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Flexible inference in heterogeneous and attributed
multilayer networks
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Networked datasets can be enriched by different types of information about individual nodes
or edges. However, most existing methods for analyzing such datasets struggle to handle
the complexity of heterogeneous data, often requiring substantial model-specific analysis.
In this paper, we develop a probabilistic generative model to perform inference in multilayer
networks with arbitrary types of information. Our approach employs a Bayesian framework
combined with the Laplace matching technique to ease interpretation of inferred parameters.
Furthermore, the algorithmic implementation relies on automatic differentiation, avoiding
the need for explicit derivations. This makes our model scalable and flexible to adapt to any
combination of input data. We demonstrate the effectiveness of our method in detecting
overlapping community structures and performing various prediction tasks on heterogeneous
multilayer data, where nodes and edges have different types of attributes. Additionally, we
showcase its ability to unveil a variety of patterns in a social support network among villagers
in rural India by effectively utilizing all input information in a meaningful way.

probabilistic generative models | attributed multilayer networks | heterogeneous information |
network inference | overlapping communities | automatic differentiation | Laplace approximation

Networks effectively represent real-world data from various fields, including social,
biological, and informational systems. In this framework, nodes within the network
correspond to individual components of the system, and their interactions are
illustrated through network edges (1). With the advancement of data collection
and representation techniques, networks have evolved to become more versatile and
informative. Notably, attributed multilayer networks have emerged as a significant
development, allowing the inclusion of additional information related to nodes and
edges. This enriches the representation of real-world systems, where nodes naturally
have specific characteristics and are connected through different types of interactions.
For instance, in social networks, individuals can be described by attributes like age,
gender, and height, while engaging in various types of relationships like friendship,
co-working, and kinship.

It is important to treat these systems as multilayer networks, rather than
reducing them to a single layer (e.g., through aggregation), to avoid losing valuable
information. This is particularly significant when the properties of the entire system
cannot be derived from a simple linear combination of the properties of each layer in
isolation, or through other forms of aggregation into a single layer representation (2).
Relevant examples of this non-trivial behavior are observed in interbank markets,
patent citation networks, time-dependent networks and brain networks (3–6). A
similar rationale applies to datasets with multiple types of edges and node attributes,
as explored in this work. Approaches to multilayer networks that consider only one
type of attribute – or none at all – risk losing critical information.

The analysis of attributed multilayer networks has primarily been tackled using
techniques like matrix factorization (7, 8), network embedding (9, 10), and deep
learning (11–14). While effective for learning low-dimensional node representations
for inference tasks, these methods have significant limitations when applied to
network data. First, the resulting representations lack inherent interpretability.
Since their main focus is prediction tasks, these models do not impose constraints
on the parameters to improve interpetability, such as non-negativity or shared
parameters across layers. Instead, they often require arbritarily post-processing
techniques (e.g., k-means clustering) for interpretation. Second, these methods
prioritize node-level tasks (e.g., classification or clustering) and treat edge-level tasks,
like link prediction, as secondary, relying on ad hoc mappings from nodes to edges.
Lastly, they are typically parameter-heavy and require a substantial amount of
training data, making them inefficient and overparametrized for real-world networks,
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Systems, Tübingen 72076, Germany; bTübingen AI
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which are typically sparse, label-scarce for supervised settings,
and often provide only a single observed sample.

To overcome these limitations, we adopt a different
approach based on probabilistic generative models (15).
Unlike the aforementioned methods, these models provide
a principled and flexible framework that incorporates prior
knowledge and specific assumptions, resulting in more in-
terpretable representations. Importantly, they explicitly
capture the dependencies between nodes and edges, rather
than relying on ad hoc mappings. They also account for the
inherent uncertainty present in real-world network data (16),
providing a more robust and comprehensive understanding
of this type of data. Furthermore, these models can be
applied to perform various network tasks, such as edge
and attribute prediction, detecting statistically meaningful
network structures, and generating synthetic data.

Our goal is to develop a probabilistic generative model
that can flexibly adapt to any attributed multilayer network,
regardless of the type of information encoded in the data.
Acting as a “black box”, our method can enable practitioners
to automatically analyze various datasets, without the need
to deal with mathematical details or new derivations. This
approach aligns with some practices in the machine learning
community, where black box methodologies have been intro-
duced to simplify the inference of latent variables in arbitrary
models (17, 18). In this context, more specific probabilistic
methods have been developed to address the challenge
of performing inference on heterogeneous data (19, 20).
However, these techniques are tailored for tabular data and do
not provide a general solution to adapt them to network data.

Probabilistic generative models specifically designed for
attributed networks aim to combine node attributes effectively
with network interactions. Existing methods (21–28) have
highlighted the importance of incorporating extra information
to enhance network inference, resulting in improved prediction
performance and deeper insights on the interplay between
edge structure and node metadata. However, these models
mainly focus on single-layer networks, assume the same
generative process for all interactions, and consider only one
type of attribute – typically categorical. These limitations
restrict their capability to represent complex scenarios char-
acterized by heterogeneous information. As a consequence,
addressing the challenge of effectively incorporating various
sources of information and evaluating their collective impact
on downstream network inference tasks remains an open issue.

We address this gap by introducing PIHAM, a generative
model explicitly designed to perform Probabilistic Inference
in directed and undirected Heterogeneous and Attributed
Multilayer networks. Our approach differs from previous
studies in that PIHAM flexibly adapts to any combination
of input data, while standard probabilistic methods rely
on model-specific analytic derivations that highly depend
on the data types given in input. This can dramatically
hinder the flexibility of a model, as any small change in the
data, e.g., adding a new node attribute or a new type of
interaction, usually requires new derivations. As a result, the
vast majority of these models work only with one type of edge
weight for all layers, and one type of attribute. In contrast,
PIHAM takes in input any number of layers and attributes,
regardless of their data types.

At its core, PIHAM assumes the existence of a mixed-
membership community structure that drives the generation
of both interactions and node attributes. In addition, the
inference of the parameters is performed within a Bayesian
framework, where both prior and posterior distributions are
modeled with Gaussian distributions. Importantly, PIHAM
employs the Laplace matching technique (29) and conve-
niently maps the posterior distributions to various desired
domains, to ease interpretation. For instance, to provide
a probabilistic interpretation of the inferred communities,
our method properly maps the parameters of a Gaussian
distribution into those of a Dirichlet distribution. The latter
operates within a positive domain and enforces normalization
on a simplex, making it a valuable tool for this purpose.
Notably, the inference process is flexible and scalable, relying
on automatic differentiation and avoiding the need for explicit
derivations. As a result, PIHAM can be considered a “black
box” method, as practitioners only need to select the desired
probabilistic model and a set of variable transformation
functions, while the remaining calculations and inference
are performed automatically. This versatility enables our
model to be flexibly applied to new modeling scenarios.

We apply our method on a diverse range of synthetic
and real-world data, showcasing how PIHAM effectively
leverages the heterogeneous information contained in the
data to enhance prediction performance and provide richer
interpretations of the inferred results.

Methods

We introduce PIHAM, a versatile and scalable probabilistic
generative model designed to perform inference in attributed
multilayer networks. Our method flexibly adapts to any
combination of input data, regardless of their data types.
For simplicity, in what follows, we present examples with
Bernoulli, Poisson, Gaussian, and categorical distributions,
which collectively cover the majority of real-world examples.
Nevertheless, our model can be easily extended to include
new distributions, as well as applied to single-layer networks
with or without attributes.

General framework. Attributed multilayer networks provide
an efficient representation of complex systems in which the
individual components have diverse attributes (often referred
to as covariates or metadata) and are involved in multiple
forms of interactions. Mathematically, these interactions are
depicted by an adjacency tensor A of dimension L × N × N ,
where N is the number of nodes common across all L layers.
Each entry Aℓ

ij in this tensor denotes the weight of a directed
interaction of type ℓ from node i to node j. Notably, different
layers can incorporate interactions of diverse data types,
depending on the nature of the underlying relationship.
For instance, in social systems, one layer might represent
binary relationships like friendships, another could describe
nonnegative discrete interactions such as call counts, and
a third might contain continuous real-valued measurements
such as geographical distances between locations. In this
scenario, the adjacency tensor would be represented as
A = {A1 ∈ {0, 1}N×N , A2 ∈ NN×N

0 , A3 ∈ RN×N
+ }. Node

metadata describes additional information about the nodes.
They are stored in a design matrix X with dimensions N ×P ,
where P is the total number of attributes and the entries Xix
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A B

Fig. 1. Input data and graphical model representation. (A) The attributed multilayer network is represented by the interactions Aℓ
ij and the node attributes Xix. (B) PIHAM

describes the observed data through a set of latent variables Θ = (U , V , W , H). Ui and Vi respectively depict the communities of node i determined by the out-going
and in-coming edges; W ℓ is the affinity matrix associated to the layer ℓ and characterizes the edge density between different community pairs in the given layer; H·x is a
K-dimensional vector that explains how an attribute x is distributed among the K communities. All latent variables are independent and normally distributed, and f(·) and
g(·) are transformation functions to ensure that the expected values λℓ

ij and πix belong to the correct parameter space for the various distribution types.

represent the value of an attribute x for a node i. Similar to
network interactions, different attributes can have different
data types. An example of input data is given in Fig. 1A.

PIHAM describes the structure of attributed multilayer
networks, represented by A and X, through a set of latent
variables Θ. The goal is to infer Θ from the input data. In
particular, we want to estimate posterior distributions, as
done in a probabilistic framework. These can be approxi-
mated as:

P (Θ | A, X) ∝ P (A, X | Θ) P (Θ)
= P (A | Θ) P (X | Θ) P (Θ) . [1]

In this general setting, the proportionality is due to the
omission of an intractable normalization term that does
not depend on the parameters. The term P (A, X | Θ) =
P (A | Θ) P (X | Θ) represents the likelihood of the data,
where we assume that A and X are conditionally independent
given the parameters. This assumption allows to model
separately the network structure and the node metadata.
The term P (Θ) denotes the prior distributions of the latent
variables, which we assume to be independent and Gaussian
distributed, resulting in P (Θ) =

∏
θ∈Θ N (θ; µθ, Σθ). Impor-

tantly, we also make the assumption that the posterior distri-
butions of the parameters can be approximated with Gaussian
distributions, for which we have to estimate mean and
covariance matrices: P (Θ | A, X) ≈

∏
θ∈Θ N (θ; µ̂θ, Σ̂θ).

In the following subsections, we provide additional details
on the role of the latent variables in shaping both interactions
and node attributes, as well as the methods for inferring their
posterior distributions.

Modelling the network structure. The interactions encoded
in the adjacency tensor A are assumed to be conditionally
independent given the latent variables, resulting in a decom-
position of the likelihood across individual entries Aℓ

ij . This
factorization can be further unpacked by explicitly considering
the distributions that describe each layer. For instance,
in the scenario with binary, count-based, and continuous

interactions, we can express the likelihood as follows:

P (A | Θ) =
∏
ℓ,i,j

P (Aℓ
ij | Θ)

=
∏

ℓ∈LB ,i,j

Bern(Aℓ
ij ; λℓ

ij(Θ))

×
∏

ℓ∈LP ,i,j

Pois(Aℓ
ij ; λℓ

ij(Θ))

×
∏

ℓ∈LG,i,j

N (Aℓ
ij ; λℓ

ij(Θ), σ2) , [2]

where σ2 is a hyperparameter and LB , LP , and LG are the sets
of Bernoulli, Poisson, and Gaussian layers, respectively. We
assume that each distribution is fully parametrized through
the latent variables Θ and these explicitly define the expected
values λℓ

ij , regardless of the data type.
Specifically, we adopt a multilayer mixed-membership

model (30), and describe the observed interactions through K
overlapping communities shared across all layers. Following
this approach, the expected value of each interaction of type
ℓ from node i to j can be approximated as:

λℓ
ij(Θ) ≈

K∑
k,q=1

UikW ℓ
kqVjq , [3]

where the latent variables Uik and Vjq denote the entries of K-
dimensional vectors Ui and Vi, which respectively represent
the communities of node i determined by the out-going and
in-coming edges. In undirected networks, we set U = V .
Moreover, each layer ℓ is associated with an affinity matrix
W ℓ of dimension K ×K, which characterizes the edge density
between different community pairs in the given layer ℓ. This
setup allows having diverse structural patterns in each layer,
including arbitrarily mixtures of assortative, disassortative
and core-periphery structures.

As a final remark, the approximation in Eq. (3) arises
from a discrepancy between the parameter space of the latent
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variables and that of the expected values of the distributions.
In fact, while all variables are normally distributed, λℓ

ij has to
satisfy different constraints according to the distribution type.
For instance, λℓ

ij ∈ [0, 1] ∀ ℓ ∈ LB and λℓ
ij ∈ (0, ∞) ∀ ℓ ∈ LP .

For further details, we refer to the section Parameter space
and transformations.

Modelling the node metadata. Similarly to the network edges,
the node metadata are also considered to be conditionally
independent given the latent variables. Therefore, when
dealing with data that encompass categorical, count-based,
and continuous attributes, the likelihood can be formulated
as follows:

P (X | Θ) =
∏
i,x

P (Xix | Θ)

=
∏

i,x∈CC

Cat(Xix; πix(Θ))

×
∏

i,x∈CP

Pois(Xix; πix(Θ))

×
∏

i,x∈CG

N (Xix; πix(Θ), σ2) , [4]

where CC , CP , and CG are the sets of categorical, Poisson,
and Gaussian attributes, respectively.

Following previous work (22, 27, 28), we assume that
the attributes are also generated from the node community
memberships, thereby creating dependencies between node
metadata and network interactions. In particular, we
approximate the expected value of an attribute x for node i as:

πix(Θ) ≈ 1
2

K∑
k=1

(Uik + Vik) Hkx , [5]

where H is a K ×P -dimensional community-covariate matrix,
explaining how an attribute x is distributed among the K
communities. For instance, if we consider income as node
metadata and expect communities to group nodes with similar
income values, then the column vector H·x describes how
income varies across groups. It is important to observe that
when the attribute x is categorical, the expression in Eq. (5)
becomes more complex because it must consider the total
number of attribute categories Z. We provide additional
details in the Supporting Information.

Notice that like λℓ
ij , πix also needs to satisfy specific

constraints depending on the distribution type. We clarify
this in the next subsection.

Parameter space and transformations. A key technical aspect
of PIHAM is the use of Gaussian distributions to model priors
and posteriors of the latent variables Θ = (U , V , W , H).
This choice simplifies the inference by an additional step that
ensures the expected values λℓ

ij and πix belong to the correct
parameter space for the various distribution types. To achieve
this, we apply specific transformation functions to the latent
variables, and model the expected values as follows:

λℓ
ij(Θ) = f(Ui) g(W ℓ) f(Vj) [6]

πix(Θ) = 1
2

(
f(Ui) + f(Vi)

)
g(H·x) . [7]

Table 1. Functions g(·) used in our implementation to transform the
latent variables as defined in Eq. (6) and Eq. (7).

Distribution Parameter space Transformation function

Bernoulli [0, 1] Logistic
Poisson (0, ∞) Exponential
Gaussian R Identity
Categorical pz ≥ 0 ∀z,

∑
z

pz = 1 Softmax

For Gaussian distributions, we model only the mean; for categorical
distributions, we apply the softmax by row, i.e., across categories.

The functions f(·) and g(·) can take various forms, as
long as they adhere to the required constraints. In our
implementation, we select f(·) to be the softmax function,
which is applied to every row of the community membership
matrices. This allows interpretability of the communities, as
they result in quantities that are positive and normalized to
one, as discussed in the section Parameter interpretation.
Meanwhile, the choice of g(·) varies depending on the
distribution type, as illustrated in Table 1.

One might argue that it would be simpler to employ a
single link function for λℓ

ij and πix, rather than applying
individually transformations to the latent variables, as done
in standard statistical approaches (31). However, this may
not ensure interpretability of the communities, as we do with
the softmax f(·). In addition, empirically we discovered that
the approach outlined in Eq. (6) and Eq. (7) gives more stable
results, and it does not result in over- or under-flow numerical
errors. Alternatively, another approach considers treating the
transformed parameters as random variables and applies the
probability transformation rule to compute their posterior
distributions (32). While this method is theoretically well-
founded, it comes with constraints regarding the choice
of the transformation functions, which directly affects the
feasibility of the inference process. Conversely, PIHAM offers
the flexibility to use any set of transformation functions that
respects the parameter space of the distribution types given
by the network and covariates.

In Fig. 1, we illustrate the input data and the graphical
model representation of our approach.

Posterior inference. PIHAM aims at estimating the posterior
distributions of the latent variables, as outlined in Eq. (1),
where the normalization term is omitted as it does not depend
on the parameters. More precisely, this equation can be
reformulated as:

P (U , V , W , H | A, X) = P (A | U , V , W )
× P (X | U , V , H)
× P (U) P (V ) P (W ) P (H) . [8]

In general, this posterior distribution lacks a closed-form
analytical solution and requires the use of approximations.

Common methods for inference in attributed networks
typically rely on Expectation-Maximization (EM) (33) or
Variational Inference (VI) (34) techniques. However, these
approaches have limitations, as they require model-specific
analytic computations for each new term added to the
likelihood. For instance, an EM-based approach involves
taking derivatives with respect to a given latent variable and
setting them to zero. In a specific class of models where
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the likelihood and prior distributions are compatible, solving
the resulting equation for the variable of interest can yield
closed-form updates. Nonetheless, for generic models, there
is no guarantee of a closed-form solution. Even when this
does exist, slight variations in the input data may require
entirely new derivations and updates. Consequently, most
of these models are designed to handle only a single type of
edge weight and a single type of attribute.

In contrast, our model takes a different approach and
flexibly adapts to any combination of input data, regardless
of their data types. We begin by assuming that the
latent variables are conditionally independent given the data,
allowing us to model each posterior distribution separately:

P (U , V , W , H | A, X) = P (U | A, X) P (V | A, X)
× P (W | A, X) P (H | A, X) . [9]

Subsequently, we employ a Laplace Approximation (LA) to
approximate each posterior with a Gaussian distribution,
resulting in:

P (θ | A, X) ≈ N (θ; µ̂θ, Σ̂θ) , ∀ θ ∈ Θ . [10]

LA involves a second-order Taylor expansion around the
Maximum A Posteriori estimate (MAP) of the right-hand
side of Eq. (8). We compute this estimate using Automatic
Differentiation (AD), a gradient-based method that, in our
implementation, employs the Adam optimizer to iteratively
evaluate derivatives of the log-posterior. One might question
the validity of this approximation in a potentially multimodal
landscape. However, it is important to recognize that the
existence of local minima is a problem independent of the
approximation method employed. Nonetheless, in our model
class – multilevel networks of log-convex likelihood functions
connected by log-convex link functions – this issue is less
likely to occur.

The MAP estimate found with AD also constitutes the
mean µ̂θ of P (θ | A, X). To go beyond point estimates and
quantify uncertainty, one can further estimate the covariance
matrix Σ̂θ, which is given by the inverted Hessian around
the MAP:

Σ̂θ ≈
[

− ∂2P (θ | A, X)
∂θ

(µ̂θ)
]−1

. [11]

Other inference methods can be employed to approximate
Gaussian distributions, such as VI. However, in such situa-
tions, utilizing AD directly might not be feasible due to the
involvement of uncertain expectations in the optimization
cost function. On the other hand, LA naturally combines with
AD, providing a flexible and efficient inference procedure.

Parameter interpretation. We approximate the posterior distri-
butions of the latent variables using Gaussian distributions,
as outlined in Eq. (10). Consequently, all our estimated
parameters belong to the real space. Although this approach
is advantageous for developing an efficient and automated
inference method, practitioners may desire different variable
domains to enhance interpretability. In some instances,
achieving this transformation is straightforward, involving the
application of the probability transformation rule to obtain a
distribution for the transformed variable within the desired
constrained support. For example, if we are interested in

expressing Ū := exp(Û) ∈ RN×K
>0 , we can simply employ the

Lognormal(Ū ; µ̂U , Σ̂U ) distribution. Similarly, when seeking
Ū := logistic(Û) ∈ (0, 1)N×K , we can just compute the
Logitnormal(Ū ; µ̂U , Σ̂U ).

However, certain functions lack closed-form transforma-
tions. For instance, obtaining a probabilistic interpretation
of the mixed-memberships of nodes requires applying the
softmax function to each row of the matrices U and V ,
which is not a bijective function. To address this challenge,
our framework employs the Laplace Matching (LM) (29) to
approximate the distributions of such transformations. This
technique yields a bidirectional, closed-form mapping between
the parameters of the Gaussian distribution and those of the
approximated transformed distribution. In this scenario, we
can derive:

Ū i := softmax(Û i) , Ūik ∈ [0, 1] and
K∑

k=1

Ūik = 1

with P (Ū i) = Dir(Ū i; α̂U
i ) , [12]

where α̂U
i is a K-dimensional vector obtained with LM, whose

entries are described as:

α̂U
ik = 1

Σ̂U
ikk

(
1 − 2

K
+ exp(µ̂U

ik)
K2

K∑
l=1

exp(µ̂U
il )

)
. [13]

This approach is theoretically grounded and enables us
to provide closed-form posterior distributions for the latent
variables across a diverse range of domains. Consequently,
it consistently allows for the estimation of uncertainties and
other relevant statistical measures. Nonetheless, PIHAM
can also be utilized for the sole purpose of determining
point estimates of the latent variables, which are essentially
given by the MAP estimates. In such scenarios, it remains
feasible to map these point estimates to different supports by
applying any desired function, without worrying about the
transformation process. Although this approach lacks full
posterior distributions, it significantly simplifies the inference
process by avoiding the computation of the Hessian. The
choice between these two approaches should be guided by the
specific application under study.

Results

We demonstrate our method on both synthetic and real-world
datasets, presenting a comprehensive analysis through quan-
titative and qualitative findings. Further explanations about
the data generation and pre-processing procedures can be
found in the Supporting Information, which also includes ad-
ditional results. The settings used to run our experiments and
the choice of the hyperparameters are also described in the
Supporting Information. The code implementation of PIHAM
is accessible at: https://github.com/mcontisc/PIHAM.

Simulation study.

Comparison with existing methods in a homogeneous scenario.
We first investigate the behavior of our model in a simpler
and common scenario, characterized by attributed multilayer
networks with nonnegative discrete weights and one categor-
ical node attribute. This represents the most general case
addressed by existing methods, which are specifically designed
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for homogeneous settings, where there is only one attribute
and one data type. For comparison, we use MTCOV (28), a
probabilistic model that assumes overlapping communities as
the main mechanism governing both interactions and node
attributes. In contrast to PIHAM, MTCOV is tailor-made to
handle categorical attributes and nonnegative discrete weights.
Additionally, it employs an EM algorithm, with closed-form
derivations for parameters inference strongly relying on the
data type, making MTCOV a bespoke solution compared
to the more general framework proposed by PIHAM. The
results of this comparison are depicted in Fig. S1 of the
Supporting Information, accompanied by additional details
about the data generation and experiment settings. In
principle, we expect MTCOV to exhibit better performance
in this specific scenario due to its tailored development for
such data and also its generative process aligning closely with
the mechanism underlying the synthetic data. Nonetheless,
despite the generality of our approach, we observe that
PIHAM achieves comparable performance to MTCOV in link
and attribute prediction, as well as community detection,
especially in scenarios involving denser networks. These
results collectively show that PIHAM is a valid approach even
in less heterogeneous scenarios, as it can compete effectively
with bespoke existing methods.

Validation on heterogeneous data. Having demonstrated that
PIHAM performs comparably well to existing methods for
attributed multilayer networks, we now demonstrate its
behavior on more complex data containing heterogeneous
information. To the best of our knowledge, this is the first
probabilistic generative model designed to handle and perform
inference on such data, and as a result, a comparative analysis
is currently unavailable. Additionally, due to the absence
of alternative benchmarks for data generation, we validate
the performance of our method on synthetic data generated
using the model introduced in this work.

We analyze attributed multilayer networks with L = 3
heterogeneous layers: one with binary interactions, one
with nonnegative discrete weights, and one with real values.
In addition, each node is associated with three covariates:
one categorical with Z = 4 categories, one representing
nonnegative discrete values, and one involving real values.
To generate these networks, we initially draw the latent
variables Θ = (U , V , W , H) from Gaussian distributions
with specified hyperparameters. Subsequently, we generate
A and X according to the data types, following Eq. (2) and
Eq. (4). Our analysis spans networks with varying number
of nodes N ∈ {100, 200, . . . , 1000} and diverse number of
overlapping communities K ∈ {3, 4, 5}. Additional details
on the generation process can be found in the Supporting
Information.

We assess the effectiveness of PIHAM by testing its
prediction performance. To this end, we adopt a 5-fold
cross-validation procedure, where we estimate the model’s
parameters on the training set and subsequently evaluate its
prediction performance on the test set (see the Supporting
Information for details). The presence of heterogeneous
information complicates the measurement of goodness of
fit, as distinct data types impose different constraints and
domains. To address this complexity, we employ different
metrics tailored to assess the prediction performance of each
type of information. Specifically, we use the Area Under the

receiver-operator Curve (AUC) for binary interactions, the
Maximum Absolute Error (MAE) for nonnegative discrete
values, the Root Mean Squared Error (RMSE) for real
values, and the accuracy for categorical attributes. Further
exploration to determine a unified metric could be a subject
of future research.

The results are illustrated in Fig. 2, where the perfor-
mance of PIHAM is compared against baselines given by the
predictions obtained from either the average or the maximum
frequency in the training set. For the categorical attribute, we
also include the uniform random probability over Z, and for
the AUC, the baseline corresponds to the random choice 0.5.
Overall, PIHAM outperforms the baselines significantly for
each type of information, with performance slightly decreasing
as K increases. This is somewhat expected, considering the
increased complexity of the scenarios. On the other hand,
the performance remains consistent across varying values of
N , indicating the robustness of our method and its suitability
for larger networks.

Interpretation of posterior estimates. We have showcased the
prediction performance of PIHAM across diverse synthetic
datasets, and we now delve into the qualitative insights that
can be extracted from the inferred parameters. In particular,
we focus on the membership matrix U . For this purpose,
we examine the results obtained through the analysis of the
synthetic data used in the section Comparison with existing
methods in a homogeneous scenario, where ground truth
mixed-memberships are represented as normalized vectors
summing to 1. This scenario is particularly relevant for
illustrating an example where the desired parameter space,
defined by the simplex, differs from the inferred one existing
in real-space.

To ease visualizations, we investigate a randomly selected
network and focus on three representative nodes with distinct
ground truth memberships: Node A has extreme mixed-
membership, Node B slightly less mixed-membership, and
Node C exhibits hard-membership. The results are depicted
in Fig. 3, with the top row displaying the ground truth
membership vectors for these representative nodes. In the
middle row, we plot the inferred posterior distributions Ûik ∼
N (Ûik; µ̂U

ik, (σ̂U
ik)2), where different colors represent distinct

communities (in this case, K = 3). Through a comparative
analysis of the three distributions for each node, we can
gain insights into the nodes’ behaviors: Node A exhibits
greater overlap among the three distributions, Node B shows
a slighter shift toward K1, while Node C distinctly aligns
more with community K3. This preliminary investigation
leads to the conclusion that the inferred communities reflect
the ground truth behaviors. However, interpreting such
patterns can be challenging, if not unfeasible, especially
when dealing with large datasets. To address this issue, we
quantitatively compute the area of overlap between every pair
of distributions for each node and then calculate the average.
For this purpose, we use the implementation proposed in (35)
and we name this measure as Overlap. This metric ranges
from 0 (indicating no overlap) to 1 (representing perfect
matching between the distributions). Notably, the overlap
decreases as we move from Node A to Node C, in line with
the decreasing degree of mixed-membership.

Computing the Overlap for many communities can be
computationally expensive due to the need to calculate all
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Fig. 2. Prediction performance on synthetic data. We analyze synthetic attributed multilayer networks with L = 3 heterogeneous layers (one with binary interactions (A),
one with nonnegative discrete weights (B), and one with real values(C)), three node covariates (one categorical with Z = 4 categories (D), one representing nonnegative
discrete values (E), and one involving real values (F)), varying number of nodes N , and diverse number of overlapping communities K. We employ a 5-fold cross-validation
procedure and plot averages and confidence intervals over 20 independent samples. The prediction performances are measured with different metrics according to the data
type: Area Under the receiver-operator Curve (AUC) for binary interactions (A), the Maximum Absolute Error (MAE) for nonnegative discrete values (B, E), the Root Mean
Squared Error (RMSE) for real values (C, F), and accuracy for categorical attributes (D). The baselines are given by the predictions obtained from either the average or the
maximum frequency in the training set. For the categorical attribute, we also include the uniform random probability over Z, and for the AUC, the baseline corresponds to the
random choice 0.5. Overall, PIHAM outperforms the baselines significantly for each type of information.

pairwise combinations. As an alternative solution, we suggest
utilizing the L2-barycenter distribution, which essentially
represents a weighted average of the node-community dis-
tributions (36, 37). We show the barycenter distributions
in gray in the second row of Fig. 3. This approach allows
focusing on a single distribution per node, instead of K
different ones. To quantify this distribution, we calculate its
variance (σ2), where higher values indicate nodes with harder
memberships, as the barycenter is more spread due to the
individual distributions being more distant from each other.
Conversely, lower variance suggests more overlap among the
distributions, indicating a more mixed-membership scenario.
We observe that σ2 increases as we decrease the degree
of mixed-membership, a trend consistent with that of the
Overlap. Further details on the barycenter distribution and
the metrics are provided in the Supporting Information.

To facilitate interpretability, a practitioner may desire
to work within the simplex space. This also reflects the
ground truth parameter space, as opposed to the normal
posterior distributions. As discussed in the section Parameter
interpretation, PIHAM employs the LM technique. This
has the capability to transform in a principled way every
membership vector Û i into the simplex space using Dirichlet
distributions. The outcomes of this transformation are
depicted in the bottom row of Fig. 3. By investigating

these plots, it becomes even more apparent how the inferred
memberships closely resemble the ground truth: the Dirichlet
distributions gradually concentrate more towards a specific
corner (K1 for Node B and K3 for Node C), instead of
spreading across the entire area (as observed for Node A).

With this example, we presented a range of solutions for
interpreting the posterior distributions associated with the
inferred node memberships. These options are not exhaustive,
and other approaches may also be considered. For instance,
a practitioner might focus solely on analyzing the point
estimates for the sake of facilitating comparisons with the
ground truth. In such cases, as discussed in the section
Parameter interpretation, two procedures can be employed:
i) applying a transformation to the point estimates, such
as softmax, to align them with the ground truth space, or
ii) using a sufficient statistic of the posterior distribution,
where the mean of the Dirichlet distribution is a suitable
option. The choice between these various approaches should
be guided by the specific application under study, and the
provided example serves as just one illustration.

Analysis of a social support network of a rural Indian village.
We now turn our attention to the analysis of a real-world
dataset describing a social support network within a village in
Tamil Nadu, India, referred to as “Alakāpuram” (38, 39). The
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Fig. 3. Interpretation of posterior distributions in comparison with ground truth memberships. We analyze a synthetic attributed multilayer network with ground truth
mixed-memberships represented as normalized vectors summing to 1. In this case, K = 3. (Top row) Ground truth membership vectors for three representative nodes: Node
A displays extreme mixed-membership, Node B shows a slightly lower mixed-membership, and Node C exhibits hard-membership. (Middle row) Inferred posterior distributions
Ûik ∼ N (Ûik; µ̂U

ik, (σ̂U
ik)2), where different colors represent distinct communities, and the distribution in gray consists of the L2-barycenter distribution. Overlap is the

average of the area of overlap between every pair of distributions, and σ2 is the variance of the barycenter distribution. (Bottom row) Transformed posterior distributions into the
simplex space using the LM technique and employing Dirichlet distributions. The inferred node memberships reflect the ground truth behavior, as evidenced by the trends of
Overlap and σ2, which align with the decreasing degree of true mixed-membership. Additionally, the Dirichlet transformation provides a more straightforward interpretation,
further supporting this conclusion.

data were collected in 2013 through surveys, in which adult
residents were asked to nominate individuals who provided
various types of support, such as running errands, offering
advice, and lending cash or household items. Additionally,
several attributes were gathered, encompassing information
like gender, age, and caste, among others. The pre-processing
of the dataset is described in the Supporting Information.
The resulting heterogeneous attributed multilayer network
comprises N = 419 nodes, L = 7 layers, and P = 3 node
attributes. The initial six layers depict directed binary social
support interactions among individuals, with average degree
ranging from 1.8 to 4.2. The seventh, instead, contains
information that is proportional to the geographical distance
between individuals’ households. The adjacency tensor is
then represented as A = {Aℓ ∈ {0, 1}N×N ∀ℓ ∈ [1, 6], A7 ∈
R+

N×N }. As node covariates, we consider the caste attribute
with Zcaste = 14 categories, the religion attribute with
Zreligion = 3 categories, and the attribute representing the
years of education, that is X·3 ∈ NN

0 . Ethnographic work
and earlier analyses (39, 40) suggest that these attributes
play an important role in how villagers relate to one another,
with certain relationships being more strongly structured by
these identities than others.

Inference, prediction performance, and goodness of fit. We
describe the likelihood of the real-world heterogeneous
attributed multilayer network according to Eq. (2) and Eq. (4),
customized to suit the data types under examination. In
particular, we employ Bernoulli distributions for the binary
layers [Aℓ]ℓ∈[1,6] and Gaussian distributions for the distance
layer A7. Moreover, we characterize the attributes caste X·1
and religion X·2 using Categorical distributions, and model
the covariate X·3 with a Poisson distribution. The choice
of the model hyperparameters and the algorithmic settings
used in our experiments are described in the Supplementary
Information.

Similarly to many real-world datasets, we lack the infor-
mation about the true parameters underlying the network,
including the node memberships. Hence, to determine
the number of communities K, we employ a 5-fold cross-
validation procedure for K ∈ [1, 10] and select the value
that exhibits the optimal performance. Detailed results are
displayed in Table S2 of the Supporting Information. We
set K = 6 as it achieves the best performance across the
majority of prediction metrics. In fact, selecting a single
metric to summarize and evaluate results in a heterogeneous
setting is nontrivial, as discussed in the section Validation
on heterogeneous data. The results in Table S2 additionally
validate PIHAM’s performance in inference tasks like edge
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and covariate prediction. Overall, our method demonstrates
robust outcomes with the chosen fixed value of K and
consistently outperforms the baselines, which are omitted
for brevity.

We further evaluate our model’s goodness of fit through a
posterior-predictive assessment (41, 42), comparing the input
data to synthetic data generated by the fitted model. A
well-fitted model should produce synthetic data that closely
resemble the original input. To accurately assess performance,
we test whether two samples from the posterior-predictive
distribution are generally more, equally, or less distant
from each other than a sample from the posterior-predictive
distribution compared to the input data (41). We measure
the distance using different metrics depending on the data
type, and the results are shown in Fig. S3. The discrepancies
between synthetic data samples consistently exceed those
between the observed data and synthetic samples, indicating
that PIHAM provides a good fit for the data.

Qualitative interpretation of the inferred parameters. We now
shift our attention to analyze the results qualitatively,
specifically focusing on the inferred communities. For easier
interpretation, we apply a softmax transformation to the
MAP estimates µ̂U

i , allowing us to treat node memberships
as probabilities. Opting for the softmax over the mean of the
posterior Dirichlet distributions is primarily for visualization
purposes, as it results in slightly less mixed-memberships,
thereby improving clarity. The middle and bottom rows of
Fig. 4 depict the inferred out-going communities Û i, where
darker values in the grayscale indicate higher values in the
membership vector. In addition, the top row of Fig. 4 displays
the node attributes included in our analysis. Note also that
the nodes’ position reflects the geographical distance between
individuals’ households, and the depicted interactions refer
to the first layer (talk about important matters). A full
representation of the six binary layers is shown in Fig. S2 of
the Supporting Information.

Upon initial examination, we observe a correspondence
between various detected communities and the covariate
information. For instance, the first and second communities
predominantly consist of nodes belonging to the Yātavar and
Paraiyar castes, respectively. Similarly, K3 comprises nodes
from the Kulālar and Maravar castes. This observation is
supported by the inferred K ×Zcaste-dimensional matrix Ĥ ·1
(see Fig. S4 in the Supporting Information), which explains
the contributions of each caste category to the formation
of the k-th community. Furthermore, the affinity tensor Ŵ
(see Fig. S6 in the Supporting Information) suggests that
these communities have an assortative structure, where nodes
tend to interact more with individuals belonging to the same
community as with those from different communities. This
pattern reflects a typical behavior in social networks (43).
Additionally, note that these communities contain nodes that
are geographically close to each other and, in some cases,
very distant from the majority.

In contrast to the first three, communities K4, K5, and K6
are more nuanced. In fact, they are predominantly comprised
of nodes from the Pal.l.ar caste, which, however, is also the
most represented caste in the dataset. Despite that, we
observe some differences by examining other parameters.
For instance, K4 exhibits a strong assortative community
structure, contrasting with the less structured nature of K5

and K6. This suggests that interactions play a more relevant
role than attributes in determining the memberships of K4.
On the other hand, the attribute X·3 seems to play a bigger
role in determining K6, which includes nodes with more
years of education. This correlation is depicted in Fig. S5 of
the Supporting Information, where the posterior distribution
N (Ĥ63; µ̂H

63, (σ̂H
63)2) of education years in K6 significantly

differs and is distant from the others.
By looking at the affinity matrices of the seven layers

in Fig. S6, we see how layers have predominantly an
assortative structure, but show also variations for certain
layers. For instance, L2 (help finding a job) has few non-
zero diagonal values, suggesting that this type of support
is one for which people must sometimes seek out others in
different communities. In particular, L7, corresponding to
the geographical distance between nodes, has several off-
diagonal entries, particularly for communities K4, K5, and
K6, suggesting a weakened effect for physical proximity for
those communities.

Taken together, these findings suggest that the inferred
communities do not solely correlate with one type of infor-
mation, which may be the most dominant. Instead, PIHAM
utilizes all the input information to infer partitions that
effectively integrate all of them in a meaningful manner. In
addition, the inferred affinity matrices illustrate how different
layers can exhibit different community structures, a diversity
that can be captured by our model.

Discussion

In this work, we have introduced PIHAM, a probabilistic
generative model designed to perform inference in hetero-
geneous and attributed multilayer networks. A significant
feature of our approach is its flexibility to accommodate any
combination of the input data, made possible through the
use of Laplace approximations and automatic differentiation
methods, which avoid the need for explicit derivations.
However, it is important to note that having a method capable
of handling complex network datasets does not automatically
ensure the quality of the input data. For example, if only
certain attributes are relevant for explaining the networked
dataset, or if only specific layers contain valuable information
for the task, adding unnecessary information could be detri-
mental. Practitioners must carefully assess which information
is useful based on their specific objectives. Alternatively,
model selection tests, such as the cross-validation routine
demonstrated in the manuscript, can be used to determine
the optimal combination of layers and attributes.

When compared to other methods tailored for scenarios
with only one type of attribute and interaction, PIHAM
demonstrates comparable performance in prediction and
community detection tasks, despite its broader formulation.
Moreover, our approach significantly outperforms baseline
metrics in more complex settings characterized by various
attribute and interaction types, where existing methods for
comparison are lacking. Additionally, PIHAM employs a
Bayesian framework, enabling the estimation of posterior
distributions, rather than only providing point estimates
for the parameters. And, through the use of the Laplace
matching technique, it maps these posterior distributions
to various desired domains in a theoretically sound manner,
facilitating interpretation.
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Fig. 4. Inference of overlapping communities in a social support network. We analyze a real-world heterogeneous attributed multilayer network, which was collected in 2013
through surveys in the Indian village. This network comprises six binary layers representing directed social support interactions among individuals, alongside an additional layer
reflecting information proportional to the distance between individuals’ households. (Top row) As node covariates, we consider caste X·1, religion X·2, and years of education
X·3. For privacy reasons, nodes belonging to castes with fewer than five individuals are aggregated into an “Other” category. Moreover, the displayed interactions refer only to
the first layer (talk about important matters) to enhance clarity in visualization. (Middle-Bottom rows) We display the MAP estimates of the out-going communities inferred by
PIHAM. For easier interpretation, we apply a softmax transformation to the MAP estimates of the membership vectors, and darker values in the grayscale indicate higher
values in the membership vector Ûi. The position of the nodes reflects the geographical distance between individuals’ households. In summary, the inferred communities do
not exclusively align with a single type of information. Rather, PIHAM incorporates all input information to infer partitions that effectively integrate them in a meaningful way.

While PIHAM constitutes a principled and flexible method
to analyze heterogeneous and attributed multilayer networks,
several questions remain unanswered. For example, determin-
ing the most appropriate metric for summarizing prediction
performance in heterogeneous scenarios, where information
spans different spaces, is not straightforward. This aspect
also influences the selection of the optimal model during cross-
validation procedures. While we have provided explanations
for our choices, we acknowledge that this remains an open
question. Similarly, when dealing with many communities,

summarizing posterior distributions becomes challenging
due to computational constraints. We addressed this issue
by employing L2-barycenter distributions and proposing
their variance to guide interpretation. Nevertheless, we
believe there is still considerable room for improvement and
exploration in this area. Moreover, we have considered here
mixed-memberships, but in certain data-scarce scenarios hard-
membership approaches with fewer parameters could be bet-
ter suited. Future work should consider how to flexibly drive
parameters’ inference towards mixed or hard memberships,
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based on the input data. Our method could be further
extended to accommodate distinct community-covariate
contributions by integrating two separate H matrices for
both in-coming and out-going communities, respectively. This
modification will offer clearer insights into how covariates
influence the partitions, especially when discrepancies arise
between in-coming and out-going communities. Moreover, we
treated the number of communities K as given, and for real-
world data it was selected via cross-validation. While this
procedure is grounded, it can be computationally expensive.
An alternative approach would be to treat K as a model
parameter and infer it directly from the data. Lastly, it
would be interesting to expand this framework to incorporate
higher-order interactions, an emerging area that has shown
relevance in describing real-world data (44).

In summary, PIHAM offers a flexible and effective ap-
proach for modeling heterogeneous and attributed multilayer
networks, which arguably better captures the complexity of
real-world data, enhancing our capacity to understand and
analyze the organization of real-world systems.

Data availability
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Code availability

An open-source algorithmic implementation of the
model is publicly available and can be found at
https://github.com/mcontisc/PIHAM.
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Baden-Württemberg. This manuscript was posted on a preprint:
http://arxiv.org/abs/2405.20918.

1. M Newman, Networks. (Oxford university press), (2018).
2. M De Domenico, More is different in real-world multilayer networks. Nat. Phys. 19,

1247–1262 (2023).
3. L Bargigli, G Di Iasio, L Infante, F Lillo, F Pierobon, The multiplex structure of interbank

networks. Quant. Finance 15, 673–691 (2015).
4. K Higham, M Contisciani, C De Bacco, Multilayer patent citation networks: A

comprehensive analytical framework for studying explicit technological relationships.
Technol. forecasting social change 179, 121628 (2022).

5. PJ Mucha, T Richardson, K Macon, MA Porter, JP Onnela, Community structure in
time-dependent, multiscale, and multiplex networks. science 328, 876–878 (2010).

6. F Battiston, V Nicosia, M Chavez, V Latora, Multilayer motif analysis of brain networks.
Chaos: An Interdiscip. J. Nonlinear Sci. 27 (2017).

7. J Liu, J Wang, B Liu, Community detection of multi-layer attributed networks via penalized
alternating factorization. Mathematics 8, 239 (2020).

8. S Xu, Y Zhen, J Wang, Covariate-assisted community detection in multi-layer networks. J.
Bus. & Econ. Stat. 41, 915–926 (2023).

9. Z Pei, X Zhang, F Zhang, B Fang, Attributed multi-layer network embedding in 2018 IEEE
International Conference on Big Data (Big Data). (IEEE), pp. 3701–3710 (2018).

10. Y Cen, et al., Representation learning for attributed multiplex heterogeneous network in
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery &
data mining. pp. 1358–1368 (2019).

11. J Cao, D Jin, L Yang, J Dang, Incorporating network structure with node contents for
community detection on large networks using deep learning. Neurocomputing 297, 71–81
(2018).

12. C Park, D Kim, J Han, H Yu, Unsupervised attributed multiplex network embedding in
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, pp. 5371–5378
(2020).

13. B Han, Y Wei, L Kang, Q Wang, Y Yang, Node classification in attributed multiplex networks
using random walk and graph convolutional networks. Front. Phys. 9, 763904 (2022).

14. L Martirano, L Zangari, A Tagarelli, Co-mlhan: contrastive learning for multilayer
heterogeneous attributed networks. Appl. Netw. Sci. 7, 1–44 (2022).

15. A Goldenberg, AX Zheng, SE Fienberg, EM Airoldi, , et al., A survey of statistical network
models. Foundations Trends Mach. Learn. 2, 129–233 (2010).

16. L Peel, TP Peixoto, M De Domenico, Statistical inference links data and theory in network
science. Nat. Commun. 13, 6794 (2022).

17. R Ranganath, S Gerrish, D Blei, Black box variational inference in Artificial intelligence and
statistics. (PMLR), pp. 814–822 (2014).

18. D Tran, R Ranganath, DM Blei, Variational gaussian process in 4th International
Conference on Learning Representations, ICLR 2016. (2016).

19. I Valera, MF Pradier, M Lomeli, Z Ghahramani, General latent feature models for
heterogeneous datasets. The J. Mach. Learn. Res. 21, 4027–4075 (2020).

20. A Nazabal, PM Olmos, Z Ghahramani, I Valera, Handling incomplete heterogeneous data
using vaes. Pattern Recognit. 107, 107501 (2020).

21. C Tallberg, A bayesian approach to modeling stochastic blockstructures with covariates. J.
Math. Sociol. 29, 1–23 (2004).

22. J Yang, J McAuley, J Leskovec, Community detection in networks with node attributes in
2013 IEEE 13th international conference on data mining. (IEEE), pp. 1151–1156 (2013).

23. D Hric, TP Peixoto, S Fortunato, Network structure, metadata, and the prediction of missing
nodes and annotations. Phys. Rev. X 6, 031038 (2016).

24. ME Newman, A Clauset, Structure and inference in annotated networks. Nat.
communications 7, 11863 (2016).

25. A White, TB Murphy, Mixed-membership of experts stochastic blockmodel. Netw. Sci. 4,
48–80 (2016).

26. N Stanley, T Bonacci, R Kwitt, M Niethammer, PJ Mucha, Stochastic block models with
multiple continuous attributes. Appl. Netw. Sci. 4, 1–22 (2019).
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