
PNAS Nexus, 2025, 4, pgaf005 

https://doi.org/10.1093/pnasnexus/pgaf005
Advance access publication 9 January 2025 

Research Report

Flexible inference in heterogeneous and attributed 
multilayer networks
Martina Contisciani a,*,1, Marius Hobbhahnb,1, Eleanor A. Power c,d, Philipp Hennig b and Caterina De Bacco a,*

aMax Planck Institute for Intelligent Systems, Tübingen 72076, Germany
bTübingen AI Center, University of Tübingen, Tübingen 72076, Germany
cDepartment of Methodology, London School of Economics and Political Sciences, London WC2A 2AE, United Kingdom
dSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
*To whom correspondence should be addressed: Email: martina.contisciani@tuebingen.mpg.de (M.C.); Email: caterina.debacco@tuebingen.mpg.de (C.D.B.)
1M.C. and M.H. contributed equally to this work.
Edited By Matjaz Perc

Abstract
Networked datasets can be enriched by different types of information about individual nodes or edges. However, most existing methods 
for analyzing such datasets struggle to handle the complexity of heterogeneous data, often requiring substantial model-specific analysis. 
In this article, we develop a probabilistic generative model to perform inference in multilayer networks with arbitrary types of 
information. Our approach employs a Bayesian framework combined with the Laplace matching technique to ease interpretation of 
inferred parameters. Furthermore, the algorithmic implementation relies on automatic differentiation, avoiding the need for explicit 
derivations. This makes our model scalable and flexible to adapt to any combination of input data. We demonstrate the effectiveness 
of our method in detecting overlapping community structures and performing various prediction tasks on heterogeneous multilayer 
data, where nodes and edges have different types of attributes. Additionally, we showcase its ability to unveil a variety of patterns in 
a social support network among villagers in rural India by effectively utilizing all input information in a meaningful way.

Keywords: probabilistic generative models, attributed multilayer networks, overlapping communities, automatic differentiation, 
Laplace approximation
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Network models are a powerful tool for analyzing complex interactions in a variety of domains. These models are widely used to ex-
plore data or detect hidden patterns such as communities. However, they often struggle to incorporate additional information en-
coded in the data, such as nodes or edge attributes of various types. Here, we develop an approach that flexibly integrates extra 
information without requiring ad hoc preprocessing steps or derivations. Our method enhances performance in prediction tasks 
and uncovers hidden patterns by fully exploiting the rich information encoded in complex network datasets.
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Introduction
Networks effectively represent real-world data from various 
fields, including social, biological, and informational systems. In 
this framework, nodes within the network correspond to individ-
ual components of the system, and their interactions are illus-
trated through network edges (1). With the advancement of data 
collection and representation techniques, networks have evolved 
to become more versatile and informative. Notably, attributed 
multilayer networks have emerged as a significant development, 
allowing the inclusion of additional information related to nodes 
and edges. This enriches the representation of real-world sys-
tems, where nodes naturally have specific characteristics and 
are connected through different types of interactions. For in-
stance, in social networks, individuals can be described by attrib-
utes like age, gender, and height, while engaging in various types 
of relationships like friendship, co-working, and kinship.

It is important to treat these systems as multilayer networks, 
rather than reducing them to a single layer (e.g. through aggrega-

tion), to avoid losing valuable information. This is particularly sig-

nificant when the properties of the entire system cannot be 

derived from a simple linear combination of the properties of 

each layer in isolation, or through other forms of aggregation 

into a single layer representation (2). Relevant examples of this 

nontrivial behavior are observed in interbank markets, patent 

citation networks, time-dependent networks, and brain networks 

(3–6). A similar rationale applies to datasets with multiple types of 

edges and node attributes, as explored in this work. Approaches to 

multilayer networks that consider only one type of attribute—or 

none at all—risk losing critical information.
The analysis of attributed multilayer networks has primarily 

been tackled using techniques like matrix factorization (7, 8), net-
work embedding (9, 10), and deep learning (11–14). While effective 

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/4/1/pgaf005/7950749 by guest on 24 January 2025

https://orcid.org/0000-0002-6103-5499
https://orcid.org/0000-0002-3064-2050
https://orcid.org/0000-0001-7293-6092
https://orcid.org/0000-0002-8634-0211
mailto:martina.contisciani@tuebingen.mpg.de
mailto:caterina.debacco@tuebingen.mpg.de
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/pnasnexus/pgaf005


for learning low-dimensional node representations for inference 
tasks, these methods have significant limitations when applied 
to network data. First, the resulting representations lack inherent 
interpretability. Since their main focus is prediction tasks, these 
models do not impose constraints on the parameters to improve 
interpretability, such as nonnegativity or shared parameters 
across layers. Instead, they often require arbitrarily post- 
processing techniques (e.g. k-means clustering) for interpretation. 
Second, these methods prioritize node-level tasks (e.g. classifica-
tion or clustering) and treat edge-level tasks, like link prediction, 
as secondary, relying on ad hoc mappings from nodes to edges. 
Lastly, they are typically parameter-heavy and require a substan-
tial amount of training data, making them inefficient and overpar-
ametrized for real-world networks, which are typically sparse, 
label-scarce for supervised settings, and often provide only a sin-
gle observed sample.

To overcome these limitations, we adopt a different approach 
based on probabilistic generative models (15). Unlike the afore-
mentioned methods, these models provide a principled and flex-
ible framework that incorporates prior knowledge and specific 
assumptions, resulting in more interpretable representations. 
Importantly, they explicitly capture the dependencies between 
nodes and edges, rather than relying on ad hoc mappings. They 
also account for the inherent uncertainty present in real-world 
network data (16), providing a more robust and comprehensive 
understanding of this type of data. Furthermore, these models 
can be applied to perform various network tasks, such as edge 
and attribute prediction, detecting statistically meaningful net-
work structures, and generating synthetic data.

Our goal is to develop a probabilistic generative model that can 
flexibly adapt to any attributed multilayer network, regardless of 
the type of information encoded in the data. Acting as a “black 
box,” our method can enable practitioners to automatically ana-
lyze various datasets, without the need to deal with mathematical 
details or new derivations. This approach aligns with some prac-
tices in the machine learning community, where black box meth-
odologies have been introduced to simplify the inference of latent 
variables in arbitrary models (17, 18). In this context, more 
specific probabilistic methods have been developed to address 
the challenge of performing inference on heterogeneous data 
(19, 20). However, these techniques are tailored for tabular data 
and do not provide a general solution to adapt them to network 
data.

Probabilistic generative models specifically designed for attrib-
uted networks aim to combine node attributes effectively with 
network interactions. Existing methods (21–28) have highlighted 
the importance of incorporating extra information to enhance net-
work inference, resulting in improved prediction performance and 
deeper insights on the interplay between edge structure and node 
metadata. However, these models mainly focus on single-layer net-
works, assume the same generative process for all interactions, 
and consider only one type of attribute—typically categorical. 
These limitations restrict their capability to represent complex 
scenarios characterized by heterogeneous information. As a 
consequence, addressing the challenge of effectively incorporat-
ing various sources of information and evaluating their collective 
impact on downstream network inference tasks remains an open 
issue.

We address this gap by introducing PIHAM, a generative model 
explicitly designed to perform Probabilistic Inference in directed 
and undirected Heterogeneous and Attributed Multilayer net-
works. Our approach differs from previous studies in that PIHAM 

flexibly adapts to any combination of input data, while standard 

probabilistic methods rely on model-specific analytic derivations 
that highly depend on the data types given in input. This can dra-
matically hinder the flexibility of a model, as any small change in 
the data, e.g. adding a new node attribute or a new type of inter-
action, usually requires new derivations. As a result, the vast ma-
jority of these models work only with one type of edge weight for 
all layers, and one type of attribute. In contrast, PIHAM takes in in-
put any number of layers and attributes, regardless of their data 
types.

At its core, PIHAM assumes the existence of a mixed-membership 
community structure that drives the generation of both interac-
tions and node attributes. In addition, the inference of the param-
eters is performed within a Bayesian framework, where both prior 
and posterior distributions are modeled with Gaussian distribu-
tions. Importantly, PIHAM employs the Laplace matching technique 
(29) and conveniently maps the posterior distributions to various 
desired domains, to ease interpretation. For instance, to provide a 
probabilistic interpretation of the inferred communities, our 
method properly maps the parameters of a Gaussian distribution 
into those of a Dirichlet distribution. The latter operates within a 
positive domain and enforces normalization on a simplex, making 
it a valuable tool for this purpose. Notably, the inference process is 
flexible and scalable, relying on automatic differentiation and 
avoiding the need for explicit derivations. As a result, PIHAM can 
be considered a “black box” method, as practitioners only need 
to select the desired probabilistic model and a set of variable 
transformation functions, while the remaining calculations and 
inference are performed automatically. This versatility enables 
our model to be flexibly applied to new modeling scenarios.

We apply our method on a diverse range of synthetic and real- 
world data, showcasing how PIHAM effectively leverages the hetero-
geneous information contained in the data to enhance prediction 
performance and provide richer interpretations of the inferred 
results.

Methods
We introduce PIHAM, a versatile and scalable probabilistic genera-
tive model designed to perform inference in attributed multilayer 
networks. Our method flexibly adapts to any combination of input 
data, regardless of their data types. For simplicity, in what follows, 
we present examples with Bernoulli, Poisson, Gaussian, and cat-
egorical distributions, which collectively cover the majority of 
real-world examples. Nevertheless, our model can be easily ex-
tended to include new distributions, as well as applied to single- 
layer networks with or without attributes.

General framework
Attributed multilayer networks provide an efficient representa-
tion of complex systems in which the individual components 
have diverse attributes (often referred to as covariates or meta-
data) and are involved in multiple forms of interactions. 
Mathematically, these interactions are depicted by an adja-
cency tensor A of dimension L × N × N, where N is the number 
of nodes common across all L layers. Each entry Aℓ

ij in this tensor 
denotes the weight of a directed interaction of type ℓ from node i 
to node j. Notably, different layers can incorporate interactions 
of diverse data types, depending on the nature of the underlying 
relationship. For instance, in social systems, one layer might 
represent binary relationships like friendships, another could 
describe nonnegative discrete interactions such as call counts, 
and a third might contain continuous real-valued measurements 
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such as geographical distances between locations. In this 
scenario, the adjacency tensor would be represented as 
A = {A1 ∈ {0, 1}N×N, A2 ∈ NN×N

0 , A3 ∈ RN×N
+ }. Node metadata de-

scribes additional information about the nodes. They are stored 
in a design matrix X with dimensions N × P, where P is the total 
number of attributes and the entries Xix represent the value of 
an attribute x for a node i. Similar to network interactions, differ-
ent attributes can have different data types. An example of input 
data is given in Figure 1A .

PIHAM describes the structure of attributed multilayer networks, 
represented by A and X, through a set of latent variables Θ. The 
goal is to infer Θ from the input data. In particular, we want to es-
timate posterior distributions, as done in a probabilistic frame-
work. These can be approximated as:

P(Θ |A, X) ∝ P(A, X |Θ)P(Θ)

= P(A |Θ)P(X |Θ)P(Θ).
(1) 

In this general setting, the proportionality is due to the omission of 
an intractable normalization term that does not depend on the pa-
rameters. The term P(A, X |Θ) = P(A |Θ)P(X |Θ) represents the like-
lihood of the data, where we assume that A and X are 
conditionally independent given the parameters. This assump-
tion allows to model separately the network structure and the 
node metadata. The term P(Θ) denotes the prior distributions of 
the latent variables, which we assume to be independent and 

Gaussian distributed, resulting in P(Θ) =


θ∈ΘN (θ; μθ, Σθ). 
Importantly, we also make the assumption that the posterior dis-
tributions of the parameters can be approximated with Gaussian 
distributions, for which we have to estimate mean and covariance 

matrices: P(Θ |A, X) ≈


θ∈ΘN (θ; μ̂θ, Σ̂θ).
In the following subsections, we provide additional details on 

the role of the latent variables in shaping both interactions and 
node attributes, as well as the methods for inferring their poster-
ior distributions.

Modeling the network structure
The interactions encoded in the adjacency tensor A are assumed 
to be conditionally independent given the latent variables, result-
ing in a decomposition of the likelihood across individual entries 
Aℓ

ij. This factorization can be further unpacked by explicitly con-
sidering the distributions that describe each layer. For instance, 
in the scenario with binary, count-based, and continuous interac-
tions, we can express the likelihood as follows:

P(A |Θ) =


ℓ,i,j

P(Aℓ
ij |Θ)

=


ℓ∈LB ,i,j

Bern(Aℓ
ij; λ

ℓ
ij(Θ))

×


ℓ∈LP ,i,j

Pois(Aℓ
ij; λ

ℓ
ij(Θ))

×


ℓ∈LG ,i,j

N (Aℓ
ij; λ

ℓ
ij(Θ), σ2),

(2) 

where σ2 is a hyperparameter and LB, LP, and LG are the sets of 
Bernoulli, Poisson, and Gaussian layers, respectively. We assume 
that each distribution is fully parametrized through the latent 

variables Θ and these explicitly define the expected values λℓij, re-

gardless of the data type.
Specifically, we adopt a multilayer mixed-membership model 

(30), and describe the observed interactions through K overlapping 
communities shared across all layers. Following this approach, 

the expected value of each interaction of type ℓ from node i to j 
can be approximated as:

λℓij(Θ) ≈
K

k,q=1

UikWℓ
kqV jq, (3) 

where the latent variables Uik and V jq denote the entries of 

K-dimensional vectors Ui and Vi, which respectively represent the 
communities of node i determined by the out-going and in-coming 
edges. In undirected networks, we set U = V. Moreover, each layer ℓ 
is associated with an affinity matrix Wℓ of dimension K × K, which 
characterizes the edge density between different community pairs 
in the given layer ℓ. This setup allows having diverse structural pat-
terns in each layer, including arbitrarily mixtures of assortative, 
disassortative, and core–periphery structures.

As a final remark, the approximation in Eq. 3 arises from a dis-
crepancy between the parameter space of the latent variables and 
that of the expected values of the distributions. In fact, while all 
variables are normally distributed, λℓij has to satisfy different con-
straints according to the distribution type. For instance, λℓij ∈ 
[0, 1] ∀ℓ ∈ LB and λℓij ∈ (0, ∞) ∀ℓ ∈ LP. For further details, we refer 
to the Parameter space and transformations section.

Modeling the node metadata
Similarly to the network edges, the node metadata are also con-
sidered to be conditionally independent given the latent variables. 
Therefore, when dealing with data that encompass categorical, 
count-based, and continuous attributes, the likelihood can be for-
mulated as follows:

P(X |Θ) =


i,x

P(Xix |Θ)

=


i,x∈CC

Cat(Xix; πix(Θ)) ×


i,x∈CP

Pois(Xix; πix(Θ))

×


i,x∈CG

N (Xix; πix(Θ), σ2),

(4) 

where CC, CP, and CG are the sets of categorical, Poisson, and 
Gaussian attributes, respectively.

Following previous work (22, 27, 28), we assume that the attrib-
utes are also generated from the node community memberships, 
thereby creating dependencies between node metadata and net-
work interactions. In particular, we approximate the expected val-
ue of an attribute x for node i as:

πix(Θ) ≈
1
2

K

k=1

(Uik + Vik)Hkx, (5) 

where H is a K × P-dimensional community-covariate matrix, ex-
plaining how an attribute x is distributed among the K communi-
ties. For instance, if we consider income as node metadata and 
expect communities to group nodes with similar income values, 
then the column vector H·x describes how income varies across 
groups. It is important to observe that when the attribute x is cat-
egorical, the expression in Eq. 5 becomes more complex because it 
must consider the total number of attribute categories Z. We pro-
vide additional details in the Supplementary Material.

Notice that like λℓij, πix also needs to satisfy specific constraints 
depending on the distribution type. We clarify this in the next 
subsection.

Parameter space and transformations
A key technical aspect of PIHAM is the use of Gaussian distributions 
to model priors and posteriors of the latent variables 
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Θ = (U, V, W, H). This choice simplifies the inference by an add-
itional step that ensures the expected values λℓij and πix belong to 
the correct parameter space for the various distribution types. 
To achieve this, we apply specific transformation functions to 
the latent variables, and model the expected values as follows:

λℓij(Θ) = f (Ui)g(Wℓ)f (Vj) (6) 

πix(Θ) =
1
2

(
f (Ui) + f (Vi)


g(H·x). (7) 

The functions f (·) and g(·) can take various forms, as long as they 
adhere to the required constraints. In our implementation, we se-
lect f (·) to be the softmax function, which is applied to every row of 
the community membership matrices. This allows interpretabil-
ity of the communities, as they result in quantities that are posi-
tive and normalized to one, as discussed in the Parameter 
interpretation section. Meanwhile, the choice of g(·) varies de-
pending on the distribution type, as illustrated in Table 1.

One might argue that it would be simpler to employ a single 
link function for λℓij and πix, rather than applying individually 
transformations to the latent variables, as done in standard stat-
istical approaches (31). However, this may not ensure interpret-
ability of the communities, as we do with the softmax f (·). In 
addition, empirically we discovered that the approach outlined 
in Eqs. 6 and 7 gives more stable results, and it does not result 
in over- or under-flow numerical errors. Alternatively, another ap-
proach considers treating the transformed parameters as random 
variables and applies the probability transformation rule to com-
pute their posterior distributions (32). While this method is theor-
etically well-founded, it comes with constraints regarding the 
choice of the transformation functions, which directly affects 
the feasibility of the inference process. Conversely, PIHAM offers 
the flexibility to use any set of transformation functions that re-
spects the parameter space of the distribution types given by 
the network and covariates.

In Figure 1, we illustrate the input data and the graphical model 
representation of our approach.

Posterior inference
PIHAM aims at estimating the posterior distributions of the latent 
variables, as outlined in Eq. 1, where the normalization term is 
omitted as it does not depend on the parameters. More precisely, 
this equation can be reformulated as:

P(U, V, W, H |A, X) = P(A |U, V, W) × P(X |U, V, H)

× P(U)P(V)P(W)P(H). (8) 

In general, this posterior distribution lacks a closed-form analyt-
ical solution and requires the use of approximations.

Common methods for inference in attributed networks typic-
ally rely on Expectation–Maximization (EM) (33) or Variational 
Inference (VI) (34) techniques. However, these approaches have 
limitations, as they require model-specific analytic computations 
for each new term added to the likelihood. For instance, an 
EM-based approach involves taking derivatives with respect to a 
given latent variable and setting them to zero. In a specific class 
of models where the likelihood and prior distributions are com-
patible, solving the resulting equation for the variable of interest 
can yield closed-form updates. Nonetheless, for generic models, 
there is no guarantee of a closed-form solution. Even when this 
does exist, slight variations in the input data may require entirely 
new derivations and updates. Consequently, most of these models 
are designed to handle only a single type of edge weight and a sin-
gle type of attribute.

A B

Fig. 1. Input data and graphical model representation. A) The attributed multilayer network is represented by the interactions Aℓ
ij and the node attributes 

Xix. B) PIHAM describes the observed data through a set of latent variables Θ = (U, V, W, H). Ui and Vi respectively depict the communities of node i 
determined by the out-going and in-coming edges; Wℓ is the affinity matrix associated to the layer ℓ and characterizes the edge density between different 
community pairs in the given layer; H·x is a K-dimensional vector that explains how an attribute x is distributed among the K communities. All latent 
variables are independent and normally distributed, and f (·) and g(·) are transformation functions to ensure that the expected values λℓij and πix belong to 
the correct parameter space for the various distribution types.

Table 1. Functions g(·) used in our implementation to transform 
the latent variables as defined in Eqs. 6 and 7.

Distribution Parameter space Transformation function

Bernoulli [0, 1] Logistic
Poisson (0, ∞) Exponential
Gaussian R Identity
Categorical pz ≥ 0 ∀z,


z pz = 1 Softmax

For Gaussian distributions, we model only the mean; for categorical 
distributions, we apply the softmax by row, i.e. across categories.
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In contrast, our model takes a different approach and flexibly 
adapts to any combination of input data, regardless of their data 
types. We begin by assuming that the latent variables are condi-
tionally independent given the data, allowing us to model each 
posterior distribution separately:

P(U, V, W, H |A, X) = P(U |A, X) P(V |A, X)

× P(W |A, X) P(H |A, X). (9) 

Subsequently, we employ a Laplace Approximation (LA) to ap-
proximate each posterior with a Gaussian distribution, 
resulting in:

P(θ |A, X) ≈ N (θ; μ̂θ, Σ̂θ), ∀θ ∈ Θ. (10) 

LA involves a second-order Taylor expansion around 
the Maximum A Posteriori estimate (MAP) of the right-hand 
side of Eq. 8. We compute this estimate using Automatic 
Differentiation (AD), a gradient-based method that, in our imple-
mentation, employs the Adam optimizer to iteratively evaluate 
derivatives of the log-posterior. One might question the validity 
of this approximation in a potentially multimodal landscape. 
However, it is important to recognize that the existence of local 
minima is a problem independent of the approximation method 
employed. Nonetheless, in our model class—multilevel networks 
of log-convex likelihood functions connected by log-convex link 
functions—this issue is less likely to occur.

The MAP estimate found with AD also constitutes the mean μ̂θ 

of P(θ |A, X). To go beyond point estimates and quantify uncer-
tainty, one can further estimate the covariance matrix Σ̂θ, which 
is given by the inverted Hessian around the MAP:

Σ̂θ ≈ −
∂2P(θ |A, X)

∂θ
(μ̂θ)

 −1

. (11) 

Other inference methods can be employed to approximate 
Gaussian distributions, such as VI. However, in such situations, 
utilizing AD directly might not be feasible due to the involvement 
of uncertain expectations in the optimization cost function. On 
the other hand, LA naturally combines with AD, providing a flex-
ible and efficient inference procedure.

Parameter interpretation
We approximate the posterior distributions of the latent variables 
using Gaussian distributions, as outlined in Eq. 10. Consequently, 
all our estimated parameters belong to the real space. Although 
this approach is advantageous for developing an efficient and au-
tomated inference method, practitioners may desire different 
variable domains to enhance interpretability. In some instances, 
achieving this transformation is straightforward, involving the appli-
cation of the probability transformation rule to obtain a distribution 
for the transformed variable within the desired constrained support. 
For example, if we are interested in expressing U̅ : = exp (Û) ∈ RN×K

>0 , 
we can simply employ the Lognormal(U̅; μ̂U, Σ̂U) distribution. 
Similarly, when seeking U̅ : = logistic(Û) ∈ (0, 1)N×K, we can just 
compute the Logitnormal(U̅; μ̂U, Σ̂U).

However, certain functions lack closed-form transformations. 
For instance, obtaining a probabilistic interpretation of the mixed- 
memberships of nodes requires applying the softmax function to 
each row of the matrices U and V, which is not a bijective function. 
To address this challenge, our framework employs the Laplace 
Matching (LM) (29) to approximate the distributions of such trans-
formations. This technique yields a bidirectional, closed-form 
mapping between the parameters of the Gaussian distribution 

and those of the approximated transformed distribution. In this 
scenario, we can derive:

U̅i : = softmax(Ûi), U̅ik ∈ [0, 1] and
K

k=1

U̅ik = 1

with P(U̅i) = Dir(U̅i; α̂U
i ),

(12) 

where α̂U
i is a K-dimensional vector obtained with LM, whose en-

tries are described as:

α̂U
ik =

1

Σ̂U
ikk

1 −
2
K

+
exp (μ̂U

ik)
K2

K

l=1

exp (μ̂U
il )

 

. (13) 

This approach is theoretically grounded and enables us to provide 
closed-form posterior distributions for the latent variables across 
a diverse range of domains. Consequently, it consistently allows 
for the estimation of uncertainties and other relevant statistical 
measures. Nonetheless, PIHAM can also be utilized for the sole pur-
pose of determining point estimates of the latent variables, which 
are essentially given by the MAP estimates. In such scenarios, it 
remains feasible to map these point estimates to different sup-
ports by applying any desired function, without worrying about 
the transformation process. Although this approach lacks full 
posterior distributions, it significantly simplifies the inference 
process by avoiding the computation of the Hessian. The choice 
between these two approaches should be guided by the specific 
application under study.

Results
We demonstrate our method on both synthetic and real-world da-
tasets, presenting a comprehensive analysis through quantitative 
and qualitative findings. Further explanations about the data gen-
eration and preprocessing procedures can be found in the 
Supplementary Material, which also includes additional results. 
The settings used to run our experiments and the choice of the hy-
perparameters are also described in the Supplementary Material. 
The code implementation of PIHAM is accessible at: https://github. 
com/mcontisc/PIHAM.

Simulation study
Comparison with existing methods in a homogeneous 
scenario
We first investigate the behavior of our model in a simpler and 
common scenario, characterized by attributed multilayer net-
works with nonnegative discrete weights and one categorical 
node attribute. This represents the most general case addressed 
by existing methods, which are specifically designed for homoge-
neous settings, where there is only one attribute and one data 
type. For comparison, we use MTCOV (28), a probabilistic model 
that assumes overlapping communities as the main mechanism 
governing both interactions and node attributes. In contrast to 
PIHAM, MTCOV is tailor-made to handle categorical attributes and 
nonnegative discrete weights. Additionally, it employs an EM al-
gorithm, with closed-form derivations for parameters inference 
strongly relying on the data type, making MTCOV a bespoke solution 
compared to the more general framework proposed by PIHAM. The 
results of this comparison are depicted in Fig. S1, accompanied by 
additional details about the data generation and experiment set-
tings. In principle, we expect MTCOV to exhibit better performance 
in this specific scenario due to its tailored development for such 
data and also its generative process aligning closely with the 
mechanism underlying the synthetic data. Nonetheless, despite 
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the generality of our approach, we observe that PIHAM achieves 
comparable performance to MTCOV in link and attribute prediction, 
as well as community detection, especially in scenarios involving 
denser networks. These results collectively show that PIHAM is a 
valid approach even in less heterogeneous scenarios, as it can 
compete effectively with bespoke existing methods.

Validation on heterogeneous data
Having demonstrated that PIHAM performs comparably well to 
existing methods for attributed multilayer networks, we now 
demonstrate its behavior on more complex data containing het-
erogeneous information. To the best of our knowledge, this is 
the first probabilistic generative model designed to handle and 
perform inference on such data, and as a result, a comparative 
analysis is currently unavailable. Additionally, due to the absence 
of alternative benchmarks for data generation, we validate the 
performance of our method on synthetic data generated using 
the model introduced in this work.

We analyze attributed multilayer networks with L = 3 heteroge-
neous layers: one with binary interactions, one with nonnegative 
discrete weights, and one with real values. In addition, each node 
is associated with three covariates: one categorical with Z = 4 cat-
egories, one representing nonnegative discrete values, and one in-
volving real values. To generate these networks, we initially draw 

the latent variables Θ = (U, V, W, H) from Gaussian distributions 
with specified hyperparameters. Subsequently, we generate A 
and X according to the data types, following Eqs. 2 and 4. Our ana-
lysis spans networks with varying number of nodes N ∈ 
{100, 200, . . . , 1000} and diverse number of overlapping communi-
ties K ∈ {3, 4, 5}. Additional details on the generation process can 
be found in the Supplementary Material.

We assess the effectiveness of PIHAM by testing its prediction 
performance. To this end, we adopt a 5-fold cross-validation pro-
cedure, where we estimate the model’s parameters on the train-
ing set and subsequently evaluate its prediction performance on 
the test set (see the Supplementary Material for details). The pres-
ence of heterogeneous information complicates the measure-
ment of goodness of fit, as distinct data types impose different 
constraints and domains. To address this complexity, we employ 
different metrics tailored to assess the prediction performance of 
each type of information. Specifically, we use the area under the 
receiver–operator curve (AUC) for binary interactions, the max-
imum absolute error (MAE) for nonnegative discrete values, the 
root mean squared error (RMSE) for real values, and the accuracy 
for categorical attributes. Further exploration to determine a uni-
fied metric could be a subject of future research.

The results are illustrated in Figure 2, where the performance 
of PIHAM is compared against baselines given by the predictions ob-
tained from either the average or the maximum frequency in the 

A B C

D E F

Fig. 2. Prediction performance on synthetic data. We analyze synthetic attributed multilayer networks with L = 3 heterogeneous layers (one with binary 
interactions (A), one with nonnegative discrete weights (B), and one with real values (C)), three node covariates (one categorical with Z = 4 categories (D), 
one representing nonnegative discrete values (E), and one involving real values (F)), varying number of nodes N, and diverse number of overlapping 
communities K. We employ a 5-fold cross-validation procedure and plot averages and confidence intervals over 20 independent samples. The prediction 
performances are measured with different metrics according to the data type: AUC for binary interactions (A), the MAE for nonnegative discrete values (B, 
E), the RMSE for real values (C, F), and accuracy for categorical attributes (D). The baselines are given by the predictions obtained from either the average 
or the maximum frequency in the training set. For the categorical attribute, we also include the uniform random probability over Z, and for the AUC, the 
baseline corresponds to the random choice 0.5. Overall, PIHAM outperforms the baselines significantly for each type of information.
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training set. For the categorical attribute, we also include the uni-
form random probability over Z, and for the AUC, the baseline cor-
responds to the random choice 0.5. Overall, PIHAM outperforms the 
baselines significantly for each type of information, with perform-
ance slightly decreasing as K increases. This is somewhat ex-
pected, considering the increased complexity of the scenarios. 
On the other hand, the performance remains consistent across 
varying values of N, indicating the robustness of our method 
and its suitability for larger networks.

Interpretation of posterior estimates
We have showcased the prediction performance of PIHAM across di-
verse synthetic datasets, and we now delve into the qualitative in-
sights that can be extracted from the inferred parameters. In 
particular, we focus on the membership matrix U. For this pur-
pose, we examine the results obtained through the analysis of 
the synthetic data used in the Comparison with existing methods 
in a homogeneous scenario section, where ground truth mixed- 
memberships are represented as normalized vectors summing 
to 1. This scenario is particularly relevant for illustrating an ex-
ample where the desired parameter space, defined by the simplex, 
differs from the inferred one existing in real space.

To ease visualizations, we investigate a randomly selected net-
work and focus on three representative nodes with distinct 

ground truth memberships: node A has extreme mixed- 
membership, node B slightly less mixed-membership, and node 
C exhibits hard-membership. The results are depicted in 
Figure 3, with the top row displaying the ground truth member-
ship vectors for these representative nodes. In the middle row, 
we plot the inferred posterior distributions Ûik ∼ N (Ûik; μ̂U

ik, (σ̂U
ik)2), 

where different colors represent distinct communities (in this 
case, K = 3). Through a comparative analysis of the three distribu-
tions for each node, we can gain insights into the nodes’ behaviors: 
Node A exhibits greater overlap among the three distributions, 
Node B shows a slighter shift toward K1, while Node C distinctly 
aligns more with community K3. This preliminary investigation 
leads to the conclusion that the inferred communities reflect the 
ground truth behaviors. However, interpreting such patterns 
can be challenging, if not unfeasible, especially when dealing 
with large datasets. To address this issue, we quantitatively com-
pute the area of overlap between every pair of distributions for 
each node and then calculate the average. For this purpose, we 
use the implementation proposed in (35) and we name this meas-
ure as Overlap. This metric ranges from 0 (indicating no overlap) to 
1 (representing perfect matching between the distributions). 
Notably, the overlap decreases as we move from node A to node 
C, in line with the decreasing degree of mixed-membership.

Computing the Overlap for many communities can be compu-
tationally expensive due to the need to calculate all pairwise 

Fig. 3. Interpretation of posterior distributions in comparison with ground truth memberships. We analyze a synthetic attributed multilayer network 
with ground truth mixed-memberships represented as normalized vectors summing to 1. In this case, K = 3. (Top row) Ground truth membership vectors 
for three representative nodes: node A displays extreme mixed-membership, node B shows a slightly lower mixed-membership, and node C exhibits 
hard-membership. (Middle row) Inferred posterior distributions Ûik ∼ N (Ûik; μ̂U

ik, (σ̂U
ik)2), where different colors represent distinct communities, and the 

distribution in gray consists of the L2-barycenter distribution. Overlap is the average of the area of overlap between every pair of distributions, and σ2 is 
the variance of the barycenter distribution. (Bottom row) Transformed posterior distributions into the simplex space using the LM technique and 
employing Dirichlet distributions. The inferred node memberships reflect the ground truth behavior, as evidenced by the trends of Overlap and σ2, which 
align with the decreasing degree of true mixed-membership. Additionally, the Dirichlet transformation provides a more straightforward interpretation, 
further supporting this conclusion.
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combinations. As an alternative solution, we suggest utilizing the 
L2-barycenter distribution, which essentially represents a 
weighted average of the node-community distributions (36, 37). 
We show the barycenter distributions in gray in the second row 
of Fig. 3. This approach allows focusing on a single distribution 
per node, instead of K different ones. To quantify this distribution, 
we calculate its variance (σ2), where higher values indicate nodes 
with harder memberships, as the barycenter is more spread due to 
the individual distributions being more distant from each other. 
Conversely, lower variance suggests more overlap among the distri-
butions, indicating a more mixed-membership scenario. We observe 
that σ2 increases as we decrease the degree of mixed-membership, 
a trend consistent with that of the Overlap. Further details on the 
barycenter distribution and the metrics are provided in the 
Supplementary Material.

To facilitate interpretability, a practitioner may desire to work 
within the simplex space. This also reflects the ground truth par-
ameter space, as opposed to the normal posterior distributions. As 
discussed in the Parameter interpretation section, PIHAM employs 
the LM technique. This has the capability to transform in a prin-
cipled way every membership vector Ûi into the simplex space us-
ing Dirichlet distributions. The outcomes of this transformation 
are depicted in the bottom row of Fig. 3. By investigating these 
plots, it becomes even more apparent how the inferred member-
ships closely resemble the ground truth: the Dirichlet distribu-
tions gradually concentrate more towards a specific corner (K1 

for node B and K3 for node C), instead of spreading across the en-
tire area (as observed for node A).

With this example, we presented a range of solutions for inter-
preting the posterior distributions associated with the inferred 
node memberships. These options are not exhaustive, and other 
approaches may also be considered. For instance, a practitioner 
might focus solely on analyzing the point estimates for the sake 
of facilitating comparisons with the ground truth. In such cases, 
as discussed in the Parameter interpretation section, two proce-
dures can be employed: (i) applying a transformation to the point 
estimates, such as softmax, to align them with the ground truth 
space or (ii) using a sufficient statistic of the posterior distribution, 
where the mean of the Dirichlet distribution is a suitable option. 
The choice between these various approaches should be guided 
by the specific application under study, and the provided example 
serves as just one illustration.

Analysis of a social support network of a rural 
Indian village
We now turn our attention to the analysis of a real-world dataset 
describing a social support network within a village in Tamil 
Nadu, India, referred to as “Aḻakāpuram” (38, 39). The data were 
collected in 2013 through surveys, in which adult residents were 
asked to nominate individuals who provided various types of sup-
port, such as running errands, offering advice, and lending cash or 
household items. Additionally, several attributes were gathered, 
encompassing information like gender, age, and caste, among 
others. The preprocessing of the dataset is described in the 
Supplementary Material. The resulting heterogeneous attributed 
multilayer network comprises N = 419 nodes, L = 7 layers, and 
P = 3 node attributes. The initial six layers depict directed binary 
social support interactions among individuals, with average de-
gree ranging from 1.8 to 4.2. The seventh, instead, contains infor-
mation that is proportional to the geographical distance between 
individuals’ households. The adjacency tensor is then represented 
as A = {Aℓ ∈ {0, 1}N×N

∀ℓ ∈ [1, 6], A7 ∈ R+
N×N}. As node covariates, 

we consider the caste attribute with Zcaste = 14 categories, the re-
ligion attribute with Zreligion = 3 categories, and the attribute repre-
senting the years of education, that is X·3 ∈ NN

0 . Ethnographic 
work and earlier analyses (39, 40) suggest that these attributes 
play an important role in how villagers relate to one another, 
with certain relationships being more strongly structured by these 
identities than others.

Inference, prediction performance, and 
goodness of fit
We describe the likelihood of the real-world heterogeneous attrib-
uted multilayer network according to Eqs. 2 and 4, customized to 
suit the data types under examination. In particular, we employ 
Bernoulli distributions for the binary layers [Aℓ]ℓ∈[1,6] and 
Gaussian distributions for the distance layer A7. Moreover, we 
characterize the attributes caste X·1 and religion X·2 using 
Categorical distributions, and model the covariate X·3 with a 
Poisson distribution. The choice of the model hyperparameters 
and the algorithmic settings used in our experiments are de-
scribed in the Supplementary Material.

Similarly to many real-world datasets, we lack the information 
about the true parameters underlying the network, including the 
node memberships. Hence, to determine the number of commu-
nities K, we employ a 5-fold cross-validation procedure for K ∈ 
[1, 10] and select the value that exhibits the optimal performance. 
Detailed results are displayed in Table S2. We set K = 6 as it 
achieves the best performance across the majority of prediction 
metrics. In fact, selecting a single metric to summarize and evalu-
ate results in a heterogeneous setting is nontrivial, as discussed in 
the Validation on heterogeneous data section. The results in 
Table S2 additionally validate PIHAM’s performance in inference 
tasks like edge and covariate prediction. Overall, our method 
demonstrates robust outcomes with the chosen fixed value of K 
and consistently outperforms the baselines, which are omitted 
for brevity.

We further evaluate our model’s goodness of fit through a 
posterior-predictive assessment (41, 42), comparing the input 
data to synthetic data generated by the fitted model. A well-fitted 
model should produce synthetic data that closely resemble the 
original input. To accurately assess performance, we test whether 
two samples from the posterior-predictive distribution are gener-
ally more, equally, or less distant from each other than a sample 
from the posterior-predictive distribution compared to the input 
data (41). We measure the distance using different metrics de-
pending on the data type, and the results are shown in Fig. S3. 
The discrepancies between synthetic data samples consistently 
exceed those between the observed data and synthetic samples, 
indicating that PIHAM  provides a good fit for the data.

Qualitative interpretation of the 
inferred parameters
We now shift our attention to analyze the results qualitatively, 
specifically focusing on the inferred communities. For easier in-
terpretation, we apply a softmax transformation to the MAP esti-
mates μ̂U

i , allowing us to treat node memberships as probabilities. 
Opting for the softmax over the mean of the posterior Dirichlet 
distributions is primarily for visualization purposes, as it results 
in slightly less mixed-memberships, thereby improving clarity. 
The middle and bottom rows of Fig. 4 depict the inferred out-going 
communities Ûi, where darker values in the grayscale indicate 
higher values in the membership vector. In addition, the top row 
of Fig. 4 displays the node attributes included in our analysis. 
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Note also that the nodes’ position reflects the geographical dis-
tance between individuals’ households, and the depicted interac-
tions refer to the first layer (talk about important matters). A full 
representation of the six binary layers is shown in Fig. S2.

Upon initial examination, we observe a correspondence between 
various detected communities and the covariate information. 
For instance, the first and second communities predominantly 
consist of nodes belonging to the Yātavar and Paṟaiyar castes, re-
spectively. Similarly, K3 comprises nodes from the Kulālar and 
Maṟavar castes. This observation is supported by the inferred 
K × Zcaste-dimensional matrix Ĥ·1 (see Fig. S4), which explains 
the contributions of each caste category to the formation of the 
k-th community. Furthermore, the affinity tensor Ŵ (see Fig. S6) 

suggests that these communities have an assortative structure, 
where nodes tend to interact more with individuals belonging to 
the same community as with those from different communities. 
This pattern reflects a typical behavior in social networks (43). 
Additionally, note that these communities contain nodes that 
are geographically close to each other and, in some cases, very dis-
tant from the majority.

In contrast to the first three, communities K4, K5, and K6 are 
more nuanced. In fact, they are predominantly comprised of no-
des from the Palḷạr caste, which, however, is also the most repre-
sented caste in the dataset. Despite that, we observe some 
differences by examining other parameters. For instance, K4 ex-
hibits a strong assortative community structure, contrasting 

Fig. 4. Inference of overlapping communities in a social support network. We analyze a real-world heterogeneous attributed multilayer network, which 
was collected in 2013 through surveys in the Indian village. This network comprises six binary layers representing directed social support interactions 
among individuals, alongside an additional layer reflecting information proportional to the distance between individuals’ households. (Top row) As node 
covariates, we consider caste X·1, religion X·2, and years of education X·3. For privacy reasons, nodes belonging to castes with fewer than five individuals 
are aggregated into an “Other” category. Moreover, the displayed interactions refer only to the first layer (talk about important matters) to enhance clarity 
in visualization. (Middle-Bottom rows) We display the MAP estimates of the out-going communities inferred by PIHAM. For easier interpretation, we apply a 
softmax transformation to the MAP estimates of the membership vectors, and darker values in the grayscale indicate higher values in the membership 
vector Ûi. The position of the nodes reflects the geographical distance between individuals’ households. In summary, the inferred communities do not 
exclusively align with a single type of information. Rather, PIHAM incorporates all input information to infer partitions that effectively integrate them in a 
meaningful way.
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with the less structured nature of K5 and K6. This suggests that in-
teractions play a more relevant role than attributes in determining 
the memberships of K4. On the other hand, the attribute X·3 seems 
to play a bigger role in determining K6, which includes nodes with 
more years of education. This correlation is depicted in Fig. S5, 
where the posterior distribution N (Ĥ63; μ̂H

63, (σ̂H
63)2) of education 

years in K6 significantly differs and is distant from the others.
By looking at the affinity matrices of the seven layers in Fig. S6, 

we see how layers have predominantly an assortative structure but 
show also variations for certain layers. For instance, L2 (help finding 
a job) has few nonzero diagonal values, suggesting that this type of 
support is one for which people must sometimes seek out others in 
different communities. In particular, L7, corresponding to the geo-
graphical distance between nodes, has several off-diagonal entries, 
particularly for communities K4, K5, and K6, suggesting a weakened 
effect for physical proximity for those communities.

Taken together, these findings suggest that the inferred commu-
nities do not solely correlate with one type of information, which 
may be the most dominant. Instead, PIHAM utilizes all the input infor-
mation to infer partitions that effectively integrate all of them in a 
meaningful manner. In addition, the inferred affinity matrices illus-
trate how different layers can exhibit different community struc-
tures, a diversity that can be captured by our model.

Discussion
In this work, we have introduced PIHAM, a probabilistic generative 
model designed to perform inference in heterogeneous and attrib-
uted multilayer networks. A significant feature of our approach is 
its flexibility to accommodate any combination of the input data, 
made possible through the use of Laplace approximations and auto-
matic differentiation methods, which avoid the need for explicit der-
ivations. However, it is important to note that having a method 
capable of handling complex network datasets does not automatic-
ally ensure the quality of the input data. For example, if only certain 
attributes are relevant for explaining the networked dataset, or if 
only specific layers contain valuable information for the task, adding 
unnecessary information could be detrimental. Practitioners must 
carefully assess which information is useful based on their specific 
objectives. Alternatively, model selection tests, such as the cross- 
validation routine demonstrated in the manuscript, can be used to 
determine the optimal combination of layers and attributes.

When compared to other methods tailored for scenarios with 
only one type of attribute and interaction, PIHAM demonstrates 
comparable performance in prediction and community detection 
tasks, despite its broader formulation. Moreover, our approach 
significantly outperforms baseline metrics in more complex 
settings characterized by various attribute and interaction types, 
where existing methods for comparison are lacking. Additionally, 
PIHAM employs a Bayesian framework, enabling the estimation of pos-
terior distributions, rather than only providing point estimates for 
the parameters. And, through the use of the Laplace matching tech-
nique, it maps these posterior distributions to various desired do-
mains in a theoretically sound manner, facilitating interpretation.

While PIHAM constitutes a principled and flexible method to 
analyze heterogeneous and attributed multilayer networks, 
several questions remain unanswered. For example, determin-
ing the most appropriate metric for summarizing prediction 
performance in heterogeneous scenarios, where information 
spans different spaces, is not straightforward. This aspect 
also influences the selection of the optimal model during cross- 
validation procedures. While we have provided explanations 
for our choices, we acknowledge that this remains an open 

question. Similarly, when dealing with many communities, 
summarizing posterior distributions becomes challenging due 
to computational constraints. We addressed this issue by employ-
ing L2-barycenter distributions and proposing their variance 
to guide interpretation. Nevertheless, we believe there is still con-
siderable room for improvement and exploration in this area. 
Moreover, we have considered here mixed-memberships, but in 
certain data-scarce scenarios hard-membership approaches with 
fewer parameters could be better suited. Future work should con-
sider how to flexibly drive parameters’ inference towards mixed or 
hard memberships, based on the input data. Our method could be 
further extended to accommodate distinct community-covariate 
contributions by integrating two separate H matrices for both in- 
coming and out-going communities, respectively. This modifica-
tion will offer clearer insights into how covariates influence the 
partitions, especially when discrepancies arise between in-coming 
and out-going communities. Moreover, we treated the number of 
communities K as given, and for real-world data it was selected 
via cross-validation. While this procedure is grounded, it can be 
computationally expensive. An alternative approach would be to 
treat K as a model parameter and infer it directly from the data. 
Lastly, it would be interesting to expand this framework to incorp-
orate higher-order interactions, an emerging area that has shown 
relevance in describing real-world data (44).

In summary, PIHAM offers a flexible and effective approach for 
modeling heterogeneous and attributed multilayer networks, 
which arguably better captures the complexity of real-world 
data, enhancing our capacity to understand and analyze the or-
ganization of real-world systems.
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