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Abstract 
Knowing how long the average vehicle remains roadworthy before being scrapped is a crucial input 
into life cycle assessment (LCA) and total cost of ownership (TCO) studies of different vehicle 
powertrains. This study leverages a dataset of over 300 million MOT records from 2005 to 2022 
for over 30 million vehicles registered in Great Britain and uses parametric survival analysis with 
interval-censored data to examine the longevity of various powertrains under real usage conditions. 
Our findings reveal that (plugin) hybrid electric vehicles have the longest expected longevity in 
terms of years and mileage, both of which are about 50% higher than those of an average fleet 
vehicle. Battery electric vehicles (BEVs), while initially showing lower reliability, have benefited 
from rapid technological improvements such that the latest BEVs in our sample match the lifespan 
of petrol vehicles despite being used more intensively. Longevity is also impacted by engine size, 
location, and make of vehicle. The results provide parameter estimates that can be used to update 
TCO and LCA models and also shed light on EV diffusion patterns, fleet replacement strategies, 
and end-of-life treatment planning, including the increasingly important debate around EV battery 
recycling and second-life options. 
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1 Introduction

The electric vehicle revolution is widely considered as a way to decarbonize the trans-
port sector and to reduce air pollution from tailpipe emissions (Carey, 2023). However,
there are numerous economic, infrastructural, and behavioural challenges before full
electrification can be achieved and explains why hybrid (HEV) and plug-in hybrid
electric vehicles (PHEVs) are still seen as important transition products towards a
fully battery electric vehicle (BEVs) future.

To estimate the true environmental benefits of HEVs, PHEVs, and BEVs (hereafter
referred to collectively as EVs) and how they compare with existing petrol and diesel
vehicles with internal combustion engines (ICEVs), one needs to consider the entire life
cycle of a vehicle and how any benefits are spread across the life cycle. For example, the
production of a typical EV is relatively resource-intensive and is estimated to require
six times the critical mineral inputs of a conventional vehicle (IEA, 2022). According
to Hill et al. (2023), the environmental impact from the production of a BEV is 50%
higher than an ICEV. The key argument in favour of an EV transition is that this
additional initial environmental cost is more than offset during the use phase if the
vehicle has a long enough useful life. For example, HEVs and PHEVs consume less
fuel than pure internal combustion engine vehicles (ICEVs) to travel the same distance
(Zahabi et al., 2014) while PHEVs and BEVs offer the opportunity to entirely replace
fossil fuels with low-carbon electricity generated from renewable sources such as solar,
wind, tidal, and geothermal energy.1 Assuming that travel demand remains constant,
the current energy mix in Europe means that the longer an EV stays on the road, the
greater the environmental benefits (Hill et al., 2023).

The economic justification for the introduction of policies to promote wider EV
adoption is also strengthened with a a prolonged EV use phase. Putting the environ-
mental impact of production aside, although typically EVs have a higher upfront cost
than traditional ICEVs (currently around $12,000 according to Baik et al. (2019)),
owners tend to benefit from lower operating costs due to the typically lower cost of
electricity compared to gasoline and lower maintenance costs. Argonne National Lab-
oratory (Burnham et al., 2021) estimate maintenance costs to be $0.06 per mile for
BEVs and $0.10 per mile for ICEVs (with HEV and PHEVs somewhere in the middle).
Overall costs may also be reduced further as a result of various policies that improve
the financial incentives for purchasing an EV which range from direct subsidies to
reduced or waived road taxes, parking fees, and tolls (Zhang et al., 2016; Jenn et al.,
2018; Clinton and Steinberg, 2019).

1Charging PHEVs and BEVs with electricity from coal or gas-fired plants could reduce the environmental
benefits. The overall impact can then be varied and spatially dispersed (Holland et al., 2016, 2019).
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The purpose of this paper is to use the compulsory roadworthiness tests (MOT
tests) in Great Britain to estimate the longevity of different powertrains with particular
emphasis on providing estimates for a range of newer EV vehicles. More specifically,
statistical analysis on over 300 million compulsory MOT tests allows us to provide
timely information on the survival rates of different vehicles including the newer EV
powertrains. The advantage of using MOT data is twofold. First, as MOT tests are
legally required for almost every vehicle on the road, the dataset is comprehensive and
representative of the actual vehicle fleet. As such, analysing MOT data provides a
more holistic view of the fate of the fleet at the end of its life rather than estimates
derived from studies that use the small set of vehicles included in commercial survey
datasets. Second, anonymised MOT test data are freely available and provide a source
of information that is transparent and regularly updated. Unlike other free admin-
istrative vehicle registration datasets, anonymised MOT test data includes mileage
(odometer reading), cylinder capacity, colour, and test location. Mileage data and
the date of first registration are particularly important as they allow us to estimate
longevity in terms of both years and distance travelled.

Having an accurate measure of the longevity of different powertrains, whether the
lifetime is measured in time or distance, matters because it is an important input
into Life Cycle Assessment (LCA) and Total Cost of Ownership (TCO) models that
compare the environmental impact and economic cost between EVs and ICEVs.2 LCA
and TCO estimates are also important for forecasting automotive sales and planning
for end-of-life vehicle treatment. However, knowledge about the longevity of EVs
remains relatively limited and what research does exist tends to assume a common
functional unit for all EVs and is often extrapolated from an estimate based on the
evidence from ICEVs, despite the increasing variety of EVs available on the market,
differences in their usage patterns, and large technological differences between EVs
and ICEVs.

There are two relevant previous studies in this regard. First, Hutchinson et al.
(2014) assumes a common life mileage of 130,000 to compare the emission and cost
of 44 hybrid and plug-in hybrid vehicle models in the US. Second, a recent study
commissioned by the UK Department of Transport to assess the environmental impact
of a wide range of hybrid and electric vehicles in the UK assumes that all vehicles stay
on the road for 200,000 km (around 124,000 miles) over 14 years (Ricardo Energy,
2021). However, the estimates from Hutchinson et al. (2014) and Ricardo Energy
(2021) are based on restrictive assumptions due to the difficulty of accessing data on

2LCA is a methodology used to assess the environmental impacts of a product or process throughout its
entire life cycle and includes raw material extraction, production, use, and disposal. See Hellweg and Milà i
Canals (2014) for a review and Verma et al. (2022) for an LCA comparison of EVs and ICEVs. TCO is
an estimation of the expenses associated with buying, deploying, using and retiring a product. Recent TCO
studies include Hagman et al. (2016); Letmathe and Suares (2017); Palmer et al. (2018).
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scrappage rates by powertrain (Chatterton et al., 2015). While there is scrappage
data that can provide insights into the longevity of some already scrapped vehicles,
this data does not help with estimating future scrappage rates of newer vehicle models,
particularly those that use newer technology stacks. The lack of data is most keenly
felt for EVs where the main source of information on lifespan is based on lab-based
data, expert judgement, and educated guesses (Weymar and Finkbeiner, 2016). It is
this gap in knowledge that we attempt to fill in this study.

A concern one might have using MOT test data to determine a vehicle’s lifespan
is that the dataset does not provide the exact date when a vehicle retires. In order
to classify a vehicle as no longer on British roads, extra steps need to be taken. In
statistical terms, our dataset includes two types of censored data. Right censored data
consists of vehicles that have attended a recent MOT test, providing information about
the ‘survival’ of the vehicle up to that point and interval censored data that includes
vehicles that have missed a recent MOT test, indicating that they may have been
retired at some point between the previous MOT test and the expected but missing
MOT test. To address these censoring issues we employ a parametric regression model
with a Weibull distribution, commonly employed to model the survival of vehicles in
a fleet.3

To briefly summarise our results, findings suggest that there are a variety of ob-
servable factors that can predict the lifespan of vehicles, such as the intensity of use,
engine size, colour, location, and make. However, the magnitude of the impact of each
factor depends on the type of powertrain. Simulations indicate that a good approx-
imation for the lifespan of a typical vehicle in the fleet is 138,000 miles. (P)HEVs
exhibit a 50% longer lifetime mileage, while BEVs have nearly doubled their lifespans
and seen a sixfold mileage increase over the twelve-year period that our data covers.
The latest average BEVs in our study are projected to survive for approximately 18.4
years. Remarkably, this lifespan is very similar to traditional petrol vehicles even when
EVs are subjected to more intensive use, hence newer BEVs are expected to surpass
their petrol counterparts in terms of overall lifetime mileage predicted to be 124,000
miles.

Our study relates to several strands of literature. Researchers have long been
interested in modelling the scrappage and survival rates of petrol and diesel cars (Parks,
1977; Gilbert, 1992; Jong, 1996; Yamamoto et al., 2004; Rashidi and Mohammadian,
2011; Ghasri et al., 2018) as well as the impact of policies aimed at encouraging
vehicle scrappage (Gruenspecht, 1982; Goulder et al., 2012; Jacobsen and van Benthem,
2015; Alberini et al., 2018; Li et al., 2022). The rise of electric vehicles has also

3Additional assumptions regarding the functional form significantly enhance computational efficiency, a
crucial benefit given the unusually large size of the dataset for this type of non-linear estimation.
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led to a growing interest in understanding the adoption and diffusion of these new
powertrains (Hagman et al., 2016; Li et al., 2017; Palmer et al., 2018; Gillingham, 2022;
Muehlegger and Rapson, 2023). To date, however, there has been limited research on
estimating the longevity of newer powertrains at the fleet level. This study makes
a unique contribution using the anonymised MOT test dataset which is increasingly
being recognised as a valuable source of big data for addressing different management
and socioeconomic issues (Chatterton et al., 2015; Heap and Talavera, 2019). To this
end, we demonstrate how big data can be used to better support risk analysis (Cox
and Lowrie, 2021) especially in the transport sector (Xie et al., 2017).

The paper is structured as follows. In Section 2, we provide background information
on the electrification of vehicles in the UK. Section 3 describes the datasets and main
variables used in the study. In Section 3 we outline our methodological approach.
Section 4 presents and discusses the results of the analysis. Finally, in Section 5, we
provide a conclusion and suggest areas for future research.

2 The Electrification of Vehicles in the UK

As economies transition from agriculture to manufacturing and then to service-based
economies, the relationship between economic development and environmental degra-
dation tends to follow a U-shape pattern. More precisely, after a turning point, ad-
vances in technology and increased environmental awareness slow and then reverse the
damage to the environment. This is particularly evident in the UK, where, in recent
years, decoupling has seen CO2 emissions decrease by 34.2% despite an increase in
GDP of 70.7% (Agbugba et al., 2019). Largely as a result of deindustrialisation, the
transport sector has become the largest emitter, accounting for 28% of end user green-
house gas emissions (Department for Business, Energy & Industrial Strategy, 2022).
Therefore, electrification of transport, particularly road transport, is expected to play
a crucial role in further decarbonising the economy as vehicles powered by traditional
fuels, such as high-emission petrol and diesel, are replaced with more modern and
cleaner powertrains. However, the magnitude of the environmental benefits associated
with electrification will depend on the power mix in the grid and how the contribution
of electricity generation from renewables compares to that from burning fossil fuels.

Zero-emission options for the transport sector include BEVs and Fuel cell electric
vehicles (FCEVs) (HM Government, 2018). Unlike traditional powertrains, both rely
solely on an electric motor for propulsion and have no combustion engine. A BEV
stores energy for its electric motor in a battery that can be recharged by plugging it
into an electrical source, whereas an FCEV uses compressed hydrogen. The alternative
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to a BEV is a hybrid vehicle of which there are different types. Hybrid electric vehicles
which combine electric batteries and a combustion engine are widely accepted as a
transition option as long as full electrification remains economically and technically
challenging. Some hybrids have an electric motor that supports the main engine, while
other hybrids have an electric motor that can propel the vehicle for a limited range,
typically 1-2 miles. A plug-in hybrid can be connected to an external power source
to recharge its battery, and both its engine and electric motor can propel the vehicle
independently. Finally, Range-Extended Electric Vehicles (REEVs) have an internal
combustion engine that does not directly power the vehicle, but recharges the battery
that propels the vehicle, much like a BEV. In this paper, we separate BEVs and ICEVs
as well as a hybrid category that combines HEVs and PHEVs.4

As can be seen in Figure 1, by 2022 the UK stock of electric vehicles, including
HEVs, exceeds 2.35 million and accounts for 8% of the entire fleet operating on British
roads. Although HEVs still make up the majority of the EV stock, sales of BEVs
outsold HEVs for the first time in 2021. From a global perspective, data in 2022
indicate that the UK has the fourth largest PHEV fleet (behind China, the USA, and
Germany) and the six largest BEV fleet (behind China, the USA, Germany, France,
and Norway) (IEA, 2023).5 The UK law mandates that GHG emissions be reduced to
net zero by 2050 leading the government to pledge to end the sale of new petrol and
diesel cars and vans by 2030 although this date was pushed back to 2035 in 2023.

3 Data

3.1 Anonymised MOT Test Dataset

The main dataset used in this study is the anonymized MOT (Ministry of Transport)
test database. The MOT test is mandatory for almost all passenger and light-goods
vehicles, private buses, and motorbikes in the UK, as required by the Road Traffic Act

4We were unable to split the hybid category into HEVs and PHEVs due to data availability. We did not 
analyze FCEVs due to their small sample size, reflecting the lesser importance of these new technologies in 
the study period. REEVs could be either (P)HEVs or BEVs in our dataset although they are also very small 
in number and indistinguishable given the available data. REEVs, once considered a practical solution for 
addressing range anxiety, have become less appealing due to advances in battery technology and an expanded 
charging network.

5The combined market share of BEVs and PHEVs in the UK’s vehicle fleet is 2.8% and ranks twelfth, trail-
ing Norway, Iceland, Sweden, Denmark, the Netherlands, Finland, China, Belgium, Switzerland, Germany, 
and Austria.
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of 1988.6 In order to ensure vehicles are roadworthy and meet minimum environmental
requirements an MOT test must be taken at least once a year for vehicles that are
three years or older.7 The dataset includes information about the time, location,
and final outcome of the MOT test, but also a number of vehicle characteristics.
MOT test outcomes were computerised in 2005.8 We waited for the May 2023 update
which covers tests from 2005 to 2022 and also includes test results for 2017 that were
previously missing due to a recording error.

MOT tests are carried out primarily in private garages and by certain local au-
thorities. The locations, known as Vehicle Testing Stations (VTS), are authorised and
designated as appropriate by the Driver and Vehicle Standards Agency (DVSA). The
VTS and their staff are subject to inspections by the DVSA to ensure that testing is
conducted properly using approved equipment. Only specifically approved individuals
are permitted to conduct tests, sign official test documents, and make database entries.
Information about the vehicles, such as the mileage, colour, fuel type, and cylinder
capacity, is entered or validated by the tester at the time of the test. Vehicles can
be tracked using the Vehicle ID field which is based on the registration and Vehicle
Identification Number (VIN). A high-level postcode region (the first 1-2 digits of the
postcode of the VTS) is also provided, but to prevent identifying any individual VTS
any region with fewer than five active sites is merged under the code ‘XX’.

3.2 Data Processing

The first stage was to download the MOT test data for each year between 2005 and
2022 from the UK’s Department for Transport (DfT) website and combine them into
a single dataset. During the initial cleaning process, we removed a small number of
records with missing vehicle IDs. As part of data quality control it was discovered that
there were occasional discrepancies in the information provided for the same vehicle
in different tests. As a result, rules were established to deal with these inconsistencies.
For vehicle types and fuel, information from the most recent test was used, as the
classification of vehicles tends to improve over time as testers become more familiar
with the new technologies. Information provided in the first test was used for colour
and first use time. For cylinder capacity, a majority rule was used and the odometer
information and test date from the last test in the dataset was taken to calculate the
average mileage of each vehicle throughout its lifetime. After resolving conflicts in the
data, we removed all vehicles that had their first MOT test before it was two years old

6The anonymised MOT test dataset used in this study however only covers tests in Great Britain.
7For certain vehicles, such as taxis, ambulances, and some motor caravans and dual-purpose vehicles, the

age at which the first test is required is one year.
8As MOT computerisation was not fully implemented across Great Britain until April 1, 2006, the dataset

is not complete for tests conducted between January 1, 2005 and March 31, 2006.
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since these vehicles were more likely to be taxis and ambulances. We only analysed
Class 4 vehicles that mainly consist of passenger and light-good vehicles.

The final sample is restricted to four major powertrains: PE (Petrol), DI (Diesel),
EL (Electric) or HY (Hybrid). While classifying petrol and diesel was straight-forward
it was initially necessary to combine EL and HY together as there was no clear and
consistent rule to differentiate them.9 After an initial pooling we were then able to split
the HY/EL pool into two samples. (1) Those with non-missing and non-zero cylinder
capacity are put into (P)HEV sample as they all have an electric motor and an engine
(suggested by the cylinder capacity information) so must be either an HEV or PHEV.10

(2) Those with missing or zero cylinder capacity are more likely to have no engine,
hence are classified as fully electric vehicles (BEVs). In those cases where vehicles
with an engine failed to record an engine size during the MOT test, we consolidated
the information on the make and models of these cars and kept only those recognised
by DVSA as BEVs so we did not accidentally include other powertrains.11 For petrol
and diesel cars, we also excluded a negligible fraction of vehicles with missing or zero
cylinder capacity. Petrol, diesel and (P)HEV were placed into one of three bins based
on cylinder capacity: Under 1 litre, between 1-2 litres, and above 2 litres.12

Vehicle location was inferred from the postcode area of the first recorded MOT
result. Postcodes were then mapped to 11 regions in Great Britain. Relatively aggre-
gated regions were used to speed up the computational process, but also to allow for
easier interpretation since these regions are sufficient to capture some aspects of nat-
ural driving patterns, weather conditions, and certain socioeconomic characteristics.
Vehicles with postcodes coded as ‘XX’ were excluded. Location assumes that owners
take the vehicle to a VTS relatively close to where they live.

Finally, a cohort variable was created to capture the vintage of the technology,
determined by ‘first use time’ information. Each year is defined as a new cohort
and our sample includes vehicles registered in 2005 to 2017. Cohorts after 2017 are
excluded as we want to follow a vehicle for at least two MOT tests from the first
test or roughly five years from the first use if the vehicle still exists. For sample size
reasons, only makes with at least 1,000 unique vehicles for petrol, diesel, and (P)HEVs
were included. For BEVs the threshold was lowered to 100 as this powertrain was still

9For example, there were a large number of Toyota Prius (a famous HEV model) and Mitsubishi Outlander
(a famous PHEV model) classified or misclassified as either HY or EL.

10Unfortunately, the information provided in the MOT test data did not allow us to differentiate between
PHEVs and HEVs so we call this sample (P)HEV.

11This means we exclude the small number of (P)HEV vehicles that did not have information on engine size
of which the make and model was not recognised by DVSA as a BEV.

12We dropped the make ‘LONDON TAXIS INT’ and standardised major makes. For example, any vehicles
with a make of BMW and other characters (i.e., additional details regarding the BMW model) were shortened
to just BMW. Similar rules were applied to other makes. We also removed vehicles with unusually high
mileages (exceeding 100 miles per day, as recorded at the last test.)
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growing from a low base during this period but provides the main motivation for the
study. In robustness checks, we also restricted the sample to BEV makes with at least
1,000 vehicles.

4 Methodology

4.1 The Heuristic of Death Definition

As the anonymised MOT dataset does not contain explicit information on the retire-
ment of vehicles, we use the date of a vehicle attending a MOT test as evidence of
its survival up to that point in time. As our data ends on 31st December 2022, we
have a right-censoring issue. More precisely, for a vehicle that regularly attends MOT
tests, we do not know the exact date of its death, but can conclude that it must have
happened after the last MOT test is recorded in the data.

The use of MOT records allows us to infer that death occurred within a certain
interval of time. A legal requirement is that if a vehicle is over three years old and still
operating on British roads it must attend a MOT test every year. As our database
contains all MOT tests taken within our sample period, if a vehicle is not recorded
as having taken a test then it raises questions about the continued survival of that
vehicle. If all vehicles strictly follow the legal requirement, we can confidently classify
a vehicle as ‘retired’ if no test result is observed for a certain period (usually one year)
after the last MOT test result recorded in the system. However, there are a number
of practical reasons why a vehicle MOT test may be delayed so we allow for a ‘buffer
period’ after the date the test should have been taken before concluding that a vehicle
has been retired.13

Figure 2 gives an example of an MOT attendance pattern and illustrates the vehicle
retirement assumptions used in the analysis. The top line shows that the vehicle
regularly attended MOT tests at times t1, t2, and t3. As the cutoff point of our data is
the end of 2022, in this case, we do not observe the vehicle fate as the expected MOT
t4 has not yet happened and thus we conclude that the vehicle fails at some point after
t3, or in other words within the interval (t3,∞). On the other hand, the second line
shows a vehicle that attended regular MOT tests up to t2 but missed the MOT test
that should have happened in t3. To account for delays in taking the MOT in that

13For example, some drivers may be unaware of the importance of regular MOT testing or when their MOT
is due, particularly if the vehicle recently changed ownership. The cost of an MOT test and any necessary
repairs can also be a factor for some owners, particularly if they are facing financial difficulties. Vehicles that
are not used frequently or have mechanical issues may be kept off the road until they can be repaired, which
can also push back the eventual MOT date that is recorded in the system.
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year, we allow a buffer ∆t and search again. If we do not see the vehicle attending an
MOT test within the designated buffer period we conclude that the vehicle no longer
operates on British roads and classify it as retired between the interval (t2, t3 + ∆t).

[Figure 2 about here]

The selection of buffer time ∆t is an empirical matter. One should note that if
we allow for a long ∆t, we may miss information on some real deaths of vehicles and
lose useful information (i.e. classify an interval-censored death as a right-censored
death). In contrast, if we assume too short a ∆t, we may misclassify some surviving
vehicles with late MOT attendance as retired. Our heuristic approach to selecting the
appropriate buffer time is to analyse the distribution of the gaps between consecutive
MOT test dates in our cleaned database (which includes more than 264 million tests).
Our analysis suggests that around 50% of tests fall strictly within a year of the previous
MOT test. Therefore, setting a buffer time to zero would classify any vehicle that
misses an MOT test within one year as retired and would be too strong an assumption.
In contrast, when we set the baseline buffer time to six months we capture 99% of
tests since results show that less than 1% of tests occur more than six months after
the original due date. As our baseline we classify as retired any vehicles that fail to
attend a MOT test within 18 months of their last recorded test. As a sensitivity check
our results also include estimates based on two alternative thresholds three months
early and later than our 18 month baseline at 15 and 21 months.

4.2 Survival Analysis

To model the longevity of a vehicle we use survival analysis, a statistical technique
that deals with the expected duration of time until an event occurs (Xie et al., 2019).
More specifically, we are interested in a non-negative random variable T representing
the lifetime of a vehicle, i.e., the duration until retirement (being scrapped or no longer
driving on British roads). The distribution of T can be characterised by a survival
function, S (t) = P(T > t), which gives the probability that a vehicle will survive past
a certain time t, and a hazard function, which specifies the probability for a vehicle
to be scrapped in the next infinitely small period of time, ∆t, conditional on the fact
that the vehicle survives to time t.

h(t) = lim
∆t→0

P(t < T < t + ∆t)
∆t

=
f (t)

1 − F(t)
=

f (t)
S (t)

(1)

In this equation, f (t) and F(t) are respectively the density function and the cumula-
tive distribution function and the survival function can be expressed as S (t) = 1−F(t).
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Adopting the proportional hazard function, a common approach to model hazard
function h(t), we assume that the hazard function of a vehicle is proportionate to a
baseline hazard function, h0k(t), and is adjusted by a vector of time-invariant covariates,
x j, and a vector of coefficients, βk. Here we use subscript k for the baseline hazard
and vector of coefficients to highlight the fact that we model data separately for each
powertrain: petrol, diesel, (P)HEVs and BEVs.

h j(t) = h0k(t) exp(x jβk) (2)

A range of covariates are included in the analysis: (1) we use the mileage rate
recorded at the last test date as a proxy for the usage pattern of vehicles hypothesising
that a vehicle driven more often will tend to retire earlier. (2) We include a cohort
variable as a proxy for the technology available at the time the vehicle is first on
the road. (3) For powertrains with internal combustion engines we include a vector
of indicator variables for cylinder capacity to account for the variation in lifespan
across engine sizes (1 litre and below, 1 - 2 litres, and 2 litres and above). (4) We
include a vector to capture the colour of the vehicle as this choice may be correlated
with some unobserved traits related to the choice of colour and the characteristics
of drivers that may influence driving patterns (Lardelli-Claret et al. (2002); Newstead
and D’Elia (2010) have suggested that the visibility of vehicles may affect their safety).
(5) We use the region that the MOT test was taken to proxy regional driving and road
conditions. (6) We include vehicle make dummies to explain the variation in vehicle
popularity, demand for luxury or cost sensitivity and to capture the possibility that
the make of a vehicle may also be correlated with driver characteristics.

Here, we do not explicitly model the impact of policies on the scrappage decisions of
vehicle owners. Although there was a UK-wide, government-backed scrappage scheme
introduced in the 2009 UK Budget (HM Treasury, 2009) it was terminated in March
2010 and did not target vehicles registered after 2005 (which is the first cohort included
in our sample). More recent regional scrappage schemes, including Birmingham (2021),
Bristol (2022), London (2023), and Scotland (2023) (Evans, Claire, 2023), had only a
negligible effect on the vehicles in our dataset, given their proximity to the end of our
study period (2022). As such, the longevity estimates are mainly driven by mechanical
ageing, user behaviour, accidents, and market factors, rather than explicit policies.14

We further assume that the baseline hazard function is parametric and follows a
Weibull distribution such that:

14Market factors may include various scrappage schemes run by car manufacturers, which typically offer
financial incentives to trade in old vehicles for new.
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h j(t) = ρktρk−1 exp(x jβk) (3)

The key implication of this parametric form is that the hazard rate is monotonic
and increasing or decreasing over time, depending on whether the shape parameter ρk

is greater or smaller than 1, respectively. If ρk = 1 the hazard rate is constant over
time and the Weibull simplifies to an exponential distribution. The parameterization
λ j = exp(x jβk), which is non-negative, time invariant, and covariate dependant, scales
the baseline hazard rate up or down and is specific to each vehicle (Alberini et al.,
2018). We use the Weibull proportional hazard model as the literature suggests that
it is well-suited to model the retirement of vehicles with censored data (Rashidi and
Mohammadian, 2011; Alberini et al., 2018). Again, the subscription k of ρk highlights
the fact that our models permit distinct shape parameters across powertrains. Mean-
while, other observable covariates come into play, affecting the scale parameter of the
Weibull distributions within each powertrain.

The vector of the coefficient β and the shape parameter ρ were estimated with
maximum likelihood. As discussed above, the observations are either right-censored
( j ∈ RC) or interval-censored ( j ∈ IC). This means we do not observe t j directly but
instead have its lower bound tl j (the last MOT test the vehicle attended) and the upper
bound tu j for some vehicles that missed a recent MOT test. The log-likelihood function
for estimation can be written as follows:

log L =
∑
j∈RC

log S j(tl j) +
∑
j∈IC

log[S j(tl j) − S j(tu j)] (4)

For each vehicle, and standard in the literature, we estimate the median lifetime
as the point in time where the survival function reaches a value of 0.5:

l̂ j = {t : Ŝ j(t) = 0.5} (5)

The median lifetime mileage is then estimated as the product of the estimated
median lifespan and the estimated mileage rate (r̂ j) recorded in the last MOT test.

m̂ j = l̂ j × r̂ j (6)
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5 Results and Discussion

5.1 Summary Statistics

The data cleaning process outlined earlier gives us a final p opulation o f 30.2 million 
vehicles and over 264 million test results for the period 2005 to 2022 as summarised 
in Table 1. The majority of cars in our sample are petrol (15.1 million) or diesel 
(14.7 million) and a smaller number of (P)HEVs (371.3 thousand) and BEVs (41.7 
thousand). This is consistent with official statistics trends in the UK where petrol and 
diesel cars still dominate the market despite growing EV sales (see Table VEH1103 
(DfT and DVLA, 2023)).

Looking at the cohort variable (the year of first registration) shows that the the 
average petrol car in our sample is slightly older (2010.7) than the average diesel car 
(2011.3) but also highlights that in contrast the (P)HEVs and BEVs in our sample are 
much newer, with an average cohort years of 2013.7 and 2015.1, respectively. In terms 
of mileage, unsurprisingly, diesel cars which tend to be used for longer trips have an 
average mileage of 28.8 miles per day compared to petrol cars which average 18.2 miles 
per day. Newer powertrains are somewhere in between these figures, with (P)HEVs 
covering approximately 26.5 miles per day, closer to diesel, and BEVs averaging around 
18.9 miles per day, closer to petrol vehicles.

Table 1 also shows that in terms of colour, black followed by silver, then blue 
are the most popular choices for petrol vehicles while black then silver and white 
were more popular among diesel vehicles. For (P)HEVs, white and black were the 
most popular while white dominated the BEV sample with more than 33% being this 
colour. In terms of cylinder capacity, a medium engine between 1.0-2.0 litres was the 
most popular across all powertrains (except engine-less BEVs). South East England 
had the largest population of petrol, diesel and BEVs, while London had the largest 
fleets of (P)HEVs. There was a wide range of makes for petrol and diesel vehicles in 
the dataset, each occupying a small share of the market. However, as the choice for 
electric vehicles is more limited (P)HEVs were concentrated in the makes of Toyota 
(53%) and Lexus (21%), while Nissan (49%), Tesla (19%) and Renault (17%) were the 
three largest BEV makes.
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5.2 Survival Analysis Results

Table 2 presents the results of the survival analysis for four different powertrain cat-
egories: Petrol (columns 1-3), Diesel (columns 4-6), (P)HEV (columns 7-9) and BEV
(columns 10-12). Table 2 shows three specifications for each powertrain using different
definitions of retirement for buffers 15, 18, and 21 months. To enhance interpretability,
we present the coefficients in the exponentiated form, capturing hazard ratios. Our
preferred specification utilises the coefficients corresponding to the 18-month cut-off
point. Overall, the choice of buffer makes little difference to the sign and significance
of the results.

Weibull parameter

The regressions in Table 2 use a parametric approach and assume a Weibull distribution
for the baseline hazard. Estimates of Weibull parameters ρ for all powertrains are
consistently greater than 1, indicating that the failure rate increases over time. When
comparing the 18 month estimates of the ρ parameter, the ageing process appears
to be more aggressive for petrol vehicles (4.06) which is greater than diesel (3.41),
(P)HEVs (2.50) and BEVs (2.45). These ρ parameters are presented in Figure 3. The
suggestion is that the differences can be attributed to the fact that internal combustion
engines have more moving parts and are subject to more wear and tear than electric
motors, which are simpler in design. In addition, the use of hybrid technology in
HEVs is thought to help reduce wear and tear on a vehicle’s mechanical components
and improves fuel efficiency, slowing the failure rate over time. Over this period the
BEV and Petrol survival functions cross almost exactly at the 0.5 level.

Usage patterns

It is reassuring that for all powertrains, usage patterns appear to be an important
predictor of lifespan (significant at the 0.1% level). An increase of 1 mile per day
increases the hazard rate by 8.4% for petrol vehicles, 6.4% for diesel, 4.5% for (P)HEVs,
and 2.5% for BEVs. This confirms the hypothesis that the more intensively a vehicle
is driven, the shorter is its longevity but that BEVs appear to be responding well
increased intensity of use.
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Technological improvement and product variety

Perhaps the most interesting results concern the coefficients for the cohort variable,
which are statistically significant and are consistently smaller than 1 for the petrol,
diesel, and BEV powertrains. A value below 1 implies that over this time period each
of these powertrains has benefited to some extent from technological improvements
and that newer models from the same manufacturers exhibit improved reliability over
time. Of these three powertrains, BEVs demonstrate the most rapid improvement,
with a 12% lower hazard rate for the cohort born one year later.15 In contrast, petrol
and diesel vehicles show more modest decreases in hazard rates of 6.3% and 1.9%, re-
spectively. One explanation for these results is that both petrol and diesel powertrains
are established technologies that only experience marginal improvements year on year
while BEV manufacturers are still on a rapid learning curve.

However, there is a noteworthy reversal in this trend for the (P)HEV powertrain.
It is important to note that based on make and even model information from the
dataset, we were unable to distinguish between plug-in hybrid cars (PHEVs) and tra-
ditional hybrid electric vehicles (HEVs).16 The decrease in reliability observed in this
case may be attributed to the increasing prevalence of PHEVs in recent vehicle vin-
tages, which represent a newer and less mature technology. An analysis of Consumer
Reports (2023) using 330,000 vehicles spanning model years from 2000 to 2023 reveals
that the integration of internal combustion engines with electric drives in PHEVs intro-
duces added complexity, resulting in 146% more owner-reported problems compared
to traditional ICEVs. Conversely, HEVs exhibit a noteworthy 26% reduction in prob-
lems when compared to their conventional counterparts. In addition, as HEVs gain
popularity, newer cohorts include more affordable HEV models from the same manu-
facturers, which could potentially offset some of the loss in reliability. The inclusion
of new makes of HEV with less manufacturing experience is also a possible cause of
the reduced reliability of more recent cohorts.

Engine size

In terms of engine size, smaller engines are associated with lower hazards for petrol
vehicles. Compared to the mid-size engine (1.0-2.0 litres), which is the most popular,
a small petrol engine is 3.7% less hazardous, while a large engine above 2.0 litres is

15As a robustness check, in Appendix Table A1, we raise the thresholds for selecting major BEV manu-
facturers from 100 to 1,000, aligning with the criteria applied to other incumbent fuels. Consequently, only
BMW, Nissan, Renault and Tesla BEVs are included in the regressions. The hazard rates of BEVs exhibit a
slower reduction over time, yet they continue to outpace other powertrains, declining at a rate of 8% per year.

16For example, the Toyota Prius, initially a flagship HEV, has seen the PHEV version of this model become
more popular over time.
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6% more hazardous. The results are reversed for diesel, where a big engine above 
2.0 litres is 20.9% less hazardous than the mid-size version. The difference i n engine 
size hazards between petrol and diesel vehicles can be attributed to the way in which 
the engines operate and the design of the vehicles. Petrol engines tend to be more 
performance-oriented, thus smaller engines may be designed to be more efficient and 
reliable to meet the demands of high-performance driving. Conversely, diesel engines 
are often used in larger vehicles, such as vans and SUVs, and are designed to be more 
durable and efficient at  higher speeds and for longer jo urneys. Finally, a larger engine 
may be associated with the luxury end of the product range, although there is not 
enough information in this dataset to control for the body type of vehicles. (P)HEVs 
with small engines (under 1 litre) are particularly reliable and 51% less hazardous than 
the mid-range.

Fixed effects parameters

In addition to the previously mentioned variables, MOT data offer a  d iverse s et of 
details on factors influencing t he l ongevity o f v ehicles, s uch a s c olour, m ake, and 
location. These categorical variables are incorporated into our model as fixed effects 
(FEs). The Wald χ2− tests reported in Table 2 confirm that each set of FEs collectively 
significantly correlates with vehicle longevity at the 5% levels and beyond.

When selecting a colour for their car, consumers may have a variety of reasons. 
Colour choice may reflect t he p ersonal c haracteristics, g ender, o r p references o f the 
owners, and this choice could depend on culture and context (Heap and Talavera, 
2019). As a matter of fashion, vehicle colour tastes vary over time. Using data at 
our disposal, it appears that vehicle owners of newer cohorts appear to have switched 
from colours such as black, blue, and silver to white, grey and red. While there may 
be little reason to believe in a direct link between colour and mechanical reliability, 
Lardelli-Claret et al. (2002) suggest that light colours may be more visible and thus 
less subject to passive accidents. However, the relationship between colour and crash 
tendency could also be confounded by driver traits if safe driving habits are correlated 
with certain colour preferences (Newstead and D’Elia, 2010). After controlling for 
other variables, our analysis suggests that colour may correlate with lifespan, although 
the effect varies across powertrains. The results are shown in Figure 4.

For petrol, all other colours tend to be more reliable than black, but the colour effect 
is small in magnitude. This finding is consistent with research using Australian data 
that suggests black vehicles have the highest crash risk during the daytime (Newstead
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and D’Elia, 2010). White vehicles have a much lower hazard rate than others for 
the diesel and (P)HEV powertrains. The BEV sample however shows another trend. 
Bright and vibrant colours such as red and blue appear statistically more reliable 
than black with coefficients lower than other monochrome co lours (s ilver, white, and 
grey). Our analysis also reveals a significant v ariation i n v ehicle l ifespan b ased on 
manufacturer. Figure 5 shows the coefficient of hazard ratio for major makes exceeding 
100 unique vehicles for BEVs and 1,000 unique cars for other powertrains, relative to 
the reference make (Mitsubishi). Accordingly, all else equal, relative to the reference 
group Mitsubishi, the make with the lowest hazard ratio for each powertrain is Honda 
(petrol), Skoda (diesel), Toyota ((P)HEV) and Tesla (BEV). We only report the top 30 
performing makes for petrol and diesel and all makes for (P)HEVs and BEVs. Results 
for all makes of ICEVs included in our sample are available from the authors upon 
request.

There are also some survival differences based on location. An analysis of the 
fixed effects coefficients presented in Figure 6 reveals a north-south divide for vehicle 
reliability. For all four powertrains, Scotland and the northern regions of England (the 
north-west and north-east) have relatively high hazard ratio coefficients. This observed 
pattern may be attributed to the comparatively rugged terrain of these areas, relatively 
poor road conditions as well as the prevailing cold and wet weather conditions. In 
addition, the presence of more salt used on the roads that accelerates corrosion and 
rust, coupled with a higher incidence of potholes (due to worse weather and potentially 
fewer repairs), means vehicles driven in these regions could explain the lower survival 
rate. Notably, London stands out negatively for diesel vehicles. The hazard rate in 
this region is surpassed only by Scotland. The high congestion, low average speeds, 
and frequent stop-and-go traffic patterns characteristic of London may contribute to 
the increased wear and tear on diesel powertrains.

5.3 Vehicle longevity analysis

Having considered the other covariates we now estimate the lifespan of vehicles which
is important for planning fleet replacement and the treatment for the end-of-life of
vehicles (for example, organising scrapping and recycling facilities and hiring skilled
labours for these facilities). From a life cycle perspective, the total distance travelled
during a vehicles lifetime is perhaps more relevant for assessing the emissions of vehicles
to provide more information on how driving an EV can help to ‘save the planet’.
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Table 3 presents the estimated median longevity and lifetime mileage for the entire 
fleet, broken down by powertrain, region, and the five most popular makes of  vehicle. 
The 18-month specification remains our preferred estimates with the 15 and 21-month 
results being thought of as providing upper and lower bound estimates.

When all powertrains are combined, Panel A shows that the average vehicle lifetime 
is 17.9 years and travels 138,000 miles during this lifetime (columns 2 and 5). This 
lifetime mileage is close to the 130,000 miles/200,000 km widely used in the LCA 
literature (Hutchinson et al., 2014). A decrease in the buffer time for our assumption 
of a vehicle’s death leads to a slightly reduced estimate. The 15-month specification 
suggests an average lifespan of 17.2 years and 134,000 miles travelled, while the 21-
month buffer time suggests an average lifespan of 18 years and 140,000 miles travelled.

Our lifetime estimates are higher than the average age of a vehicle at scrappage, 
which was reported as 13.9 years in 2015 (SMMT, 2023). There are several reasons 
for this disparity. First, we provide lifetime estimates for almost every car that has 
ever joined the fleet, including a large number that are still in operation, rather than 
conditioning our estimates on those that have already been scrapped.17 The selection 
bias means that scrapped cars would have a lower estimated lifetime than surviving 
cars. Second, our updated analysis focuses on cars registered between 2005 and 2017, 
with an average registration year of 2011. These are newer models compared to those 
scrapped in 2015, most of which were likely registered in the early 2000s. Technological 
advances over the last two decades have contributed to prolong lifespan, as indicated 
for the majority of vehicles in Table 2. Furthermore, these relatively newer vehicles in 
our samples are also less susceptible to the major scrappage scheme that was 
introduced in the 2009 United Kingdom Budget (HM Treasury, 2009) and 
concluded in March 2010, which incentivised the scrappage of cars over 10 years 
old.18 Finally, reduced vehicle usage, as measured by miles travelled per year has also 
contributed to a longer overall lifetime.

Panel B reveals significant disparities in the lifespan and mileage performance 
across different powertrains. When comparing petrol and diesel, our baseline estimates 
indicate that a petrol vehicle survives for 1.9 more years, but covers 44,000 miles less 
compared to a diesel vehicle. Notably, (P)HEVs demonstrate substantially improved 
longevity and mileage performance and exhibit an average lifespan of 25 years and are 
expected to travel over 210,000 miles on average. Given that (P)HEVs outlast petrol 
vehicles by more than 50% in both longevity and mileage, their adoption promises sub-

17However, we do exclude cars that are scrapped early, for example, due to accidents within the first few 
years, preventing them from undergoing their first MOT test at three years old.

18Our analysis however does not model future national scrappage schemes.
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stantial environmental benefits. The l ess t echnologically mature BEVs do not match 
the durability of (P)HEVs. Nevertheless, they still offer promising characteristics, with 
an average lifespan of 18.4 years, which approximates that of an average petrol vehicle. 
Importantly, BEVs surpass petrol cars in terms of lifetime mileage, covering 124,000 
miles across their lifetime. Panel C provides a breakdown of lifetime mileage estimates 
for the leading five brands within each powertrain c ategory. The top-performing BEV 
make is Tesla while the best performing (P)HEV is Toyota followed by Honda. Skoda 
and Audi lead the way for diesel and petrol, respectively. While intuitive these present 
some of the first such results on reliability for the new powertrains.

Finally, Panel D shows the discrepancies in expected durability of vehicles across 
regions. These average numbers are mainly driven by ICEVs, as their fleet s ize out-
weighs newer powertrains such as (P)HEVs and BEVs. According to the baseline 
specification, the average l ifespan varies between 16.3 years (Scotland) and 18.9 years 
(South West England). Meanwhile, the average mileage varies between 128,000 miles 
(Scotland) and 145,000 miles (East England).

5.4 Trends in Vehicles Use and Longevity

The next stage is to look at the evolution of the patterns of vehicles use by different 
powertrains, their expected longevity and miles travelled throughout their life cycle 
using the predictions generated from our preferred 18-month specifications from Table 
2 and odometer information recorded at the last test of each vehicle. The aggre-
gate trend in Figure 7 captures several factors, including shifts in technology, driver 
preferences, behavior, and the range of products available in the market.

Panel A shows a fairly flat or even declining trend in vehicle usage, measured as 
miles travelled per year across the entire sample. This decline aligns with a broader 
reduction in travel demand, as reported in the National Travel Survey, which has a 
particularly pronounced impact on newer models (Department for Transport, 2023). 
A declining trend is seen most clearly for (P)HEVs, which could be impacted by the 
growing share of new plug-in versions. Conversely, BEVs show a substantial increase 
in usage, with mileage rates increasing from approximately 2,200 miles per year for 
the 2010 cohort to 7,800 miles per year for the 2017 cohort. This result can be 
attributed to the diffusion of BEVs into various segments, including those with higher 
travel demands, and improvements in technology that have reduced range anxiety. 
For example, the average range of a typical BEV has increased from 79 miles to 151 
miles between 2010 and 2017 (IEA, 2023), making BEVs a viable and attractive 
choice for
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individuals who require longer travel distances on a regular basis.

Panel B aligns with our survival analysis results presented in Section 5.2, high-
lighting an increase in the expected median lifespan for all powertrains, except for
(P)HEVs. Panel C reveals analogous trends in the expected median lifetime mileage.
Despite the declining trends observed for (P)HEVs, this powertrain remains the most
reliable option in 2017, whether evaluated in terms of expected years of service or the
total distance travelled over their lifetime. Meanwhile, BEVs have experienced rapid
improvements and surpassed the average fleet lifetime mileage in 2017.

6 Conclusions

Technological advances, supportive policies, and increasing concern for the environ-
ment have driven the shift from traditional internal combustion engines towards cleaner
powertrains, paving the way towards a net-zero carbon future. To effectively plan for
fleet replacement and properly handle retired vehicles in an environmentally friendly
manner, a better understanding of vehicle longevity is critical. In light of the shortage
of accessible detailed data on vehicle retirement, we propose the use of compulsory
MOT test data to track vehicle operation, infer information on its end-of-life, and
associate it with a wealth of vehicle characteristics recorded during MOT tests.

Our analysis of over 30 million vehicles and 300 million MOT test results uses a
Weibull proportional hazard model to identify key predictors of a vehicle’s longevity,
including driving intensity, engine size, colour, make, and location. The freely ac-
cessible data enabled us to conduct a timely evaluation and compare the impact of
each determinant among different powertrains, including traditional petrol and diesel
engines against newer powertrains such as (P)HEVs vehicles and BEVs.

Our analysis highlights the advantages of (P)HEVs due to their extended service
life in addition to their positive impact on the environmental and climate-friendliness.
While BEVs represent a newer technology that was traditionally less reliable, they have
rapidly evolved, with the latest BEVs expected to outlast the average ICEVs within
the same cohort. When accounting for differences in the usage phase, EVs, in general,
offer greater environmental benefits than life cycle estimates that assume a common
functional unit for all powertrains. Hence, considering our predicted extended lifespan,
the implication is that EVs would have a lower total cost of ownership that previous
studies have suggested.

However, there are a number of caveats. The extended lifespan of EVs may require
battery replacements if the original batteries deteriorate prematurely. Lithium-ion
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batteries remain the dominant technology for powering EVs and the longevity of these
batteries is uncertain (Noel et al., 2019). Most new EVs come with warranties of eight
years and 100,000 miles for their batteries (RAC, 2021) and most research anticipates
a lifespan of approximately 8 to 10 years (Skeete et al., 2020). Industrial sources tend
to be more optimistic about their products, with Tesla claiming that their batteries are
designed to outlast the vehicle (Tesla, 2021), and Nissan reporting that almost all of the
batteries they have ever produced are still in use in the EVs they sold over the last 12
years (Forbes, 2022). To fully realise the benefits of a longer BEV lifespan, replacement
batteries, if necessary, must be affordable relative to the residual value of BEVs without
their original batteries. The establishment of a robust circular economy for batteries
is imperative to effectively support the dynamics of this technological advancement.
Moreover, the widespread adoption of EVs may give rise to new business models such
as car leasing and car-hailing. To prevent potential environmental issues, regulation is
crucial, as exemplified by the emergence of EV graveyards in China (Bloomberg News,
2023), where a significant number of EVs are left unused before reaching the end of
their mechanical lifespan as the new businesses fail.

It is important to note that our analysis is dependent on the assumption that vehi-
cle owners comply with compulsory MOT tests, and the robustness of our findings can
be strengthened by presenting results under different assumptions. Users are advised
to use their institutional knowledge to select the results that best suit their analyti-
cal purposes. Currently, information on the export pattern of used EVs from Great
Britain, which leaves the British road in a manner that is different from scrappage, is
not available. Further research is thus needed in this area to understand its impact.
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Figures

Figure 1: Licensed Electric Vehicles in Great Britain (2005-2013) and United
Kingdom(2014-2022)

Notes: This figure shows the number of licensed electric cars and light goods vehicles by fuel types: hybrid
electric vehicles (HEV), plugin electric vehicles (PHEV) and battery electric vehicles (BEV) as recorded in
Table 1103 by Department for Transport (Dft) and Driver and Vehicle Licensing Agency (DVLA). A negligible
number of range-extended electric and fuel cell electric are excluded. Data for the United Kingdom is available
from 2014. Data from earlier years is for Great Britain.

Figure 2: Schema of Interval-Censored Data and the Heuristic of Death Definition
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Figure 3: Survival function

Notes: This figure illustrates the survival function, using the parametric survival estimates from the preferred
specifications (18 months) in Table 2, along with the covariate means for four samples: Petrol, Diesel, (P)HEV,
and BEV.
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Figure 4: Colour fixed effects

(a) Panel A: Petrol (b) Panel B: Diesel

(c) Panel C: (P)HEV (d) Panel D: BEV

Notes: These figures illustrate the exponentiated coefficients and 95% confidence intervals of colour fixed
effects in Table 2 for four samples and three thresholds 15 months, 18 months (preferred) and 21 months.
Coefficients smaller than one (positioned to the left of the red vertical lines) indicate colours with lower hazard
rates than the reference group (black colour).
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Figure 5: Make fixed effects

(a) Panel A: Petrol

(b) Panel B: Diesel

25



(c) Panel C: (P)HEV

(d) Panel D: BEV

Notes: These figures illustrate the exponentiated coefficients and 95% confidence intervals of make fixed
effects in Table 2 for four samples and three thresholds 15 months, 18 months (preferred) and 21 months.
Coefficients smaller than one (positioned to the left of the red vertical lines) indicate brands with lower hazard
rates than the reference group (Mitsubishi). For illustrative purposes, panels A (petrol) and B (dieselO only
show the top 30 brands in terms of reliability (with the lowest hazard ratios) while panels C ((P)HEV) and D
(BEV) show all brands included in the regressions.
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Figure 6: Regional fixed effects

(a) Panel A: Petrol (b) Panel B: Diesel

(c) Panel C: (P)HEV (d) Panel D: BEV

Notes: These figures illustrate the exponentiated coefficients and 95% confidence intervals of regional fixed
effects in Table 2 for four samples and three thresholds 15 months, 18 months (preferred) and 21 months.
Coefficients smaller than one (positioned to the left of the red vertical lines) indicate regions with lower hazard
rates than the reference group (East Midlands).
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Figure 7: Electric Vehicle Revolution

(a) Panel A: Average (Observed) Mileage rate

(b) Panel B: Average (Expected) Median Life time

(c) Panel C: Average (Expected) Median Life Mileage

This figure aggregates the mileage rate (at the last test), the median lifetime predicted by the 18-month spec-
ification illustrated in Table 2, and the lifetime mileage as predicted by the two variables mentioned above,
categorised by cohort and powertrain.
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Tables

Table 1: Summary Statistics

Petrol Diesel (P)HEV BEV All vehicles

mean mean mean mean mean sd min max
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)
Mileage rate (last) 18.2 28.8 26.5 18.9 23.4 12.1 0.00016 100
Cohort 2010.7 2011.3 2013.7 2015.1 2011.0 3.82 2005 2017
First colour
- BLACK 0.20 0.22 0.19 0.18 0.21 0.41 0 1
- BLUE 0.18 0.14 0.15 0.12 0.16 0.37 0 1
- GREY 0.12 0.16 0.15 0.11 0.14 0.35 0 1
- OTHER 0.053 0.042 0.035 0.024 0.047 0.21 0 1
- RED 0.13 0.069 0.095 0.12 0.098 0.30 0 1
- SILVER 0.19 0.19 0.17 0.11 0.19 0.39 0 1
- WHITE 0.13 0.19 0.22 0.33 0.16 0.37 0 1
Cylinder Capacity
- Zero/Missing 0 0 0 1 0.0014 0.037 0 1
- Under 1.0 l 0.13 0.00048 0.019 0 0.067 0.25 0 1
- 1.0-2.0 l 0.81 0.76 0.78 0 0.78 0.41 0 1
- Above 2.0 l 0.052 0.24 0.20 0 0.15 0.35 0 1
First region
- East Midlands 0.062 0.070 0.064 0.064 0.066 0.25 0 1
- East of England 0.096 0.096 0.093 0.091 0.096 0.29 0 1
- London 0.081 0.068 0.21 0.16 0.076 0.27 0 1
- North East England 0.047 0.047 0.028 0.043 0.047 0.21 0 1
- North West England 0.13 0.12 0.10 0.093 0.13 0.33 0 1
- Scotland 0.11 0.11 0.054 0.088 0.11 0.31 0 1
- South East England 0.16 0.16 0.19 0.20 0.16 0.37 0 1
- South West England 0.082 0.090 0.076 0.11 0.086 0.28 0 1
- Wales 0.047 0.049 0.025 0.024 0.047 0.21 0 1
- West Midlands 0.092 0.095 0.083 0.070 0.093 0.29 0 1
- Yorkshire and the Humber 0.091 0.099 0.081 0.058 0.094 0.29 0 1
Make
- ABARTH 0.0011 0 0 0 0.00056 0.024 0 1
- AIXAM 0 0 0 0.0043 0.0000059 0.0024 0 1
- ALFA ROMEO 0.0031 0.0026 0 0 0.0028 0.053 0 1
- ASTON MARTIN 0.0011 0 0 0 0.00055 0.023 0 1
- AUDI 0.033 0.066 0.0063 0 0.049 0.22 0 1
- BENTLEY 0.0011 0 0 0 0.00054 0.023 0 1
- BMW 0.028 0.077 0.053 0.056 0.052 0.22 0 1
- CATERHAM 0.00013 0 0 0 0.000064 0.0080 0 1
- CF MOTO 0.000073 0 0 0 0.000036 0.0060 0 1
- CHEVROLET 0.0076 0.0013 0 0 0.0044 0.066 0 1
- CHRYSLER 0.0013 0.0024 0 0 0.0018 0.042 0 1
- CI MOTORHOME 0 0.000082 0 0 0.000040 0.0063 0 1
- CITROEN 0.032 0.046 0 0.0073 0.038 0.19 0 1
- DACIA 0.0034 0.0036 0 0 0.0035 0.059 0 1
- DAEWOO 0.00017 0 0 0 0.000084 0.0092 0 1
- DAIHATSU 0.0014 0 0 0 0.00068 0.026 0 1
- DODGE 0.00043 0.00053 0 0 0.00048 0.022 0 1
- DS 0.0011 0.00086 0 0 0.00098 0.031 0 1
- FERRARI 0.00054 0 0 0 0.00027 0.016 0 1
- FIAT 0.039 0.015 0 0 0.027 0.16 0 1
- FORD 0.16 0.14 0 0 0.15 0.35 0 1
- GREAT WALL 0 0.00013 0 0 0.000061 0.0078 0 1
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Table 1: Summary Statistics

Petrol Diesel (P)HEV BEV All vehicles

mean mean mean mean mean sd min max
VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)
- HONDA 0.040 0.016 0.038 0 0.028 0.17 0 1
- HYUNDAI 0.032 0.017 0.010 0.0046 0.024 0.15 0 1
- INFINITI 0.00010 0.00047 0 0 0.00028 0.017 0 1
- ISUZU 0 0.0025 0 0 0.0012 0.035 0 1
- IVECO 0 0.00018 0 0 0.000086 0.0092 0 1
- JAGUAR 0.0037 0.014 0 0 0.0087 0.093 0 1
- JEEP 0.00091 0.0029 0 0 0.0019 0.043 0 1
- KIA 0.024 0.024 0.013 0.011 0.024 0.15 0 1
- LAMBORGHINI 0.00014 0 0 0 0.000070 0.0084 0 1
- LAND ROVER 0.0017 0.044 0 0 0.022 0.15 0 1
- LDV 0 0.00044 0 0 0.00021 0.015 0 1
- LEXUS 0.0022 0.0011 0.21 0 0.0042 0.065 0 1
- LOTUS 0.00034 0 0 0 0.00017 0.013 0 1
- MASERATI 0.00036 0.00021 0 0 0.00028 0.017 0 1
- MAZDA 0.025 0.0093 0 0 0.017 0.13 0 1
- MCLAREN 0.000088 0 0 0 0.000044 0.0066 0 1
- MERCEDES 0.022 0.063 0.023 0.0099 0.042 0.20 0 1
- MG 0.0018 0.00020 0 0 0.0010 0.032 0 1
- MICROCAR 0.00012 0 0 0 0.000060 0.0077 0 1
- MINI 0.031 0.010 0 0 0.021 0.14 0 1
- MITSUBISHI 0.0055 0.012 0.073 0.0045 0.0095 0.097 0 1
- MORGAN 0.00019 0 0 0 0.000096 0.0098 0 1
- NISSAN 0.053 0.040 0 0.49 0.047 0.21 0 1
- PERODUA 0.00030 0 0 0 0.00015 0.012 0 1
- PEUGEOT 0.051 0.053 0 0.016 0.052 0.22 0 1
- PORSCHE 0.0052 0.0016 0.0063 0 0.0034 0.059 0 1
- PROTON 0.00071 0 0 0 0.00036 0.019 0 1
- QUADZILLA 0.000085 0 0 0 0.000042 0.0065 0 1
- RENAULT 0.042 0.039 0 0.17 0.041 0.20 0 1
- REVA 0 0 0 0.018 0.000025 0.0050 0 1
- ROLLS ROYCE 0.00016 0 0 0 0.000079 0.0089 0 1
- ROVER 0.00083 0.00028 0 0 0.00055 0.024 0 1
- SAAB 0.0026 0.0046 0 0 0.0035 0.059 0 1
- SEAT 0.017 0.013 0 0 0.015 0.12 0 1
- SKODA 0.020 0.022 0 0 0.021 0.14 0 1
- SMART 0.0053 0.00048 0 0.0097 0.0029 0.054 0 1
- SMC 0.00015 0 0 0 0.000077 0.0088 0 1
- SSANGYONG 0.00014 0.0012 0 0 0.00064 0.025 0 1
- SUBARU 0.0029 0.00087 0 0 0.0019 0.043 0 1
- SUZUKI 0.023 0.0018 0.0058 0 0.012 0.11 0 1
- TESLA 0 0 0 0.19 0.00026 0.016 0 1
- TOYOTA 0.049 0.022 0.53 0 0.042 0.20 0 1
- VAUXHALL 0.15 0.093 0.0035 0 0.12 0.32 0 1
- VOLKSWAGEN 0.068 0.11 0.017 0.0096 0.086 0.28 0 1
- VOLVO 0.0046 0.025 0.0083 0 0.015 0.12 0 1
- YAMAHA 0.00012 0 0 0 0.000059 0.0077 0 1
Observations 15125166 14681350 371328 41663 30219507

Notes: This table provides summary statistics of the key variables associated with different types
of powertrains: petrol, diesel, (plugin) hybrid electric vehicles ((P)HEVs) and battery electric vehicles
(BEVs). We have assumed that BEVs are the same as HEVs, but with zero or missing cylinder capacity
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and validated by a list of BEV generic models by DVSA. We have only included make-by-powertrain
data that exceed 1,000 unique vehicles in the original dataset for petrol, diesel and HEVs, while the
threshold is lowered to 100 for BEVs, as they are still new and less popular. To deal with potential
discrepancies in the data, we rely on the first test for region, colour and first use time information,
and the majority of tests for cylinder capacity and make information. We then use the odometer
information and test date from the last test in our dataset to infer the average mileage of each car
across its lifetime.
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Table 2: Survival regression

Petrol Diesel (P)HEVs BEV

15m 18m 21m 15m 18m 21m 15m 18m 21m 15m 18m 21m
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Mileage rate (last) 1.083*** 1.084*** 1.085*** 1.063*** 1.064*** 1.065*** 1.043*** 1.045*** 1.046*** 1.021*** 1.025*** 1.028***
(0.0003) (0.0003) (0.0003) (0.00006) (0.00007) (0.00007) (0.0003) (0.0004) (0.0004) (0.002) (0.002) (0.002)

Cohort 0.952*** 0.933*** 0.930*** 0.990*** 0.981*** 0.982*** 1.143*** 1.129*** 1.133*** 0.914*** 0.880*** 0.879***
(0.0003) (0.0003) (0.0004) (0.0002) (0.0002) (0.0002) (0.003) (0.003) (0.004) (0.01) (0.01) (0.01)

Under 1.0 l 0.974*** 0.963*** 0.961*** 1.341*** 1.354*** 1.368*** 0.494*** 0.494*** 0.480***
(0.004) (0.004) (0.004) (0.05) (0.05) (0.06) (0.03) (0.03) (0.03)

1.0-2.0 l 1 1 1 1 1 1 1 1 1
(.) (.) (.) (.) (.) (.) (.) (.) (.)

Above 2.0 l 1.067*** 1.060*** 1.055*** 0.798*** 0.791*** 0.786*** 1.118*** 1.093*** 1.088**
(0.004) (0.004) (0.004) (0.001) (0.001) (0.001) (0.03) (0.03) (0.03)

Weibull shape 4.072*** 4.059*** 4.113*** 3.406*** 3.411*** 3.468*** 2.541*** 2.502*** 2.571*** 2.507*** 2.453*** 2.503***
parameter (ρ) (0.003) (0.004) (0.004) (0.002) (0.002) (0.002) (0.01) (0.01) (0.01) (0.03) (0.03) (0.03)
Region FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Color FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Make FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
pvalue (χ2: Region FE) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
pvalue (χ2: Color FE) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.003 0.006 0.018 0.024
pvalue (χ2: Make FE) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Observations 15125160 15125160 15125160 14681337 14681337 14681337 371328 371328 371328 41663 41663 41663
- # right-censored obs 11981198 12169091 12273685 11126162 11314626 11422244 345223 347538 348508 37768 38135 38289
- # interval-censored obs 3143962 2956069 2851475 3555175 3366711 3259093 26105 23790 22820 3895 3528 3374

Notes: This table reports the exponentiated coefficients and standard errors (in parentheses) of baseline survival regressions for Petrol (columns 1-3, Diesel
(columns 4-6), (P)HEV (columns 7-9), and BEVs (columns 10-12). These regressions include petrol/diesel/(P)HEV makes with a minimum of 1,000
vehicles or BEV makes with a minimum of 100 vehicles. Column titles specify the buffer time used to determine the "death" of vehicles, ranging from 15
months, 18 months (preferred), to 21 months. *,**, and *** respectively indicate significance at 0.05, 0.01, and 0.001 levels.
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Table 3: Estimated median lifetime and mileage by powertrain and region

Median lifetime (years) Median life mileage (miles) Obs

15m 18m 21m 15m 18m 21m
(1) (2) (3) (4) (5) (6) (7)

PANEL A: ALL VEHICLES
Average 17.2 17.9 18 133834 138429 139852 30219508

PANEL B: AVERAGE BY POWERTRAIN
Petrol 18 18.7 18.9 111654 116016 117428 15125166
Diesel 16.3 16.8 16.9 155153 159758 161254 14681350
(P)HEV 23.3 25 24.9 196631 209638 208679 371328
BEV 16.8 18.4 18.6 113632 124156 125045 41663

PANEL C: AVERAGE OF TOP FIVE MAKES BY POWERTRAIN
Petrol

AUDI PE 19.9 20.9 21.2 135975 143074 145145 493332
VOLVO PE 19.7 20.5 20.7 137337 142339 144053 70283
LAND ROVER PE 18 18.7 18.9 130266 134894 136652 25748
LEXUS PE 18 18.4 18.6 130457 133273 134516 33309
SAAB PE 17.2 17.6 17.8 130271 132745 134240 38574

Diesel
SKODA DI 17.2 17.7 17.9 176379 181836 183555 316534
VOLVO DI 18.1 18.6 18.8 174806 180177 181445 371746
LAND ROVER DI 19.6 20.4 20.6 169193 176201 178139 653005
VOLKSWAGEN DI 17.1 17.6 17.8 170754 175629 177125 1571721
HONDA DI 17.7 18.2 18.4 170562 175122 176486 238243

(P)HEV
TOYOTA (P)HEV 27.2 29.4 29.2 229244 245316 244273 197827
HONDA (P)HEV 24.2 25.5 25.5 181437 190148 190154 14177
HYUNDAI (P)HEV 18.1 21.5 21.5 160687 189030 189723 3822
KIA (P)HEV 21.2 24.4 24.3 163829 187569 186636 4802
LEXUS (P)HEV 21.5 22.6 22.4 174498 182985 181423 77459

BEV
TESLA BEV 17.7 20.3 20.8 179751 203855 208543 7815
HYUNDAI BEV 15.1 15.7 15.5 135732 139295 136875 193
NISSAN BEV 17.4 18.8 18.8 113276 121786 121345 20461
KIA BEV 17.9 18.5 18.9 113386 116610 118962 438
BMW BEV 15.3 16.5 16.5 85261 91105 91114 2347

PANEL D: AVERAGE BY REGIONS
East Midlands 17.1 17.8 18 138492 143219 144676 1979983
East of England 17.5 18.2 18.4 140183 145097 146576 2895609
London 17.8 18.5 18.6 126453 131004 132305 2298969
North East England 16.6 17.2 17.4 130656 135060 136511 1412180
North West England 17 17.6 17.8 130059 134475 135870 3838499
Scotland 15.8 16.3 16.5 123965 127997 129396 3297217
South East England 17.9 18.5 18.7 138807 143683 145116 4810973
South West England 18.2 18.9 19 139944 144848 146288 2592338
Wales 17 17.6 17.7 133234 137701 139133 1427189
West Midlands 17.2 17.8 18 134421 139020 140469 2811173
Yorkshire and the Humber 17 17.6 17.8 133943 138449 139880 2855377

Notes: This table presents the estimated median lifetimes of all vehicles included in the regression sample,
using the results reported in Table 2 and a breakdown by powertrain, make, and region. The median life
mileages have been estimated from the median lifetime and the mileage rate calculated at the final test of
each vehicle, then averaged over the sample or subsamples. We prefer the 18-month specification and use
the 15-month and 21-month as the lower and upper bounds of our estimates.

33



A Appendix A: Appendix Tables

34



Table A1: Robustness check: BEV selection

BEVs with at least

100 vehicles (baseline) 1000 vehicles

15m 18m 21m 15m 18m 21m
Mileage rate (last) 1.021*** 1.025*** 1.028*** 1.018*** 1.022*** 1.024***

(0.0022) (0.0023) (0.0023) (0.0024) (0.0026) (0.0026)
Cohort 0.914*** 0.880*** 0.879*** 0.958** 0.920*** 0.920***

(0.012) (0.012) (0.012) (0.014) (0.014) (0.014)
AIXAM 5.799*** 6.125*** 7.009***

(0.82) (0.91) (1.06)
BMW 1.722*** 2.037*** 2.257*** 1.644*** 1.946*** 2.159***

(0.17) (0.21) (0.24) (0.16) (0.20) (0.23)
CITROEN 1.220 1.388 1.592**

(0.20) (0.24) (0.28)
HYUNDAI 1.615 2.120* 2.397**

(0.52) (0.68) (0.77)
KIA 1.259 1.670* 1.737*

(0.29) (0.39) (0.43)
MERCEDES 1.949*** 2.360*** 2.752***

(0.38) (0.49) (0.57)
MITSUBISHI 1.057 1.189 1.299

(0.19) (0.22) (0.25)
NISSAN 1.175* 1.342*** 1.482*** 1.197** 1.377*** 1.524***

(0.080) (0.10) (0.12) (0.083) (0.10) (0.12)
PEUGEOT 1.337* 1.418* 1.597***

(0.17) (0.19) (0.22)
RENAULT 1.493*** 1.683*** 1.804*** 1.487*** 1.685*** 1.810***

(0.12) (0.15) (0.16) (0.12) (0.15) (0.17)
REVA 1.705*** 1.739*** 1.937***

(0.23) (0.24) (0.28)
SMART 3.874*** 4.774*** 5.338***

(0.51) (0.66) (0.76)
TESLA 1 1 1 1 1 1

(.) (.) (.) (.) (.) (.)
VOLKSWAGEN 1.444 1.718** 1.932**

(0.27) (0.34) (0.39)
Weilbull shape 2.507*** 2.453*** 2.503*** 2.557*** 2.460*** 2.512***
parameter (rho) (0.027) (0.026) (0.026) (0.032) (0.029) (0.029)
Region FE Yes Yes Yes Yes Yes Yes
Color FE Yes Yes Yes Yes Yes Yes
pvalue (χ2: Region FE) 0.000 0.000 0.000 0.000 0.000 0.000
pvalue (χ2: Color FE) 0.006 0.018 0.024 0.001 0.005 0.005
Observations 41663 41663 41663 37719 37719 37719
right-censored obs 37768 38135 38289 34882 35212 35347
interval-censored obs 3895 3528 3374 2837 2507 2372

Notes: Columns (1) - (3) in this table report the exponentiated coefficients and standard errors (in
parentheses) of baseline survival regressions for Battery Electric Vehicles (BEVs), corresponding
to columns (9)-(12) in Table 2. These regressions include BEV makes with a minimum of 100
vehicles. Columns (4) - (6) raise the threshold, retaining only major makes with at least 1000
vehicles, similar to incumbent ICEVs and (P)HEV in column (1)-(8) of Table 2. Column titles
specify the buffer time used to determine the "death" of vehicles, ranging from 15 months, 18
months (preferred), to 21 months. *,**, and *** respectively indicate significance at 0.05, 0.01,
and 0.001 levels.
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