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Abstract 
This study explores the impacts of road improvements in a country characterized by “urbanization 
without growth.” Our analysis reveals that, although road upgrades increase population growth, they do 
not significantly advance economic development and tend to worsen living conditions. Utilizing a 
combination of empirical evidence and a spatial equilibrium model, we identify that constrained 
industrial capacities and congestion from high population density limit the efficacy of road development 
policies in enhancing GDP and overall welfare. Our results also indicate that strategically targeting road 
placement in regions with higher economic productivity could yield better economic outcomes. 
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1 Introduction

Policymakers often view investment in transportation infrastructure as a critical catalyst for economic
growth. Research across various contexts demonstrates that road construction enhances welfare through
mechanisms such as the multiplier effect, reducing trade and migration frictions, and channeling re-
sources to more productive urban areas (Duranton and Turner, 2012; Allen and Arkolakis, 2014; Redding
and Turner, 2015; Donaldson, 2018; Fajgelbaum and Schaal, 2020). However, in many least-developed
regions, key drivers of such benefits may be absent. In many African countries, road constructions are
frequently outsourced to foreign firms (United Nations Economic Commission for Africa, 2016) and of-
ten prioritizes political motives over strategic economic development, limiting local spending and weak-
ening the multiplier effect (Burgess et al., 2015; McCartney, 2023). Moreover, many African urban centers
function primarily as consumption hubs lacking a robust manufacturing base, with a significant portion
of the workforce engaged in non-tradable sectors, which constrains their production capacity and ham-
pers formal employment growth (Glaeser, 2014; Gollin et al., 2016; Venables, 2017). This phenomenon
has been extensively documented in the literature as “urbanization without growth” (Fay and Opal,
2000; Henderson and Kriticos, 2018; Henderson and Turner, 2020). In such contexts, road improvements
may yield less economic growth than in more industrialized countries. Therefore, road improvements
alone may not spur substantial economic growth. Instead, priority should be given to developing trad-
able sectors, human capital, and other factors that can counteract the mechanisms behind “urbanization
without growth.”

This paper uses high-resolution satellite imagery enhanced by deep learning techniques, combined
with a quantitative spatial model, to assess the economic and welfare impacts of a large-scale road infras-
tructure project in Zambia. Over the last decade, Zambia has invested heavily in road construction and
maintenance, committing billions of dollars to major initiatives like the Link Zambia 8000 program. This
ambitious project aimed to upgrade and expand 8,000 kilometers of roads nationwide to improve trade
routes, boost productivity, and attract foreign investment. Between 2011 to 2017, road infrastructure
accounted for 42% of Zambia’s expenditure on non-financial assets. However, this massive investment
does not seem to be achieving significant economic success. In 2022, the IMF criticized Zambia for “years
of economic mismanagement,” highlighting the road-building program as an example of a public invest-
ment drive that failed to deliver substantial growth (IMF, 2022). This calls for a more timely evaluation
of the effects of road projects and a deeper understanding of the role of road infrastructure in economic
development in low-income contexts.

The first challenge in evaluating the economic impacts of road construction in the setting is the lack
of high-resolution, localized data on road quality and economic outcomes. Such data is crucial since
road impacts are often highly localized, redistributing economic activity at a micro level. While areas
with direct road access may gain benefits like better product access, new logistics services (Duranton and
Turner, 2012), and easier school commutes (Adukia et al., 2020), locations just 20 km away may still face
last-mile access issues. Yet, economic outcomes are seldom monitored at such fine spatial resolutions,
and panel data on road quality over long periods is especially scarce.1 To address this challenge, we
employ satellite imagery and recent AI advancements to identify and classify road surfaces (paved or
1Notable exceptions include the work of Gertler et al. (2024) on road maintenance in Indonesia and the more recent study by
Currier et al. (2023), which utilizes Uber data in a developed country context.
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unpaved) and detect buildings at near-building levels across Zambia, dating back to 2009. Specifically,
using 6,000 proprietary high-resolution satellite images from Planet Lab, we trained deep learning mod-
els built on Facebook’s to classify billions of pixels at a 5-meter resolution, producing highly granular
datasets on road conditions and economic development for 2009, 2014, and 2019.

The second challenge is addressing endogeneity concerns due to unobserved location-specific fac-
tors influencing both roads and economic growth, as well as reverse causality, where roads are built in
anticipation of future growth. Moreover, following the literature on road construction evaluation, we
utilize market access—a measure of accessibility between locations weighted by economic mass—as a
summary indicator of road development (e.g., Donaldson, 2018; Faber, 2014; Michaels, 2008). However,
changes in market access are influenced not only by road improvements but also by shifts in economic
activity in neighboring areas, which are themselves outcomes of interest, potentially reversing the causal
direction. To address these issues, we adopt the newly developed identification strategy of Jedwab and
Storeygard (2021), using variations in market access induced by distant road improvements as an instru-
mental variable (IV). 2 Specifically, we construct the IV by calculating the exogenous component in the
changes in market access based on road upgrades at least 200 km away from the target area, and exclud-
ing economic growth in the neighboring locations. This approach alleviates reverse causality concerns
and minimizes the influence of local factors that could introduce endogeneity.3

Leveraging the innovative panel dataset and the instrumental variable strategy based on remote
road variations, we find that a 1% increase in the growth of market access from road improvements leads
to a 3.8% increase in the growth of built-up areas. However, this is accompanied by a negative, though
statistically insignificant, effect on the nighttime light growth. Interpreting built-up areas as a proxy for
population and nighttime light as a proxy for income, we infer that improved connectivity through road
development stimulates local population growth without necessarily raising income growth.4

We further explore the impact of increased market access on living standards and environmental
outcomes. Using Demographic and Health Survey (DHS) data from 2007 and 2018/19, we analyze how
road upgrades affect living conditions. Our findings reveal that higher market access growth leads to in-
creased crowding in housing and worsens household health, suggesting that road development may ex-
acerbate urban living conditions. To assess environmental quality, we use Aerosol Optical Depth (AOD)
as a measure of air pollution (Gendron-Carrier et al., 2018) and find that a 1% increase in market access
growth increases air pollution by 1.1%, consistent with findings from East Africa (Singh et al., 2020). Our

2Recent literature has addressed endogeneity concerns through various identification strategies, including (a) using historical
road construction plans as instruments, under the assumption that these plans are unrelated to current conditions (Baum-
Snow et al., 2020, 2017; Baum-Snow, 2007; Duranton and Turner, 2012); (b) using least-cost road networks derived from phys-
ical geography as an instrument, assuming that physical geography is unrelated to present-day conditions (Faber, 2014); (c)
exploiting regions that are incidental beneficiaries of new infrastructure links (Gibbons et al., 2019; Chandra and Thompson,
2000; Ghani et al., 2015); and (d) calculating market access measures using variations in market access induced by roads built
far away (Jedwab and Storeygard, 2021; Jaworski and Kitchens, 2019), inspired by the approach of using “friends of friends”
to estimate peer effects in social network literature.

3We choose this method due to the unique political context in the country, where road construction has been reported to pri-
oritize political motives over strategic economic development, resulting in projects that are broadly dispersed rather than
concentrated in key corridors (McCartney, 2023). Newly paved or rehabilitated improvements identified in our study are
spread across the country, supporting anecdotal evidence that road investments are influenced by election-driven considera-
tions.

4Although night lights may not serve as a reliable proxy for growth, especially in non-urban areas (Gibson et al., 2021), our
analysis centers on urban areas and formal income. Our primary focus is on assessing whether road infrastructure can support
the expansion of the tradable sector, a critical driver for sustaining long-term economic growth.
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results align with the phenomenon of “urbanization without growth,” where cities expand in population
and physical size but lack corresponding economic development, income growth, or improvements in
living standards, often accompanied by environmental degradation.

Why are roads less effective in countries experiencing “urbanization without growth”? The lit-
erature identifies two main drivers behind the this phenomenon: (1) limited manufacturing develop-
ment—few productive sectors exist to absorb additional labor supply and create job opportunities; and
(2) urban congestion—population growth often reduces living standards by overwhelming inadequate
infrastructure and placing excessive strain on public goods and services. We examined whether these
factors could shed light on the limited impact of Zambia’s road-building initiative. Our findings sug-
gest that improved market access through road development does not significantly stimulate economic
growth, even in regions with comparatively stronger manufacturing bases. This indicates that the roads
may not be effectively supporting the movement of tradable goods, as manufacturing in these areas re-
mains in the early stages of development. Additionally, in more congested provincial capitals, higher
growth of market access significantly reduces the growth of nighttime light intensity, a proxy for eco-
nomic activity. As roads encourage population concentration in these cities, these results suggest that
congestion effects may indeed dampen the economic benefits of road investments.

Our reduced-form results compare changes in outcomes between locations with larger versus smaller
increases in market access, which essentially eliminates any effect that is common to both groups. As
a result, these reduced-form results alone cannot capture the aggregate and distributional effects of the
road upgrades. To quantify its overall welfare and growth effects, better understand the mechanisms,
and explore potential improvements, we apply a quantitative spatial model based on Allen and Arko-
lakis (2018), Fan (2019), and Tombe and Zhu (2019) to depict the economic geography of Zambia. The
model encompasses both agricultural and non-agricultural sectors across multiple locations linked by
costly trade and migration. It incorporates productivity and amenity variations across locations and
sectors, influenced by congestion and agglomeration effects. Using sectoral wage and population data
from the World Bank Living Conditions Monitoring Survey and Census data, along with parameters
calibrated from existing literature, we estimate key model parameters and infer local productivity and
amenity levels. We then employ the calibrated model to conduct policy simulations.

Our findings reveal that road improvement policies in Zambia yield only modest aggregate gains, in-
creasing national GDP by 0.07% and welfare by 0.2%, while notably reducing the share of non-agricultural
GDP and employment. These limited outcomes largely result from inefficient targeting of road in-
vestments: the current approach favors more populous areas over regions with higher productivity or
amenity levels. In a country with a limited industrial base, this strategy is unlikely to drive structural
transformation or meaningful economic growth. Consistent with our reduced-form mechanism analy-
sis, simulations indicate that strong congestion effects and weak agglomeration benefits due to lack of
manufacturing activities are key factors constraining the policy’s effectiveness.

Finally, we explore potential improvements to the current policy by conducting simulations with
our model. The results indicate that targeting road improvements in the most productive locations, as
identified through model inversion, produces significantly better outcomes—yielding more than three
times the GDP growth and over twice the welfare gains compared to the current policy. Better target-
ing also modestly increases the non-agricultural share of both national employment and GDP, signaling
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progress toward structural transformation. Additionally, when simulating the effects of sequentially
reducing travel times across different locations, we find that policies focused on areas with higher pro-
ductivity, larger populations, and greater initial employment in the non-agricultural sector deliver the
most substantial improvements in GDP, welfare, and structural change.

The paper is organized as follows: Section 2 summarizes the related literature. Section 3 provides
an overview of Zambia’s context and transportation network. Section 4 describes the data sources, and
Section 5 outlines the empirical approach. Section 6 presents causal findings based on the innovative
panel data constructed for this study. Section 7 explores the underlying mechanisms using factors behind
the “urbanization without growth” phenomenon. Section 8 introduces a spatial equilibrium model that
clarifies these mechanisms and allows for counterfactual analysis. Finally, Section 10 concludes with
remarks.

2 Related Literature

Our paper contributes to the extensive literature evaluating the effects of road construction on eco-
nomic growth. While roads are generally viewed as critical for economic development, evidence on
their impacts varies. Some studies find that road development brings significant benefits, such as in-
creased industrial output (Gibbons et al., 2019; Ghani et al., 2015), urban population growth (Jedwab
and Storeygard, 2021), reduced transaction costs (Storeygard, 2016), and higher school enrollment rates
(Adukia et al., 2020). However, other research suggests more complex outcomes. For instance, Asher
and Novosad (2020) and Banerjee et al. (2020) report limited effects on economic growth in rural India
and China, respectively, while Rothenberg (2013) finds that road improvements in Indonesia signifi-
cantly increase the spatial dispersion of manufacturing activity, limiting agglomeration benefits. Ad-
ditionally, road-building can have uneven impacts across regions and populations. Baum-Snow et al.
(2020) and Faber (2014) show that highway construction in China led to economic declines in hinter-
land cities, while Fretz et al. (2021) finds that highways in Switzerland exacerbate income segregation.
These diverse findings highlight the complex, context-dependent nature of road infrastructure’s effects
on economic development.

Our paper extends this literature by focusing on the contexts of the least developed countries, which
are characterized by a weak industrial base and severe constraints on public resources. We employ a
combination of reduced-form analysis and a quantitative spatial model to examine the factors driving
the limited effectiveness of road improvement policies in such settings and to explore potential avenues
for improving their design and implementation. The closest study to ours is Gertler et al. (2024), which
examines how road quality influences welfare outcomes in Indonesia, a lower-middle-income country
with more industrial activity than Zambia.

Our paper also contributes to the growing literature that leverages high-resolution satellite imagery
(Henderson et al., 2012; Baragwanath et al., 2019) and deep learning (Khachiyan et al., 2021; Burke et al.,
2020) to analyze transportation infrastructure. Satellite data provide valuable, consistent, and accessible
information across both time and space, even in regions with limited traditional data sources (Donald-
son and Storeygard, 2016; Henderson et al., 2012). These tools have been applied to identifying urban
markets (Baragwanath et al., 2019), tracking air pollution effects (Jayachandran, 2009), monitoring de-
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forestation (Burgess et al., 2012), slum investments (Marx et al., Forthcoming), and climate impacts on
crops (Costinot et al., 2016). Our study uses AI to construct Zambia’s road network and detect road
improvements from 2009 to 2019, introducing scalable methods for transportation data in developing
countries. While most studies emphasize road construction, relatively few focus on the effects of road
maintenance aside from Gertler et al. (2024). By leveraging AI and satellite data, we can consistently
measure road surface conditions across the country over time, tracking changes in road quality due to
both new construction and maintenance activities. Furthermore, we use AI to predict the expansion
of built-up areas—serving as a proxy for population growth—at an unprecedented 5-meter resolution,
providing new insights into economic dynamics at a near-building level.

3 Background

Zambia gained independence from the United Kingdom in 1964 and has maintained political and so-
cioeconomic stability since. The founding president’s slogan, “One Zambia, One Nation,” fostered unity
among the country’s 70+ ethnic groups. As one of the earliest African nations to gain independence,
Zambia also supported its neighbors’ liberation movements, contributing to regional stability. Strategi-
cally located at the crossroads of Southern and Central Africa, Zambia is Africa’s second-largest copper
producer and is rich in resources like gold, cobalt, manganese, and nickel. In response to the global
energy transition, the government aims to increase copper production from 800,000 to 3 million metric
tons annually by 2031 (Vandome, 2023; Chifunda, 2024). Positioned as a key transit hub for trade corri-
dors within Common Market for Eastern and Southern Africa (COMESA) and Southern African Devel-
opment Community (SADC), Zambia relies on its eight neighboring countries for port access, making
robust transportation infrastructure crucial for enhancing its trade competitiveness.

History of Road Building Over three-quarters of traded goods in Zambia are transported by road or
rail. Historically, railways were the main mode for copper transport, but since the 1990s, road freight
has taken precedence, now carrying over 70 percent of Zambia’s goods trade (Raballand and Whitworth,
2012; UNCTAD, 2011).5 Annually, around 4 million metric tons of copper pass through Zambia, primar-
ily (3 million metric tons) from the Democratic Republic of Congo (DRC). The heavy loads from copper
shipments and large mining equipment put substantial strain on roads, compounded by poor-quality
pavement and seasonal flooding, accelerating infrastructure deterioration (Raballand and Whitworth,
2012). According to data from the Road Development Agency, roughly 20 percent of the Core Road Net-
work deteriorated between 2008 and 2015, as evidenced by rising International Roughness Index (IRI)
scores—a standard measure of road surface roughness, where higher values indicate rougher conditions
(see Appendix Figure A.1).6

5Local reports emphasize the urgent need for road improvements to support economic growth and highlight transportation’s
critical role in fostering development (European Commission, 2020).

6The International Roughness Index (IRI) is a standard metric developed by the World Bank to evaluate road surface smooth-
ness or roughness by measuring the vertical movement of a vehicle traveling over a road segment. Expressed in meters per
kilometer (m/km), lower IRI values indicate smoother roads, while higher values denote rougher surfaces. This index is
widely used in road maintenance and infrastructure management to assess road quality and prioritize repairs or improve-
ments.
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In the mid-2000s, a combination of debt relief and rising copper prices positioned Zambia as a fiscally
resourced country with an improving economic outlook.7 Building on this fiscal space, in 2011 the newly
elected Patriotic Front (PF) government, led by President Michael Sata, adopted an expansionary fiscal
policy focused on infrastructure development. In 2012, the Link Zambia 8000 project launched to improve
connectivity by constructing and upgrading 8,200 km of roads at an estimated $5.46 billion (Plan, 2017).
Other major initiatives included the Lusaka Urban Road (L400) project to upgrade 402 km of urban roads
in Lusaka (AidData, 2024) and Pave Zambia 2000, which aimed to rehabilitate 2,000 km of urban roads
using interlocking paving technology (Development Minerals, 2024). However, this surge in spending
was not matched by revenue growth; between 2011 and 2014, average revenues remained at 17% of GDP
while expenditures rose from 20% to 23% of GDP (Mbewe et al., 2024).

In its early years, the Link Zambia 8000 program surfaced an average of 260 km of roads annually,
reaching 666 km by 2015. However, this pace slowed sharply from 2016 as Zambia’s economic conditions
deteriorated due to a severe drought impacting hydropower-dependent electricity generation and falling
copper prices that slashed export earnings (Mbewe et al., 2024). By 2019, only 830 km of roads had been
completed (Road Development Agency, 2019). Despite limited progress, interviews with stakeholders
suggest most allocated funds were spent. Similarly, the Pave Zambia 2000 initiative struggled, surfacing
just 8.5 km of roads by 2017 (Road Development Agency, 2017). These road expenditures significantly
increased Zambia’s debt, which reached 140% of GDP in 2020, leading it to become one of the first
African nations to declare bankruptcy during the COVID-19 pandemic (Statista, 2024; Mbewe et al.,
2024). Since taking office in 2021, President Hakainde Hichilema has focused on debt restructuring and
austerity measures, including scaling back road projects (MHID, 2020; Vandome, 2023).

Misallocation Concerns Critics argue that political motivations, rather than cost-effectiveness or evidence-
based prioritization, drive road development and spending in Zambia. The lack of reliable, geo-referenced
data on road usage, deterioration, and improvements challenges effective planning. Roads, as highly
visible public services, often serve as tools for incumbents seeking re-election. Marx (2018) shows that
incumbents in Sub-Saharan Africa frequently gain electoral rewards for completing visible infrastruc-
ture projects, creating incentives to prioritize these projects near election times. Harding and Stasavage
(2014) finds in Ghana that a one-standard-deviation improvement in road conditions increases the in-
cumbent party’s vote share by one-quarter of a standard deviation. Burgess et al. (2015) find that in
Kenya, road-building investments increase significantly in the constituencies of political leaders. Addi-
tionally, traditional leaders or Chiefs influence road placement in rural areas. While the Road Develop-
ment Agency manages trunk roads, the Ministry of Local Government oversees intraprovincial roads,
with Chiefs playing key roles in rural project decisions. Research suggests that Members of Parliament
(MPs) engage in clientelism, working with Chiefs to secure local development support, as Chiefs hold
sway over land use, voluntary labor, and project monitoring (Baldwin, 2013).

Despite these challenges, Zambia’s road network expanded by over 2,900 km between 2012 and

7Debt relief programs reduced Zambia’s debt from a peak of US$7.1 billion (approximately 130 percent of GDP) in 2004 to
US$500 million (25 percent of GDP) by 2006. From 2006 to 2013, the debt-to-GDP ratio remained low, fluctuating between 19
and 26 percent (IMF, 2024). Simultaneously, rising copper prices fueled a boom in the mining and quarrying sector, with its
GDP contributions increasing from about 10 percent in 2000 to 15 percent in 2010 (Mbewe et al., 2024).
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2019, warranting a closer analysis of its economic impact.8 Urban areas also saw significant expansion,
with over 850 km of new roads added across Lusaka, Copperbelt, and Central Provinces.9

4 Data

4.1 Spatial Units

The basic spatial unit in this study is the hexagon, based on a global spatial indexing system that divides
the Earth’s surface into hexagons at multiple resolutions.10 This indexing system provides a consistent
framework, enabling uniform spatial boundaries globally. For our analysis, each hexagon has a side
length of approximately 10.8 km. Panel (a) in Appendix Figure A.2 shows Zambia’s administrative
boundaries at the provincial and district levels, while Panel (b) overlays the hexagons, demonstrating
their relative sizes compared to these administrative boundaries and highlighting the gain in spatial
granularity. Using hexagons as the spatial unit offers two key advantages. First, survey data, such as
from the Demographic and Health Surveys (DHS), are spatially displaced up to 2 km in urban areas
and 5 km in rural areas for confidentiality. Aggregating data to the hexagon level reduces the impact
of this displacement, stabilizing the spatial referencing of survey clusters. Second, nighttime light data,
often used as a proxy for economic activity, loses predictive accuracy when aggregated into smaller units
(Gibson et al., 2021). Aggregating to the hexagon level enhances its reliability as an economic indicator.

For urban-specific analysis, we define urban boundaries using delineation methods similar to those
in Baragwanath et al. (2019). These boundaries serve as spatial masks for urban-focused outcomes like
built-up areas, air pollution, and green space, which we aggregate within urban boundaries before fur-
ther aggregating to the hexagon level. We use this urban mask to exclude very small rural settlements
because the quality of satellite data for these areas is often poor. This approach ensures more accurate
and reliable analysis by focusing on regions where satellite imagery is sufficiently detailed and clear. 11

4.2 Remote Sensing-based Outcomes

We use satellite data to measure key outcome variables: built-up area, nighttime light, Aerosol Optical
Depth (AOD) for air quality, and the Normalized Difference Vegetation Index (NDVI) for green cover
across three time periods—2009, 2014, and 2019. Built-up area data is further refined using AI tech-
niques. These variables vary in temporal frequency, with some available monthly and others annually.
To maintain consistency in our regression analysis, we aggregate all variables to the hexagon-year level.

AI-predicted Built-up We identify built-up areas at an unprecedented 5-meter resolution for 2009,
2014, and 2019 using Planet RapidEye, a high-resolution satellite imagery product from Planet Labs.
The RapidEye constellation, comprising five satellites, captures imagery focused on agriculture, forestry,

8Based on RDA reports from 2013–2019, about 2,900 km of roads were rehabilitated or upgraded. See Road Development
Agency (2023) for the reports.

9The Lusaka Urban Roads (L400) project added over 662 km, while the Zambia Township Roads project contributed 145 km in
Copperbelt and 43 km in Central Province by 2019 (Road Development Agency, 2019).

10This system, widely used by companies like Uber, supports 16 levels of resolution, from large hexagons covering 1,107 km²
to smaller ones of 0.5 m².

11Please see Appendix B for details. Examples of these urban masks are shown in Appendix Figure B.17.
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and environmental monitoring. Each image includes five spectral bands: Blue (440-510 nm) for water
and soil-vegetation distinction, Green (520-590 nm) for chlorophyll sensitivity, Red (630-685 nm) for
vegetation health, Red Edge (690-730 nm) for detecting vegetation stress, and Near-Infrared (760-850 nm)
for healthy vegetation and NDVI calculations (see Appendix Figure A.3 for a 25 km × 25 km example).
The images are orthorectified and corrected for radiometric and sensor distortions, making them suitable
for deep learning applications.

To identify built-up areas, we trained a deep learning model using Facebook’s 30-meter population
density map as labeled data.12 The model was trained to identify pixel patterns that suggest the presence
of buildings, allowing it to classify each pixel in satellite images from earlier years as either built-up
or not. Appendix Figure A.4 demonstrates the model’s sensitivity in detecting built-up structures in
Lusaka, Zambia’s largest city. The right panel shows AI-predicted built-up areas, with red indicating
structures from 2009, blue representing new developments from 2009-2014, and green marking growth
from 2014-2019. The left panel compares Google Earth images from 2009 and 2019 in the area circled
in yellow, validating the model’s accuracy. Notably, existing built-up area datasets that cover multiple
years, such as the Global Human Settlement Layer (GHSL) developed by the European Commission,
are derived from 10-meter Sentinel or 30-meter Landsat data (Pesaresi et al., 2023). In contrast, our AI-
predicted built-up data achieves a consistent 5-meter resolution across all years, significantly enhancing
spatial detail.

Nighttime Light We measure economic activity using NASA’s recently released Black Marble night-
time light data, which is specifically processed for monitoring human activities, offering enhanced com-
parability across space and time relative to the widely used VIIRS data from NOAA (Román et al.,
2018).13 Appendix Figure A.5 compares Zambia’s national GDP with trends from both VIIRS and Black
Marble data. Unlike VIIRS, which shows a consistent upward trend regardless of GDP fluctuations,
Black Marble closely mirrors GDP movements, including the decline starting in 2015. This suggests that
Black Marble data is more effective at capturing time series variations in economic activities than VIIRS.
To our knowledge, this study is the first to incorporate Black Marble data in economic research. We
use data from May to August (Zambia’s cool, dry season) for the years 2012-2019 to reduce cloud cover
interference. While nighttime light data is unavailable for 2009, we utilize 2012 data as a proxy.

The Economic Meanings of Built-up and Nighttime Light Data Satellite data, including measures of
built-up areas and nighttime lights, have become widely used proxies for economic growth in economics
and urban planning research (Henderson et al., 2012; Chen and Nordhaus, 2011; Pinkovskiy and Sala-i
Martin, 2016; Storeygard, 2016; Donaldson and Storeygard, 2016). To better interpret our results and
understand the economic meanings of our built-up and nighttime light data, we assess their correlation

12Facebook’s map designates 30-meter grid cells as built-up if buildings are detected (Tiecke et al., 2017). However, this map
is only available for around 2019. Our approach extends this classification to earlier years and significantly enhances spatial
resolution. The data is accessible here: https://dataforgood.facebook.com/dfg/tools/high-resolution-pop
ulation-density-maps.

13NASA’s Black Marble product suite enables global mapping of nighttime lights (NTL) linked to human-driven patterns, such
as electrification, economic conditions, and disruptions caused by disasters. It also provides insights into seasonal variations
in human activity and urbanization. While both Black Marble and NOAA’s VIIRS data originate from the same instrument,
they differ in processing methods.
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with key economic indicators: firm employment and revenue. We use firm-level data from the 2011
National Business Establishments Register, which provides detailed information such as firm locations
(coordinates), year of establishment, primary economic activities, and annual turnover. Appendix Figure
A.8 illustrates that nighttime light data from 2012 significantly correlates with firms’ aggregate revenue,
while AI-predicted built-up areas are closely associated with aggregate employment at the hexagon
level. Building on these findings, we interpret nighttime lights as a proxy for economic output and
built-up areas as a proxy for population, consistent with established practices in the economics literature
(Chen and Nordhaus, 2011; Henderson et al., 2012). It is worth noting, however, that employment data
may not perfectly represent population levels due to the high prevalence of informal employment in
Africa.14 We also examine changes in built-up areas and nighttime light over 2009–2019. Panel (a)
of Figure 1 shows a rightward shift in the distribution of built-up areas, indicating an expansion in
development over time. Panel (b) of Figure 1 illustrates changes in nighttime light distribution, revealing
a modest increases in economic activity.

Air Quality and Green Cover We measure air quality using Aerosol Optical Depth (AOD) data, fol-
lowing Gendron-Carrier et al. (2018). AOD data is sourced from the Moderate Resolution Imaging Spec-
troradiometers (MODIS) aboard the Terra and Aqua satellites, providing daily measurements of atmo-
spheric aerosol concentration at a 3 km resolution, making it a valuable proxy for urban air pollution.15

Over the 2009–2019 period, air pollution levels exhibit fluctuations, with a general increase from 2009 to
2013 followed by a decline from 2013 to 2019, as shown in Panel (c) of Figure 1.

We use the Normalized Difference Vegetation Index (NDVI) to monitor changes in forest and crop
cover since 1999. NDVI measures the difference between visible and near-infrared reflectance, providing
an estimate of vegetation density. To distinguish between forests and croplands, we supplement the
NDVI data with 300-meter resolution Global Land Cover data from 2009, provided by the European
Space Agency. Panel (d) of Figure 1 reveals a slight increase in green space over the study period.

4.3 Road Network Data

Digitized Road Network We begin by digitizing and mapping Zambia’s Core Road Network (CRN),
the road network essential for the country’s socioeconomic development, based on planned construc-
tion and rehabilitation projects from the Link Zambia 8000 initiative provided by the Road Development
Agency (RDA).16 Existing road segment locations were primarily sourced from OpenStreetMap (OSM),
while planned roads not yet on OSM were verified using Google Earth satellite imagery. Appendix Fig-
ure A.6 displays the resulting road map, with different colors indicating road types based on function
and importance. The CRN comprises Trunk (T), Main (M), District (D), Primary Feeder (PF), and Urban
(U) roads. Trunk roads connect major cities and borders, supporting long-distance trade; Main roads
link provincial capitals and towns for regional transport; District roads connect rural areas to nearby

14According to the 2015 Living Conditions Monitoring Survey, 88.7% of Zambia’s employed population works informally.
Nearly all workers in agriculture, fishing, and forestry are informally employed, with informality especially high in rural
areas (97% of workers) and still significant in urban areas, where fewer than one in four jobs are formal (Tassot et al., 2019).

15AOD quantifies the extent to which aerosol particles prevent direct sunlight from reaching the ground, offering a comprehen-
sive measure of overall air pollution.

16Maintaining the quality of this network is a primary responsibility of the RDA.
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towns; Primary Feeder roads support movement from agricultural areas to main networks; and Urban
roads serve local traffic within towns and cities. In total, the road network covers a total of 40,113 km
as of 2015. Our analysis focuses on the Trunk, Main, and District roads most relevant for inter-city and
cross-border transport.

AI-predicted road surface condition We processed approximately 100 billion pixels from 6,000 high-
resolution Planet RapidEye satellite images, provided by Planet Labs, to identify and classify road seg-
ments in Zambia across three key time periods. These are the same images used for identifying built-up
areas. Using an AI-based deep learning model built upon Facebook’s (now Meta) approach (Bonafilia
et al., 2019), we classified roads into three categories: paved roads, dirt (or earth) roads, and no roads.
The model was trained using 2019 OpenStreetMap (OSM) data and satellite imagery from 2018 to 2020.
After training, we applied the model to satellite images from 2009-2011 and 2014-2016, aligning these
periods with the 2009 and 2014 data used in our study. This method allows us to track changes in road
surface conditions over time and construct a historical road network, with a continuous score, ranging
from zero to one, indicating the likelihood that a surface is paved. Appendix Figure A.7 shows AI-
predicted road scores for 2009 and 2019 in panels (a) and (b), with panel (c) illustrating changes between
these years.

To validate the model’s performance, we cross-checked the results against the 2015 Road Condition
Survey (RCS 2015) conducted by Zambia’s Road Development Agency (RDA). The RCS 2015 provides
detailed, geo-referenced data on road conditions by segment, which we used to map road conditions
across the digitized Core Road Network (CRN). Out of 930 roads surveyed, 436 were officially classified
as paved by RCS. We were able to match 429 roads surveyed by RCS with our AI-predicted road seg-
ments. Among them, 58 are earth roads, 73 are gravel roads, and 298 are paved roads according to the
RCS definition.17 Appendix Figure A.9 compares the AI-predicted road condition scores from 2014/16
to the actual surface types recorded in the RCS 2015. The results indicate that AI-predicted scores for
earth and gravel roads, as defined by the RCS, cluster near zero, with median values of 0.01 and 0.02,
respectively. In contrast, paved roads have a significantly higher score distribution, with a median of
0.52. Some discrepancies, such as outliers in the earth and gravel categories, may stem from differences
in time periods; for example, our AI scores rely on 2016 imagery, while the RCS data is from 2015, sug-
gesting possible road upgrades between 2015 and 2016. Additionally, the wider range of AI-predicted
scores for RCS-defined paved roads suggests that certain segments classified as “paved” by the RCS
may, in fact, contain unpaved sections.

4.4 Household Surveys

We use the Demographic and Health Surveys (DHS) for data on household measures, primarily the
survey years 2007 and 2018/19.18 All waves of the surveys are geo-referenced, making them well-suited
for integration with our fine-grained spatial market access data. The DHS data has two limitations for

17Some roads could not be matched due to errors in geocoded nodes and links.
18The 2018/19 survey includes successful interviews with a nationally representative sample of 13,683 women aged 15-49 and

12,132 men aged 15-59, across 12,831 households. The 2007 survey covers a smaller sample, with interviews of 7,146 women
aged 15-49 and 6,500 men aged 15-59, also nationally representative. Additionally, we briefly use data from the 2013-14
survey for certain cross-sectional analyses.
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causal inference. First, it is a cross-sectional dataset of households rather than a panel. Second, for
confidentiality, the survey locations, or DHS clusters, are randomly displaced up to 2 km in urban areas
and up to 5 km in rural areas. This can introduce inaccuracies when aggregating DHS clusters into
hexagons, as some clusters may shift across hexagonal boundaries. To address this, we developed an
innovative approach to convert the data into a location-based panel. Given that DHS survey clusters are
displaced by no more than 5 km, and our hexagons have a side length of 10.8 km, a displaced cluster
could only move as far as a neighboring hexagon. Thus, we group adjacent hexagons that were surveyed
at least once in both survey years into what we call Stable Spatial Panel Units (SPUs). Within each SPU,
we aggregate key outcomes, independent variables, and covariates by calculating their mean values,
allowing us to track changes in these variables at the SPU level over time. For DHS outcomes, we also
compute the total number of respondents in each SPU and use these totals as weights in regression
analyses when these outcomes serve as dependent variables. One limitation of this approach is that
it may reduce sample representativeness, potentially introducing bias toward larger locations that are
more frequently surveyed.

5 Empirical Strategy

5.1 Construction of Market Access

To measure road improvement, we construct market access, Mit, using AI-predicted road networks and
built-up area data, following the methodology of Donaldson and Hornbeck (2016) and Jedwab and
Storeygard (2021). The unit of analysis is a hexagon, each fully contiguous and non-overlapping, cov-
ering the entire country. This market access measure reflects an economic-mass-weighted average of
accessibility between locations. We define market access for hexagon i in period t as follows:

Mit =
∑
j ̸=i

Njt(1 + tijt)
−θ (1)

where Njt represents the built-up area of hexagon j in period t, and tijt denotes the travel time between
hexagons i and j in period t, which we discuss in the next paragraph. The parameter θ captures the
elasticity of trade flows with respect to travel time, typically ranging from -0.64 to -1.39 based on existing
literature.19 We report results using θ = −1 and examine the effects across this range for sensitivity
analysis.

We construct travel time, tijt, in an innovative way that accounts for road quality. Specifically, travel
time is calculated as:

tijt =
∑
k∈ij

(D/v(skt, ckt)) (2)

where k represents the hexagons along the route from i to j, and D is the distance between the centroids

19In Donaldson (2018), θ is derived from the product of the elasticity of trade flows to trade costs and the elasticity of trade costs
to travel time. The former is estimated at 3.8 for India and 8.22 for historical USA in Donaldson and Hornbeck (2016), while
the latter is 0.169 in Donaldson (2018). Consequently, θ usually ranges from -0.64 to -1.39, though adjustments are needed for
the African context. We initially set θ to -1 but explore values from -0.5 to -2.5 in increments of 0.5 for robustness checks.

12



of two hexagons, set as a constant 18.7 km based on their size. The travel speed v(skt, cijtk) depends on
the maximum allowable speed for the highest-ranked road segment, skt, between i and j in period t, and
the road condition score, ckt, derived from the deep learning model. This score represents the probability
that a road segment is paved. Specifically, travel speed is calculated as vkt = (skt − 20)ckt + 20, where
a score of 0 yields a speed of 20 km/h (the cap for dirt roads), and a score of 1 reaches the maximum
speed cap skt. Maximum speeds are capped at 80 km/h for trunk roads and 60 km/h for district and
main roads. If no road exists between two hexagons, a default speed of 10 km/h is applied. This method
enables us to generate a detailed (historical) travel time matrix for Zambia in 2009, 2014, and 2019, which
is not accessible through Google Maps.20

Panel (e) of Figure 1 shows the distribution of market access across Zambia during the study periods,
revealing a substantial improvement over the decade from 2009 to 2019, with an average increase of
approximately 0.8 log points. Figure 2 maps the spatial distribution of these changes. Panel (a) illustrates
absolute changes in market access between 2009 and 2019, with gains concentrated around established
economic hubs, particularly along the north-south corridor connecting Lusaka, the capital, to Ndola, the
country’s second-largest city. In contrast, Panel (b) displays relative growth in market access, which is
more widely distributed beyond these core areas. Notably, the northwestern corridor linking Ndola to
the Angolan border experiences the most significant relative improvement.

5.2 Main Specification

We examine how increased market access to other locations, driven by road upgrades and construction,
influences a range of outcomes for each location. For outcomes observed through remote sensing at the
hexagon level, we estimate the following change-to-change specification:

∆ lnYi = α0 + βm∆ lnMi +Xiβx +∆Wiβw + ϵi (3)

where i indexes hexagons. Yi represents the outcome of interest, including AI-predicted built-up areas,
yearly average nighttime light, annual AOD (air quality), and yearly average NDVI (green space). ∆

indicates the long difference between 2009 and 2019.21 Mi measures market access, as defined in Section
5.1. The coefficient βm captures the elasticity of an outcome with respect to changes in market access.
Xi includes control variables such as distances to rivers and lakes, proximity to the national border. It
also includes the log initial outcome level in 2009 to control for historical trends or mean reversion as in
Duranton and Turner (2012). ∆Wi includes changes in annual average precipitation and temperatures.
α0 is a constant term.22

For DHS panel outcomes based on Stable Spatial Panel Units (SPUs), we estimate a modified speci-
fication:

∆Yi = α0 + βm∆ lnMi +Xiβx +∆Wiβw + εi (4)

20Google Maps provides only real-time and recent traffic data, typically limited to recent years and without comprehensive
archives for public access.

21Nighttime light data from 2012 is used to approximate outcomes around 2009.
22Although data around 2014 is available, we do not use five-year intervals in our analysis. Since road scores and market access

are derived from images taken one year before and after each reporting year, a five-year interval would provide insufficient
time for outcomes to adjust.
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where i indexes each SPU. Since many DHS outcomes are discrete, we examine changes in outcomes,
∆Yi, which are first aggregated at the SPU-year level by calculating averages. The remaining compo-
nents are consistent with our main specification in equation (3). In this linear-log model, a one percent
increase in market access corresponds to an average change in outcomes of βm/100.

Our market access measure is a function of built-up areas, which introduces the concern of reverse
causality. Additionally, unobserved local factors, such as economic potential or regional policies that
affect both market access and economic outcomes, may be omitted, leading to biased estimates. To
address the endogeneity of market access, we employ an instrumental variable based on changes in
remote roads following Jedwab and Storeygard (2021). Specifically, we construct the IV, Mmasked

it , for
hexagon i at time t as follows:

Mmasked
it =

∑
j ̸=i

Nj0(1 + tmasked
ijt )−θ, (5)

where Nj0 represents the initial 2009 built-up area of neighboring hexagon j relative to hexagon i, ex-
cluding the built-up area in hexagon i itself. This helps mitigating reverse causality. The term tmasked

ijt

denotes travel time calculated from a modified road network, where road conditions within a 200 km ra-
dius of hexagon i are held constant at their 2009 levels, while conditions outside this radius are updated
to their 2019 levels. Thus, any differences between the modified network and the initial 2009 network
reflect changes solely in distant, non-local roads, effectively isolating the impact of these distant changes
and filtering out local conditions that might influence the outcome through both road access and unob-
served factors.

Figure 3 illustrates our implementation of the instrumental variable. Panels (a) and (b) display the
road networks and road scores for a focal hexagon (indicated by the white dot) in 2009 and 2019, respec-
tively, which we use to calculate market access for each year. The difference in market access between
these years serves as our key independent variable. Comparing Panels (a) and (b), we observe road im-
provements indicated by increased road scores; for instance, the horizontal road below the focal hexagon
changes from pink and purple to orange. These road upgrades contributes to higher market access for
the focal hexagon. However, these upgrades may be driven by unobserved factors or trends in the out-
come variable, potentially introducing endogeneity.

To address this issue, we create a synthetic 2019 road map, shown in Panel (c), to construct our IV.
In this map, we draw a masked area with a 200 km boundary around the focal hexagon (represented by
the green hexagon). Within this masked area, the road network is reverted to its initial 2009 conditions
(the road network within the green hexagon in Panel (a)). Outside the masked region, the road network
remains as it was in 2019 (the road network outside the green hexagon in Panel (b)). We then use this
synthetic road map to calculate a synthetic market access measure for 2019 and, by differencing it with
the 2009 market access, obtain our IV. In calculating this synthetic market access, we also hold neigh-
boring hexagons’ built-up levels constant at their 2009 values. This approach effectively removes the
influence of local road changes (inside the masked hexagon), isolating market access variation driven by
distant road upgrades, which are assumed to be exogenous to local conditions.
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6 Results

Built-up Table 1 presents the estimates of the effect of changes in market access on built-up areas. The
dependent variable is the change in log built-up between 2009 and 2019. Market access is calculated
under the assumption that the decay parameter θ = 1, with results for alternative decay factors dis-
cussed later in this section. We cluster standard errors at the district level.23 Columns 1 to 3 show the
OLS estimates, progressively adding control variables. Column 1 reveals a significant positive correla-
tion between growth in built-up areas and increased market access. To account for historical trends or
mean reversion, Column 2 includes the initial log of built-up, and the coefficient’s magnitude slightly
decreases. Column 3 further incorporates geographic controls, including distances to rivers and lakes to
account for the influence of water transport and distance to the national border to address potential me-
chanical reductions in market access near borders, given that our data is limited to Zambia and excludes
cross-border roads. Additionally, we control for changes in yearly average precipitation and tempera-
ture to account for the role of climate change in agricultural productivity and subsequent rural-to-urban
migration (Henderson et al., 2017). The correlation remains significantly positive.

Columns 4 to 6 replicate the specifications from Columns 1 to 3, using instrumental variables (IV)
for market access.24 The IV estimates are slightly larger than the OLS estimates, suggesting a bias in
road development toward less developed areas. This observation aligns with the literature indicating
that roads were placed more often for political reasons than for economic ones (Burgess et al., 2015;
McCartney, 2023). In our preferred specification in Column 6, a 1 percent increase in market access is
associated with a 3.8 percent increase in built-up areas.

Ideally, we would estimate θ directly; however, this would require detailed data on trade flows be-
tween locations, which is scarce in developing countries. Instead, we select θ = 1 based on the Bayesian
Information Criterion (BIC) after testing the specification in Column 6 of Table 1 with various values of
θ. A lower BIC value indicates a better fit according to Bayesian statistics. As shown in Appendix Figure
A.10, the BIC remains stable until θ reaches a value of 3. We set θ = 1 and provide key results across
different values of θ as a robustness check.

Nighttime Light Table 2 presents the results for nighttime light. Column 1 reports OLS estimates, and
Column 2 shows IV estimates. In both, we observe that increases in market access are associated with
declines in nighttime light, though the effect is not statistically significant. If we interpret nighttime light
as a proxy for income and built-up area as a proxy for population (as discussed in Section 4.2), these
findings suggest that improved connectivity may encourage population growth without a correspond-
ing increase in income or GDP growth. We also examine the ratio of nighttime light to built-up area as
a proxy for average income, with results displayed in Columns 3 and 4. The IV estimates in Column 4
indicate a statistically significant decline in average income.25 Although this result may seem counterin-

23Zambia is divided into 10 provinces and 116 districts.
24See Panel (b) of Appendix Table A.1 for the first stage results.
25Jedwab and Storeygard (2021) finds that market access increases nighttime light over a 30-year period, using the DMSP-OLS

Nighttime Lights Time Series. While DMSP-OLS data cover a longer period (1992–2013), they have lower spatial resolution
and less sensitive sensors than VIIRS nighttime lights, which we use here for higher resolution and more advanced sensor
capabilities (Gibson et al., 2021). Additionally, DMSP-OLS data are top-coded in city centers where light intensity often
exceeds the sensor’s dynamic range.
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tuitive, it aligns with the broader literature on “urbanization without growth” observed in many African
countries (Fay and Opal, 2000). In such contexts, urbanization can strain the provision of basic infras-
tructure and services, especially when not accompanied by structural transformation (Henderson and
Turner, 2020). The challenges and costs of urbanization without industrialization can outweigh the ag-
glomeration benefits, as limited manufacturing activity fails to absorb the expanding urban labor force,
thereby constraining both productivity and income growth.

Livings Conditions, Urban Infrastructure, and Amenity A key aspect of “urbanization without growth”
is that as population move to densely populated areas, particularly cities, increased pressure on local
public goods leads to deteriorating infrastructure, amenities, and overall living standards. We examine
whether improved road connectivity—which drives expansion in built-up areas and potentially fuels
population growth—also contributes to a decline in urban amenities and living conditions, using data
from the Demographic and Health Surveys (DHS). Utilizing a panel from 69 stable spatial units, we
analyze DHS outcomes observed in 2007 and 2018/19 to assess the impact of changes in market access
by estimating equation (4). Panel A of Table 3 presents demographic outcomes. In Column 1, we find
that the number of males per household increases with better market access, though the effect is muted
for females, indicating increasingly crowded living conditions. This is further supported by Column 3,
which shows that the number of bedrooms per household increases at a similar rate. Columns 6 and
7 reveal reductions in the size of agricultural land and the number of animals owned as market access
improves. These findings are consistent with findings of increased growth in built-up areas.

In panel B of Table 3, we analyze key income and infrastructure indicators from the DHS, including
access to bank accounts, electricity, radios, televisions, refrigerators, mobile phones, and mosquito nets.
The results show that these indicators do not improve with increased market access; in fact, most coef-
ficients are negative, albeit not statistically significant. Finally, Panel C of Table 3 shows that improved
market access is associated with adverse health outcomes, including a reduction in birth weight, a higher
probability of diarrhea, and a decreased likelihood of receiving vitamin A in the past six months.

These results suggest that road upgrades lead to increased crowding and declining household living
standards, potentially accelerating the spread of slums given the high prevalence of informal housing
in Zambia. Admittedly, slums can provide the rural poor with an initial foothold for accessing better
opportunities (Marx et al., 2013; Glaeser and Henderson, 2017). However, the economic benefits of such
transitions often take generations to fully materialize, which lies beyond the decade-long time frame of
our study.

Air Pollution and Green Space We also examine the impact of road upgrades on environmental out-
comes. Columns 1 and 4 of Table 4 show results for air pollution, measured by Aerosol Optical Depth
(AOD), and green space, measured by Normalized Difference Vegetation Index (NDVI), respectively, us-
ing the preferred specification from Column 6 of Table 1. The findings suggest that a 1 percent increase
in market access is associated with an approximately 1.1 percent increase in air pollution (Column 1)
and a 0.77 percent reduction in green space (Column 4). These results are consistent with those in Table
1 and align with established literature in environmental science and economics, which shows that pop-
ulation growth typically lead to higher air pollution and deforestation (Southgate et al., 1991; Cropper
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et al., 1999; Deininger and Minten, 2002; Foster and Rosenzweig, 2003; Brock and Taylor, 2005; Glaeser
and Kahn, 2010; Kleinschroth et al., 2019).

We further examine the differential effects between urban and rural regions in the remaining columns
of Table 4 with Columns 2 and 5 focusing on rural areas and Columns 3 and 6 on urban areas.26 The
results indicate that road upgrades lead to a greater increase in air pollution (comparing Columns 2 and
3) and more deforestation (comparing Columns 5 and 6) in rural areas than in urban areas. This likely
reflects the lack of industrial activities in urban areas and environmentally harmful agricultural practices
in rural areas.

Robustness Check Our results are robust across different values of the decay factor, θ, as shown in
Appendix Table A.2. Each column presents the results corresponding to a specific value of θ. A smaller
θ implies less discounting of access to distant markets. The direction of the estimates remains consistent,
although the magnitude of the effects increases with smaller values of θ. 27 As highlighted by Jedwab
and Storeygard (2021), the coefficient of market access is sensitive to the parameter θ, complicating the
generalization of results despite θ being widely used in the literature. However, they demonstrate that
estimating the effect of a one-standard-deviation increase in log market access yields robust results,
unaffected by variations in θ. Following their approach, we present our estimation results in Appendix
Figure A.11. Our findings confirm that the impact of a one-standard-deviation increase in log market
access on key outcomes remains consistent across a range of θ values from 0.5 to 2.5, mirroring the
stability observed by Jedwab and Storeygard (2021).

Currently, all of our results use changes in market access, constructed based on both changes in built-
up areas and road upgrades. To what extent are these findings directly influenced by road improvements
alone? To address this, we regress the outcome variables directly on the instrumental variable, following
the main specification in Column 6 of Table 2. Panel A of Appendix Table A.1 presents these reduced-
form results, where the variation in IV market access is driven exclusively by changes in travel time, as
built-up areas are held constant at their initial levels. Thus, these reduced-form regressions effectively
isolate the impact of road improvements on outcomes. We find that the results remain consistent across
all four outcomes of interest, with magnitudes even larger than those in our baseline IV specification.

7 Mechanism: Urbanization without Growth

Our findings suggest that road construction in Zambia spurs population growth without corresponding
income growth, while contributing to declining living standards and environmental quality. This pattern
aligns with extensive evidence on the “urbanization without growth” phenomenon, where rapid urban
population growth in many African countries has not been accompanied by structural transformation

26Urbanized areas are identified using the urban mask introduced in Section 4.1.
27Our estimates are higher than those reported in existing studies, likely due to the finer spatial granularity of our data. Instead

of focusing solely on distant primary cities, we construct market access using adjacent, granular hexagons that encompass
a range of settlements, from cities to villages. This granular approach appears to increase the elasticity of economic activity
in response to market access. The economic intuition is that changes in market access have a greater impact on the relative
growth of small places. For example, a new road passing through a village can create business opportunities that might
double its size. However, such a dramatic transformation is unlikely to occur in a city, where the baseline size and existing
infrastructure dampen the relative impact of additional market access.
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(Fay and Opal, 2000). Drawing on the literature about the drivers of “urbanization without growth,”
we can better understand the mechanisms that may explain why road upgrades in Zambia have yielded
limited positive impact over the past decade.

A key factor behind this phenomenon is the insufficient manufacturing activity to absorb the ex-
panding urban labor force, which limits the potential for productivity and income growth. In many
cases, rural-to-urban migration in Africa is not driven by better job opportunities but rather by a lack
of infrastructure and services in rural areas, as seen in the significant presence of subsistence farmers in
cities (Henderson and Kriticos, 2018). Another important factor is severe congestion in populous cities:
as people move into urban areas, local governments face enormous challenges in providing adequate
infrastructure and public services (Henderson and Turner, 2020). This strain on public resources often
leads to a decline in average living standards.28

In this section, we investigate whether (1) a lack of an industrial base and (2) urban congestion help
explain the limited success of road upgrade projects in Zambia.

7.1 Lack of Industrial Foundations

We investigate the limited industrial base as a mechanism by examining the differential effects in cities
with a stronger manufacturing base. Using the 2011 Business Establishment Register, we aggregate
sectoral revenue for agriculture, mining, manufacturing, and other sectors within each hexagon.29 A
hexagon is classified as manufacturing-intensive if it ranks in the top 20% for aggregate manufacturing
revenue. Appendix Figure A.12 highlights these manufacturing-dominant hexagons. We then estimate
the following regression:

∆lnYi = α0 + βm∆lnMi + βmz∆lnMi × Zi + βzZi +Xiβx +∆Wiβw + εi (6)

The specification is similar to equation (3), but adds an interaction terms between ∆Mi and a dummy
variable, Zi, indicating whether a hexagon is manufacturing-intensive (ranks in the top 20% for aggre-
gate manufacturing revenue). Additionally, we instrument ∆ lnMi and ∆ lnMi × Zi using ∆Mmasked

i

and ∆ lnMmasked
i × Zi.

Table 5 reports results for five key outcomes: built-up areas, nighttime light, the nighttime light-to-
built-up ratio, air pollution, and green space. In Column 1, the interaction term’s coefficient (-0.456) is
small relative to its standard errors, indicating no significant increase in built-up areas within manufac-
turing sectors. This suggests that manufacturing does not meaningfully interact with road infrastructure
in influencing urban expansion. Columns 2 and 3 reveal positive interaction effects for nighttime light
and the nighttime light-to-built-up ratio, suggesting that the impact of market access on urban growth
and light intensity is more pronounced in manufacturing-intensive regions. These findings highlight the
potential role of manufacturing capacity in amplifying the benefits of road infrastructure. However, the
effects are not statistically significant, likely due to the absence of robust instruments for manufacturing
activities, as evidenced by the low F-statistics in the first stage. Despite this limitation, the insignif-

28This is consistent with Au and Henderson (2006)’s theory of optimal city size, which suggests that improved market access,
without accompanying structural change, can lead to population growth that reduces income growth rates.

29The manufacturing sector is classified according to the ISIC Rev 4 standard under code C. Agriculture is classified as ISIC
code A, mining as ISIC code B, and all other activities fall under the remaining ISIC codes.
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icance of both βm and βmz suggestively implies that improved market access does not substantially
drive growth, even in regions with relatively developed manufacturing sectors. This aligns with the
observation that Zambia’s manufacturing sector predominantly consists of small-scale production and
processing activities rather than large-scale industrial operations. Columns 4 and 5 provide additional
insights, showing that improved market access is significantly associated with reduced air pollution and
increased green space in areas with high manufacturing intensity. Typically, roads facilitating indus-
trial activities would be expected to increase air pollution and decrease green space due to expanded
industrial operations. The observed opposite effects suggest that the lack of extensive industrialization
in these regions limits the ability of road infrastructure to stimulate significant economic development.
This further underscores the constrained role of Zambia’s manufacturing sector in leveraging road im-
provements for broader economic growth.

We also investigate how other aspects of structural transformation, including international trade
and mining, influence our results. Proximity to ports can significantly influence local economic growth
by enhancing trade and access to markets (Storeygard, 2016). In column 1 of Appendix Table A.3, we
replace changes in market access with changes in access to two key land-based trading hubs. The first
is Chipata, located in the east of the country, which connects Zambia to Mozambique’s main seaport
via Malawi. The second is Kazungula, situated in the southwest, which serves as a transit route to
major seaports in South Africa and Namibia. Following Jedwab and Storeygard (2021), the growth of
built-up areas in these border towns can be seen as a proxy for trade volume. We find no significant
effects of improved market access to trading hubs on economic growth. This may be because imported
tradables do not pass through these border towns but are instead distributed from Lusaka, especially
goods transported via railway. Given this, and to explore how access to the national political center
influences outcomes, we examine how changes in market access to Lusaka, the national capital, affect
the results. Column 2 shows that better connectivity to Lusaka is associated with a decline in income,
consistent with emerging literature on urban growth shadows from large economic centers (Chen et al.,
2017; Cuberes et al., 2021). Additionally, enhanced connectivity to Lusaka is linked to increased air
pollution, likely due to spillovers from large cities. In Column 3, we turn our focus to the mining sector,
which accounts for a significant portion of Zambia’s GDP, and assess how better connectivity to the
mining areas in the Copperbelt province impacts outcomes. We find that while better access to mining
areas does not drive economic growth, it does lead to increased pollution.

To sum up, our analysis shows that road upgrades in Zambia have not substantially driven eco-
nomic growth, even in regions with a stronger manufacturing base. Additionally, we find that improved
connectivity to the national capital and mining regions results in environmental degradation without
boosting economic growth, reinforcing the notion that Zambia’s current structural landscape limits the
potential benefits of infrastructure investments.

7.2 Congestion

Another key driver of “urbanization without growth” in Zambia is severe congestion in rapidly expand-
ing major cities. To explore this, we examine whether the effects of market access differ in more populous
areas, focusing on provincial capitals. In Table 6, we extend our baseline regression by additionally in-
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teracting changes in market access with a dummy for provincial capital cities.30 Both market access and
its interaction with the provincial capital indicator are instrumented using changes in IV market access
and the interaction term. The results show that market access has a larger effect on built-up areas in
provincial capitals compared to other regions, though the interaction term is noisy. Notably, we find a
significant negative effect of market access on nighttime lights and the nighttime light-to-built-up ratio
in these cities, indicating that strong congestion forces in larger cities may drive population growth with
minimal income gains or even declines.31 While high population density does not necessarily imply
congestion, it is often an indicator, as supported by the literature. Given these nuances and our inter-
est in understanding general equilibrium effects, we will further examine the role of congestion using a
quantitative equilibrium model in Sections 8 and 9.

8 Quantitative Spatial Model

Locations in Zambia are interconnected through trade and migration, implying that changes in one area
can affect others. Our reduced-form results compare changes in outcomes between locations with larger
versus smaller increases in market access, which essentially eliminates any effect that is common to both
groups. As a result, these reduced-form results alone cannot capture the aggregate and distributional
effects of the road upgrades (see Redding and Rossi-Hansberg (2017) for discussion). To quantify the
broader impacts of Zambia’s road construction, analyze the economic forces behind its challenges, and
explore potential policy improvements, we apply a quantitative spatial model mainly based on Allen
and Arkolakis (2018) to describe the region’s economic geography. This model enables us to evaluate
both the aggregate and distributional welfare impacts of current road-building policies, while also al-
lowing for policy simulations that explore potential optimizations. Additionally, we extend the model
to incorporate multiple sectors, following recent advancements in economic geography research (Fan,
2019; Tombe and Zhu, 2019; Zárate, 2022; Rothenberg et al., 2024), to analyze implications for structural
transformation. The model features multiple interconnected locations with costly trade and migration
and multiple sectors, capturing endogenous agglomeration and congestion effects. In this section, we
describe the model’s structure in detail.

8.1 Setup

The model considers a country with N locations, with each location indexed by i for the origin and j

for the destination. Each location has two sectors: s ∈ U,R, where U representing the non-agricultural
sector and R denotes the agricultural sector. The sectors in each location is heterogeneous in terms of
amenities and productivity. Locations are interconnected through costly trade and migration. In each
location, representative firms produce distinct varieties of goods using labor, following the Armington
assumption (Armington, 1969). In equilibrium, local wages and prices adjust to balance both the goods
and labor markets.

30There are ten provincial capitals. We assign a value of 1 to hexagons within a 10 km buffer around each city’s centroid and 0
otherwise.

31This finding aligns with literature on Africa’s unique urbanization trajectory (Henderson and Kriticos, 2018). For compari-
son, Baum-Snow et al. (2020) find that in China, highway connections benefit regional primate cities, the largest and often
disproportionately large cities in a region, while causing GDP declines and population losses in surrounding areas.
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8.2 Migration Flows

The total population is fixed at L̄.32 Workers are initially located in their birthplace i (the origin) and
choose a destination j and sector s to maximize utility. Each location has an initial, exogenous labor
stock L0

i . Workers value local consumption goods and amenities, and they select a sector and location
based on the most attractive combination of wages, prices, and amenities, adjusted for the migration
costs associated with relocating from their birthplace. The indirect utility of worker ω, born in district i
and moving to district j, is given by:

Vijs(ω) =
wjsujsϵijs(ω)

PjDij
(7)

where wjs denotes the nominal wage in sector s in location i and Pj represents the price index in location
j. The term ujs indicates the local amenities in location j for sector s, which can be further broken down
into:

ujs = ūjsL
β
j (8)

where ūjs represents the exogenous component of amenities (e.g., soil quality, proximity to the coast),
while Ljβ reflects the endogenous component influenced by the local population Lj with the elastic-
ity β, which captures congestion effects, such as increased traffic, overcrowding, and declining living
standards caused by insufficient infrastructure and inadequate provision of public goods.

The term Dij represents the migration cost associated with moving from location i to j. The variable
ϵijs(i) denotes the idiosyncratic preference of worker i, which follows a Frechet distribution given by

F (−→ϵ ) = exp

(
−
∑

j∈N

(∑
s∈S ϵ−ν

ijs

) η
ν

)
. Here, η and ν are parameters that influence the dispersion of

preferences across locations and sectors. As η decreases, workers’ preferences become more dispersed
spatially, indicating a greater variation in attachment to specific locations due to preference heterogeneity
and a reduced sensitivity to changes in other welfare components such as wages, prices, and amenities.

Each worker selects the location and sector that maximize their indirect utility. According to the
properties of the Frechet distribution, the probability that a worker born in location i will relocate to
location j is given by:

πijs =

(
Φj

PjDij

)η
∑

j′

(
Φj′

Pj′Dij′

)η (ujswjs)
ν∑

s′(ujs′wjs′)ν
(9)

where Φν
j =

∑
s′(ujs′wjs′)

ν captures the overall attractiveness of location j to residents. Specifically, we
define the market access as follows,

Wi =
∑
j′

(
Φj′

Pj′Dij′

)η

(10)

which captures residents’ access to well-paid jobs, amenities with lower cost of living from location i.
The labor supply in location j for sector s can be expressed as:

32We abstract from population growth.
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L̃js =
∑
i∈N

πijsL
0
i (11)

By the property of Frechet distribution, the average welfare of workers living in location i is,

E

[
max
j,s

Vijz(i)

]
= Γ

(
1− 1

η

)∑
j′

(
Wj′

Pj′Dij′

)η


1
η

(12)

where Γ(·) is the Gamma function, and Γ(1− 1
η ) is a constant.

8.3 Demand for goods

Workers have uniform nested constant elasticity of substitution (CES) preferences over the varieties of
consumption goods produced in each location and sector. At the upper level, they allocate their budget
between agricultural and non-agricultural goods, while at the lower level, they choose among varieties
within each sector. We use ξ to represent the elasticity of substitution between non-agricultural and
agricultural goods, and let σs denote the elasticity of substitution among varieties within sector s. We
assume that trade flows in the agricultural sector are more sensitive to trade costs, leading to σU < σR.
The total consumer expenditure for an individual in location i, denoted by qi, is given by:

qi =

(∑
s∈S

q
ξ−1
ξ

is

) ξ
ξ−1

where qis =

∑
j∈N

∫
ω
qjis(ω)

σs−1
σs dω


σs

σs−1

, (13)

where qjis(ω) represents the quantity of variety ω produced in location j and sector s that is consumed
in location i. The price index for consumption goods in location i, denoted by Pi, is given by:

Pi =

(∑
s∈S

P 1−ξ
is

) 1
1−ξ

where Pis =

∑
j∈N

∫
ω
pjis(ω)

1−σs dω

 1
1−σs

, (14)

where pjis(ω) denotes the unit price of variety ω produced in location j and sector s but consumed in
location i. This price is the factory-door price, pjs(ω), adjusted for the iceberg trade cost, expressed as
pjis(ω) = τjipjs(ω).

8.4 Production

Each location i and sector s is assumed to produce a differentiated good yis using labor Lis. Many
firms produce homogeneous goods within a perfectly competitive market. The production function for
a representative firm in location i and sector s is:

yis = AisLis (15)

where Ais is the overall productivity in location i and sector s,

Ais = ĀisL
α
i , (16)
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which comprises an intrinsic component, Āis, determined by exogenous factors such as soil quality and
proximity to the coast, and an endogenous component influenced by the local population with elasticity
α, capturing agglomeration externalities like better labor market matching, sharing infrastructure, and
knowledge spillovers.

By perfect competition, the unit price of yis is,

pis =
wis

Ais
(17)

Given the product demand specified in equation (13), the share of expenditure in location j on goods
produced in location i and sector s can be expressed as:

λijs =

(
Pjs

1−ξ∑
s′∈S Pjs′

1−ξ

)
︸ ︷︷ ︸

λjs

(
p1−σs
ijs∑

i′∈N p1−σs
i′js

)
︸ ︷︷ ︸

λijs|s

, (18)

where Pjs =
(∑

i′∈N p1−σs
i′js

) 1
1−σs .

8.5 Equilibrium

An equilibrium is defined over the endogenous variables {wis, Lis, ωi, ϕi, pis, Pi}, subject to labor mar-
ket clearing, goods market clearing, and the condition of a closed economy where total population is
constant. The formal details are provided in the Model Appendix D.

8.6 Model Estimation

We use data and parameter estimates from the literature to calibrate the key parameters of our model.
The population and migration data for this analysis is derived from a 10% sample of the 2000 and 2010
Zambian censuses provided by IPUMS. Wage data comes from the 2015 Zambia Living Conditions Moni-
toring Survey (LCMS), based on household income. To ensure representativeness, we calculated district-
level averages and medians for wages, adjusting for survey weights. Wages were further disaggregated
by sector (agricultural vs. non-agricultural) to offer more detailed insights at the district level. Employ-
ment data was used to estimate the non-agricultural employment share, which, when combined with
population figures from the 2010 census, enabled us to estimate sectoral employment for each district in
2010.

First, we estimate Equation (9) to obtain the migration elasticity. Aggregating across both sectors for
each origin-destination pair (πij =

∑
s πijs), and incorporating parameterization of the migration costs

as follows,
Dij = exp {βttravelT imeij} (19)
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Equation (9) can be expressed as follows,

πij = exp


ln(ηΦj/Pj)︸ ︷︷ ︸
destination FE

+ ln
∑
j′

(Φj′/Pj′)
η

︸ ︷︷ ︸
origin FE

−ηβttravelT imeij + ϵij


. (20)

We estimate this equation using Poisson Pseudo Maximum Likelihood (PPML), controlling for both
origin and destination fixed effects. The results, shown in Appendix Table A.4, report two-way clustered
standard errors by origin and destination districts. Column 2 demonstrates a migration elasticity with
respect to travel time of -0.95, which aligns with estimates from Indonesia, China, and India (Bryan and
Morten, 2019; Tombe and Zhu, 2019; Ghose, 2021). In Column 1, we find similar effects using physical
distance as a measure of travel cost. 33

Following established literature, we calibrate additional parameters for our baseline model as out-
lined in Appendix Table A.5. Combining our estimated migration elasticity with other calibrated param-
eters and district-sector-level data on wages and population, we use the model framework (detailed in
Model Appendix D) to recover local amenities, Ūis, and productivity, Āis. The inverted fundamentals Ūis

and Āis, shown in Figure A.14, provide insight into Zambia’s economic geography. We observe higher
productivity and amenity levels in Lusaka, the capital, and Copperbelt Province, known for copper min-
ing, underscoring the validity of these inverted fundamentals.

9 Counterfactuals

We apply the quantitative spatial model developed in the previous section to assess the regional and
aggregate effects of the current road upgrades in Zambia and conduct alternative policy experiments
to explore potential mechanisms behind the limited impact of the existing policy and identify ways to
enhance its effectiveness.

The Model-based Market Access we use the model structure to invert the market access, as defined in
equation (10), to align with the market access defined in our reduced-form results. While both measures
capture accessibility to “better” locations, their approaches differ: model-based market access directly
quantifies access to desirable features such as higher wages, lower living costs, and greater amenities,
whereas reduced-form market access reflects this accessibility indirectly through a revealed preference
framework, based on the assumption that more desirable locations attract larger populations. To validate
the quantitative spatial model, we compare the simulated changes in market access with those derived
from the reduced-form approach. Panel (a) of Figure 4 demonstrates a correlation of 0.48 between the
reduced-form and model-simulated changes in market access, supporting the use of the model for fur-
ther welfare analysis and policy simulations. Panel (b) of Figure 4 shows a distribution of log changes in
model-inverted market access that closely mirrors the patterns observed in the data, as seen in Panel (b)
of Figure 2.

33The high correlation between pairwise physical distance and travel time is illustrated in Appendix Figure A.13.
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The Overall and Distributional Impacts of the Current Road Construction We use the model to quan-
tify the overall growth and welfare impacts of the Zambia’s road-building policy by simulating the ef-
fects of reducing travel times between locations in Zambia from their 2009 levels to their 2019 level.
Column 1 of Table 7 reports the resulting welfare and output changes due to Zambia’s road upgrades.
We find that this policy increases national GDP by only 0.065%, less than one-tenth of a percent, and
leads to a modest welfare improvement of 0.2%. Notably, much of the GDP growth is driven by the
agricultural sector. In fact, the policy negatively affects both the employment and GDP shares of the
non-agricultural sector, suggesting it fails to promote and may even hinder structural transformation
from agriculture to non-agriculture. This aligns with the reduced-form analysis, which finds no signifi-
cant effects of road-building on economic growth as measured by nightlights.

Inefficient Targeting One of the key findings of our reduced-form analysis is that, while improved
market access fosters population growth, it does not drive structural transformation in the affected loca-
tions. Our model suggests that one potential driver behind this is that new roads may not be directing
population growth to areas with the highest economic potential. In Table 8, we analyze the correlation
between changes in market access and initial location characteristics. The results indicate that while
the current policy targets more populous locations (Column 1), there is no significant relationship be-
tween changes in market access and non-agricultural productivity (column 2) or amenities (column 3).
This aligns with our earlier discussion in Section 3, indicating that road construction decisions are not
primarily influenced by economic incentives. By attracting populations to locations without a solid in-
dustrial base or the potential for structural transformation, the program’s positive economic impact is
likely to be limited.

To investigate this further, we analyze the correlation between population growth in each district
(measured by changes in the log of total population) and structural change (measured by changes in the
log of GDP share in non-agricultural sectors), controlling for local changes in market access to isolate
the policy’s direct effects. Figure 5 illustrates a non-positive relationship between structural change and
population growth, represented by the red line, and a negative relationship in larger cities (provincial
capitals), denoted by the blue line. This indicates that districts with higher population growth do not ex-
perience corresponding increases in structural transformation from agriculture to non-agriculture under
the current policy. This finding supports our earlier discussion in Section 7 and aligns with the literature
on “urbanization without growth”.

The Role of Congestion and Agglomeration As detailed in Section 7, a key factor limiting the success
of the policy is the substantial congestion resulting from population growth in Zambia. Additionally,
the lack of a robust industrial base may contribute to insufficient agglomeration, undermining the roads’
contribution to economic growth.34 We investigate the roles of congestion and agglomeration forces in
evaluating the policy by assessing the sensitivity of our results to changes in key parameters. In Figure 6,
each panel presents the outcomes of various simulations where the road-building policy (which reduces
travel time) is rerun with one parameter altered at a time, while holding all others at their baseline values.

34It is well established that manufacturing provides higher agglomeration benefits than agricultureKrugman (1991); Fujita et al.
(1999).

25



We then calculate the impact of the road construction on GDP and the non-agricultural GDP share. The
y-axis shows the percentage changes in these outcomes, and the x-axis shows the value (magnitude) of
the parameter that is changed. The dashed lines indicate the baseline parameter values and simulation
results.

Panels A and C illustrate that when congestion forces are stronger (i.e., a larger magnitude of β),
the road-building policy in Zambia has even weaker positive effects on GDP and more detrimental
effects on structural change (measured by the non-agricultural GDP share). Conversely, Panels B and D
demonstrate that with stronger agglomeration forces (i.e., a larger magnitude of α), the road-building
policy is more effective at enhancing GDP growth and structural change. These results highlight that
strong congestion and weak agglomeration forces are critical factors in the limited success of the current
road-building policy.

Alternative Policies Where should policymakers target for optimal outcomes? To better understand
the mechanisms behind the limited impact of the current road policy and to inform potential improve-
ments, we use the model to conduct additional policy experiments. The average reduction in travel time
under the current policy across all origin-destination pairs is around 7%. In the first experiment, we
apply this 7% reduction in travel time to the five most productive locations, based on our inverted lo-
cal productivity measure. Column 2 of Table 7 presents the aggregate results of this targeted approach.
Compared to the current policy (Column 1), targeting more productive locations generates over three
times the GDP growth and more than double the welfare gains. Additionally, this targeted approach
shows a modest increase in both employment and GDP share in the non-agricultural sector, signaling
structural change.

Next, we examine other local characteristics that policymakers could consider to achieve better out-
comes. In a second set of experiments, we sequentially reduced travel time by 10% for each location
(i.e., the travel time from each treated location to all other locations) and used the model to simulate the
aggregate impacts. We then analyzed how these impacts correlated with the characteristics of the treated
areas. The results, presented in Table 9, indicate that the policy delivers greater improvements in GDP,
welfare, and industrialization when it targets more productive locations with higher initial employment
shares in the non-agricultural sector and larger population sizes.

10 Conclusion

While transportation infrastructure is often seen as a catalyst for economic development, our results
suggest that these benefits may not readily materialize in least-developed countries, where industrial
activity lags and cities face significant overcrowding. These findings, which align with the mechanisms
underlying the phenomenon of ”urbanization without growth,” had not been empirically tested in this
context before due to the lack of granular data on roads and economic outcomes. By leveraging AI to
analyze a vast trove of high-resolution satellite data, we assembled the necessary dataset to conduct
this analysis. As anticipated, Zambia’s road improvements have primarily driven population growth
without corresponding increases in income. Additionally, we observe declining living standards and
heightened environmental degradation. These results underscore that road paving alone may not be an
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effective development strategy for countries experiencing “urbanization without growth.”
Our study also suggests two likely overlooked aspects of the failure of road-building efforts: one

economic and the other political. From an economic perspective, road construction alone may reinforce
reliance on agriculture rather than fostering industrialization without complementary policies. Lower
transportation costs often allow sectors to leverage their comparative advantages, which, in developing
countries, tends to be agriculture rather than industrial activities. From a political perspective, road
allocation is frequently influenced by political incentives, as noted by Acemoglu and Robinson (2012).
This can lead to roads being constructed in locations that serve political interests rather than areas with
the highest economic potential, thereby diminishing their effectiveness. Furthermore, the challenge of
optimal road placement reflects broader issues of limited state capacity. While these aspects extend
beyond the current scope of this study, they merit further research to deepen our understanding of the
role of road improvements in economic development in the least developed contexts.

Declaration “During the preparation of this work the authors used ChatGPT in order to proofread,
and applied deep learning models to predict built-up area and road surface conditions as described in
the paper. After using this tool/service, the authors reviewed and edited the content as needed and take
full responsibility for the content of the publication.”
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evidence from road building in Kenya,” American Economic Review, 105, 1817–1851.

BURKE, M., A. DRISCOLL, D. B. LOBELL, AND S. ERMON (2020): “Using satellite imagery to understand and
promote sustainable development,” .

CHANDRA, A. AND E. THOMPSON (2000): “Does public infrastructure affect economic activity?: Evidence from
the rural interstate highway system,” Regional Science and Urban Economics, 30, 457–490.

28



CHEN, X. AND W. D. NORDHAUS (2011): “Using luminosity data as a proxy for economic statistics,” Proceedings
of the National Academy of Sciences, 108, 8589–8594.

CHEN, Y., J. V. HENDERSON, AND W. CAI (2017): “Political favoritism in China’s capital markets and its effect on
city sizes,” Journal of Urban Economics, 98, 69–87, urbanization in Developing Countries: Past and Present.

CHIFUNDA, E. (2024): “National Three(3) Million Tones Copper Production Strategy By 2031,” Tech. rep., Zambia
Ministry of Mines.

COSTINOT, A., D. DONALDSON, AND C. SMITH (2016): “Evolving Comparative Advantage and the Impact of
Climate Change in Agricultural Markets: Evidence from 1.7 Million Fields around the World,” Journal of Political
Economy, 124, 205–248.

CROPPER, M., C. GRIFFITHS, AND M. MANI (1999): “Roads, Population Pressures, and Deforestation in Thailand,
1976-1989,” Land Economics, 75, 58–73.

CUBERES, D., K. DESMET, AND J. RAPPAPORT (2021): “Urban growth shadows,” Journal of Urban Economics, 123,
103334.

DEININGER, K. AND B. MINTEN (2002): “Determinants of Deforestation and the Economics of Protection: An
Application to Mexico,” American Journal of Agricultural Economics, 84, 943–960.

DEVELOPMENT MINERALS (2024): “Zambia: Paving the Road to Success,” Accessed: 2024-10-09.

DONALDSON, D. (2018): “Railroads of the Raj: Estimating the Impact of Transportation Infrastructure,” American
Economic Review, 108, 899–934.

DONALDSON, D. AND R. HORNBECK (2016): “Railroads and American economic growth: A “market access”
approach,” The Quarterly Journal of Economics, 131, 799–858.

DONALDSON, D. AND A. STOREYGARD (2016): “The View from Above: Applications of Satellite Data in Eco-
nomics,” Journal of Economic Perspectives, 30, 171–198.

DURANTON, G. AND M. A. TURNER (2012): “Urban Growth and Transportation,” The Review of Economic Studies,
79, 1407–1440.

EDMOND, C., V. MIDRIGAN, AND D. Y. XU (2015): “Competition, markups, and the gains from international
trade,” American Economic Review, 105, 3183–3221.

EUROPEAN COMMISSION (2020): “A highway to success for Emmanuel and Peter in Zambia,” Accessed: 2024-09-
10.

FABER, B. (2014): “Trade integration, market size, and industrialization: Evidence from China’s national trunk
highway system,” Review of Economic Studies, 81, 1046–1070.

FAJGELBAUM, P. D. AND E. SCHAAL (2020): “Optimal Transport Networks in Spatial Equilibrium,” Econometrica,
88, 1411–1452.

FAN, J. (2019): “Internal geography, labor mobility, and the distributional impacts of trade,” American Economic
Journal: Macroeconomics, 11, 252–88.

FAY, M. AND C. OPAL (2000): “Urbanization Without Growth : A Not-So-Uncommon Phenomenon,” Tech. rep.

FEENSTRA, R. C., P. LUCK, M. OBSTFELD, AND K. N. RUSS (2018): “In search of the Armington elasticity,” Review
of Economics and Statistics, 100, 135–150.

FOSTER, A. D. AND M. R. ROSENZWEIG (2003): “Economic Growth and the Rise of Forests,” The Quarterly Journal
of Economics, 118, 601–637.

FRETZ, S., R. PARCHET, AND F. ROBERT-NICOUD (2021): “Highways, Market Access, and Spatial Sorting*,” The
Economic Journal, ueab070.

29



FUJITA, M., P. KRUGMAN, AND A. J. VENABLES (1999): The Spatial Economy: Cities, Regions, and International Trade,
Cambridge, MA: MIT Press.

GENDRON-CARRIER, N., M. GONZALEZ-NAVARRO, S. POLLONI, AND M. A. TURNER (2018): “Subways and
Urban Air Pollution,” Working Paper 24183, National Bureau of Economic Research.
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Table 1: THE EFFECT OF MARKET ACCESS: BUILT-UP

OLS IV

(1) (2) (3) (4) (5) (6)

∆ Log MA 3.510*** 3.103*** 3.163*** 4.596** 3.484* 3.798*
(1.100) (1.092) (1.151) (2.099) (2.059) (2.134)

Initial Log outcome -0.045*** -0.048*** -0.045*** -0.047***
(0.017) (0.016) (0.017) (0.016)

Log Distances to River -0.041 -0.039
(0.041) (0.042)

Log Distances to Lake -0.024 -0.033
(0.030) (0.037)

Log Distances to National Border -0.038 -0.038
(0.037) (0.037)

Changes in Precipitation 0.210 0.189
(0.256) (0.259)

Changes in Temperature 1.395 1.466
(1.511) (1.548)

KPW F-Stats 46.68 44.97 47.05
R2 0.01502 0.02732 0.03084 0.01358 0.02714 0.03043
N 2488 2488 2488 2488 2488 2488

Notes: This table presents our estimates of the impact of market access and the dependent variable is the change in log built-up.
We assume θ = 1, with a mask area of approximately 200 km. Columns 1 to 3 report the OLS estimates, while columns 4 to 6
display the IV estimates. Standard errors are clustered at the district level. */**/*** denotes significant at the 10% / 5% / 1%
levels.

Table 2: THE EFFECT OF MARKET ACCESS: NIGHTTIME LIGHT

NTL Black Marble NTL/Built-up

(1) (2) (3) (4)
OLS IV OLS IV

∆ Log MA -0.877 -4.123 -2.727 -8.385*
(2.074) (3.778) (2.170) (4.384)

Initial Log outcome -0.120** -0.135*** -0.281*** -0.315***
(0.047) (0.048) (0.053) (0.065)

Log Distances to River -0.225*** -0.228*** -0.249*** -0.260***
(0.083) (0.081) (0.071) (0.072)

Log Distances to Lake 0.044 0.046 0.087** 0.091**
(0.038) (0.038) (0.041) (0.043)

Log Distances to National Border 0.112** 0.125** 0.071 0.092
(0.051) (0.052) (0.057) (0.063)

Changes in Precipitation 0.940** 1.061** 0.840* 1.056**
(0.460) (0.480) (0.458) (0.510)

Changes in Temperature -1.188 -1.754 0.675 -0.088
(2.547) (2.722) (1.932) (2.120)

KPW F-Stats 34.70 32.20
R2 0.11703 0.10267 0.22214 0.17771
N 322 322 322 322

Notes: This table presents our estimates of the impact of market access, with the dependent variable being the change in log
nighttime light. We assume θ = 1 and a mask area of approximately 200 km. Columns 1 and 3 report the OLS estimates, while
columns 2 and 4 show the IV estimates. Standard errors are clustered at the district level. */**/*** denotes significant at the
10% / 5% / 1% levels.
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Table 3: THE EFFECT OF MARKET ACCESS: LIVING STANDARDS (DHS)

(1) (2) (3) (4) (5) (6) (7)
Panel A: Men Women Bedrooms Education Age Arg Land Own animals

∆ Log MA 2.033* -0.024 2.030* 4.350 -3.502 -356.570** -1.148*
(1.109) (0.851) (1.134) (5.635) (9.637) (160.834) (0.642)

KPW F-Stats 18.58 18.58 18.58 18.58 18.58 18.58 18.58
R2 0.14 -0.00 0.19 -0.06 0.04 -0.01 -0.26
N 69 69 69 69 69 69 69

(1) (2) (3) (4) (5) (6) (7)
Panel B: Bank Electricity Radio Television Fridge Mobile Mos. Net

∆ Log MA -0.665 -0.542 0.131 -0.085 -0.894 0.547 -0.209
(0.715) (0.793) (0.457) (0.812) (0.623) (0.788) (1.854)

KPW F-Stats 18.58 18.58 18.58 18.58 18.58 18.58 18.58
R2 0.03 0.01 -0.02 -0.00 0.07 0.04 -0.00
N 69 69 69 69 69 69 69

(1) (2) (3) (4) (5) (6) (7)
Panel C: Weight BMI BCG DPT Vaccine Diarrhea Vitamin

∆ Log MA -1874.264* 85.431 0.631 -0.657 1.180 1.041** -1.553*
(1115.293) (210.364) (0.564) (0.528) (1.287) (0.418) (0.913)

R2 -0.13042 0.02888 0.06542 -0.08155 0.05978 0.09814 -0.12761
N 66 69 69 69 58 69 68

Notes: This table presents IV estimates for three groups of DHS outcomes. The dependent variables are the changes in the
mean of the outcomes listed in the column titles of each panel. Regressions are weighted by the total number of households
in each stable panel unit (SPU). We assume θ = 1 and a mask area of approximately 200 km, with changes in market access
instrumented. Robust standard errors are applied and clustered at the district level. BMI (Body Mass Index) is calculated by
dividing a person’s weight in kilograms by the square of their height in meters. BCG (Bacillus Calmette-Guérin) is a vaccine
against tuberculosis and related mycobacterial infections. The DPT vaccine provides protection against diphtheria, tetanus,
and pertussis (whooping cough). Standard errors are clustered at the district level. */**/*** denotes significant at the 10% /
5% / 1% levels.
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Table 4: THE EFFECT OF MARKET ACCESS: ENVIRONMENTAL OUTCOMES

AOD NDVI

(1) (2) (3) (4) (5) (6)
All Rural Urban All Rural Urban

∆ Log MA 1.070*** 1.080*** 0.843*** -0.767** -0.774** -0.330
(0.294) (0.297) (0.194) (0.341) (0.349) (0.362)

Initial Log outcome -0.381*** -0.384*** -0.444*** -0.350*** -0.339*** -0.233*
(0.078) (0.079) (0.061) (0.063) (0.065) (0.126)

Log Distances to River 0.003 0.003 0.004 0.002 0.002 0.001
(0.004) (0.004) (0.004) (0.005) (0.005) (0.006)

Log Distances to Lake 0.004 0.004 0.004 0.041*** 0.042*** 0.017***
(0.007) (0.007) (0.006) (0.012) (0.013) (0.006)

Log Distances to National Border -0.011** -0.011** -0.012*** 0.009 0.009 0.009
(0.005) (0.005) (0.005) (0.006) (0.007) (0.008)

Changes in Precipitation 0.006 0.005 -0.000 0.097** 0.094** 0.057
(0.030) (0.030) (0.027) (0.040) (0.039) (0.052)

Changes in Temperature -0.065 -0.070 0.034 -1.074*** -1.090*** -1.061***
(0.180) (0.182) (0.169) (0.230) (0.230) (0.254)

KPW F-Stats 41.84 41.79 31.39 43.83 43.12 37.82
R2 0.15767 0.15324 0.30213 0.26568 0.25327 0.12377
N 2488 2488 1347 2461 2460 1273

Notes: This table presents our estimates of the impact of market access, with the dependent variable being the change in log
AOD in columns 1–3 and log NDVI in columns 4–6. We assume θ = 1 and a mask area of approximately 200 km. Column 1
and 4 show results from all pixels within a hexagon, columns 2 and 5 display results from pixels in rural (non-urbanized) areas
only, while columns 3 and 6 present results for urban areas. Standard errors are clustered at the district level. */**/*** denotes
significant at the 10% / 5% / 1% levels.

Table 5: MECHANISM: MANUFACTURING-INTENSIVE LOCATIONS

(1) (2) (3) (4) (5)
Built-up NTL NTL/Built AOD NDVI

Changes in Log Market Access 3.985* -9.569 -15.879* 1.144*** -0.885**
(2.364) (8.818) (8.654) (0.320) (0.357)

∆ Log Market Access × Manufacture -0.456 8.194 12.328 -0.534** 0.716***
(3.503) (9.671) (8.707) (0.233) (0.253)

Manufacture Dummy 0.722 -5.768 -9.189 0.445** -0.619***
(2.782) (7.603) (6.887) (0.190) (0.207)

Initial Log outcome -0.054*** -0.231*** -0.377*** -0.383*** -0.352***
(0.017) (0.060) (0.077) (0.080) (0.063)

KPW F-Stats 22.98 8.09 7.54 20.08 21.27
R2 0.03301 0.12309 0.15997 0.15029 0.26114
N 2488 322 322 2488 2461

Notes: This table presents the results on the impact of market access between manufacturing-intensive locations and other
areas. The dependent variables are changes in log built-up, log nighttime light, log (nighttime light / built-up), log AOD,
and log NDVI, respectively. We assume θ = 1 and a mask area of approximately 200 km. Both changes in market access and
its interaction with the manufacturing dummy are instrumented. Standard errors are clustered at the district level. */**/***
denotes significant at the 10% / 5% / 1% levels.
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Table 6: MECHANISM: PROVINCIAL CAPITALS

(1) (2) (3) (4) (5)
Built-up NTL NTL/Built AOD NDVI

Changes in Log Market Access 3.790* 0.195 -3.373 1.063*** -0.788**
(2.176) (2.868) (3.454) (0.300) (0.348)

∆ Log Market Access × Regional Capital 4.840 -24.747*** -27.444*** 0.444 1.152*
(3.142) (8.493) (10.490) (0.668) (0.693)

Regional Capital Dummy -3.550 20.080*** 22.270*** -0.356 -0.949*
(2.563) (6.724) (8.294) (0.532) (0.562)

Initial Log outcome -0.048*** -0.142*** -0.303*** -0.381*** -0.350***
(0.017) (0.050) (0.058) (0.078) (0.063)

KPW F-Stats 23.24 14.30 13.36 20.55 21.48
R2 0.03083 0.11563 0.20877 0.15597 0.26312
N 2488 322 322 2488 2461

Notes: This table presents the results on the impact of market access between provincial capital cities and other locations. The
dependent variables are changes in log built-up, log nighttime light, log (nighttime light / built-up), log AOD, and log NDVI,
respectively. We assume θ = 1 and a mask area of approximately 200 km. Both changes in market access and its interaction
term with the regional capital dummy are instrumented. Standard errors are clustered at the district level. */**/*** denotes
significant at the 10% / 5% / 1% levels.

Table 7: POLICY SIMULATIONS

Baseline +Reducing Travel
Time for Productive Cities

(1) (2)

Change in GDP (%) 0.065 0.205
Change in Non-agricultural GDP (%) 0.051 0.191
Change in Agricultural GDP (%) 0.397 0.521
Change in Welfare (%) 0.225 0.554
Change in Non-Agricultural GDP Share (%) -0.007 0.001
Change in Non-Agricultural Emp. Share (%) -0.017 0.002

Notes: Authors’ calculations. This table shows percentage changes in outcomes by comparing actual variable values with
their counterfactual counterparts, under a scenario where travel time between locations is reduced by a specific road policy.
Column 1 presents results reflecting changes based on the current (actual) travel times. Column 2 illustrates a scenario in which
travel times to all other locations are reduced by 7% for the 10 most productive cities, as identified by the local fundamentals
estimated from our model.

Table 8: CORELATION BETWEEN MARKET ACCESS AND LOCAL CHARACTERISTICS

Initial Population Non-ag Productivity Non-ag Amenities
(1) (2) (3)

Log Changes in Market Access 0.180** 0.004 34.268
(0.080) (0.008) (20.502)

Notes: This table presents the correlation between the log changes in model-inverted market access, driven by travel time
reductions under the current road policy, and the observed or inverted characteristics of each location, as specified in the
column headings. Robust standard errors are shown in parentheses. */**/*** denotes significant at the 10% / 5% / 1% levels.
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Table 9: THE DETERMINANTS OF IMPACTS OF INDIVIDUALLY REDUCING TRAVEL TIME

Non-ag Ag Non-ag Ag Initial Non-ag Initial
Productivity Productivity Amenities Amenities Population Share Population

(1) (2) (3) (4) (5) (6)

Change in Real GDP (%) 0.087*** 0.095*** 200.056*** -9.833* 4.904*** 15.864***
(0.010) (0.019) (52.441) (5.713) (0.691) (2.090)

Change in Real Urban GDP (%) 0.088*** 0.091*** 200.511*** -9.230 4.890*** 16.399***
(0.010) (0.020) (53.879) (5.865) (0.722) (2.109)

Change in Real Rural GDP (%) 0.050** 0.187*** 189.094** -23.893*** 5.225*** 3.348
(0.021) (0.020) (80.021) (7.670) (1.168) (4.266)

Change in Welfare (%) 0.179*** 0.245*** 569.154*** -19.455 11.751*** 43.876***
(0.027) (0.040) (112.376) (13.309) (1.539) (3.523)

Change in Industrialization (Pop) (%) 0.016*** 0.018*** 43.906*** -1.884 0.866*** 4.449***
(0.003) (0.004) (11.109) (1.226) (0.168) (0.205)

Change in Industrialization (GDP) (%) 0.006*** 0.003 13.874*** 0.063 0.243*** 1.700***
(0.001) (0.002) (4.980) (0.529) (0.080) (0.139)

Notes: This table presents the correlation between aggregate welfare changes (in percentage) and the observed or inverted char-
acteristics of each treated location when travel time is reduced by 10% for each location individually. For ease of visualization,
the dependent variables are rescaled by multiplying by 100. Robust standard errors are shown in parentheses. */**/*** denotes
significant at the 10% / 5% / 1% levels.
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Figure 1: Distribution of Key Variables

(A) BUILT-UP

(B) NIGHTTIME LIGHT

(C) AIR POLLUTION

(D) GREEN SPACE (NVDI)

(E) MARKET ACCESS

(F) MARKET ACCESS (IV)

Notes: This figure displays AI-predicted road quality across the core road network. In the top two panels, roads shown in
brighter colors have a higher predicted probability of having a paved surface. In the bottom panel, brighter colors indicate
more significant changes in road surface conditions.
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Figure 2: Spatial Distribution of the Changes in Market Access

(A) MARKET ACCESS

(B) MARKET ACCESS LOG

(C) MARKET ACCESS (IV) LOG

Notes: Panel (a) shows the spatial distribution of changes in market access between 2009 and 2019. Panel (b) displays the spatial
distribution of changes in log market access over the same period. Panel (c) presents the spatial distribution of the instrumental
variable (IV), capturing improvements in roads more than 200km away, weighted by economic mass in 2009, and excluding
the growth in built-up areas.
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Figure 3: IV Constructed by Masking out local roads

(A) ROAD MAPS USED FOR CONSTRUCTING MA, 2009

(B) ROAD MAPS USED FOR CONSTRUCTING MA, 2019

(C) SYNTHETIC ROAD MAPS USED FOR CONSTRUCTING
IV

Notes: This figure illustrates the instrumental variable strategy following Jedwab and Storeygard (2021). Panel (a) presents
the market access for the focal market, calculated using road scores from 2009, while Panel (b) shows the market access based
on 2019 road scores. In Panel (c), we instrument the changes in market access for the focal market (white-filled circle) using
changes in market access driven by distant road improvements (areas outside the mask, indicated by large green hexagons),
with neighboring markets’ built-up levels held constant at their initial values.
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Figure 4: Changes in Market Access from Road Building, Model Simulation

(A) REDUCED-FORM VS MODEL (B) DISTRIBUTION OF CHANGE IN LOG MAR-
KET ACCESS (MODEL)

Notes: This figure shows the features of the changes in market access from the road building policy. Specifically, we calculate
the percentage change in the endogenous variables, including the model-based market access, (X̂ = (Xt − Xt−1)/Xt−1) and
plot them against the percentage change in reduced-form market access (M̂A = (MAt −MAt−1)/MAt−1). Panel A displays
the correlation between the changes in log model-inverted market access and the changes in log reduced-form market access,
with each blue dot representing a specific district. Panel B presents the spatial distribution of changes in log market access,
where darker shades indicate areas with greater increases.

Figure 5: Local Structural Changes and Population Growth from Road Building, Model
Simulation

Notes: This figure illustrates the correlation between changes in log population and changes in the log share of non-agricultural
GDP, after purging out changes in market access. Each blue (or red) dot represents a district outside of a provincial city, with
the size of each dot proportional to the district’s population size. The blue (or red) line shows a quadratic fit of this relationship.
Similar negative relationship is found using linear fit.
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Figure 6: GDP and Non-ag GDP Shares Changes from Road Building, Changes in β and α

(A) GDP ,β

(B) GDP ,α

(C) NON-AG GDP SHARE ,β

(D) NON-AG GDP SHARE ,α

Notes: This figure presents the sensitivity of our primary conclusions on the impact of Zambia’s road-building policy across
different parameter values. In each panel, each dot represents the outcome of a separate simulation in which we rerun the
model, varying one parameter while keeping all others fixed at their baseline values. We calculate the policy’s effects on
national GDP (Panels A and B) and on the share of non-agricultural GDP (Panels C and D), both shown on the y-axis. The
dotted lines on the y-axis represent the baseline results, while the dotted line on the x-axis marks the baseline parameter value.
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A Appendix Tables and Figures

Table A.1: FIRST STAGE AND REDUCED-FORM RESULTS

(1) (2) (3) (4) (5)
Built-up NTL NTL/Built AOD NDVI

Panel A: Reduced-form
Changes in Log Market Access (IV) 6.982* -10.688 -21.683* 1.862*** -1.396**

(4.003) (10.051) (11.538) (0.526) (0.611)

Panel B: First stage
Changes in Log Market Access (IV) 1.838*** 2.592*** 2.586*** 1.740*** 1.820***

(0.268) (0.440) (0.456) (0.269) (0.275)

N 2488 322 322 2488 2461

Notes: The top panel of the table presents the first-stage results, while the bottom panel displays the reduced-form results. We
assume θ = 1 and a mask area of approximately 200 km. Standard errors are clustered at the district level. */**/*** denotes
significant at the 10% / 5% / 1% levels.
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Table A.2: ROBUSTNESS: THE EFFECT OF MARKET ACCESS UNDER DIFFERENT θ

(1) (2) (3) (4) (5)
0.5 1 1.5 2 2.5

Built-up
Changes in Log Market Access 7.986* 3.798* 2.356* 1.577 0.964

(4.607) (2.134) (1.363) (1.060) (1.010)

KPW F-Stats 50.55 47.05 38.08 26.67 16.48
R2 0.03 0.03 0.03 0.04 0.04
N 2488 2488 2488 2488 2488

NTL
Changes in Log Market Access -11.588 -4.123 -1.878 -0.827 -0.190

(9.522) (3.778) (2.121) (1.431) (1.118)

KPW F-Stats 31.45 34.70 34.22 29.89 23.54
R2 0.09 0.10 0.11 0.12 0.12
N 322 322 322 322 322

NTL/Built
Changes in Log Market Access -22.263* -8.385* -4.243* -2.371 -1.325

(11.390) (4.384) (2.391) (1.575) (1.217)

KPW F-Stats 28.61 32.20 32.40 28.99 23.61
R2 0.14 0.18 0.20 0.21 0.22
N 322 322 322 322 322

AOD
Changes in Log Market Access 2.296*** 1.070*** 0.689*** 0.531*** 0.478***

(0.661) (0.294) (0.181) (0.136) (0.130)

KPW F-Stats 46.00 41.84 33.32 23.07 14.12
R2 0.17 0.16 0.13 0.05 -0.13
N 2488 2488 2488 2488 2488

NDVI
Changes in Log Market Access -1.611** -0.767** -0.504** -0.396** -0.364**

(0.737) (0.341) (0.217) (0.166) (0.152)

KPW F-Stats 49.58 43.83 33.55 22.13 12.68
R2 0.27 0.27 0.26 0.24 0.19
N 2461 2461 2461 2461 2461

Notes: This table presents IV estimates under varying assumptions of θ, ranging from 0.5 to 2.5. The dependent variables are
changes in log built-up, log nighttime light, log (nighttime light / built-up), log AOD, and log NDVI, as indicated in the column
titles across the four panels. Standard errors are clustered at the district level. */**/*** denotes significant at the 10% / 5% /
1% levels.
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Table A.3: INTERNATIONAL TRADE, NATIONAL CAPITAL, AND MINING CENTERS

(1) (2) (3)
Ports Capital Mining

Built-up
∆ Log MA 3.487 -6.852 2.026

(2.586) (4.672) (1.239)

KPW F-Stats 12.55 32.83 33.85
R2 0.01 -0.00 0.02
N 2488 2488 2488

NTL
∆ Log MA 2.304 -6.897 -5.022

(6.070) (4.228) (24.417)

KPW F-Stats 7.24 20.05 0.31
R2 0.11 0.06 0.06
N 322 322 322

NTL/Built
∆ Log MA 0.181 -9.786** -32.680

(5.611) (4.934) (68.348)

KPW F-Stats 6.91 19.70 0.27
R2 0.21 0.09 -1.65
N 322 322 322

AOD
∆ Log MA 0.025 0.516** 0.393**

(0.292) (0.243) (0.183)

KPW F-Stats 7.46 37.97 31.51
R2 0.22 0.19 0.22
N 2488 2488 2488

NDVI
∆ Log MA -1.630*** -0.374 -0.290

(0.498) (0.385) (0.187)

KPW F-Stats 12.47 32.10 38.12
R2 0.14 0.30 0.29
N 2461 2461 2461

Notes:This table examines the effects of changes in access to trade ports, the national capital, and mining centers—driven
by road construction—on key outcomes. The dependent variables include changes in log built-up, log nighttime light, log
(nighttime light / built-up), log AOD, and log NDVI, as shown across the four panels. The primary regressors of interest
are changes in market access to these critical locations, as specified in the column titles. These regressors are instrumented
using hypothetical market access measures to these locations, constructed similarly to the main IV market access measure.
The regression specifications follow Column 6 in Table 1. Standard errors are clustered at the district level. */**/*** denotes
significant at the 10% / 5% / 1% levels.
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Table A.4: MIGRATION GRAVITY ESTIMATION

(1) (2)

Ln(Physical Distance) -1.040***
(0.082)

Log (Travel Time), hr -0.946***
(0.071)

N of region pairs 9,075 9,075
N Clusters 55 55
Pseudo R-squared 0.561 0.562

Notes: This table shows the results of estimating the migration gravity equation, equation (20). We estimate this equation
using Poisson Pseudo Maximum Likelihood (PPML) with destination-, origin-, and year-fixed effects. Robust standard errors,
clustered two-way by origin and destination district, are reported in parentheses. */**/*** denotes significant at the 10% / 5%
/ 1% levels.

Table A.5: Parameterization of the Model

Parameter Value Literature

Agglomeration Parameters α 0.05 Bryan and Morten 2019
Congestion Parameters ν −0.075 Bryan and Morten 2019
Armington Elasticity of Substitution σ 5 Simonovska and Waugh 2014; Feenstra et al. 2018
Sector Elasticity of Substitution between Goods ξ 2 Edmond et al. 2015
Sector Dispersion Parameter ν 1.95 Zárate 2022
Sector Dispersion Parameter Dispersion Parameter η 1.6 Tombe and Zhu 2019; Khanna et al. 2021 Fan 2019
Trade cost elasticity τij -0.63 Donaldson and Hornbeck 2016

Notes: This table presents the baseline parameter values used to calibrate the model, along with their corresponding sources.
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Figure A.1: The distribution of the changes in IRI from 2008 to 2015

Notes: This graph presents a histogram of changes in the International Roughness Index (IRI) for road segments reported in the
Road Development Agency’s report, comparing data from 2008 to 2015.

Figure A.2: Geography of Zambia and Hexagons

(A) PROVINCES AND DISTRICTS (B) HEXAGONS

Notes: Panel (A) displays the boundaries of provinces and districts in Zambia, while Panel (B) illustrates the hexagonal grid
cells used as the basic units for spatial analysis.
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Figure A.3: An Example of the Planet RapidEye Product

Notes: This is a typical satellite image, covering an area of 25 km × 25 km with a resolution of 5000 × 5000 pixels across 4 bands.
Radiometric and sensor corrections have been applied, and the imagery is orthorectified using RPCs and an elevation model.
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Figure A.4: Built-up results: Lusaka

Notes: This figure illustrates how our AT-predicted built-up closely align with actual built-up growth. The image on the right
shows the AI-predicted built-up for Lusaka, the largest city in Zambia. Areas overlaid with red indicates the state of built-up in
2009, while blue indicates new built-up developed between 2009 and 2014, and green indicates additional built-up developed
between 2014 and 2019. On the left, we zoom in on the area circled in yellow for the years 2009 (top) and 2019 (bottom), taken
from Google Earth. Visually, we see that the model prediction aligns well with actual built-up growth over the years.
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Figure A.5: Comparing GDP with Different Sources of Nighttime light data

(A) NOAA’S VIIRS

(B) BLACK MARBLE

(C) GDP

Notes: The figure displays a comparison of time series data for nighttime lights from NOAA’s VIIRS and Black Marble, plotted
against GDP data from 2012 to 2019.
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Figure A.6: Core Road Network in Zambia

Notes: This figure displays the core road network digitized from the Link Zambia 8000 construction plans, provided by the
Road Development Agency of Zambia. Road segment locations are primarily derived from OpenStreetMap data, with satellite
imagery from Google Earth used for additional verification.
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Figure A.7: Predicted Paved Roads in Zambia

(A) ROAD CONDITION SCORE 2009

(B) ROAD CONDITION SCORE 2019

(C) CHANGES BETWEEN 2009 AND 2019

Notes: This figure illustrates AI-predicted road quality within the core road network. In the top two panels, brighter colors
indicate a higher predicted probability of paved surfaces. In the bottom panel, brighter colors represent more substantial
changes in road surface conditions.
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Figure A.8: Correlation of Nighttime Light and Built-up and Economic Outcomes

(A) AGGREGATE REVENUE VS NIGHTTIME LIGHT (B) AGGREGATE EMPLOYMENT VS BUILT-UP

Notes: This figure displays the correlation between aggregate revenue, employment, and nighttime light. The left panel plots
aggregate revenue against aggregate nighttime light, while the right panel plots aggregate employment against aggregate
built-up area. Data are aggregated at the hexagon level, with revenue and employment data sourced from Zambia’s geo-coded
Business Establishments Register for 2011.

Figure A.9: Validation of Road Scores

Notes: This figure compares AI-predicted road condition scores in 2014/16 across three surface types recorded in the govern-
ment’s 2015 Road Condition Survey. Each box displays the distribution of AI-predicted road condition scores for each type of
ground truth surface condition. The sample includes 58 dirt or earth roads, 73 gravel roads, and 298 paved roads.
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Figure A.10: Parameter Choice: BIC under Different θ

Notes: The figure shows the Bayesian Information Criterion (BIC) value under different θ for built-up. Regression specification
follows column 6 in Table 1.
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Figure A.11: Robustness: IV Estimates under Different θ, One-standard-deviation Increase
in log Market Access

(A) BUILT-UP

(B) NTL

(C) NTL/BUILT

(D) AOD

(E) NDVI

Notes: The figure shows the IV estimates under different θ for the five key outcomes in the paper. Each dot shows the IV
estimates of the effect of a one standard deviation change in log market access constructed under θ. Regression specification
follows column 6 in Table 1.
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Figure A.12: High Manufacturing Revenue Share Locations in Zambia

Notes: This figure maps hexagons with the top 20% highest manufacturing revenue share. Firm revenues by sector are first
aggregated at the hexagon level. Hexagons shaded in blue represent those in the top 20% for aggregate revenue from manu-
facturing.
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Figure A.13: Correlation between Physical Distance and Travel Time

Notes: This figure shows the correlation between physical distance and travel time. Each dot represents an origin-destination
pair.
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Figure A.14: Inverted Local Fundamentals, Exogeneous

(A) PRODUCTIVITY, NON-AG

(B) AMENITY, NON-AG

(C) PRODUCTIVITY, AG

(D) AMENITY, AG

Notes: This figure maps the inverted local fundamentals, with each panel title specifying the type, using the equilibrium
conditions from equations (21) to (29).

B Methods to create urban boundaries

We create urban boundaries based on built-up data following the six steps below:

• Step 1: Using an inverse distance weighted kernel, aggregate pixels from 5m resolution up to 250m reso-
lution to obtain a smoothed built-up density (Figure B.15). This step smooths out gaps between discrete
built-up pixels and reduces computational cost.
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• Step 2: Pick a threshold for the smoothed built-up density p, and define urban boundaries as the pixels with
smoothed built-up density above p.

• Step 3: Measure the amount of built-up or relevant information captured in the markets based on threshold
p. The measure we use is the F1 score, which is accepted in the field of Information Retrieval. Specifically,
F1 = ρ∗γ

ρ+γ , where:

– ρ represents precision: Given urban boundaries B defined under p, the share of built-up area within B

relative to the total area of B.

– γ represents recall: Given urban boundaries B defined under p, the share of built-up area within B

relative to all built-up areas (both inside and outside of B).

• Step 4: Iterate steps 2 and 3 to find p̂ that maximizes the F1 score, as shown in Figure B.16.

• Step 5: Generate boundaries based on p̂. These boundaries tend to capture the core built-up areas of markets.

• Step 6: Create a 500m buffer around the boundaries and cluster the boundaries that are within 1km of each
other.

Figure B.15: Smoothed built-up in 250m pixels

Notes: This figure illustrates the first step in defining urban boundaries. We applied an inverse distance-weighted kernel
on built-up areas predicted by the deep learning model, aggregating pixels from a 5m resolution up to a 250m resolution to
produce a smoothed built-up density. This process bridges gaps between discrete built-up pixels and lowers computational
costs.
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Figure B.16: Search for p that maximize F1 score

Notes: This figure illustrates how precision, recall, and the F1 score vary with different values of p. Given urban boundaries
B defined under p, precision (ρ) measures the proportion of built-up area within B relative to the total area of B. Recall (γ)
measures the proportion of built-up area within B relative to all built-up areas (both inside and outside B). The F1 score,
calculated as F1 = 2ργ

ρ+γ
, reflects the overall accuracy of the urban boundary B. A higher F1 score indicates that the boundaries

more effectively capture dense built-up areas.
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Figure B.17: Examples of urban masks

Notes: This figure provide an example of the identification of the urban masks. Black lines denote the identified urban bound-
aries, which encompass cities, towns, and villages. More details are provided in Appendix Section B.

C Road surface condition classification using deep learning

C.1 Dataset Creation

The raw data consists of scenes obtained from the Planet Lab RapidEye constellation. Each scene has a resolution of
5 meters and a size of 5000 by 5000 pixels, covering an area of 25 km by 25 km. We use a rolling window technique
to crop these scenes into smaller tiles, each measuring 250 by 250 pixels. These tiles are then upsampled to 256 by
256 pixels. Each tile includes five spectral bands: RGB, Red Edge, and Near Infrared. Roads from OpenStreetMap
(OSM) serve as the labels, with a 5-meter buffer created around the road centerlines. Roads in OSM are generally
classified into four categories:

• Class 1 (Small Roads): ’service’, ’residential’, ’track’, ’living street’, ’pedestrian’, ’footway’, ’unknown’,
’path’, ’steps’, ’track grade1’, ’track grade2’, ’cycleway’, ’track grade3’, ’track grade4’, ’track grade5’, ’bridle-
way’

• Class 2: ’unclassified’ (with specific definitions in OSM)

• Class 3 (Big Roads): ’primary’, ’primary link’, ’secondary’, ’secondary link’, ’tertiary’, ’tertiary link’

• Class 4 (Trunk/Motorway): ’trunk’, ’trunk link’, ’motorway’, ’motorway link’ (high visibility and most
likely paved)

Since smaller roads might not be easily visible at a 5-meter resolution and are more prone to mislabeling, we
follow the approach of Oehmcke et al. (2019) and create four binary classifiers to detect roads from each class. First,
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the tiles are ranked based on the highest classification of road present. For example, a rank 4 tile must contain a
trunk or motorway road, but it may also include roads from other classes. In contrast, rank 3 tiles will not contain
trunk or motorway roads.

The classifiers are designed as follows:

• Classifier 1: Detects all road classes using samples from tiles containing any type of road.

• Classifier 2: Targets classes 2, 3, and 4, using samples from tiles with roads of class 2 or higher (rank 2+).
Smaller roads are labeled as background.

• Classifier 3: Targets classes 3 and 4, using samples from tiles with roads of class 3 or higher (rank 3+).
Smaller and unclassified roads are labeled as background.

• Classifier 4: Targets trunk/motorways (class 4), using samples from tiles containing only trunk/motorway
roads (rank 4). Other roads are labeled as background.

To ensure a balanced dataset for the four road classes, we limit the number of tiles in lower-ranked categories
to match the number of tiles in the highest rank (26,819 labeled tiles per rank). As a result, the training dataset
for Classifier 1 is four times larger than that for Classifier 4. For sample splitting, 10% of the data is reserved for
validation, 10% for testing, and the remainder for training. To minimize spatial correlation in the error terms, data
randomization is performed at the scene level, ensuring that tiles in the validation and test sets are, on average, 25
km away from the training tiles.

C.2 Training Details

We use random crops of size 256 × 256 from the tiles, followed by mean subtraction. The DLinkNet34 model (Zhou
et al., 2018) is trained on the four datasets with a batch size of 128. We use the Layer-wise Adaptive Minibatch
(LAMB) optimizer (You et al., 2019) with a momentum of 0.9. The learning rate follows a cosine annealing sched-
ule, starting from 1e-4, increasing to 1e-3, and then reducing back to 1e-4. The loss function used is 1− dice score.
Appendix Figure C.18 presents an example of a tile cropped from the satellite images used for training, along with
the corresponding labeled tiles and the predicted results.
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Figure C.18: Demonstration of labeled tiles and prediction made by the deep learning
model

Notes: The figure displays sample tiles used for training in the deep learning model. The left tile shows the raw input image,
the middle tile represents the ground truth label, and the right tile depicts the road predicted by the model.
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D Quantitative Spatial Model Appendix

Given trade costs τij , migration costs Mij , local fundamental productivity Āis and amenities ūis, initial populations
L0e
i , preference parameters {σ, η}, and production technology parameters {θi, ρ}, an equilibrium is defined over a

series of endogenous variables {wis, Lis, ωi, ϕi, pis, Pi} such that,

• Labor Market Clearing: Labor demand stated in Eq.(17) and Eq.(17) equals labor supply stated in Eq.(11)
for each location i and each sector s.

• Goods Market Clearing: For each location i and each sector s, the total payment to labor equals total sales,
and the total expenditure equals to total payments to goods.

• Closed Model: The model is closed in the sense that the total population is constant.35

The equilibrium can be formally expressed as follows,

wisLis =
∑
j∈N

(
Pjs

1−ξ∑
s′∈S Pjs′

1−ξ

)(
p1−σs
ijs∑

i′∈N p1−σs

i′js

)
wjsLjs (21)

Pjs =

(∑
i′∈N

p1−σs

i′js

) 1
1−σs

(22)

Lj =
∑
i∈N

(
Φj

PjDij

)η
∑

j′

(
Φj′

Pj′Dij′

)ηL0
i (23)

Wi =
∑
j′

(
Φj′

Pj′Dij′

)η

(24)

(25)

We denote ωj =
(

Φj

Pj

)η
, Wi =

∑
j′

(
Φj′

Pj′Dij′

)η
, Tij = τij

1−σs and Mij = Dij
−η , then we have the following

system that can be used to invert the price and welfare composites.

pis
σs−1 =

∑
j∈N

(
Pjs

σs−ξ∑
s′∈S Pjs′

1−ξ

)
Tij

(
Yjs

Yis

)
(26)

(
Pjs

σs−1
)−1

=
∑
i∈N

(pi′s
σ−1)

−1
Ti′j (27)

ωj
−1 =

∑
i′∈N

Mi′j

(
L0
i

Lj

)
Wi

−1 (28)

Wi =
∑
j′∈N

Mij′ωj′ (29)

Since ωj =
(

Φj

Pj

)η
, we can use the inverted ωj and wage data to recover Φj . Then we can combine Φj and the

sectoral composition of each location, πis|j =
(ujswjs)

ν∑
s′ (ujs′wjs′ )

ν , to back out the amenity level of each location.

35The initial population of a location should equal to the total out-flows of population to all location (include stayers), and the
total population should equal to the in-migration from all locations (include stayers).
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