940 -0.491 -0.601 -0.146

(-0.436) (-0.642) (-0.272) (-0.201)
new infection rate of destination -7.633*** -7.844*** -7.456*** -7.698***

(-3.432) (-10.862) (-3.245) (-11.085)
mobility restrictions of origin -0.048*** -0.048*** -0.048*** -0.048***

(-3.531) (-9.873) (-3.408) (-9.602)
mobility restrictions of destination -0.007 -0.008 -0.003 -0.005

(-0.448) (-1.498) (-0.201) (-0.827)
log(distance) -1.364*** -1.384***

(-271.5) (–214.0)
shared state border 1.069*** 1.100***

(95.5) (96.9)
Observations 102,000 102,000 102,000 102,000
Time FE Yes Yes Yes Yes
Origin FE Yes No Yes No
Destination FE Yes No Yes No
Origin-Destination Pair FE No Yes No Yes

Notes: The dependent variables are the maximum daily bilateral mobility flow within a bi-week in columns (1)-(2)
and the average in columns (3)-(4). Independent variables new infection rate of origin and new infection
rate of destination are the number of new cases divided by population in the origin and destination states,
respectively. The models are estimated using Poisson Pseudo Maximum Likelihood (PPML). The numbers in
parentheses are robust t-statistics with standard errors two-way clustered at the state pair and biweekly levels.
Significance is indicated by *, **, and *** at the 0.1, 0.05, and 0.01 levels, respectively.

state are associated with lower mobility inflows. A higher infection rate at the origin state is also
associated with lower mobility flows, albeit insignificant. Mobility restrictions also appear to have
negative effects on mobility flows.

There may be concerns that lagged infection rates do not fully reflect infection risk, bilateral
mobility flows do not capture overall mobility inflows of a region, and the above estimations only
capture the average effect. To deal with these concerns, we also examine the effect of cumulative
infection rates on total net mobility inflows using the following Difference-in-Differences specifi-
cation with time-varying treatment effects:

NetInflowSharej,t = a0 +
∑

k
ak · CumulativeInfectionRatej × τk,t

+ c2MobilityRestrictionj,t−1 + dt + Sj + νj,t, (3)

where NetInflowSharej,t is the net total mobility inflows from other states to a state j at period
t divided by the population of j, CumulativeInfectionRatej is the cumulative infection rate
of state j measured by the total number of confirmed cases at the end of the sample divided its
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Figure 3: Effect of Cumulative Infection Rates on Net Mobility Inflows

Notes: This figure depicts the effect of cumulative infection rate on net mobility inflows of US states before and
after the national emergency declaration in March 2020. The dependent variable is the net biweekly mobility
inflows of a state, measured by the maximum daily net inflows within a bi-week. The markers represent the
estimated coefficients of interaction terms, ak, in equation (3). The reference group is the final month of the data
sample, August 2021. The capped spikes represent the associated 95% confidence intervals, with standard errors
clustered at the state and biweekly levels.

population, and τk,t is a time dummy that equals 1 if period t falls within a specific year-month k.
Figure 3 plots the estimated ak, the coefficient of interaction terms of the time dummies and

cumulative infection rates. We find that before the declaration of national emergency in March
2020, there were no significant differences in net mobility inflows across states. But as the na-
tional emergency was declared, net mobility inflows to states with high cumulative infection fell
relative to states with low cumulative infection rates. Such differences in net inflows petered out
as infection rates gradually declined in the first half of 2021 (see Figure 2 a).

3 Model

This section builds a spatial model of pandemic and endogenous human mobility. Given Fact 1,
it is important to have a model featuring rich geographic heterogeneity in disease environments.
Given Facts 2 and 3, the model should allow the pandemic to diffuse via human mobility, and
human mobility to react to the pandemic.

The model we build is a multi-region SIRD model with forward-looking agents who make
endogenous cross-region mobility decisions. Individuals consider the risk of infection and proba-
bilities of recovery and death in different regions, which affect their expected utility when moving.
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We will use the model to characterize disease and mobility dynamics in this section and do quan-
titative analyses in subsequent sections.

3.1 Mobility, Demographic, and Disease Dynamics

Let us consider an economy consisting of N regions. We follow the tradition of SIRD models
(Kermack and McKendrick, 1927) to divide the total population into four mutually exclusive types:
Susceptible (S), Infected (I), Recovered (R), and Deceased (D). We assume that time is discrete
and use Si,t, I i,t, Ri,t, Di,t to denote the population of each type in region i at the beginning of
period t, and Si,t, Ii,t, Ri,t, Di,t the end of period t. The size of each type in each region changes
due to both the pandemic and mobility across regions.

For mobility, we follow the recent quantitative economic geography literature (Caliendo et al.,
2019; Redding and Rossi-Hansberg, 2017; Tombe and Zhu, 2019) to assume that individuals of
each type have idiosyncratic preference shocks for locations drawn from extreme value distribu-
tions, an approach commonly adopted in discrete choice models (Anderson et al., 1992). After
observing the preference shock, an individual moves to the region that yields the highest expected
utility net of the mobility cost. Specifically, the problem faced by type S in region i in period t can
be characterized by the following Bellman equation,

US
i,t(εi,t)= ui + max

j=1,...,N
{βEt[(1− αj,t+1)U

S
j,t+1(εj,t+1) + αj,t+1U

I
j,t+1(εj,t+1)]− µ̃ij,t + εij,t},

(4)
where ui is the instantaneous utility of individuals in region i, and β ∈ (0, 1) is the inter-temporal
discount rate. Conditional on moving to region j, with probability αj,t+1, the individual gets in-
fected and joins type I whose value function is U I

j,t+1. With probability 1 − αj,t+1, the individual
remains uninfected and has a value function of US

j,t+1. Following Antràs et al. (2023) and Farboodi
et al. (2021), we assume that agents form rational expectations about αj,t+1. Although an individ-
ual is uncertain about whether or not he/she will be infected in the next period, the aggregate risk
of infection is determined by collective decisions and taken as given by each individual. The cost
of moving from region i to region j in period t is µ̃ij,t. Individuals currently in region i receive a
vector of preference shocks εi,t ≡ {εi1,t, ..., εiN,t} at the end of each period with each element εij,t
following an i.i.d. Gumbel distribution

Pr {εij,t ≤ ε} = exp
{
− exp

{
−ε/κ− γEuler

}}
, (5)

where κ is a parameter that controls the dispersion of a shock and γEuler is the Euler constant
ensuring that the shock has zero mean. These shocks capture the reality that individuals have
idiosyncratic reasons for traveling to each region.
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Similarly, for types I and R, their value functions are given by

U I
i,t(εi,t) = ui+ max

j=1,...,N
{βEt[(1−γRj −γDj )U I

j,t+1(εj,t+1)+γRj U
R
j,t+1(εj,t+1)+γDj UD]− µ̃ij,t+εij,t},

(6)

and
UR
i,t(εi,t) = ui + max

j=1,...,N
{βEt[U

R
j,t+1(εj,t+1)]− µ̃ij,t + εij,t}, (7)

respectively, where γR
j and γD

j are the recovery and death rates in region j, and UD is the utility
of the deceased, which we normalize as a constant. To keep the model non-trivial, we assume that
0 ≤ γR

j < 1, 0 ≤ γD
j < 1, and γR

j + γD
j < 1. If γD

j = 0, our model collapses to a SIR model.
Solving problems (4), (6), and (7), we have the following results.

Proposition 1. The expected lifetime utility of types S, I , and R in region i at time t can be written

recursively as

V S
i,t = exp

(ui

κ

)∑N

j=1

(
V S
j,t+1

)β(1−αj,t+1) (
V I
j,t+1

)βαj,t+1
(µij,t)

−1 ,

V I
i,t = exp

(ui

κ

)∑N

j=1

(
V I
j,t+1

)β(1−γR
j −γD

j ) (
V R
j,t+1

)βγR
j
(
V D
)γD

j (µij,t)
−1 , (8)

V R
i,t = exp

(ui

κ

)∑N

j=1

(
V R
j,t+1

)β
(µij,t)

−1 ,

where V g
i,t = exp(Et−1(U

g
i,t)/κ), g ∈ {S, I, R} and V D = exp(UD/κ) is the value of type D, and

µij,t = exp(µ̃ij,t/κ).

Proof. See appendix A.1.1.

Equation (8) indicates that the expected lifetime utility of individuals depends on the contem-
poraneous utility and the option value of changing regions and types in the next period. The option
value sums the expected values across regions, which are discounted by the mobility cost and the
inter-temporal discount rate. The expected value of a region is a weighted geometric average of
values across types, with the weights given by probabilities of being respective types.

We next obtain the mobility rate of each type of individual, summarized as follows.

Proposition 2. The probabilities of types S, I , and R moving from region i to region j in period t

are given by

mS
ij,t =

(
V S
j,t+1

)β(1−αj,t+1) (V I
j,t+1

)βαj,t+1 (µij,t)
−1∑N

k=1

(
V S
k,t+1

)β(1−αk,t+1)
(
V I
k,t+1

)βαk,t+1 (µik,t)
−1

,

mI
ij,t =

(
V I
j,t+1

)β(1−γR
j −γD

j ) (V R
j,t+1

)βγR
j
(
V D
)βγD

j (µij,t)
−1∑N

k=1

(
V I
k,t+1

)β(1−γR
k −γD

k ) (
V R
k,t+1

)βγR
k (V D)βγ

D
k (µik,t)

−1
, (9)
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mR
ij,t =

(
V R
j,t+1

)β
(µij,t)

−1∑N
k=1

(
V R
k,t+1

)β
(µik,t)

−1
.

Proof. See appendix A.1.2.

There are a few important differences between the above expressions and existing models.
First, the mobility rates vary across types, whereas existing spatial models typically ignore mobility
heterogeneity by assuming workers or commuters share the same mobility rate (e.g., Argente et
al., 2022).12 Second, individuals who can switch types (types S and I) consider that they might
switch to other types in the following period, whereas individuals of the terminated type R do not.
Finally, in addition to mobility friction, disease conditions (infection, recovery, and death rates)
directly affect the mobility rate. In particular, the susceptible individuals’ mobility rates depend on
infection rates αj,t+1, which varies endogenously over time.

As is standard in SIRD models (Allen and den Driessche, 2008), demographic dynamics within
a period caused by the disease is given by

Si,t = Si,t − Ti,t

Ii,t = Ti,t +
(
1− γR

i − γD
i

)
I i,t,

Ri,t = Ri,t + γR
i I i,t

Di,t = Di,t + γD
i I i,t, (10)

where Ti,t is the number of newly infected individuals in region i in period t. Following the
literature (e.g., Acemoglu et al., 2021), we assume that it depends on the densities of susceptible
and infected individuals in the local population, and satisfies

Ti,t

Li,t

= min{Si,t

Li,t

, χi,t
Si,t

Li,t

I i,t

Li,t

}, (11)

where Li,t = Si,t+I i,t+Ri,t is the local population and χi,t is the transmission rate, the probability
that the virus transmits from type I to type S conditional on contact between them. The min

operator is used to cover the case that all susceptible individuals are infected. Given the number of
newly infected individuals, the infection rate of type S is

αit ≡
Ti,t

Si,t

. (12)

12A notable exception is Caliendo et al. (2021), who study the migration of workers with different skill types.
However, they continue to assume that workers do not change types.
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Last, the demographic dynamics across periods due to mobility are given by

Si,t =
∑N

j=1
Sj,t−1m

S
ji,t−1, I i,t =

∑N

j=1
Ij,t−1m

I
ji,t−1, (13)

Ri,t =
∑N

j=1
Rj,t−1m

R
ji,t−1, Di,t = Di,t−1.

The timing of events in the model is summarized in Figure 4.

Figure 4: Model Timeline

Notes: This figure plots the timeline of events in each model in period t. At the beginning of the period (after
mobility in the previous period is complete), the stock of type g individuals in the region i is gi,t, g ∈ {S, I,R,D}.
Next, possible infection (with probability αi,t), recovery, and death take place. The stock of type g individuals
becomes gi,t. At the end of the period, individuals derive their idiosyncratic preference shock εi,t and make a
mobility decision. The mobility rate of type g is mg

ij,t.

3.2 Equilibrium

The model fundamentals are bilateral mobility costs µt ≡ {µij,t}N,N
i=1,j=1, the recovery rate γR ≡{

γR
i

}N
i=1

, the death rate γD ≡
{
γD
i

}N
i=1

, the transmission rate χt ≡ {χi,t}Ni=1, the value of type
D, i.e., V D, the dispersion parameter of the Gumbel distribution κ, and the discount rate β. We
denote the time-varying fundamentals by Ωt ≡ {µt, χt} and time-invariant fundamentals by Ω ≡{
γR, γD, V D, κ, β

}
.

We use Gt ≡ {Si,t, Ii,t, Ri,t, Di,t}Ni=1 to denote distribution of individuals across regions, mt =

{mS
ij,t, m

I
ij,t, m

R
ij,t}

N,N
i=1,j=1 their mobility rates, and Vt = {V S

i,t, V
I
i,t, V

R
i,t}Ni=1 their expected utility

for each period, and define the sequential competitive equilibrium as follows.

Definition 1. Given Ω, {Ωt}∞t=0, and G0, the sequential competitive equilibrium is a sequence of

{Gt, mt, Vt}∞t=0 satisfying equations (8), (9), (10), (11), (12), and (13).
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We next define the steady-state equilibrium.

Definition 2. A steady-state equilibrium is a sequential competitive equilibrium such that {Gt, mt, Vt}∞t=0

is constant over time.

Finally, following the literature on the basic reproduction number R0 (Van den Driessche,
2017), we define the disease-free equilibrium (DFE) as

Definition 3. A DFE is defined as the point at which the whole population is susceptible, i.e.,

Si,t/Li,t = 1, ∀i.

In essence, the sequential competitive equilibrium characterizes the full dynamic path of the
economy, while the steady-state equilibrium describes the economy once the pandemic ends, and
the disease-free equilibrium represents the economy at the outbreak.

3.3 Mobility and Infection Risk

This subsection presents analytical results on mobility dynamics. SIRD models have analytical
solutions only under certain restrictions (Harko et al., 2014). Incorporating them into an economic
model with endogenous mobility makes it even more challenging to get analytical solutions. We
first obtain results on the mobility of infected and recovered individuals.

Proposition 3. If mobility costs are time-invariant, the value functions of types I and R are time-

invariant, that is, V R
i,t = V R

i and V I
i,t = V I

i ; so are their mobility rates, i.e., mR
ij,t = mR

ij and

mI
ij,t = mI

ij , ∀i & j.

Proof. See appendix A.1.3.

Types I and R have both been infected. They are not concerned about the risk of infection and
do not respond to changes in infection rates. Only type S individuals, who have not been infected,
care about the risk of infection when making mobility choices. Therefore, without changes in
mobility costs, mobility dynamics during a pandemic are shaped mostly by type S individuals.

Before discussing how type S responds to infection risk, we rank the value functions of agents.
We assume that the value of the deceased is sufficiently small such that their value is always less
than the value of recovered individuals, i.e., V D < V R

i,t .

Lemma 1. If mobility costs are time-invariant, then we have: (a) V R
i > V I

i and V R
i ≥ V S

i,t; (b)

near the DFE, we have V I
i < V S

i,t, ∀i.

Proof. See appendix A.1.4.
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Result (a) implies that the value function of type R individuals is higher than those of types I
and S. The intuition is that type I individuals might die while type S individuals might become
infected and die, but type R has immunity and will not die. Near the DFE, as the infection rate
approaches 0, type S’s value approaches type R’s value according to equation (8). Naturally, type
S’s value function tends to dominate type I’s value function. Based on this result, we obtain the
following proposition on how type S’s mobility responds to the risk of infection.

Proposition 4. Near the DFE, if the infection rate in region j increases, the mobility rate of type

S to region j decreases:

∂ ln(mS
ij,t)

∂αj,t+1

= β(1−mS
ij,t) ln(

V I
j

V S
j,t+1

) < 0. (14)

Proof. See appendix A.1.5.

This result implies that type S individuals avoid moving to regions with higher risks of infec-
tion, which is consistent with Fact 3 in Section 2. We also note that type S’s mobility response
is proportional to the (log) difference of their value function from type I’s: ln(V I

j ) − ln(V S
j,t+1).

Hence, the greater the welfare loss from infections, the greater their mobility response. If values
of type S and type I are the same, then we have ∂ ln(mS

ij,t)/∂αj,t+1 = 0: people do not respond to
infection risk.

In addition, the magnitude of the response is proportional to 1 − mS
ij,t, the total mobility rate

to other destinations: the higher 1 − mS
ij,t is, the greater the response of type S to an increase

in infection rate in region j. Intuitively, a higher total mobility rate to other regions implies that
region j becomes less attractive as a destination. Then, if the conditions in region j deteriorate,
individuals respond more aggressively to such changes. Effectively, mobilities to other regions
shield agents against the rising infection risk in region j.

3.4 Local and Global R0

We next study the basic reproduction number, R0, which determines if an emerging epidemic can
be contained or not and characterizes disease dynamics at its outbreak. R0 measures the expected
number of new infections generated per infected individual near the DFE (Diekmann et al., 1990).
Without cross-region mobility or interactions, the local R0 of region i is:

RL
0,i =

χi

γi
, (15)
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where χi is the transmission rate capturing expected new infections per infected individual per pe-
riod, and 1/γi is the expected infection duration.13 Therefore, χi/γi is the expected new infections
per infected individual over the course of infection. If RL

0,i > 1, the epidemic continues spreading
in region i, while RL

0,i < 1 implies it will die out.
We generalize the notion of R0 to an environment with human mobility across regions, fol-

lowing studies of multi-group SIRD models in which individuals may differ by age, gender, or
other characteristics (Allen and Van den Driessche, 2008) or live in multiple regions (Antràs et al.,
2023). We first combine equations (10) and (13) and rewrite the law of motion for type I as:14

Ii,t = χi
Si,t

Li,t

I i,t +
(
1− γR

i − γD
i

)
I i,t =

(
χi
Si,t

Li,t

+ 1− γR
i − γD

i

) N∑
j=1

mI
jiIj,t−1. (16)

Following Allen and Van den Driessche (2008), we vectorize the equation above near the DFE
(hence Si,t

Li,t
= 1, ∀i) and obtain

It+1 = FIt +VIt, (17)

where It = [I1,t, ..., IN,t]
′, and F = diag(χ1, χ2, ..., χN)m

I and V = diag(1− γ1, 1− γ2, ..., 1−
γN)m

I while mI = {mI
ji}N×N is the mobility rate matrix of type I , and γi = γD

i + γR
i , (1 ≤ i ≤

N), is the removal rate of type I in region i.
Intuitively, F is the transmission matrix, which captures new infections generated by transmis-

sion. V is the transition matrix, which captures the transition of type I to type R or D. In our
model, individuals can move from one region to another, potentially generating new infections.
This is captured by the mobility matrix mI , which appears in both F and V. We follow Allen and
Van den Driessche (2008) and define the next-generation matrix as

M =F (I−V)−1 , (18)

where I is an identity matrix. This concept is borrowed from the literature on matrix population
models that examine demographic dynamics and view infection as consecutive generations of in-
fected people (Caswell, 2000). M connects the number of newly infected cases in different regions
for consecutive periods. The basic reproduction number is given by the spectral radius of M, the
largest norm of its eigenvalues:

RG
0 ≡ ρ(M) ≡ max

1≤i≤N
{|Λi|}, (19)

where Λi is the eigenvalue of M. We call RG
0 is the global R0 of our multi-region economy.

13In this subsection on R0, we follow the literature to assume the transmission rate is time-invariant.
14Note that we have used mI

ij,t = mI
ij from Proposition 3,
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The interpretation RG
0 has similarity with RL

0 in the tradition of SIRD models. First, the element
on the ith row and jth column of F, χim

I
ji, is the expected number of new cases in region i

generated by an infected individual from region j. As for V, the element on the ith row and jth

column, (1−γi)m
I
ji, is the survival probability in region i for a type I individual originated from j.

Then, the element on the ith row and jth column of (I− V )−1 is the expected duration of infection
for an infected individual in region i who has moved from region j.15 Therefore, the element on
the ith row and jth column of M represents the expected number of new infections in region i

generated by an infected individual originated from region j.
We next explain why RG

0 determines whether the pandemic can be contained or not in this
multi-region environment. We consider a small outbreak across regions near the DFE, with the
initial stock of infected individuals given by I0 = δ0. We call it the 0-th generation of infection.
Then, the expected number of new cases directly generated by the 0-th generation, that is the first
generation of cases is I1 = Mδ0. In general, the k-th generation of infection is Ik = MIk−1 =

Mkδ0. Therefore, the growth rate of Ik is controlled by the largest norm of eigenvalues of M,
namely RG

0 .16 We next discuss the properties of RG
0 .

Proposition 5. RG
0 falls between the minimum and maximum of local reproduction numbers, i.e.,

mini R
L
0,i ≤ RG

0 ≤ maxi R
L
0,i.

Proof. See appendix A.1.6.

This result implies that cross-region mobility generates epidemiological externalities by allow-
ing regions to share infection risks and medical resources. People tend to move away from regions
with high infection rates to regions with low infection rates, and from regions with low recovery
rates to regions with high recovery rates, both tend to lower the infection globally. Intuitively, if
everyone stays in the region with the lowest RL

0 , we have RG
0 = mini R

L
0,i. Similarly, if every-

one stays in the region with the highest local R0, we have RG
0 = maxi R

L
0,i. In general, RG

0 falls
between the maximum and minimum values of local R0s when people can move across regions.17

Proposition 5 has important policy implications. First, regardless of the mobility frictions, if
the largest local R0 is less than 1, global R0 is less than 1. Therefore, if the infectious disease can
be controlled in the region with the worst situation, allowing free cross-region mobility will not
cause a pandemic. It also provides rationales for prioritizing disease control in that region. If the
pandemic can be controlled there, it can be contained globally. But this result does not imply we
should give up disease control in other regions, which we investigate in the next proposition.

15Let ξi be the expected duration of infection in region i and ξ = [ξ1, ..., ξN ], then ξ satisfies a recursive relationship
ξ = ι+ ξV , and ι = [1, ..., 1]1×N . Immediately, we have ξ = ι (I− V )

−1
.

16We note that limk→∞
Ik
ζk = limk→∞(Mζ )kI0 is finite if ζ ≥ ρ(M).

17Because of idiosyncratic preference shocks, people will not all flow to the region with the lowest local R0 or out
of the region with the highest local R0.
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Proposition 6. With a positive mobility matrix (i.e., mI
ij > 0, ∀ i&j), a decrease in the transmis-

sion rate χi or an increase in the removal rate γi in any region decreases global RG
0 .

Proof. See appendix A.1.7.

Proposition 6 suggests that in a globalized world with cross-region mobility all regions matter,
and improving infectious disease control in any region contributes to global disease control.

4 Quantitative Analysis

Our analyses of R0 focus on the initial phase of the pandemic. To capture whole disease dynamics,
we have to solve the sequential competitive equilibrium. For that purpose, this section develops
the Normalized Hat Algebra. It enables us to solve the transitional path of the model and analyze
disease and mobility dynamics.

4.1 Normalized Hat Algebra

Hat Algebra is a set of comparative static and counterfactual analysis methodologies. It was first
proposed by Jones (1965) to solve trade models by log linearization. Instead of log linearization,
Dekle et al. (2007) solved a trade model in terms of exact changes from the current equilibrium and
called their method “Exact Hat Algebra” (EHA). However, EHA can only be applied to static or
steady-state models. Caliendo et al. (2019) extended EHA and developed the method of “Dynamic
Hat Algebra” (DHA) to solve models with intrinsic migration dynamics. Their idea is to transform
the model in terms of relative time differences. They show that the DHA allows them to derive the
transitional path and conduct counterfactual analyses without knowing all model fundamentals.

Our model does not belong to the class of models solvable by DHA. To see that, we follow
Caliendo et al. (2019) to write type S’s value function (equation 8) in terms of time differences:18

V̇ S
i,t+1 =

N∑
k=1

mS
ik,t(V̇

S
k,t+2)

β(1−αk,t+2)(V̇ I
k,t+2)

βαk,t+2

(
V S
k,t+1

V I
k,t+1

)β(αk,t+1−αk,t+2)

µ̇−1
ik,t+1, (20)

where Ẋi,t+1 ≡ Xi,t+1

Xi,t
is the proportional change of variable X from period t to t + 1. How-

ever, the last term in the equation, (V S
k,t+1/V

I
k,t+1)

β(αk,t+1−αk,t+2), is still expressed in terms of the
level of the value function and shows up whenever the probability of infection varies over time:
αk,t+1 ̸= αk,t+2. Since αk,t+1 depends on the time-varying density of infected and susceptible
individuals in each region, as specified in equation (12), the model cannot be rewritten in terms of

18See appendix B.4 for details of the derivation.

21



time differences. Only when αk,t+1 = αk,t+2 for any t and k, that is the probability of infection is
time-invariant, our model would fall into the class that can be solved by the DHA.

We have developed a new method which we call the Normalized Hat Algebra (NHA) to solve
the model. The idea is to normalize the value functions by their respective steady-state values. For
a variable xt, we denote its normalized value as x̂t = xt/xss, while xss is its steady-state value.
Using this normalization, we prove the following result.

Proposition 7. Given the initial distribution of agents, G0, and the steady state of the economy,

the solution to the sequential competitive equilibrium solves equations (10), (11), (12), and (13),

together with the following equations for all regions in all periods

V̂ S
i,t =

N∑
j=1

mS
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1

(
V I
j,ss

V S
j,ss

)βαj,t+1

(µ̂ij,t)
−1 ,

V̂ I
i,t =

N∑
k=1

mI
ik,ss

(
V̂ I
k,t+1

)β(1−γR
k −γD

k ) (
V̂ R
k,t+1

)βγR
k

µ̂−1
ik,t,

V̂ R
i,t =

N∑
k=1

mR
ik,ss

(
V̂ R
i,t+1

)β
µ̂−1
ik,t,

and

m̂S
ij,t =

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1
(

V I
j,ss

V S
j,ss

)βαj,t+1

(µ̂ij,t)
−1

∑N
k=1m

S
ik,ss

(
V̂ S
k,t+1

)β(1−αk,t+1) (
V̂ I
k,t+1

)βαk,t+1
(

V I
k,ss

V S
k,ss

)βαj,t+1

(µ̂ik,t)
−1

,

m̂I
ij,t =

(
V̂ I
i,t+1

)β(1−γR
j −γD

j ) (
V̂ R
j,t+1

)βγR
j

(µ̂ij,t)
−1

∑N
k=1m

I
ik,ss

(
V̂ I
k,t+1

)β(1−γR
k −γD

k ) (
V̂ R
k,t+1

)βγR
k

µ̂−1
ik,t

,

m̂R
ij,t =

(
V̂ R
j,t+1

)β
µ̂−1
ij,t∑N

k=1m
R
ik,ss

(
V̂ R
i,t+1

)β
µ̂−1
ik,t

,

where mg
ij,ss, g ∈ {S, I, R} is the steady-state mobility rate of type g from region i to region j.

Proof. See appendix A.1.8

We note that V̂ S
i,t contains (V I

j,ss/V
S
j,ss)

βαj,t+1 , which is time-varying and not a “hat” variable.
But the problem is simpler than in equation (20) using the DHA method: V I

j,ss/V
S
j,ss, the steady-

state ratio of value functions between type I and S, is time-invariant. Given the steady-state
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mobility costs and instantaneous utilities, it can be obtained from equation (8) by replacing αj,ss =

0 (∀j). Appendix B.5 presents the NHA algorithm in greater detail.

4.2 Model Dynamics

To investigate disease, demographic, and mobility dynamics, we employ the NHA method to sim-
ulate a symmetric 3-region economy: regions 1, 2, and 3, with the outbreak starting in Region 1.
This setup provides a parsimonious structure to analyze mobility flows between regions with and
without the disease outbreak, and between regions without the outbreak. The model parameters
for this 3-region economy are provided in appendix Table B.3.

The simulation results are presented in Figure 5. We assume that 1% of the local population
in Region 1 are initially infected.19 In line with Fact 3 and Proposition 4, susceptible individuals
rapidly move out of Region 1, which has the highest infection rate, to other lower-risk regions.
In the other two regions, susceptible individuals avoid moving to Region 1 and prioritize regions
without outbreaks (panel f). These changes in mobility lead to a decrease in the population and
stock of susceptible individuals in Region 1 and a rise in the population and stock of susceptible
individuals in other regions (panels a and c). Consequently, the density of infected individuals
rises in Region 1, leading to an increase in the local infection rate. As infected individuals move to
Regions 2 and 3, their respective local infection rates also rise (panel d). Over time, infected indi-
viduals either recover or pass away, resulting in a decline in their numbers in all regions (panel b).
Despite the growing cumulative number of cases (panel e), infection rates eventually decreased in
all regions. As the infection rate falls, susceptible individuals return to Region 1, and the economy
converges to a new steady state.

A few interesting observations emerge from the simulation. First, there can be multiple waves

of infections.20 As shown in panel b, there are two peaks of infections in Region 1. As the
region with the initial outbreak, infection quickly rises, which constitutes the first wave. But when
infections gradually increase in the other two regions, the susceptible individuals move back to
Region 1 (panels a and f), which pushes up infections in Region 1 and causes the second wave.
Second, there are overshootings and undershootings in cross-region human mobilities. In panel f,
we find that the initial outflows from Region 1 to other regions rise above their steady-state values
while the inflows fall below their steady-state values. Finally, the region with the outbreak does
not necessarily have the highest cumulative cases. At the steady state, the cumulative number of
infected cases in Region 2 is higher than in Region 1 (panel e).

19Regions 2 and 3 have symmetric results. Results for Region 3 are omitted in the figure.
20Typically, SIR models can generate multiple waves of infection if immunity is temporary. If immunity is perma-

nent, such models predict a single wave (Kissler et al., 2020). Despite assuming permanent immunity, we can generate
multiple waves in a multi-region model just like Antràs et al. (2023).

23



Figure 5: Epidemic and Mobility Dynamics with an Outbreak in Region 1

Notes: These figures plot the simulation results from a three-region economy with an initial outbreak in Region
1 (1% of the local population infected). The model parameters are specified in appendix Table B.3. Figure (a)
plots the stock of type S individuals relative to its steady state value; (b) plots the number of type I individuals;
(c) plots the size of the local population relative to its steady state value; (d) plots the infection rate; (e) plots the
cumulative number of cases in Regions 1 and 2 by summing the number of new cases across all periods; and (f)
plots type S’s mobility rate in and out of Region 1 and between the other 2 regions relative to the steady state.
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5 Quantifying the COVID-19 Pandemic in the US

Our previous quantification focuses on a hypothetical three-region economy. This section extends
the analyses by fitting our spatial epidemic model to the US economy of 50 states and Washington,
DC at a bi-weekly frequency. We estimate the pre-pandemic economy using data from January
2020 and the pandemic economy using data from April to December 2020.21

In the following, we present strategies to estimate the key model parameters and the estimation
results. We then use the estimated model to conduct counterfactual simulations and evaluate the
effect of COVID-19 containment policies and cross-state mobility policies imposed by US govern-
ments on health and welfare outcomes. We find local containment policies flatten the US epidemic
curve effectively but mobility control policies play a complex role: they reduce infection but have
led to more deaths and lower social welfare.

5.1 Parameter Estimation

For some of the model parameters, we take them directly from the literature or calibrate them to
match aggregate data moments. These include the discount rate, mobility elasticity, infection rate,
and recovery rate. We develop strategies to estimate mobility costs and transmission rates and
their elasticities with respect to containment policies, which are crucial for counterfactual policy
evaluations. Finally, we also estimate the value of the deceased, which is necessary to solve the
model. In the following, we will use ã to denote the estimate of a parameter a.

Inter-temporal Discount Rate and Mobility Elasticity

We set the biweekly inter-temporal discount rate β̃ = 0.9985 to match a 4% annual interest rate.
As far as we know, there is no estimation of mobility elasticity at the bi-week frequency.22 Using
US data, Caliendo et al. (2019) estimated a quarterly mobility elasticity of 5.34, a five-month
mobility elasticity of 3.95, and an annual elasticity of 2.02. The mobility elasticity appears to rise
with mobility frequency. We set the bi-week mobility elasticity at κ̃ = 7.4 by interpolating from
the mobility elasticity estimates of Caliendo et al. (2019) to the bi-week level.

21This time window was chosen for three reasons. First, quality recovery data were unavailable until April 2020.
Second, the US government started to roll out vaccination in December 2020 and more variants of the coronavirus
started to emerge in late 2020. We evaluate the effect of vaccination in the US in Chen et al. (2022). A model
extension with vaccination is presented in appendix B.9.

22Although we get access to mobility data at a bi-week frequency, we lack economic data at the same or similar
frequencies that would have enabled us to estimate the elasticity.
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Instantaneous Utilities and Pandemic-free Mobility Costs

We next estimate the instantaneous utility of each US state (i.e., {ui}51i=1 ) and inter-state pandemic-
free mobility costs (i.e., {µij}51,51i=1,j=1). They jointly determine inter-state mobility before the out-
break of the pandemic, given the inter-temporal discount rate and mobility elasticity. We estimate
them jointly using PlaceIQ data from the first bi-week of January 2020, before the first COVID-
19 case was reported in the US. We treat the observed mobility flows at that time as the mobility
pattern when the US is pandemic-free.23

To estimate these two sets of parameters, we consider a version of our baseline model without
pandemics. Essentially, individuals draw i.i.d. preference shocks following the same distribution
as equation (5) in each period and move to the region that yields the highest expected utility in the
following period, net of the mobility cost. The model details are as outlined in appendix B.6. At
the steady-state equilibrium, the mobility rate from state i to state j, mij , relative to the probability
of staying in state i, mii, is given by

ln

(
mij

mii

)
= β lnVj − β lnVi − lnµij, (21)

where Vi is the value of staying in state i and µij is the pandemic-free mobility cost of moving from
state i to state j. We project the mobility costs on gravity variables, including bilateral distance,
distij , and an indicator of contiguity contij between two states, and a destination fixed effect:24

lnµij = α0 + α1 ln distij + α2contij + δj. (22)

Let’s denote Si = β lnVi, equations (21) and (22) imply the following estimation equation:

ln

(
mij

mii

)
= −α0 − α1 ln distij − α2contij + Sj − Si − δj + ζij, (23)

where ζij is the error term. Then, if we have estimated {S̃i, α̃0, α̃1, α̃2, δ̃j} using the above
equation, bilateral mobility costs and state-specific instantaneous utilities are given by:

µ̃ij = exp
{
α̃0 + α̃1 ln distij + α̃2contij + δ̃j

}
(24)

ũi = κ[S̃i/β − ln
∑51

j=1

(
exp(S̃j)/µ̃ij

)
]. (25)

However, the implied mobility rates {m̃ij} is not necessarily consistent with the observed pop-

23See appendix B.1 for detailed descriptions of how we construct the mobility matrix using PlaceIQ data.
24This specification captures asymmetric mobility costs between states. Similar specifications have been adopted

in the estimation of mobility costs by Artuç et al. (2010), and trade costs by Waugh (2010) and Tombe and Zhu (2019).
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ulation distribution across states, {Li}51i=1, such that25

∑51

i=1
m̃ijLi = Lj. (26)

Inspired by Anderson and van Wincoop (2003), who estimate the gravity equation for trade flows
together with a market-clearing constraint, we adopt an iterative method to ensure the estimates
are consistent with the add-up constraint (26). In particular, we initialize {S̃0

i } and take {α̃0, α̃1,
α̃2, δ̃j} from the OLS estimate of equation (23). We then estimate mobility costs by equation (24)
and update {S̃i} by solving equation (26), with the mobility rates given by:

m̃ij =
exp(S̃j)/µ̃ij∑51
k=1 exp(S̃k)/µ̃ik

. (27)

The iteration stops when differences in the estimated {S̃i} between two steps are sufficiently small.
We get an estimated distance elasticity of α̃1 = 1.02, which implies that a one-percentage

increase in inter-state distance raises the mobility cost by 1.02%. The contiguity dummy has
an estimated coefficient of α̃2 = −1.09, which implies that sharing a common border reduces
cross-state mobility costs by 66.4% on average. Appendix Figure B.1 plots the distribution of the
estimated bilateral mobility costs, which has a roughly bell-shaped distribution. Appendix Figure
B.2 validates the estimated value of each state, Vi, by plotting it against the state average real
income (in logs). The two are positively correlated, with a correlation of 0.55.

Mortality and Recovery Rates of COVID-19

We calculate state-specific COVID-19 mortality rates {γ̃D
i } by taking the ratio of total deaths over

total infected cases by December 2020. It averages at 1.64% nationally and ranges from 0.45% in
Alaska to 3.65% in New Jersey. Recovery rates {γ̃R

i } are estimated similarly. We take the ratio of
total recovered COVID-19 cases over the total number of infected cases during the sample period
for each state. The average estimated recovery rate is 69.7% for 30 states with available recovery
data. We set the recovery rates for those states with missing recovery data at this average.26

25This is probably due to temporal shocks to the economy such that the observed mobility pattern deviates from
the steady-state equilibrium. If we adopted these estimates, the implied population distribution could be degenerated
such that certain states would have a population close to zero.

26These numbers are close to Atkeson (2020). He noticed that it takes an average of 18 days for the infected
to recover or die. It implies a removal rate γR

i + γD
i = 14

18 ≈ 77.8%. In our case, the average removal rate is
1.64% + 69.7% = 71.34%.
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Transmission Rates, Mobility Costs and Containment Policies of COVID-19

We categorize the containment policies of COVID-19 into two types: local containment aimed
at reducing within-region infection risk (e.g., public place closures), and cross-region mobility
policies that restrict inflows from other states.

We first identify the effect of local containment policies on transmission rates, i.e., χi,t, the
probability of infection upon contact between infected and susceptible individuals. In our model,
χi,t appears in equation (11), the matching function between susceptible and infected individuals.
We parameterize it as

lnχi,t = θ · Policylocali,t + ρi + ρt, (28)

which varies with the local containment policy index Policylocali,t , state fixed effects ρi, and time
fixed effects ρt. Substituting equation (11) into (12) using (28), we can obtain the following equa-
tion for estimation:

lnαi,t(
Īi,t
L̄i,t

)−1 = θ · Policylocali,t + ρi + ρt + εi,t, (29)

where αi,t is the infection rate, and Īi,t
L̄i,t

is density of infected individuals. Conditional on Īi,t
L̄i,t

,
equation (29) relates αi,t to local containment policies, state fixed factors such as infrastructure,
and time fixed effects capturing things like seasonality and economic cycles (Adda, 2016). We
estimate it using state-level epidemiological and policy data and obtain an estimate of θ̃ = −0.29%.
Therefore, increasing the local containment policy by one point would reduce the transmission rate
by about 0.30%. Using the estimated θ̃, we infer the transmission rate {χ̃i,t} using equation (28).

In the same spirit, we parameterize mobility costs during the pandemic as follows:

lnµij,t = β0 + β1 ln distij + β2contij + δj + η · Policymob
j,t . (30)

In addition to the gravity variables in equation (22), we include a time-variant policy variable
Policymob

j,t , which captures the effect of mobility restrictions on mobility costs during the pandemic.
From equation (9), we find that mobility rates during the pandemic satisfy:

ln
mg

ij,t

mg
ii,t

+ ln
mg

ji,t

mg
jj,t

= − lnµij,t − lnµji,t, (31)

for type g ∈ {S, I, R} agent. Assuming that the majority of the population was susceptible during
our sample period,27 we aggregate mobility across all types of agents and net out the pre-pandemic
mobility in equation (21). As detailed in appendix B.7, we find that aggregate mobility approxi-

27Given that we examine the early phase of the COVID-19 pandemic, with less than 6% of the US population
infected at the end of our sample (December 2020), the approximation is quite accurate.
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mately satisfies the following equation

ln
mij,t

mii,t

− ln
mij

mii

+ ln
mji,t

mjj,t

− ln
mji

mjj

≈ −η · (Policymob
i,t + Policymob

j,t ). (32)

Intuitively, differences in the mobility rates between any two states relative to the probability
of staying in the respective local state before and during the pandemic are driven by policies re-
stricting cross-state mobility. We estimate the above equation by combining mobility data with
policy data on mobility control. We obtain an estimate of η̃ = 1.56%. It implies that leveling
up the mobility control policy by one point increases mobility costs by around 1.60%. Using the
estimated η̃, we can then infer mobility costs {µ̃ij,t} using the equation (30).

The Value of the Deceased

Using linear approximation, we show in appendix B.8 that the difference in the mobility rates of
susceptible and recovered individuals from state i to j relative to their respective probability of
staying in i is related to the value of the deceased:

ln
mS

ij,t

mS
ii,t

− ln
mR

ij,t

mR
ii,t

≈ aij,t + lnV D · bij,t, (33)

where aij,t and bij,t are functions of model parameters β, γR, γD, and model outcomes mR
ij,t, V

R
j,t

and αj,t. The intuition is as follows. Since susceptible individuals can get infected and die from
infection while recovered individuals have immunity, they respond differently to disease conditions
at the destination when they move. In particular, the larger the value of the deceased (a higher
V D), the smaller the difference in their mobility rates. In the extreme scenarios that death brings
no well-being loss (i.e., V D = V R

j,t+1) or the death rate is zero (i.e., γD = 0), our model implies

ln
mS

ij,t

mS
ii,t

− ln
mR

ij,t

mR
ii,t

= 0. Therefore, without the death threat, there is no difference in the mobility
pattern of the susceptible and recovered individuals.

To estimate equation (33), we first substitute the estimated instantaneous utilities {ũi} and
mobility costs {µ̃ij,t} into equations (8) and (9) to infer the value function and mobility rates of
recovered individuals, which are denoted as Ṽ R

j,t and m̃R
ij,t, respectively. Together with the observed

infection rate in each region (i.e., αj,t) and other model parameters and outcomes necessary to
compute aij,t and bij,t, we obtain their estimates, which are denoted as ãij,t and b̃ij,t, respectively.
Finally, we use the observed cross-state mobility rate (i.e., mij,t) as a proxy for mS

ij,t, the mobility
rate of susceptible individuals,28 and obtain the following equation for estimation:

28This is consistent with the discussion in the previous footnote that the majority of the US population were sus-
ceptible during our sample period.
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ln
mij,t

mii,t

− ln
m̃R

ij,t

m̃R
ii,t

− ãij,t = ω · b̃ij,t + ξij,t, (34)

while ξij,t is the error term, and ω = lnV D according to equation (33). Appendix Figure B.3
plots the left-hand side of equation (34) against b̃ij,t, which shows a very tight linear relationship
between the two. Therefore, our linear approximation is quite accurate.

An OLS estimation of equation (34) yields an estimate of ω̃ = −7.32. It implies that Ṽ D =

exp(−7.32) ≈ 0.066%. Therefore, the value of the deceased is about 0.7% of the average welfare
before the pandemic.29

5.2 Counterfactual Analysis

In this subsection, we use the estimated quantitative model to evaluate the effect of COVID-19
containment policies on social welfare and health outcomes. We will focus on two types of poli-
cies: policies that restrict cross-state mobility, and intra-state containment policies that restrict
local contacts between people.

Figure 6: Model Fit: Cumulative COVID-19 Infection Rate

(a) Cumulative Infection Rate of the US (b) Cumulative Infection Rate by State
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Notes: Figure (a) plots the cumulative share of the US population infected by COVID-19 in the data
and as predicted by the model. Figure (b) plots the cumulative share of the US population infected by
COVID-19 for each state (in logarithm), as predicted by the model against the data.

29Note that when we estimate the instantaneous utility of each state by fixed effects using estimating equation (23),
we adopt the following normalization that

∑N
i=1 Li ln(Vi) = 0.
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Validation

We first validate the estimated baseline quantitative economy by comparing the estimated numbers
of infected cases with their actual numbers. We simulate the model from the first bi-week of April
2020 until it is sufficiently close to the steady state.30 Figure 6 (a) plots the cumulative share of
the US population infected by the coronavirus from April to December 2020 as generated by the
model and observed in the data. Our model performs reasonably well in capturing the disease
dynamics as the model-generated series tracks the data series closely. Our model also performs
reasonably well in fitting the cumulative infection rates across US states. As shown in Figure 6
(b), states with higher cumulative infection rates are predicted to accumulate relatively more cases
by the model.31

Counterfactuals

Baseline Economy Before examining the policy counterfactuals, we first look into the estimated
baseline economy. The simulation results are presented in column (1) of Table 3. Our model
predicts that around 82.1 million US residents will get infected eventually, leading to a cumulative
death of 4.50 million.32 To capture the disease dynamic in the US, the solid line in Figure 7 (b)
plots the predicted epidemic curve for the first 100 bi-weeks, as represented by the number of
newly infected cases relative to the US population. Similar to the three-region economy simulated
in Figure 5 (b), the quantitative model predicts multiple waves of infections in the US, a feature
that we also observe for COVID-19 in Figure 2 (a).33

Exogenous Mobility The first counterfactual scenario considers a model that removes endoge-
nous human mobility by fixing the mobility rates at their pre-pandemic levels. Hence, agents do
not respond to changes in infection rates or differential death or recovery rates across states and
over time. Column (2) of Table 3 presents the simulated results of this scenario. Compared to the

30We simulate the model 300 periods forward, which corresponds to 600 weeks or 11.5 years in reality.
31At the end of our sample, the model predicted cumulative national infection rate is about 5.0%, which is about

1.0% less than in the data. This is likely to be a result of the emergence of the more infectious variants of the
coronavirus in late 2020, such as the Alpha variant.

32As of December 2023, the number of COVID-19 cases in the US was about 103 million according to Our World
in Data and the number of deaths is about 1.16 million according to the US CDC COVID Data Tracker. Hence, we
underestimate the number of cases but overestimate the number of deaths. There are a few reasons: (1) A few more
infectious but less deadly variants of the coronavirus emerged since the end of our data sample period, including the
Alpha, Delta, and Omicron variants, which pushed up infections (Carvalho et al., 2021); (2) Vaccination programs
were introduced in late December 2020, which have reduced the number of infections and deaths (Chen et al., 2022);
(3) Immunity weakens over time in reality and people can be reinfected (Chemaitelly et al., 2023). Our model assumes
permanent immunity, which tends to reduce the number of infections and deaths.

33The model generates roughly four waves with the final wave peaking around the 50th periods, which is about two
years since the start of the pandemic. This is less than the actual number of waves in reality. Again, this could be due
to the rise of new variants and weakening immunity over time.
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Figure 7: Epidemic Curves: Baseline and Counterfactuals

Notes: This figure displays the baseline and counterfactual epidemic curves of COVID-19, as repre-
sented by the number of newly infected cases divided by the US population in each bi-week. The first
bi-week starts on 07 April 2020.

baseline in column (1), infected cases go up by another 31.3 million to 113.4 million, and deaths
increase by another 1.28 million to 5.78 million. In other words, endogenous mobility reduces
infections by 27.6% and deaths by 22.1%. In addition to more infections and deaths, Figure 7 (b)
indicates that removing endogenous mobility prolongs the pandemic. Intuitively, if people could
choose where to move, they would avoid moving to states with high infection and tend to move
to states with low infection rates. This echoes the prior literature’s finding on behavioral response
as a source of social distancing (Farboodi et al., 2021; Bisin and Moro 2022; Antràs et al., 2023).
However, this is not the end of the story: people also prefer moving to states with high recovery
and low death rates than to states with low recovery and high death rates. Such ”self-healing”
mobility also helps reduce aggregate infections and deaths. Finally, due to the higher infection and
death toll, the social welfare is about 18.4% below the baseline.34

No Cross-region Mobility Control In the second counterfactual scenario, we remove cross-
region mobility control policies, i.e., setting η = 0 in equation (30), and keep other parameters
the same as the baseline model. Given the estimated η̃ = 1.56%, mobility costs are lower without
mobility control policies. According to column (3) of Table 3, it leads to more infections, which
increase by about 8.9 million, but lower deaths, which drop by 2.48 million as compared to the
baseline economy in column (1). Intuitively, mobility control policies reduced contact between

34The social welfare is measured by the sum of value functions across all types of agents in all states at the steady
state, weighted by the population.
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the infected and susceptible individuals across states, which tends to reduce infection. However,
they also create friction for infected individuals moving from states with low recovery rates to
states with high recovery rates, and from states with high death rates to states with low death rates,
denting the “self-healing” effect. Therefore, removing these mobility frictions tends to reduce
deaths. Combined with the lower mobility costs, the US social welfare would go up by as much as
69.21% as compared to the baseline economy. Hence, the US would have been better off without
the cross-state mobility control policies during the COVID-19 pandemic.

No Local Containment Policies In the final counterfactual scenario, we remove local contain-
ment policies, i.e., setting θ = 0 in equation (28), and keep other parameters the same as the
baseline model. Given the estimated θ̃ = −0.29%, transmission rates are higher without local con-
tainment policies, which leads to many more infections and deaths. According to column (4) of
Table 3, infection amounts to 144.9 million, which is 62.8 million more than the baseline. Deaths
go up to 5.81 million, which is 1.33 million more than the baseline. As evident from Figure 7 (b),
infections rise sharply without the local containment policies, reaching a peak several folds higher
than the peak in the baseline and the second counterfactual scenarios. Hence, local containment
policies appear more effective than mobility control policies in “flattening the epidemic curve.”
The pandemic process is shorter without local containment policies, as the sharp outbreak quickly
exhausts the susceptible individuals in the economy. However, due to the higher death toll, the
welfare loss is 3.00% larger than the baseline result.

To sum up, endogenous mobility appears to generate a “self-containment” effect such that
people voluntarily avoid moving to high-risk regions and a “self-healing” effect such that people
prefer moving to regions with high recovery and low death rates. Mobility control policies, aiming
to reduce infection by reshaping mobility incentives, reduce infections but create hurdles for “self-
healing” mobility, which backfires on health outcomes and social welfare. Our estimation implies
that removing cross-state mobility control policies would have led to slightly more infections but a
lower number of deaths and higher social welfare. In contrast, without local containment policies,
there would have been more infections and deaths, leading to lower social welfare.

Robustness Checks

To check the robustness of the result discussed above, we conduct a few simulations using alter-
native values for model parameters. The results are presented in appendix Table B.4. In row (a),
we reduce the discount factor β from 0.9985 to 0.96. Consistent with the findings from Table 3,
we find that without endogenous mobility, the number of cases and deaths go up, while removing
cross-state mobility control policies raises infections but saves lives, and removing local contain-
ment policies raises both infections and deaths. In row (b), we replace the value of the deceased
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Table 3: Counterfactual Simulations on the COVID-19 Pandemic in the United States

(1) (2) (3) (4)

Scenarios
Baseline

Exogenous No cross-state No local
mobility mobility control containment

Total infection (millions) 82.1 113.4 91.0 144.9
Total deaths (millions) 4.50 5.78 2.02 5.83
Welfare relative to Baseline -18.37% 69.21% -3.00%

Notes: This table shows the aggregate cumulative infections and deaths and social welfare loss in the United
States until the COVID-19 pandemic vanishes in the long run, as predicted by our model. Column (1) presents
simulation results using the baseline estimated parameters. Column (2) removes endogenous mobility by fixing
the mobility rates at their pre-pandemic level, which was observed in January 2020. Column (3) removes cross-
state mobility control policies from the baseline economy. Column (4) removes local containment policies from
the baseline economy.

(in logarithm) from −7.32 to −10. While the pattern is consistent with Table 3, the predicted
numbers of deaths get smaller with endogenous mobility as death has become more costly. Row
(c) replaces the estimated state-specific death rates with a homogeneous value of 0.0164, and row
(d) replaces the estimated state-specific recovery rates with a homogeneous value of 0.697. The
welfare patterns remain the same as Table 3, but death goes up from 1.90 million to 2.16 million
rather than falls when we remove cross-state mobility control in row (d). Hence, it is important to
have spatial heterogeneity in recovery rates across states to generate the “self-healing” effect.

6 Discussion

Optimal Mobility Control Policies

So far, we have been focusing on evaluating the observed policies conducted by US state govern-
ments. A natural question is whether these policies have been optimal or not from the perspective
of a benevolent federal government. Although the issue of optimal policies is not the focus of
our analyses, we attempt to provide further insights about cross-state mobility policies using our
model.35 To simplify the analysis, we assume that the federal government maximizes social wel-
fare at the steady state by varying mobility costs simultaneously across all regions, measured by µ,
with mobility costs increasing with µ.

Appendix Figure B.4 shows the optimal mobility policies we have found for the three-region
economy simulated in Section 4. Over a wide range of parameters, we find that there is no middle
ground for optimal mobility control policy. The choice of policymakers can be characterized by
a “phase diagram,” such that the mobility friction µ is set as low as possible (the “Loose contain-

35See Fajgelbaum et al. (2021) study the optimal lockdown in commuting networks within cities, and Farboodi et
al. (2021) for optimal social distancing policy over time.
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ment” phase) in one parameter space, or as high as possible (the “Strict Containment” phase) in
the other. Near the boundary of parameter combinations that policymakers are indifferent between
the two phases, a small change in the parameters can trigger a U-turn in policies such that the
policymaker switches from strict containment to loose containment on mobility.

We examine how the optimal mobility control policy varies with model parameters. We focus
on the mortality rate (γD) and the transmission rate (χ) of infectious diseases, and the value of
the decreased (V D). In particular, as γD increases such that infectious diseases become more
deadly, or V D decreases such that the value of life rises, policymakers are more likely to adopt
strict containment policies. Finally, as χ increases such that infectious diseases become more
transmittable and difficult to contain, policymakers tend to prefer loose containment policies. In
this case, we have to coexist with the infectious disease.

Model Extensions and Limitations

Our model is quite versatile. In appendix B.9, we discuss an extension incorporating vaccinations.
To focus on mobility, we have removed inter-regional trade, which can be added following the
standard Eaton and Kortum (2002) setup.36 However, we do not have high-frequency inter-state
trade data to estimate such a model. And we do not expect including inter-regional trade will
change the model prediction on R0. Because R0 is determined by infected individuals’ law of
motion equation (16), which does not interact directly with inter-regional trade.

To simplify the analysis, we have assumed that the instantaneous utility of each state does not
vary over time or change with disease conditions and containment policies. This assumption can
be relaxed, for example, by assuming that the instantaneous utility depends on local containment
policies. If local containment policies hurt the instantaneous utility, we could have overestimated
the welfare loss of removing such policies. Similarly, we have assumed that infection does not
reduce the instantaneous utility. Without taking such utility loss into account, we could have
overestimated the welfare gains of removing cross-state mobility control and underestimated the
welfare loss of removing local containment policies.

7 Conclusion

Rapid globalization and urbanization have generated enormous gains from human mobility, but
may also have led to more frequent outbreaks of infectious diseases. We develop a theoretical
framework to jointly study infectious diseases and human mobility. The model allows us to analyze
how human mobility responds to infectious diseases, which in turn reshape human mobility. We

36See Redding and Rossi-Hansberg (2017) for a model with inter-regional trade and mobility.
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characterize the theoretical properties of R0. Unlike Antàs et al. (2023), the epidemiological
externality is positive for regions with high local R0s in our model. Endogenous cross-region
mobility allows people to move to regions with low infection and death rates and high recovery
rates, which serves as a risk and resource sharing mechanism between regions. The resulting global
R0 is between the minimum and maximum values of local R0s. Due to the externality brought by
cross-region mobility, improved disease control in any region reduces the global R0.

We enrich the existing toolboxes of quantitative spatial models by developing the NHA method,
which solves dynamic mobility models in which agent types change endogenously over time. We
use it to study disease, demographic, and mobility dynamics. We find that the pandemic can have
multi-waves and mobility flows can overshoot or undershoot their steady-state levels.

Applying the model to the US, we evaluate the health and welfare effect of cross-state mobility
control and local containment policies via counterfactual simulations. We find that if restrictions
on cross-state mobility were removed, the US would have fewer COVID-19 deaths and higher
welfare, despite having slightly more infections. Mobility control policy might have reduced flows
from regions with high infection rates, but it reduced mobility to states with low death rates and
high recovery rates, impeding “self-healing” mobility. In addition, our simulation results indicate
that there may be no middle ground for optimal mobility control policies. Hence, policymakers
should be prudent in implementing mobility control policies during pandemics.
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Appendix A: Proofs

A.1.1 Proof of Proposition 1

We start from the value function and mobility matrix of the recovered individuals. Taking expec-
tation on both sides of equation (7) and denote Ṽ R

i,t ≡ Et−1U
R
i,t(εi,t), we have

Ṽ R
i,t = ui + Eεi,tmax

j
{βṼ R

j,t+1 − µ̃ij,t + εij,t}. (E1)

Let’s denote V ≡ max
j

{βṼ R
j,t+1−µ̃ij,t+εij,t}, we can calculate its expectation under our assumption

that εij,t follows the Gumbel distribution:

Eεi,tV =

∫
V dPr{∀j, εij,t ≤ V + µ̃ij,t − βṼ R

j,t+1}

=

∫
V d
∏
j

exp
{
− exp

{
−[V + µ̃ij,t − βṼ R

j,t+1]/κ− γEuler
}}

=

∫
V d exp

{
−
∑
j

(V R
j,t+1)

βµ−1
ij,t exp

{
−V/κ− γEuler

}}
.

Let Z ≡ κ ln
∑

j(V
R
j,t+1)

βµ−1
ij,t, then the integral above can be transformed as:

Eεi,tV =

∫
V d exp

{
− exp

{
−(V − Z)/κ− γEuler

}}
=

∫
(V ′ + Z)d exp

{
− exp

{
−V ′/κ− γEuler

}}
= Z,

where the last equality is due to our normalization of the mean of the Gumbel distribution as 0.
Substituting the result above to equation (E1), we get

Ṽ R
i,t = ui + Eεi,tV ⇒ V R

i,t = exp
(ui

κ

)∑N

j=1

(
V R
j,t+1

)β
(µij,t)

−1 .
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The value functions of type S and type I can be derived in similar ways.

A.1.2 Proof of Proposition 2

To simply notations, we denote Zij = βṼ R
j,t+1 − µ̃ij,t, the mobility rate from i to j for type R

satisfies:

mR
ij,t = Prob{∀k ̸= j, βṼ R

k,t+1 − µ̃ik,t + εik,t ≤ βṼ R
j,t+1 − µ̃ij,t + εij,t}

= Prob{∀k ̸= j, εik,t ≤ εij,t + Zij − Zik}

=

∫ ∏
k ̸=j

exp
{
− exp

{
−(εij,t + Zij − Zik)/κ− γEuler

}}
d exp

{
− exp

{
−εij,t/κ− γEuler

}}
.

Denote Y = exp
{
− exp

{
−εij,t/κ− γEuler

}}
, we have:

mR
ij,t =

∫
Y

∑
k ̸=j exp{(Zik−Zij)/κ}dY =

1∑
k ̸=j exp{(Zik − Zij)/κ}+ 1

=
exp{Zij/κ}∑
k exp{Zik/κ}

=

(
V R
j,t+1

)β
(µij,t)

−1∑N
k=1

(
V R
k,t+1

)β
(µik,t)

−1
.

The mobility rates for type S and I can be derived in similar ways.

A.1.3 Proof of Proposition 3

Denote x̂ = x/xss, while xss is the steady-state value of x, we have V̂ R
i,t and V̂ I

i,t converging to 1 at
the steady state. It implies that ∀δ > 0 small enough, ∃ T such that ∀t > T , |V̂ R

i,t − 1| < δ. Using

the Taylor expansion, we know that |
(
V̂ R
i,T+1

)β
− 1| < βδ + o(δ).

Suppose for any period s, ∃ ϵ such that |V̂ R
i,s− 1| = ϵ > 0, from equations (8) and (9), we know

V̂ R
i,T − 1 =

N∑
j=1

mR
ij,ss

[(
V̂ R
j,T+1

)β
− 1

]

⇔ |V̂ R
i,T − 1| <

N∑
j=1

mR
ij,ss(βδ + o(δ)) = βδ + o(δ)

⇔ |V̂ R
i,s − 1| < βT+1−sδ + o(δ)

Then for the given δ, since β < 1 we can always find some T large enough such that

|V̂ R
i,s − 1| < βT+1−sδ + o(δ) < ϵ, (E2)
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contradiction, we have V̂ R
i,t = 1, ∀t. Similarly, we can show that V̂ I

i,t = 1. When the value functions
of type R and I , and mobility costs µt are time-invariant, it is easy to see that mR

ij,t = mR
ij and

mI
ij,t = mI

ij from equation (9).

A.1.4 Proof of Lemma 1

Proposition 3 tells that the lifetime utility types R and I are time-invariant. And if mobility cost µt

is also time-invariant, equation (8) becomes

V S
i,t = eui/κ

N∑
j=1

(V S
j,t+1)

β(1−αj,t+1)(V I
j )

βαj,t+1µ−1
ij

V I
i = eui/κ

N∑
j=1

(V I
j )

β(1−γR
j −γD

j )(V R
j )βγ

R
j (V D

j )βγ
D
j µ−1

ij

V R
i = eui/κ

N∑
j=1

(V R
j )βµ−1

ij

Divide the equation of type I by the one of type R, and use equation (9), we get:

V I
i

V R
i

=
N∑
j=1

mR
ij

(
V I
j

V R
j

)β(1−γR
j −γD

j )(
V D
j

V R
j

)βγD
j

<
N∑
j=1

mR
ij

(
V I
j

V R
j

)β(1−γR
j −γD

j )

,

where we use the assumption V D
i < V R

i , ∀i. Denote λ ≡ maxi{( V I
i

V R
i
)β(1−γR

i −γD
i )} and k ≡

argmaxi{( V I
i

V R
i
)β(1−γR

i −γD
i )} and note that β(1− γD

k − γR
k ) < 1, the inequality above implies that

λ
1

β(1−γR
k

−γD
k

) < λ ⇒ λ < 1 ⇒ V I
i < V R

i , ∀i.

Similarly, we divide the equation of type S group by the one of type R and get:

V S
i,t

V R
i

=
N∑
j=1

mR
ij

(
V S
j,t+1

V R
j

)β(1−αj,t+1)(
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N∑
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mR
ij

(
V S
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V R
j
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Say, if there exists some V S
i,t/V

R
i > 1, from the inequality above, we know that there must exist

some V S
j,t+1/V

R
j > 1. Suppose ξt ≡ maxi V

S
i,t/V

R
i > 1, then the equation above implies that

ξt ≤
N∑
j=1

mR
ijξ

β(1−αj,t+1)

t+1 ≤
N∑
j=1

mR
ijξ

β

t+1 = ξ
β

t+1
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Therefore, ξt+1 ≥ ξ
1/β

t > ξt and {ξt+1}∞t=0 is a growing series greater than 1. However, at the
steady state, as the infected individuals are all removed from the population and infection rates fall
to zero, we have V S

i,∞ = V R
i,∞ according to equation (8). We should have ξ∞ = 1. Contradiction,

we have V S
i,t ≤ V R

i,t , ∀i and t. Finally, near DFE, the measure of type I is close to 0 and the
whole population is susceptible, we have V S

i,t = V R
i according to equation (8). Since V I

i < V R
i ,

we immediately have V I
i < V S

i,t near the DFE.

A.1.5 Proof of Proposition 4

Taking logs on both sides of the expression for mS
ij,t in equation (9), we have

ln(mS
ij,t) = β(1− αj,t+1) ln(V

S
j,t+1) + βαj,t+1 ln(V

I
j,t+1)− ln(µij,t)− ln(OV S

i,t), (E3)

while OV S
i,t ≡

∑N
k=1

(
V S
k,t+1

)β(1−αk,t+1)
(
V I
k,t+1

)βαk,t+1 (µik,t)
−1 is the option value of region i for

type S. Taking partial derivative of equation (E3) with respect to αj,t+1, we have

∂ ln(mS
ij,t)

∂αj,t+1

= β ln(
V I
j,t+1

V S
j,t+1

)−
∂ ln(OV S

i,t)

∂αj,t+1

. (E4)

Denote vk,t =
(
V S
k,t+1

)β(1−αk,t+1)
(
V I
k,t+1

)βαk,t+1 (µik,t)
−1, then OV S

i,t =
∑N

k=1 vk,t and

∂ ln(OV S
i,t)

∂αj,t+1

=
∂ ln(OV S

i,t)

∂OV S
i,t

∂OV S
i,t

∂vj,t

∂vj,t
∂ln(vj,t)

∂ ln(vj,t)

∂αj,t+1

=
vj,t
OV S

i,t

β ln(
V I
j,t+1

V S
j,t+1

)

= βmS
ij,t ln(

V I
j,t+1

V S
j,t+1

).

The last equality uses the expression for mS
ij,t in equation (9). Therefore, we have

∂ ln(mS
ij,t)

∂αj,t+1

= β(1−mS
ij,t) ln(

V I
j,t+1

V S
j,t+1

), (E5)

Since V I
j < V S

j,t according to Lemma 1 and 0 < mS
ij,t < 1 we have

∂ ln(mS
ij,t)

∂αj,t+1
< 0.

A.1.6 Proof of Proposition 5

We know that the law of motion for type I is given by It+1 = FIt+V It, and the next-generation
matrix mI is mI = F (I − V )−1. Given that χi ≥ 0 and mI

ij ≥ 0, ∀i and ∀j, F is obviously
non-negative. As V has a spectral radius of matrix less than 1, we have (I − V )−1 =

∑∞
t=1 Vt.

Since V is non-negative, as γi < 1 ∀i, (I − V )−1 must be non-negative as well. Therefore, M is
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non-negative. Then using the Collatz - Wielandt formula, the spectral radius of mI satisfies:

ρ(mI) = max
x≥0

min
i,xi ̸=0

(xM )i
xi

= min
x≥0

max
i,xi ̸=0

(xM)i
xi

. (E6)

Denote e = [1, ..., 1]1×N , a row vector that all elements are one. According to the Perron-Frobenius

theorem, e is the left eigenvector of the mobility matrix mI with an eigenvalue of 1, given that mI

is a Markov matrix. So we have emI = e. We can construct a row vector ε whose ith element is
εi = γi/χi, i.e., ε = [γ1/χ1, ..., γN/χN ]1×N . We next show

εM = εF (I− V )−1 = e.

First, let Diag(x) be a square matrix with elements of vector x on the main diagonal, and χ =

{χ1, ..., χN} and γ = {γ1, ..., γN}. Then εF = εDiag(χ)mI = γmI . Second, e(I − V ) =

e(I − Diag(e − γ)mI) = e − eDiag(e − γ)mI = emI − (emI − eDiag(γ)mI) = γmI .
Therefore, εF = e(I−V ), or equivalently, εF (I−V )−1 = e. Then if we replace x in equation
(E6) by the constructed vector ε, we have

min
i

χi

γi
= min

i

1

εi
≤ ρ(mI) ≤ max

i

1

εi
= max

i

χi

γi
, (E7)

so the global R0 is bounded by the lowest and highest local R0.

A.1.7 Proof of Proposition 6

Following the previous proof, we denote the next-generation matrix as M = F (I − V )−1 =

Diag(χ)mI(I−Diag(e− γ)mI)−1, therefore,

dmI

dχi

=
dDiag(χ)

dχi

mI(I−Diag(e− γ)mI)−1 > 0,

dmI

dγi
= −Diag(χ)mI(I−Diag(e− γ)mI)−1 (I−Diag(e− γ)mI)

dγi
(I−Diag(e− γ)mI)−1

= Diag(χ)mI(I−Diag(e− γ)mI)−1dDiag(e− γ)

dγi
mI(I−Diag(e− γ)mI)−1 < 0,

using the fact that matrices mI and (I − Diag(e − γ)mI)−1 are positive matrices. According
to Theorem 2.1 (c) in Li and Schneider (2002), the spectral radius of an irreducible nonnegative
matrix increases if any entry increases, and decreases if any entry decreases. Hence, the global R0

increases with the transmission rate χi and decreases with the removal rate γi,∀ i.
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A.1.8 Proof of Proposition 7

We divide the value function for type S in equation (8) by its steady state and have

V̂ S
i,t =

V S
i,t

V S
i,ss

=
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V S
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)β
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=
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j,ss

)β
(µij,ss)

−1∑N
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=
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−1 .

Similarly,
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i,t

V I
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κ
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=
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=
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(
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=
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As for the mobility rate, we do the same and get
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Similarly, we can show that
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Appendix B: Supplementary Materials

B.1 Constructing the Mobility Matrix using PlaceIQ Data

We use the first bi-week PlaceIQ bilateral mobility probability matrix from January 2020 to con-
duct estimation, where the row indicates the origin and the column indicates the destination. How-
ever, there are two problems regarding the raw data. First, the sum of mobility probabilities from
all origins towards a specific destination generally exceeds one, which may be the consequence of
multiple counts for a resident crossing borders several times within a period. Second, the mobil-
ity probabilities calculated in raw data are denominated by device counts in destination instead of
origin, where only the latter method accords with our model definition.

We construct the mobility matrix using PlaceIQ data. In the first step, we rearrange the mobility
matrix to guarantee unit column sum by keeping the diagonal entries unchanged while scaling the
off-diagonal entries proportionally. If we neglect the cases where residents cross borders at least
three times in two weeks, multiple counting only occurs when a resident in region i moves out
to region j, and then back to i or to another region k. So the probability that region i resident
stays in region i is not biased, but the frequencies that region i resident moves to other regions is
over-presented. As long as the bilateral over-estimated cases are proportional to the total observed
bilateral mobility raw data, scaling the off-diagonal column elements generates the unit sum matrix
with little bias. In the second step, we transform the mobility probability matrix by multiplying
each column by the destination population and then scaling it by the row rums to keep it consistent
with the model definition.
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B.2 Additional Tables

Table B.1: COVID-19 Containment Policies

ID Description Coding

C1 Closings of schools and universities

0 - no measures
1 - recommend closing or all schools open with alterations
2 - require closing (only some levels or categories, eg just high school)
3 - require closing all levels

C2 Closings of workplaces

0 - no measures
1 - recommend closing or all businesses open with alterations
2 - require closing (or work from home) for some sectors or categories of workers
3 - require closing (or work from home) for all-but-essential workplaces

C3 Cancelling of public events
0 - no measures
1 - recommend canceling
2 - require cancelling

C4
Cut-off size for limits
on gatherings

0 - no restrictions
1 - restrictions on very large gatherings (the limit is above 1000 people)
2 - restrictions on gatherings between 101-1000 people
3 - restrictions on gatherings between 11-100 people
4 - restrictions on gatherings of 10 people or less

C5 Closing of public transport
0 - no measures
1 - recommend closing (or significantly reduce volume/route/means of transport)
2 - require closing (or prohibit most citizens from using it)

C6
Orders to ”shelter-in-place”
and otherwise confine to the home

0 - no measures
1 - recommend not leaving house
2 - require not leaving house with exceptions for ’essential’ trips
3 - require not leaving house with minimal exceptions

C7
Restrictions on internal movement
between cities/regions

0 - no measures
1 - recommend not to travel between regions/cities
2 - internal movement restrictions in place

C8 Restrictions on international travel

0 - no restrictions
1 - screening arrivals
2 - quarantine arrivals from some or all regions
3 - ban arrivals from some regions
4 - ban on all regions or total border closure

Notes. This table lists policies that are classified as containment policies in the Oxford COVID-19 Government
Response Tracker (Hale et al., 2021).
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Table B.2: Summary Statistics

Variables Definition Obs Mean Std.Dev Min Max

Panel A. Variables at the bilateral state pair - biweek level
max mobility the maximum of bilateral mobility rate between states 102,000 0.012 0.036 0 0.766
mean mobility average bilateral mobility rate between states 102,000 0.011 0.034 0 0.742
distance bilateral distance between states (in km) 102,000 1,981.0 1,461.3 37.4 8,176.1
border a dummy variable indicating whether two states share a border 102,000 0.084 0.277 0 1

Panel B. Variables at the state - bi-week level
new infection rate new cases/population at state-bi-week level 2,040 0.003 0.003 0 0.024
mobility restrictions restrictions on internal travel across regions/cities implemented by state government 2,040 1.116 0.537 0 2
stringency index US state-level containment policy index, ranging from 0 to 100 2,040 52.4 18.300 0 93.5
number of new cases number of new cases at state bi-weekly level 2,040 17,930 37,035 0 575,710∑

j ̸=i m
max
ji ln(newcasesj,t) average of new cases (in logs) across other states weighted by max initial mobility 2,040 13.3 5.713 0 26.96∑

j ̸=i m
mean
ji ln(newcasesj,t) average of new cases (in logs) across other states weighted by mean initial mobility 2,040 12.91 5.50 0 26.04∑

j ̸=i m
max
ji ln(cumulativecasesj,t) average of cumulative cases (in logs) across other states weighted by max initial mobility 2,040 17.39 7.49 0.001 33.0∑

j ̸=i m
mean
ji ln(cumulativecasesj,t) average of cumulative cases (in logs) across other states weighted by mean initial mobility 2,040 16.8 7.2 0.001 31.7

max net inflow total net inflow (maximum within a bi-week) over the local population 2,040 0.136 3.43 -10.2 11.80
mean net inflow total net inflow (average within a bi-week) over the local population 2,040 0.121 3.156 -9.67 11.02
cumulative infection rate cumulative number of cases over the local population at the end of the sample period 2,040 10.98 2.58 3.55 14.91

Notes. Panel A shows the summary statistics of variables at the bilateral state pair-biweek level. The sample includes all 2,550 state pairs in the US, from
January 2020 to August 2021, with 40 periods of bi-weeks. Panel B shows the summary statistics of variables at the state-biweek level. The sample includes
all 51 states in the US, from January 2020 to August 2021, with 40 periods of bi-weeks.
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Table B.3: Model Parameters for the Three-Region Economy

Parameters Definition Value
β Discount rate 0.8
κ Dispersion of preference shock 8
γD Mortality rate 0.3
γR Recovery rate 0.4
χi Transmission rate of Region i 1.2
µij mobility costs from Region i to Region j, i ̸= j exp(2)
µii local mobility costs 1
ui instantaneous utility of types S, I and R 0
uD instantaneous utility of type D ln(e−15)

Notes. This table shows the parameters specified for the three-region economy simulated in Section 4.2.
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Table B.4: Robustness Checks on Counterfactual Simulations

Alternative Scenarios Total Infection Total deaths Welfare relative
parameters (millions) (millions) to Baseline

(a) β = 0.96

Baseline 89.6 2.63
Exogenous mobility 113.4 5.78 -20.70%
No mobility control 98.8 2.31 4.67%
No local control 144.5 3.97 -49.16%

(b) lnV D = −10

Baseline 82.4 3.33
Exogenous mobility 113.4 5.78 -18.35%
No mobility control 87.4 1.87 70.41%
No local control 144.6 4.75 -2.95%

(c) γD = 0.0164

Baseline 81.6 4.22
Exogenous mobility 112.9 5.57 -18.44%
No mobility control 83.0 1.88 71.89%
No local control 144.9 5.57 -3.02%

(d) γR = 0.697

Baseline 89.4 1.90
Exogenous mobility 104.2 2.23 -18.17%
No mobility control 102.4 2.16 65.62%
No local control 148.4 3.27 -2.73%

Notes: This table conducts robustness checks using alternative parameters, changing one parameter at a time.
Row (a) replaces the discount factor β from 0.9985 to 0.96. Row (b) replaces the value of the deceased (in
logarithm) from the estimated value of −7.32 to −10. Row (c) replaces the estimated state-specific death rates with
a homogeneous value of 0.0164. Row (d) replaces the estimated state-specific recovery rates with a homogeneous
value of 0.697.
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B.3 Additional Figures

Figure B.1: Histogram for Estimated High-Frequency Mobility Costs
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Notes. This figure plots the distribution of the estimated state-to-state mobility costs before the outbreak
of the COVID-19 pandemic using the PlaceIQ data from January 2020. See Section 5.1 for the details
on the estimation.

Figure B.2: Estimated Expected Utility and Real Income by State
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Notes. This figure plots the estimated value of staying in each state (ln(V )) against each state’s 2019
real income (in logarithm). See Section 5.1 for the details on the estimation.
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Figure B.3: Estimation of the Value of the Deceased (V D)
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Notes. This figure represents the relationship between the estimated mobility differences of the suscep-
tible and recovered individuals and the value of the deceased, according to equation (34). The vertical

axis is the estimated value of the left-hand side of the equation: ln
mS

ij,t

mS
ii,t

− ln
mR

ij,t

mR
ii,t

− aij,t while the

horizontal axis is the estimated value of bij,t. Equation (34) implies that the slope of the fitted line of
the scatter plots is ln(V D), the logarithm of the value of the deceased.

Figure B.4: Optimal Policy for Cross-Region Mobility Control
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Notes. This figure plots the estimated optimal policy for controlling mobility during a pandemic in
the three-region economy specified in Section 4.2. The horizontal axis is the value of the deceased.
The vertical axis is the death rate. The shaded plane is divided into two phases: “Strict Containment”
is when the government prefers adopting mobility control policies as strictly as possible, and “Loose
Containment” is as loosely as possible. The solid line divides the two phases when transmission rate
χ = 1.2 and the dashed line is when χ = 1.3.
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B.4 Relative Time Differences using the Dynamic Hat Algebra

Following Caliendo et al. (2019) to rewrite the value function of type S from equation (8) in terms
of time differences, we find that:
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B.5 The Normalized Hat Algebra Algorithm

First, we note that there will be no type I agent at the steady state. Therefore, the infection rate
α = 0. The steady state of the model is characterized by:
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k (V D)βγ

D
k (µik,ss)

−1
,

mR
ij,ss =

(
V R
j,ss

)β
(µij,ss)

−1∑N
k=1

(
V R
k,ss

)β
(µik,ss)

−1
.
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The size of type S and R in each region satisfies

Si =
N∑
j=1

Sjm
S
ji,ss, Ri =

N∑
j=1

Rjm
R
ji,ss.

Then for given κ, β, {ui, γ
R
i , γ

D
i }Ni=1, {µij}N×N , we can solve for the steady-state value function

and mobility rate of S, I , and R using the equations above.
Denote x̂t = xt/xss where xss is the steady-state value of x, following Proposition 7, the model

can be rewritten as:

V̂ S
i,t =

N∑
j=1

mS
ij

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1

(
V I
j

V S
j

)βαj,t+1

, (E.1)

V̂ I
i,t =

N∑
j=1

mI
ij

(
V̂ I
j,t+1

)β(1−γR
j −γD

j ) (
V̂ R
j,t+1

)βγR
j

, (E.2)

V̂ R
i,t =

N∑
j=1

mR
ij

(
V̂ R
j,t+1

)β
, (E.3)

mS
ij,t =

mS
ij

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1
(

V I
j

V S
j

)βαj,t+1

∑N
k=1m

S
ik

(
V̂ S
k,t+1

)β(1−αk,t+1) (
V̂ I
k,t+1

)βαk,t+1
(

V I
k

V S
k

)βαk,t+1

, (E.4)

mI
ij,t =

mI
ij

(
V̂ I
j,t+1

)β(1−γR
j −γD

j ) (
V̂ R
j,t+1

)βγR
j

∑N
k=1m

I
ik

(
V̂ I
k,t+1

)β(1−γR
k −γD

k ) (
V̂ R
k,t+1

)βγR
k

, (E.5)

mR
ij,t =

mR
ij

(
V̂ R
j,t+1

)β
∑N

k=1m
R
ik

(
V̂ R
k,t+1

)β . (E.6)

The Algorithm

1. Solve the steady state V S
i , V I

i , V R
i , mS

ij , m
I
ij and mR

ij .

2. For an exogenously given initial population distribution {L0}, take a large enough number
of periods, T .

3. Take initial guess
{
V̂

S(0)
t , V̂

I(0)
t , V̂

R(0)
t

}T

t=1
.

4. For each iteration of
{
V̂

S(k)
t , V̂

I(k)
t , V̂

R(k)
t

}T

t=1
:
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(a) Given {St−1, It−1, Rt−1, Dt−1}, solve forward simultaneously for {St, It, Rt, Dt, αt}
from equations (10), (11), (12), (13), (E.4), (E.5), and (E.6).

(b) Use equations (E.1), (E.2), (E.3) to solve backward to get
{
V̂ S(k)′, V̂

I(k)′
t , V̂

R(k)′
t

}T

t=1

5. If
{
V̂

S(k)′
t , V̂

I(k)′
t , V̂

R(k)′
t

}
is close to

{
V̂

S(k)
t , V̂

I(k)
t , V̂

R(k)
t

}
, finish. Otherwise, set next guess{

V̂
S(k+1)
t , V̂

I(k+1)
t , V̂

R(k+1)
t

}
=
{
V̂

S(k)′
t , V̂

I(k)′
t , V̂

R(k)′
t

}
and go back to step 4.

B.6 The Pandemic-free Model

In an economy with N regions, the mobility problem faced by agents when there is no pandemic is
given by the following Bellman Equation:

Ui,t(εi,t) =ui +max
j

{βEt [Uj,t+1(εj,t+1)]− µ̃ij,t + εij,t} .

If we define Vi,t = exp(Et−1(Ui,t)/κ) and µij,t = exp(µ̃ij,t/κ), following the proof of Proposition
1, it is easy to verify that

Vi,t = exp
(ui

κ

)∑N

j=1
(Vj,t+1)

β (µij,t)
−1 ,

and the mobility rate from a region i to region j is given by

mij,t =
(Vj,t+1)

β (µij,t)
−1∑N

k=1 (Vk,t+1)
β (µik,t)

−1
.

B.7 Estimating Mobility Policy Elasticity

Firstly, from equation (21), which captures pre-pandemic mobility rates, we have:

ln
mij

mii

+ ln
mji

mjj

= − lnµij − lnµji. (E.7)

Secondly, taking the difference between the equation (31) and (E.7) and substituting in equations
(22) and (30) to get rid of the gravity variables in mobility costs, we find that

ln
mg

ij,t

mg
ii,t

− ln
mij

mii

+ ln
mg

ji,t

mg
jj,t

− ln
mji

mjj

= −b · (Policymob
i,t + Policymob

j,t ), (E.8)
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Thirdly, the aggregate mobility rate from a region i to j can be approximately decomposed as:

lnmij,t = ln
Lij,t

Li,t

= ln

(
Si,tm

S
ij + Ii,tm

I
ij,t +Ri,tm

R
ij,t

Si,t + Ii,t +Ri,t

)
(E.9)

≈ S̃i,t ln(m
S
ij,t) + Ĩi,t ln(m

I
ij,t) + R̃i,t ln(m

R
ij,t),

where g̃i,t = gi,t/Li,t, g ∈ {S, I, R} and S̃i,t + Ĩi,t + R̃i,t = 1. Similarly, the probability of staying
in region i is given by

lnmii,t = ln
Lii,t

Li,t

= ln

(
Si,tm

S
ii + Ii,tm

I
ii,t +Ri,tm

R
ii,t

Si,t + Ii,t +Ri,t

)
(E.10)

≈ S̃i,t ln(m
S
ii,t) + Ĩi,t ln(m

I
ii,t) + R̃i,t ln(m

R
ii,t).

Therefore, taking the difference of (E.10) and (E.11), we have

ln
mij,t

mii,t

≈ S̃i,t ln
mS

ij,t

mS
ii,t

+ Ĩi,t ln
mI

ij,t

mI
ii,t

+ R̃i,t ln
mR

ij,t

mR
ii,t

. (E.11)

Since we examine the initial phase of the COVID-19 pandemic, most of the population is suscep-
tible to the virus, we assume S̃i,t ≈ 1, Ĩi,t ≈ 0 and R̃i,t ≈ 0, equation (E.11) implies that

ln
mij,t

mii,t

≈ ln
mS

ij,t

mS
ii,t

. (E.12)

Substitute the equation above into equation (E.8) for type S, we find that

ln
mij,t

mii,t

− ln
mij

mii

+ ln
mji,t

mjj,t

− ln
mji

mjj

≈ −b · (Policymob
i,t + Policymob

j,t ). (E.13)

B.8 Derivation of the Estimation Equation of V D

First, from equation (9), the mobility rate of type S relative to R is given by

ln
mS

ij,t

mS
ii,t

− ln
mR

ij,t

mR
ii,t

= β

[
(1− αj,t+1) ln

V S
j,t+1

V R
j,t+1

− (1− αi,t+1) ln
V S
i,t+1

V R
i,t+1

+ αj,t+1 ln
V I
j,t+1

V R
j,t+1

− αi,t+1 ln
V I
i,t+1

V R
i,t+1

]
(E.14)
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Second, from equations (8) and (9), we can linearize the relative value equations as37

ln
V I
i,t

V R
i,t

≈
∑
j

mR
ij,t

[
β(1− γR − γD) ln

V I
j,t+1

V R
j,t+1

+ βγD ln
V D

V R
j,t+1

]
(E.15)

ln
V S
i,t

V R
i,t

≈
∑
j

mR
ij,t

[
β(1− αj,t+1) ln

V S
j,t+1

V R
j,t+1

+ βαj,t+1 ln
V I
j,t+1

V R
j,t+1

]
(E.16)

We further assume that changes in the relative value function between two consecutive periods are
sufficiently small, i.e., ln

V I
i,t

V R
i,t

≈ ln
V I
j,t+1

V R
j,t+1

and ln
V S
i,t

V R
i,t

≈ ln
V S
j,t+1

V R
j,t+1

for all j. Then equations (E.15) and
(E.16) imply that

ln
V I
j,t+1

V R
j,t+1

≈ aRjt + bRjtlnV
D (E.17)

ln
V S
j,t+1

V R
j,t+1

≈ aSjt + bSjtlnV
D. (E.18)

while aRjt and bRjt are functions of β, γR, γD, mR
ij,t, and V R

j,t+1; aSjt and bSjt are functions of β, γR,
γD, mR

ij,t, V
R
j,t+1 and αj,t+1. Substitute equations (E.17) and (E.18) back to equation (E.14), we get:

ln
mS

ij,t

mS
ii,t

− ln
mR

ij,t

mR
ii,t

≈ aij,t + lnV D · bij,t, (E.19)

while aij,t and bij,t are functions of β, γR, γD, mR
ij,t, V

R
j,t+1 and αj,t+1.

B.9 Extension: a Model with Vaccinations

We now generalize the baseline model to incorporate vaccinations. We assume that people who
get vaccinated will be permanently immune, thus joining group R. We further assume that region
i randomly vaccinate a fraction δi of the susceptible population in each period, so a susceptible
person from region i moving to region j will have a chance of δj directly transferring to type R.
Now the Bellman equation for group S people becomes:

US
i,t(εi,t) =ui +max

j

{
βEt

[
(1− δj)(1− αj,t+1)U

S
j,t+1(εj,t+1) + (1− δj)αj,t+1U

I
j,t+1(εj,t+1)

+δjU
R
j,t+1(εj,t+1)

]
− µ̃ij,t + εij,t

}
.

37The approximations are quite accurate. We compare the estimated value of V R
it from linear approximation and

non-linear exact solution using the parameters we estimate. Their difference is less than 1%.
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As for the demographic dynamic, a fraction δi of type S will join type R:

Si,t = (1− δi)
N∑
j=1

Sj,t−1m
S
ji,t−1, Ri,t =

N∑
j=1

Rj,t−1m
R
ji,t−1 + δi

N∑
j=1

Sj,t−1m
S
ji,t−1,

therefore, vaccination can slow down the spread of pandemics directly. If δi = 0, the model
collapses to our benchmark. We can show that the value function of type S satisfies

V S
i,t = exp

(ui

κ

) N∑
j=1

(
V S
j,t+1

)β(1−δj)(1−αj,t+1) (
V I
j,t+1

)β(1−δj)αj,t+1
(
V R
j,t+1

)βδj
(µij,t)

−1 ,

while the value functions of types I and R remain the same as Proposition 1. The mobility rate of
type S is given by

mS
ij,t =

(
V S
j,t+1

)β(1−δj)(1−αj,t+1) (V I
j,t+1

)β(1−δj)αj,t+1
(
V R
j,t+1

)βδj (µij,t)
−1∑N

k=1

(
V S
k,t+1

)β(1−δk)(1−αk,t+1)
(
V I
k,t+1

)β(1−δk)αk,t+1
(
V R
k,t+1

)βδk (µik,t)
−1

,

while the mobility rates of types I and R remain the same as Proposition 2.
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