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A B S T R A C T

We introduce a novel large-scale deep learning model for Limit Order Book mid-price changes forecasting,
and we name it ‘HLOB’. This architecture (i) exploits the information encoded by an Information Filtering
Network, namely the Triangulated Maximally Filtered Graph, to unveil deeper and non-trivial dependency
structures among volume levels; and (ii) guarantees deterministic design choices to handle the complexity of
the underlying system by drawing inspiration from the groundbreaking class of Homological Convolutional
Neural Networks. We test our model against 9 state-of-the-art deep learning alternatives on 3 real-world
Limit Order Book datasets, each including 15 stocks traded on the NASDAQ exchange, and we systematically
characterize the scenarios where HLOB outperforms state-of-the-art architectures. Our approach sheds new
light on the spatial distribution of information in Limit Order Books and on its degradation over increasing
prediction horizons, narrowing the gap between microstructural modeling and deep learning-based forecasting
in high-frequency financial markets.
1. Introduction

Financial markets are complex environments. Their complexity
stems from two main factors: (i) the interaction of a large number of
agents pursuing heterogeneous goals at different time scales through
the implementation of trading strategies designed to leverage asym-
metric information; (ii) the emergence of self-organizing collective
behaviors that do not result from the existence of any central controller
and are therefore difficult to anticipate. The concurrence of these
aspects contributes to the sporadic and limited-in-time persistence of
inefficiencies that make the trading practice profitable. The analysis
of existing inefficiencies and the forecasting of new ones is made
possible by the mathematical and statistical modeling of the time series
reflecting the financial market’s behavior. The granularity of these time
series widely varies depending on the goal of the analysis, and, in the
high-frequency case (i.e., the scenario we are mainly interested in), it
can be order-driven with a resolution up to the nanosecond (LOBSTER
Data, 2023).

Indeed, the majority of modern financial exchanges store order-
level updates in data structures known as Limit Order Books (LOBs).
At each point in time, in a given automated exchange, these data
structures contain a snapshot of the standing intentions of market
participants to buy or sell different amounts (or volumes) of an asset
at a given price. Such trading intentions, which are defined in jargon
as ‘orders’, can be of different types (i.e., market orders, limit orders,
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E-mail addresses: antonio.briola.20@ucl.ac.uk (A. Briola), s.bartolucci@ucl.ac.uk (S. Bartolucci), t.aste@ucl.ac.uk (T. Aste).

and cancellation orders) and their flux (i.e., incoming or outgoing) is
generally managed by computerized systems exploiting a FIFO (first-
in, first-out) mechanism to establish execution’s priority (Bouchaud,
Bonart, Donier, & Gould, 2018; Briola, Bartolucci, & Aste, 2024; Briola,
Turiel, & Aste, 2020; Briola, Turiel, Marcaccioli, Cauderan, & Aste,
2021). The timing of accessing information contained in LOBs guar-
antees asymmetric levels of information to market participants. At
the finest-grained information’s exploitation level, we refer to High-
Frequency Trading (HFT) to indicate the strategies that gain an edge
through speed, allowing certain traders to act on information not
yet accessible to others (Lehalle & Laruelle, 2018). HFT strategies
exploit market’s microstructure imperfections to the detriment of other
traders, triggering a predator–prey dynamic with other actors (Farmer
& Skouras, 2013). HFT has been prominent in the financial landscape
since 2005 (Isichenko, 2021). Despite being object of criticism and
regulatory scrutiny since its introduction, it has been demonstrated that
this practice’s reliance on various levels of market data, rather than ex-
ternal information, contributes to noise generation, thereby preserving
unpredictability in stock price movements (Bouchaud, Farmer, & Lillo,
2009).

The difficulty in handling the inherent complexity expressed by HFT
systems and the availability of large amounts of data, has fostered
the development of deep learning models as a solution to the related
modeling and forecasting tasks. Over recent years, increasingly sophis-
ticated solutions have emerged, with some of them evolving towards
https://doi.org/10.1016/j.eswa.2024.126078
Received 8 July 2024; Received in revised form 16 November 2024; Accepted 3 De
vailable online 12 December 2024 
957-4174/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
cember 2024

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
https://orcid.org/0000-0002-4391-0157
https://orcid.org/0000-0003-1127-5600
https://orcid.org/0000-0002-4219-0215
mailto:antonio.briola.20@ucl.ac.uk
mailto:s.bartolucci@ucl.ac.uk
mailto:t.aste@ucl.ac.uk
https://doi.org/10.1016/j.eswa.2024.126078
https://doi.org/10.1016/j.eswa.2024.126078
http://creativecommons.org/licenses/by/4.0/


A. Briola et al.

r

m
m

‘
d

i
e
c
c
t

t
e
g

m
d

r
m

c

t
t
t
s
c

o

t
s

t

t
m
𝐿

i
p

e
w

p

S

Expert Systems With Applications 266 (2025) 126078 
the creation of informed architectures that meticulously incorporate
LOBs’ components in the definition of derived features. Although many
scientific investigations proved the potential of these approaches, there
is still a noticeable disconnection between theoretical results and their
real-world practicability (Prata et al., 2023). Furthermore, the recent
esearch work by Briola et al. (2024) highlights that the effectiveness

of these methods considerably varies depending on the stocks’ unique
icrostructural characteristics. More specifically, the authors show that
icrostructural properties of stocks exposed to higher trading risks

(i.e., the so-called ‘small-tick stocks’) impose sparser LOB structures,
highly undermining the ability of deep learning architectures to model
their hidden dynamics effectively. On the contrary, the microstructural
properties of stocks exposed to lower trading risks (i.e., the so-called
large-tick stocks’) impose more compact LOB structures, facilitating
eep learning architectures in effectively processing the underlying

information.
The contribution of our paper is threefold:

1. We introduce ‘HLOB’, a novel, large-scale deep learning archi-
tecture that exploits the class of the Homological Convolutional
Neural Networks (Briola, Wang, Bartolucci, & Aste, 2023; Wang,
Briola, & Aste, 2023) to superimpose a dependency structure
among LOB volume levels and model deeper and non-trivial
relationships among them1.

2. We show that the exploitability of the informational content
encoded in the spatial structure imposed by our deep learning
architecture is limited in time and the velocity of its degradation
is highly dependent on the stocks’ microstructural properties.

3. We test our model against 9 state-of-the-art deep learning alter-
natives on 3 real-world LOB datasets, each including 15 stocks
traded on the NASDAQ exchange. Our findings highlight the
difficulty in finding a model that consistently outperforms the
others; hence, we provide the guidelines for selecting a model
based on factors such as the desired level of interpretability, the
specific forecasting horizon, and the available infrastructure.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the essential scientific works describing (i) the
functioning of LOB dynamics; (ii) the main architectures proposed in
the past to solve LOB-related forecasting tasks; and (ii) the intuition
behind Information Filtering Networks and the class of Homological
Convolutional Neural Networks. In Section 3, we present an overview
of the datasets used in our experiments. In Section 4, we provide
technical insights into the HLOB model and the framework used for
ts training and validation. In Section 5, we present the results of our
xperiments, while in Section 6, we wrap up our findings, providing a
omprehensive description of the power and weaknesses of our model
ompared to the existing ones, with an overview on open challenges in
he field.

2. Related work

In this Section, we provide the essential references to (i) understand
he operational mechanics of the LOBs; (ii) become familiar with
xisting models designed to identify microstructural alphas; and (iii)
rasp the theoretical foundations of the HLOB model. It is essential

to notice that our investigation spans three distinct research fields: (i)
arket microstructure; (ii) deep learning; and (iii) network science. We
o not claim to cover the entire related literature, but, for each domain,

we selectively reference the works that are critically relevant to our
esearch, equipping the reader with the foundational tools required to
aster the content of this paper.

1 The code to reproduce all the experiments is available at https://github.
om/FinancialComputingUCL/LOBFrame/tree/main.
2 
2.1. Limit order book

Most modern financial exchanges utilize electronic systems to record
and match the trading intentions of market participants. These systems
are centered on a data structure called ‘Limit Order Book’ (LOB), which
is unique for each security traded on a given exchange and provides
immediate access to real-time supply and demand in the visible market.
Participants on the same side of the market (whether buying or selling)
compete with each other while concurrently opposing those on the
opposite side; the buyers want to buy cheaper, and the sellers want
to sell at a higher price, but the two sides ultimately need each other
o make trades happen. The LOB is, hence, subject to updates (or ticks)
hat occur at irregular time intervals. These events reflect changes in
he market and are constrained by predefined adjustments: (i) the tick
ize (𝜃) for price adjustments; and (ii) the lot size (𝜓) for volume
hanges.2 Updates are made possible through the submission of new

orders. Based on their direction, they can be bid (buy) or ask (sell)
rders; based on their aggressive or passive attitude, they can be market

or limit orders. A market order expresses the necessity to buy or sell a
certain amount of a given asset at the current best available price on
the opposite side of the LOB; it is typically subject to higher transaction
fees. A limit order expresses an intention to buy or sell a quantity of an
asset at a price that is more advantageous to the one quoted on the best
level of the LOB3; it populates a queue in one of the deeper levels of
he LOB, it does not have any guarantee to be executed and is typically
ubject to lower transaction fees. Cancellations represent a third class

of orders; they delete active limit orders and are typically not subject
o transaction fees.

Temporally, the LOB is structured as stacked snapshots reflecting
he tick-by-tick evolution of the market, and takes the form of a
ultivariate time-series L ∈ R𝑇×4𝐿, where 𝑇 is the history length, and
is the number of levels.4 Spatially, a LOB record can be represented

as:

L(𝜏) = {𝑝ask
𝓁 (𝜏), 𝑣ask

𝓁 (𝜏), 𝑝bid
𝓁 (𝜏), 𝑣bid

𝓁 (𝜏)}𝐿𝓁=1 , (1)

where 𝑝ask/bid
𝓁 (𝜏) is the ask/bid price at level 𝓁 ∈ 𝐿 and 𝑣ask/bid

𝓁 (𝜏) is the
volume on the same level 𝓁 ∈ 𝐿. The mid-price 𝑚𝜏 of a stock at time 𝜏
is defined as the average between the best ask price (i.e., 𝑝ask

1 (𝜏)) and

the best bid price (i.e. 𝑝bid
1 (𝜏)), 𝑚𝜏 =

𝑝ask
1 (𝜏)+𝑝bid

1 (𝜏)
2 . The bid–ask spread

𝜎𝜏 of the stock at time 𝜏 is defined as the difference between the best
ask price and the best bid price, 𝜎𝜏 = 𝑝ask

1 (𝜏) − 𝑝bid
1 (𝜏).

The level-based representation in Eq. (1) is convenient from the per-
spective of human understanding of the functioning of a LOB. However,
t suffers a significant drawback from an automated learning stand-
oint: indeed, there is no guarantee of homogeneous spatial separation

between consecutive price levels. It is worth noticing that, when exac-
rbated by specific stock’s microstructural properties (see the research
orks by Bouchaud et al. (2018), Briola et al. (2024), Sirignano and

Cont (2021)), such heterogeneity in the spatial distribution of LOB data
sensibly reduces the ability of specific classes of deep-learning models
(e.g., Convolutional Neural Networks) in the micro alphas’ discovering
rocess (Wu, Mahfouz, Magazzeni, & Veloso, 2021).

2 The value of 𝜃 and 𝜓 depend on the exchange. In the NASDAQ exchange,
which is the source of the data used in the current research work (see
ection 3), 𝜃 = $0.01 and 𝜓 = 1.

3 A LOB is organized into price/volume levels. On the bid side, standing
intentions to buy different quantities of a financial security are organized in a
descending order (i.e., the first level contains the orders to be executed at the
highest price among the quoted ones); on the ask side, standing intentions to
sell different quantities of a financial security are organized in an ascending
order (i.e., the first level contains the orders to be executed at the lowest price
among the quoted ones).

4 The dimensionality here 4𝐿 because, for each level, we register the
corresponding ask price, ask volume, bid price, and bid volume.

https://github.com/FinancialComputingUCL/LOBFrame/tree/main
https://github.com/FinancialComputingUCL/LOBFrame/tree/main
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2.2. Deep learning for limit order book forecasting

The difficulty in handling the complexity expressed by LOBs and
he related data abundance has fostered the development of deep
earning algorithms to solve related modeling and forecasting tasks.
mong them, we are particularly interested in architectures designed

o forecast the direction of mid-price changes at a high-frequency res-
lution. Foundational contributions in the field are offered by Passalis

et al. (2017), Sirignano (2019), Sirignano and Cont (2021), Tsantekidis
et al. (2017a, 2017b). These studies introduce the use of Multilayer
erceptron (MLP), Long Short-Term Memory (LSTM) (Hochreiter &

Schmidhuber, 1997), Convolutional Neural Network (CNN) (LeCun,
Bengio, & Hinton, 2015), and Bag-of-Features (BoF) (O’Hara & Draper,
2011) architectures as viable approaches for the forecasting task. Sub-
equently, these modules served as core components in more complex

architectures. This trend emerged in the works of Zhang, Yao, Sun, and
ay (2019) and Tsantekidis et al. (2020), where the authors utilize
onvolutional filters to capture the spatial structure of the LOB, as

well as LSTM modules to capture long-term time dependencies, and
in the works by Passalis, Tefas, Kanniainen, Gabbouj, and Iosifidis
(2020) and Tran, Passalis, Tefas, Gabbouj, and Iosifidis (2022), where
he authors enrich the BoF paradigm for LOB forecasting through the
ntroduction of the attention mechanism (Vaswani et al., 2017). Other
elevant works are the ones by Tran, Iosifidis, Kanniainen, and Gabbouj

(2018), Tran, Kanniainen, Gabbouj, and Iosifidis (2021) and Shabani,
Tran, Kanniainen, and Iosifidis (2023), Shabani, Tran, Magris, Kanni-
ainen, and Iosifidis (2022), where the authors propose an architecture
hat incorporates the idea of bi-linear projection as well as of attention

to focus on crucial temporal and spatial information embedded in LOBs.
Concerning the integration of attention mechanisms in LOB fore-

asting attempts, it is worth mentioning the work by Guo and Chen
(2023), where the authors introduce a dual-stage temporal attention
mechanism to repeatedly highlight the most valuable time-dimension
information, and the works by Kisiel and Gorse (2022), Wallbridge
(2020), Zhang, Lim, and Zohren (2021), which use transformer-based
architectures to accomplish similar forecasting tasks. Lastly, it is rele-
ant to mention the research by Briola et al. (2024, 2020), Kolm, Turiel,
nd Westray (2023), Kolm and Westray (2024), Lucchese, Pakkanen,

and Veraart (2022), where the authors critically assess the efficacy of
ethodologies mentioned previously in this section to understand their

ffectiveness under different evaluation conditions.

2.3. Information filtering networks & homological (convolutional) neural
networks

One of the main contributions of this paper is the introduction of
LOB, a novel large-scale deep learning model for mid-price change

forecasting at a high-frequency resolution. This architecture is designed
to capture and exploit complex dependencies at deeper LOB levels.
This approach overcomes traditional CNN-LSTM models (e.g., DeepLOB
(Zhang, Zohren, & Roberts, 2019)), which only capture dependencies
between consecutive LOB levels, being inadequate to fully handle the
inherent complexity of the underlying system.

The key theoretical prior behind HLOB is represented by Informa-
tion Filtering Networks (IFNs) (Aste, Di Matteo, & Hyde, 2005; Barfuss,
Massara, Di Matteo, & Aste, 2016; Mantegna, 1999; Massara, Di Matteo,
 Aste, 2016; Tumminello, Aste, Di Matteo, & Mantegna, 2005). IFNs

are an effective tool to represent and model dependency structures
among variables characterizing complex systems through the instru-
ments of network science, while imposing strict topological constraints
(e.g., being a tree or a planar graph) and optimizing global properties
(e.g., the model’s likelihood) (Aste, 2022). The filtering process can be
performed in many different ways; historically, the three main exam-
ples of IFNs have been (i) the Minimum Spanning Tree (MST) (West
et al., 2001); (ii) the Planar Maximally Filtered Graph (PMFG) (Aste
& Di Matteo, 2006; Tumminello, Di Matteo, Aste, & Mantegna, 2007);
3 
and (iii) the Triangulated Maximally Filtered Graph (TMFG) (Massara,
Di Matteo, & Aste, 2017). In this paper, we are mainly interested in
the latter. The TMFG captures higher-order relationships among up to
four variables per clique being planar5 and chordal6, and maximizes
the likelihood of the underlying system by deterministically joining in
a recursive way covariates expressing the highest similarity (Briola &
Aste, 2022; Massara et al., 2017). This class of IFNs also inspired the
roundbreaking class of Deep Neural Networks at the core of HLOB:

the Homological Convolutional Neural Networks (HCNNs) (Briola et al.,
2023). This architecture, which has an archetype in the simpler class
of Homological Neural Network (Wang et al., 2023), is entirely data-
centric and leverages the power of convolutions to take advantage of
the topological priors in the TMFG (Briola et al., 2023). An in-depth
escription of the building process of a TMFG, of an HCNN, and of the
LOB originating from them, is provided in Sections 4.1 and 4.2.

3. Data

We analyze 15 stocks from 6 sectors and 13 industries, all listed on
the NASDAQ exchange. The chosen dataset was originally proposed
y Briola et al. (2024) and contains only assets maintaining a large-

(i.e., 10B-200B) to -mega (i.e., ≥ 200B) capitalization on a 3-year
nalysis period spanning from January 2017 to December 2019. Stock-
elated information are summarized in Table 1, where the assets are

organized into 3 groups based on their tick size.
The first group (i.e., CHTR, GOOG, GS, IBM, MCD, NVDA) contains

small-tick stocks’ (i.e., the stocks characterized by ⟨𝜎⟩ ≥ 3𝜃, where
𝜎⟩ indicates the average bid–ask spread). The second group (i.e., AAPL,
BBV, PM) contains ‘medium-tick stocks’ (i.e., the stocks characterized
y 1.5𝜃 ≲ ⟨𝜎⟩ ≲ 3𝜃). The third group (i.e., BAC, CSCO, KO, ORCL, PFE,
Z) contains large-tick stocks (i.e., the stocks characterized by ⟨𝜎⟩ ≲
.5𝜃). An in-depth description of the effectiveness of this classification
n capturing stocks- and class-related microstructural effects is available
n the original research work (Briola et al., 2024).

For each stock, high-resolution, tick-by-tick LOB data obtained from
he LOBSTER provider (LOBSTER Data, 2023) are employed. For each

trading day, we use a LOB characterized by 𝐿 = 10 price and volume
levels for both the bid and ask sides (see Eq. (1)). As outlined in Table 2,
for each year, we allocate 40 days for training, 5 days for validation, and
10 consecutive days for testing. Notably, the training days are chosen
to form a sequence where most of the entries are consecutive, with
only few exceptions. Indeed, the 5 days of validation are randomly
selected from the same period characterizing the training set. This
choice guarantees greater robustness in the validation step, and it
is made possible by the 5-days feature-wise rolling window z-score
standardization procedure, which prevents any data leakage (Briola
et al., 2024). The raw LOB data are processed in accordance with
the rigorous pipeline initially proposed by Lucchese et al. (2022) and
subsequently refined by Briola et al. (2024).

Consistently with the work by Briola et al. (2024), we study the
redictability of mid-price changes’ direction7 at 3 different horizons

5 A graph is said to be planar if it can be embedded in a sphere without
dges crossing.

6 A graph is said to be chordal if all cycles made of four or more vertices
ave a chord which reduces the cycle to a set of triangles. A chord is defined
s an edge that is not part of the cycle but connects two vertices of the cycle
tself.

7 We decide to use the simple difference in mid-prices to gain higher control
over the amplitude of the change at different time horizons, preserving, at the
same time, the stationarity property of the resulting time series. Many alter-
atives have been proposed as target variables in the literature (e.g., Lucchese

et al. (2022), Ntakaris, Magris, Kanniainen, Gabbouj, and Iosifidis (2018),
Tsantekidis et al. (2017a), Zhang, Zohren, and Roberts (2019)). All of them are
based on the usage of the log-return as fundamental quantity, and apply dif-
ferent smoothing methods to mitigate the strong fit between labels and actual
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Table 1
Overview of the stocks used in the paper. For each asset, we report the ticker, the extended name, the sector, the industry and the capitalization during 2017, 2018 and 2019. To
determine stocks’ sector and industry affiliation, we follow the taxonomy proposed by the NASDAQ exchange (NASDAQ, 2023). To determine the stock’s capitalization, we rely
on the data provided by companiesmarketcap.com (companiesmarketcap.com, 2024).

Stock symbol Stock name Sector Industry Capitalization (2017) Capitalization (2018) Capitalization (2019)

CHTR Charter Communications, Inc. Telecommunications Cable & Other Pay Television Services $83.94 B $64.21 B $101.85 B
GOOG Alphabet, Inc. Technology Computer Software: Programming, Data Processing $729.45 B $723.55 B $921.13 B
GS Goldman Sachs Group, Inc. Finance Investment Bankers/Brokers/Service $96.09 B $61.43 B $79.86 B
IBM International Business Machines Corporation Technology Computer Manufacturing $142.03 B $101.44 B $118.90 B
MCD McDonald’s Corporation Consumer Discretionary Restaurants $137.21 B $136.21 B $147.47 B
NVDA NVIDIA Corporation Technology Semiconductors $117.26 B $81.43 B $144.00 B

AAPL Apple, Inc. Technology Computer Manufacturing $860.88 B $746.07 B $1.287 T
ABBV AbbVie, Inc. Health Care Biotechnology: Pharmaceutical Preparations $154.39 B $136.33 B $130.94 B
PM Philip Morris International, Inc. Health Care Medicinal Chemicals and Botanical Products $164.09 B $103.78 B $132.39 B

BAC Bank of America Corporation Finance Major Banks $307.91 B $238.25 B $311.20 B
CSCO Cisco Systems, Inc. Telecommunications Computer Communications Equipment $189.34 B $194.81 B $203.45 B
KO Coca-Cola Company Consumer Staples Beverages (Production/Distribution) $195.47 B $202.08 B $236.89 B
ORCL Oracle Corporation Technology Computer Software: Prepackaged Software $195.72 B $162.03 B $169.94 B
PFE Pfizer, Inc. Health Care Biotechnology: Pharmaceutical Preparations $215.89 B $249.54 B $216.82 B
VZ Verizon Communications, Inc. Telecommunications Telecommunications Equipment $215.92 B $232.30 B $253.93 B
a
d
t
T
A
b

R
u
m
S

s
l

Table 2
Basic structure of the datasets used during the training, validation and test stage. For
each year, for the training and test set, we report the starting and the ending day
(both included in the analysis), while, for the validation set, we report all the dates
explicitly. It is worth noting that weekends and public holidays are not trading days
and, consequently, do not belong to any of the datasets.

Year Training Validation Test

from to days from to

2017 03–13 05–22 03–23, 04–05,
04–13, 04–18,
05–02

05–23 06–06

2018 08–09 10–18 08–15, 08–16,
09–19, 09–26
10–03

10–19 11–01

2019 06–04 08–13 06–14, 06–27,
07–08, 07–10,
07–24

08–14 08-27

(i.e., H𝛥𝜏 ∈ {10, 50, 100}) when such a movement is larger than or equal
o 𝜃. The labeling step is consequently defined as follows:
⎧

⎪

⎨

⎪

⎩

(𝑚𝜏+𝛥𝜏 − 𝑚𝜏 ) ≤ − 𝜃 → −1 → Down ,
− 𝜃 < (𝑚𝜏+𝛥𝜏 − 𝑚𝜏 ) < + 𝜃 → 0 → Stable ,
(𝑚𝜏+𝛥𝜏 − 𝑚𝜏 ) ≥ + 𝜃 → 1 → Up ,

(2)

where 𝜃 = $0.01 is the tick size on the NASDAQ exchange and 𝑚𝜏 is the
mid-price at tick time 𝜏. It is worth noticing that horizons are always
efined in terms of LOB updates (which are unevenly spaced), while
hysical time is never used.

Fig. 1 reports the normalized average class distribution across the
training, validation, and test set over the 3-year analysis period of
nvestigation, for H𝛥𝜏 ∈ {10, 50, 100}8. Generally speaking, it is always

possible to detect imbalances; their evolution across horizons is, how-
ever, different for different groups of stocks. For small-tick stocks, it
s possible to observe a rough balance at H𝛥𝜏 ∈ {10}. In contrast,
n increasingly pronounced imbalance towards the extreme classes
i.e., −1 and 1) is observed moving to longer prediction horizons, H𝛥𝜏 ∈
{50, 100}. In a less evident way, the same trend can also be observed
for medium-tick stocks. This mitigation depends on the nature of the
class of stocks, which contains both assets behaving more similarly
to small-tick stocks and assets behaving more similarly to large-tick
stocks. For this latest class of stocks (i.e., large-tick stocks), we observe

prices. While these methods are academically acceptable, their practicability
is questionable as they are more tailored towards tracking mid-price trends
than immediate fluctuations, thereby offering limited control on tick-by-tick
hanges crucial for developing high-frequency trading strategies.

8 For a more detailed investigation of class imbalances across the training,
alidation, and test set, the reader is referenced to work by Briola et al. (2024).
4 
a pattern diametrically opposite to the one described for small-tick
stocks. Indeed, at H𝛥𝜏 ∈ {10} we observe a strong imbalance towards
the central class, which is mitigated by moving to longer prediction
horizons until reaching a rough balance at horizon H𝛥𝜏 ∈ {100}. All
the imbalances described earlier in the paragraph are handled in the
training stage through the usage of balanced data-loaders. However,
their effects will remain partially visible in the test set’s data.

4. Methods

The HLOB model is centered on two primary mechanisms: (i) ex-
ploiting the informational content of topological priors in an IFN as
input for a tailored version of Homological Convolutional Neural Net-
works (HCNNs) (Briola et al., 2023), which in turn handles the depen-
dency structures among LOB’s spatial components (i.e., volume levels);
and (ii) employing an LSTM module to capture long-term temporal pat-
terns. A complete description of this system requires (i) a preliminary
discussion on the process to distillate the necessary information to build
the TMFG; and (ii) a detailed description of the required modifications
to the original HCNN architecture to make it suitable for processing
LOB inputs.

4.1. The TMFG’s building process

The building block of the HCNN and, consequently, of the HLOB
rchitecture, is represented by an arbitrary IFN encoding higher-order
ependency structures among variables in the underlying system. In
his study, in line with the work by Briola et al. (2023), we choose the
riangulated Maximally Filtered Graph (TMFG) (Massara et al., 2017).
s a first step, we process LOB data by removing price levels from the
id and ask side, focusing solely on volume-related data9. Formally, we

reduce the dimension of each LOB snapshot from L(𝜏) ∈ R4𝐿 to L(𝜏) ∈
2𝐿. This choice is needed to ensure homogeneity in the information
sed to build the IFN. Volume levels are inherently discrete, with the
inimum tradable quantity set by the exchange’s 𝜓 parameter (see

ection 2.1), and minor variations from consecutive LOB updates can
introduce a non-negligible level of noise. To mitigate this effect, we
categorize volumes into equally spaced bins. The number of bins is op-
timized on the training and validation set, and remains constant across
stocks characterized by different microstructural properties (i.e., small-,
medium-, and large-tick stocks). The size of the bins is calculated for
each stock individually, and across all volume levels for each training
day.

As a second step, for each stock and for each day in the training
et, we calculate the pairwise mutual information (MI) between volume
evels, obtaining positive and symmetric (2𝐿 × 2𝐿) similarity matrices

9 At this stage, we consider unscaled data-only.

https://companiesmarketcap.com
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Fig. 1. Normalized average class distribution across the training, validation, and test set over a 3-year analysis period at H𝛥𝜏 ∈ {10, 50, 100}. Class imbalances vary significantly
across horizons and stock groups. For small-tick stocks, near-balance is observed at H𝛥𝜏 ∈ {10}, with increasingly pronounced imbalance at longer prediction horizons. Large-tick
stocks show strong class imbalance towards the central class at H𝛥𝜏 ∈ {10}, transitioning to near-balance at H𝛥𝜏 ∈ {100}. Medium-tick stocks exhibit less pronounced trends, with
mixed behaviors.
Fig. 2. Schematic representation of the TMFG’s building process: (a) we start from a simplified version of the LOB containing only volumes data; (b) we mitigate the noise affecting
the LOB by categorizing volumes into bins of uniform size; (c) we compute the pairwise MI between volume levels; and (d) we build the TMFG using the MI matrix as input.
We remark that in the proposed graph representation, both nodes’ and edges’ color/dimension depend on their betweenness centrality. The color bar remains consistent for both
the MI matrix and the corresponding TMFG representation. It is worth noticing that the TMFG captures not only local interactions (i.e., interactions between consecutive volume
levels on the same side of the LOB, or across volumes on the same level but opposite sides of the LOB), but also deeper and non-trivial dependency structures among volume
levels on the same and opposite sides of the LOB.
(i.e., MI matrices). It is worth noticing that the reliability of the MI
computation is strengthened through a bootstrapping process applied
on a daily basis on LOB data. For each stock, the final MI matrix is
derived by averaging daily MI matrices in the training set.

As a third step, stock-related TMFGs are computed by using average
MI matrices as similarity matrices. We remark that, given the multivari-
ate system L, our primary goal is to estimate the multivariate probabil-
ity density function 𝑓 (L|G∗) with representation structure G∗ that best
describes the true and unknown 𝑓 (L). From an information theoretic
perspective, the learning of an optimal network representation G∗ con-
sists of minimizing the Kullback–Leibler divergence (𝐷 ) (Kullback
𝐾 𝐿

5 
& Leibler, 1951) between 𝑓 (L) and 𝑓 (L|G), and, consequently, the
cross-entropy (𝐻) of the underlying system:
G∗ ⇒ ar g min

G
𝐷𝐾 𝐿(𝑓 (L) ∥ 𝑓 (L|G))

⇒ ar g min
G �����E𝑓 (log 𝑓 (L)) − E𝑓 (log 𝑓 (L|G))

⇒ ar g min
G
(𝐻(L|G))

(3)

The term E𝑓 (log 𝑓 (L)) in Eq. (3) is independent from Gand therefore
its value is irrelevant to the purpose of discovering the optimal repre-
sentation network. The second term, −E(log 𝑓 (L|G)) (notice the minus),
instead, depends on G and must be minimized. It is the estimate of
the entropy of the multivariate system under analysis and corresponds
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Fig. 3. This diagram illustrates the sequence of steps transitioning (a) from the output of the TMFG building process (b) to the input of the HLOB model. To construct the
TMFG, we exclusively utilize volume levels from the LOB, forming a network characterized by three topological structures: tetrahedra, triangles, and edges. To prepare the inputs
or the HLOB model, we perform two main tasks: (i) for each timestamp in the input’s temporal dimension, we flatten each of the aforementioned sets; (ii) we incorporate the
orresponding price levels’ data into each representative of these three new input sets. Note that there is a direct mapping between the colors used in this Figure and the ones
sed later to highlight the inputs of the HLOB model in Fig. 4.
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to the so-called cross-entropy (𝐻). This minimization problem can
e incrementally solved by joining the system’s disconnected parts
haring the largest MI, which is exactly what the TMFG algorithm does
see Massara et al. (2017)).

It is worth noticing that the double auction mechanism underlying
the LOB allows orders’ placement dynamics that may manifest their
effects over heterogeneous time scales (Bouchaud et al., 2018, 2009;
Jain, Firoozye, Kochems, & Treleaven, 2024a, 2024b; Jain, Muzy,
Kochems, & Bacry, 2024; Lehalle & Laruelle, 2018). Our approach
aptures local interactions and deeper, non-trivial dependencies that
nfold across LOB’s levels and sides at different temporal horizons (see

Fig. 2). The TMFG building process guarantees this advantage and,
s we explain in Section 4.2, allows the HCNN to overcome a major

limitation characterizing existing models, which instead exploit non-
linear transformations to describe local interactions across consecutive
price and volume levels incrementally.

4.2. From HCNN to HLOB

From each TMFG computed as described in Section 4.1, we isolate
the realizations of 3 simplicial families: (i) maximal cliques with size 4
(i.e., 3-dimensional simplices or tetrahedra); (ii) maximal cliques with
ize 3 (i.e., 2-dimensional simplices or triangles); (iii) maximal cliques
ith size 2 (i.e., 1-dimensional simplices or edges).

These three higher-order structures are sufficient to capture all the
dependencies described by the chosen IFN. Given that the number of
observed volume levels is constant across different stocks and trading
days, we can deterministically compute (i) the shape of the vector of
etrahedra (17 × 4); (ii) the shape of the vector of triangles (52 × 3);

and (iii) the shape of the vector of edges, (54 × 2). All of them serve as
input for the HLOB model10, which, however, is designed to handle not
nly the spatial dynamics captured by the TMFG, but also the temporal
ynamics of the LOB. In this sense, as model’s input, consistently with
he work by Zhang, Zohren, and Roberts (2019), we also use a history
indow of 100 LOB’s updates11.

10 At this stage, we use scaled data-only (see Section 3).
11 We remark the existence of strong designing analogies between the HLOB
odel and the DeepLOB one (Zhang, Zohren, & Roberts, 2019), which, indeed,

epresents an archetype for the architecture introduced in this research paper.
or this reason, in Section 5, we will systematically discuss the comparison

between the forecasting performances of these two models.
6 
Fig. 4. Visual overview of the HLOB model’s operational framework. Note that there
is a direct mapping between the colors used to denote the inputs of the HLOB model
here and the colors used to represent the three categories of topological priors derived
from a TMFG in Fig. 3.

As described in Section 4.1, we use only the volume levels in the
uilding process of the TMFG. However, price levels carry significant
nformation that cannot be ignored. For this reason, we include them
n the HLOB’s building stage: for each timestamp constituting the
nput’s historical dimension, we flat the vector of tetrahedra, triangles,
nd edges, and, for each volume level, we insert the corresponding
rice level. This transformation is schematically depicted in Fig. 3,

where we show the flattening step for the 3 sets of simplicial families
onstituting the average TMFG, and the insertion of the price levels
or each timestamp in the historical dimension of the HLOB’s input.
his operation produces 3 conceptually new 2D input vectors: (i) one
f size (100 × 136) (i.e., the re-shaped vector of tetrahedra); (ii) one of
ize (100 × 312) (i.e., the re-shaped vector of triangles); and (iii) one
f size (100 × 216) (i.e., the re-shaped vector of edges). Each vector is
eparately passed as input to one head of the HLOB model.

For each head, the size of the first convolutional filter is (1 × 2) with
a stride of (1 × 2). As described in the work by Zhang, Zohren, and
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Roberts (2019), this first layer summarizes the information between
the price and the volume {𝑝𝑠𝓁 , 𝑣𝑠𝓁}

𝑠∈{ask, bid}
𝓁∈𝐿 at level 𝓁 and side 𝑠 of the

LOB. At the same time, the stride prevents parameter sharing between
geographically (but not logically) consecutive inputs. The number of
parameters corresponding to this operation equals 96 for each of the
three heads of the architecture. The second convolutional layer captures
the relationships between components of a single realization of each
simplicial family: (i) in the case of tetrahedra, between nodes com-
posing each 3−dimensional simplex (i.e., 4-cliques); (ii) in the case
of triangles, between nodes composing each 2−dimensional simplex
(i.e., 3-cliques); (iii) in the case of edges, between nodes composing
each 1−dimensional simplex (i.e., 2-cliques). A stride equal to (1 × 4)
for tetrahedra, (1 × 3) for triangles, and (1 × 2) for edges, one more time,
prevents parameter sharing between components of the same simplicial
family. Here, the number of parameters for the convolutional operation
involving tetrahedra is equal to 12 384, the number of parameters for
the convolutional operation involving triangles is equal to 11 360, while
the number of parameters involving edges is equal to 10 336. The third
convolutional layer captures the relationships between components of
each simplicial family. The size of the convolutional filter is (1 × 𝛺),
where 𝛺 is the cardinality of each original set of simplexes: 136∕8 = 17
in the case of tetrahedra, 312∕6 = 52 in the case of triangles, and
216∕4 = 54 in the case of edges. This further level of convolution is
proved to be effective (see the work by Briola et al. (2023)) in capturing
information that is not necessarily related in the original network
epresentation, but that can positively affect the characterization of the
rue but unknown 𝑓 (L) (see Eq. (3)). Since relationships modeled in
his layer do not directly stem from the structure of the underlying
MFG, for each head of the HLOB, we apply a dropout with a rate
f 0.35. The number of parameters for this convolutional layer equals
7 440 in the case of tetrahedra, 53 280 in the case of triangles, and
5 328 in the case of edges. After these three layers of convolution, the
imension of each head’s feature map is (100 × 1). These outputs are

concatenated and passed through an LSTM module to capture long-term
temporal dependencies. The activation of an LSTM unit is fed back to
itself, and the memory of past activations is kept with a separate set of
weights, so the temporal dynamics of input features can be effectively
modeled. The number of parameters of this additional layer is equal to
16 640. Lastly, the output layer consists of a linear layer with a number
of outputs equal to the number of classes. The model returns the
logits for increased numerical stability while associated probabilities
are computed in a separate stage.

4.3. Experimental settings

We test the HLOB architecture against 6 state-of-the-art (SOTA)
odels in LOB mid-price changes forecasting: (i) CNN1 (Tsantekidis

et al., 2017a); (ii) CNN2 (Tsantekidis et al., 2020); (iii) DLA (Guo &
Chen, 2023); (iv) BinBTabl (Tran et al., 2021); (v) BinCTabl (Tran et al.,
2021); (vi) DeepLOB (Zhang, Zohren, & Roberts, 2019). All these mod-
els were proposed in the scientific literature between 2017 and 2022,
and later systematically organized in the review paper by Prata et al.
(2023). We also test our model against 2 pure transformer-based ar-
hitectures for time-series forecasting that we adapt for LOB mid-price
hanges forecasting: (i) Transformer (Vaswani et al., 2017); (ii) iTrans-
ormer (Liu et al., 2023). Finally, as an additional benchmark model, we

combine the power of Transformers and CNNs in the LobTransformer
architecture, which takes inspiration from the work of Wallbridge
(2020), and is proposed here in a revised version. As pointed out in the
work by Briola et al. (2024), the majority of these architectures suffer
from a fundamental drawback in the science domain: the original code
is not provided, severely compromising the results’ reproducibility. For
the first set of models described above, results discussed in the current
paper are obtained by exploiting the code provided by Prata et al.
(2023). All the other architectures are implemented from scratch. All
models are included in the ‘LOBFrame’ (Briola et al., 2024) pipeline to
7 
simplify their execution, while guaranteeing the highest reproducibility
standards. A summary of the benchmark models is reported in Table 3.

When possible, model-specific hyper-parameters are inherited from
the work by Prata et al. (2023), while optimal weights are learned by
minimizing the categorical cross-entropy loss using mini-batches of size
32 (Zhang, Zohren, & Roberts, 2019). The mini-batches sampling pro-
cedure differs for the training, validation, and test sets. During training,
the (sub)-sampling is random and balanced. From each trading day (see
Table 2), we detect the number of samples for the least represented
class, and (i) if this value is ≥ 5000, then we sample 5000 random
representatives for each of the three classes (see Eq. (2)), otherwise, (ii)
if this value is < 5000, we sample a number of random representatives
for each class equal to the number of samples for the least represented
class. During validation and test stages, we still sample mini-batches
with a size of 32, but they are always sequential and cover the totality
of data in the two sets. In line with the related literature (Zhang,
ohren, & Roberts, 2019), all models are trained for a maximum

number of epochs equal to 100. Training halts if the validation loss
ails to drop by at least 0.003 units over a span of 15 consecutive
pochs. We use a modified version of the Adam optimizer (Kingma &

Ba, 2014) with decoupled weight decay (Loshchilov & Hutter, 2017),
ommonly known as ‘AdamW’. Following the latest applied research

findings (Brown et al., 2020; Karpathy, 2024), we use a learning rate
qual to 6 × 10−5, a 𝛽1 decay rate equal to 0.90, and a 𝛽2 decay rate equal
o 0.95. As described in the work by Briola et al. (2024), the choice
f values for these parameters is determined by the training pipeline

described above.
All the models considered in this paper are coded in Python using

the PyTorch deep learning library (Paszke et al., 2019). Experiments are
run on the University College London Computer Science Department’s

igh-Performance Computing Cluster (UCL CS HPC Cluster, 2023).
iven the 15 stocks in Table 1, and knowing that for each of the 3

years we challenge the 10 models described in Table 3 on 3 prediction
horizons, we obtain that the number of year-wise experiments is equal
to 450. Consequently, the total number of executed experiments is equal
to 1 350 for a cumulative GPU runtime of 7 192 hours, 20 minutes,
nd 31 seconds. To accomplish the task, we used 10 different GPU
odels: (i) NVIDIA A100 80GB PCIe (21 experiments); (ii) NVIDIA
100-PCIE-40 GB (6 experiments); (iii) NVIDIA GeForce GTX 1080 Ti
362 experiments); (iv) NVIDIA GeForce RTX 2080 Ti (439 experiments);
v) NVIDIA GeForce RTX 4090 (187 experiments); (vi) NVIDIA RTX
000 Ada Generation (139 experiments); (vii) NVIDIA TITAN X (Pas-

cal) (96 experiments); (viii) NVIDIA TITAN Xp (60 experiments); (ix)
Tesla V100-PCIE-16GB (10 experiments); (x) Tesla V100-PCIE-32GB (30
experiments).

5. Results

We present the results of our analysis (i) evaluating the effectiveness
of the models introduced in Section 4.3 in predicting the direction of
mid-price changes; and (ii) examining the HLOB behavior to unveil
intricate patterns into the LOB levels’ structural dependencies. In all
the experiments, we assess the behavior for the three classes of stocks
i.e., small-, medium- and large-tick stocks) at H𝛥𝜏 ∈ {10, 50, 100}. This

approach enables us to examine the models’ performances across differ-
nt scenarios, thereby linking their effectiveness to the microstructural
haracteristics of the stocks.

5.1. Comparison of model performances

We investigate models’ effectiveness in predicting mid-price change
direction through 3 key metrics: (i) the F1 score; (ii) the Matthews
Correlation Coefficient (MCC) (Gorodkin, 2004); and (iii) the proba-
ility of correctly executing a round-trip transaction (𝑝T)12. We report
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Table 3
We report a summary of three main characteristics of benchmark models: (i) original code availability; (ii) model’s number of trainable parameters; and (iii) model’s inference time
in milliseconds. The original code is not provided for 5 out of 6 of the models having a direct reference in the literature. BinBTabl is the most parsimonious among benchmark
models with a number of trainable parameters equal to 6.6 × 103, while LobTransformer is the less parsimonious one with a number of trainable parameters equal to 2.0 × 106. The
model with the lowest inference time is CNN1 (i.e., 0.07 ms, while the model with the highest inference time is LobTransformer (i.e., 0.29 ms).
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n. trainable
parameters

3.5 × 104 2.8 × 105 2.2 × 105 1.1 × 105 1.1 × 105 2.0 × 106 6.6 × 103 2.2 × 104 1.4 × 105 1.8 × 105

inference time
(ms)

0.07 0.14 0.15 0.16 0.15 0.29 0.19 0.13 0.16 0.16
Table 4
Models’ performances at H𝛥𝜏 = 10. For each deep learning architecture we report three key metrics: (i) the F1 score; (ii) the MCC; and (iii) the 𝑝T. For each stock, we highlight
the best performing model (green), the second-best performing model (blue) and the worst performing alternative (red); a model is considered superior to the others if the sum
of the 3 performance metrics is maximal.

H10
cnn1 cnn2 dla transformer itransformer lobtransformer binbtabl binctabl deeplob hlob

F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇
CHTR 0.39 0.11 0.06 0.38 0.09 0.05 0.39 0.11 0.04 0.40 0.12 0.06 0.35 0.05 0.04 0.31 0.07 0.04 0.42 0.15 0.06 0.43 0.16 0.06 0.39 0.10 0.05 0.43 0.17 0.06
GOOG 0.42 0.16 0.04 0.42 0.16 0.04 0.39 0.13 0.03 0.41 0.15 0.04 0.27 0.04 0.04 0.44 0.18 0.05 0.45 0.18 0.08 0.46 0.20 0.08 0.45 0.19 0.04 0.46 0.21 0.05

GS 0.36 0.10 0.09 0.29 0.06 0.06 0.38 0.09 0.08 0.38 0.12 0.10 0.31 0.05 0.02 0.16 0.00 0.00 0.40 0.15 0.09 0.41 0.15 0.10 0.34 0.10 0.08 0.41 0.17 0.12
IBM 0.36 0.09 0.12 0.36 0.08 0.08 0.35 0.08 0.11 0.35 0.11 0.11 0.30 0.06 0.02 0.30 0.05 0.05 0.36 0.10 0.14 0.37 0.10 0.14 0.38 0.11 0.13 0.40 0.13 0.14
MCD 0.37 0.08 0.10 0.35 0.08 0.08 0.38 0.09 0.10 0.38 0.10 0.11 0.31 0.04 0.02 0.28 0.04 0.01 0.39 0.11 0.12 0.40 0.11 0.12 0.41 0.12 0.11 0.41 0.13 0.13
NVDA 0.31 0.06 0.07 0.24 0.00 0.00 0.33 0.07 0.06 0.36 0.08 0.10 0.24 0.02 0.03 0.22 0.02 0.00 0.41 0.13 0.13 0.41 0.13 0.14 0.34 0.08 0.09 0.40 0.12 0.14
AAPL 0.42 0.16 0.13 0.39 0.14 0.09 0.41 0.14 0.12 0.41 0.16 0.13 0.35 0.09 0.07 0.39 0.17 0.10 0.41 0.15 0.15 0.42 0.16 0.16 0.43 0.17 0.15 0.42 0.18 0.15
ABBV 0.38 0.13 0.12 0.39 0.12 0.10 0.39 0.13 0.11 0.40 0.15 0.13 0.31 0.06 0.03 0.33 0.10 0.04 0.36 0.13 0.13 0.37 0.14 0.13 0.39 0.13 0.13 0.42 0.18 0.14
PM 0.35 0.08 0.09 0.39 0.10 0.09 0.37 0.08 0.08 0.36 0.09 0.09 0.29 0.02 0.02 0.28 0.04 0.04 0.36 0.10 0.12 0.36 0.11 0.13 0.36 0.12 0.13 0.39 0.13 0.13
BAC 0.43 0.23 0.04 0.38 0.21 0.06 0.38 0.23 0.04 0.44 0.28 0.05 0.36 0.18 0.09 0.46 0.29 0.05 0.45 0.27 0.06 0.45 0.28 0.07 0.46 0.30 0.07 0.47 0.32 0.06

CSCO 0.47 0.29 0.08 0.50 0.29 0.09 0.47 0.28 0.07 0.48 0.29 0.08 0.41 0.19 0.11 0.47 0.27 0.08 0.45 0.28 0.08 0.44 0.27 0.07 0.49 0.30 0.08 0.50 0.33 0.08
KO 0.47 0.26 0.08 0.47 0.27 0.10 0.46 0.28 0.09 0.47 0.28 0.09 0.39 0.17 0.10 0.48 0.30 0.10 0.45 0.28 0.10 0.43 0.27 0.10 0.48 0.28 0.10 0.49 0.31 0.10

ORCL 0.47 0.27 0.10 0.45 0.26 0.09 0.45 0.26 0.10 0.48 0.30 0.11 0.38 0.16 0.07 0.48 0.31 0.11 0.46 0.27 0.10 0.44 0.26 0.10 0.49 0.32 0.11 0.48 0.32 0.11
PFE 0.43 0.24 0.09 0.42 0.24 0.09 0.43 0.25 0.09 0.44 0.25 0.09 0.36 0.17 0.11 0.45 0.27 0.09 0.47 0.29 0.09 0.46 0.28 0.10 0.46 0.27 0.09 0.49 0.32 0.10
VZ 0.47 0.23 0.08 0.42 0.17 0.07 0.47 0.26 0.09 0.47 0.27 0.10 0.39 0.16 0.10 0.46 0.25 0.10 0.45 0.26 0.10 0.41 0.24 0.10 0.49 0.28 0.11 0.46 0.28 0.10
i

the results of this analysis in Tables 4, 5, and 6, highlighting the best
performing model (green), the second-best performing model (blue)
and the worst performing alternative (red). For each stock, a model
is considered superior to the others if the sum of the 3 performance
metrics is maximal. Year-wise metrics are computed, and, for each
horizon H𝛥𝜏 ∈ {10, 50, 100}, only the average value is provided.

Looking at Table 4, we notice that, at H𝛥𝜏 = 10, HLOB outperforms
SOTA alternatives in the 73.3% of cases. For small-tick stocks, it is the
best-performing model in 4∕6 scenarios (i.e., CHTR, GS, IBM, MCD);
in the case of GOOG, it is the second-best alternative, while in the
case of NVDA, it is the third-best alternative. For medium-tick stocks,
HLOB is the best-performing model in 3∕3 scenarios (i.e., AAPL, ABBV,
PM), while, for large-tick stocks, it is the best-performing option in 4∕6
cases (i.e., BAC, CSCO, KO, PFE) and the second-best alternative in the
remaining 2 scenarios (i.e., ORCL and VZ). The HLOB average F1 score
is equal to 0.42 for small-tick stocks, 0.41 for medium-tick stocks, and
0.48 for large-tick stocks. The average MCC is equal to 0.16 for small-
and medium-tick stocks, and to 0.33 for large-tick stocks. The average
𝑝T is equal to 0.11 for small-tick stocks, 0.14 for medium-tick stocks,

12 The 𝑝T metric was firstly introduced by Briola et al. (2024) to describe
the probability od correctly executing round-trip transactions. It is defined
as 𝑝T = CT

PT+TT−CT . PT is the number of potential transactions (a transaction
happens when one is able to open a position and then close it); we use the
term ‘potential’ because transactions are counted on the targets’ set. TT is the
number of executed transactions; it is computed in the same manner as PT, but
on the predictions’ set. CT is the number of correctly executed transactions; it
counts how many times a transaction executed on the predictions’ set has a
correspondence in the targets’ set. Being a probability measure, 𝑝T takes values

between 0 and 1.

8 
and 0.09 for large-tick stocks. Focusing on inter-models’ dynamics,
we observe that, for small- to medium-tick stocks, performances are
very similar for all the 3 evaluation metrics except for iTransformer
and LobTransformer (which are the worst-performing alternatives). For
large-tick stocks, instead, we observe that also the worst-performing
models, even showing a considerable distance from the best-performing
alternative in traditional machine-learning metrics’ realizations (i.e., F1
score and MCC), present competitive realizations in the case of 𝑝T.
Comparing HLOB performances with DeepLOB ones, we observe that (i)
the average gain in F1 score is equal to 0.03 for small-tick stocks, 0.02
for medium-tick stocks, and 0.003 for large-tick stocks; (ii) the average
gain in MCC is equal to 0.04 for small-tick stocks, 0.02 for medium-tick
stocks, and 0.02 for large-tick stocks; (iii) the average gain in 𝑝T is equal
to 0.02 for large-tick stocks, 0.01 for medium-tick stocks, and 0.00 for
large-tick stocks.

Looking at Table 5, we notice that, at H𝛥𝜏 = 50, HLOB model
outperforms SOTA alternatives in the 60% of cases (10% less than what
happens at H𝛥𝜏 = 10). For small-tick stocks, it is the best-performing
model in 1∕6 scenarios (i.e., IBM); in the case of GS and MCD, it is
the second-best alternative, while in all the other cases (i.e., CHTR,
GOOG, and NVDA), it is the third-best alternative. For medium-tick
stocks, HLOB is the best-performing model in 3∕3 scenarios (i.e., AAPL,
ABBV, PM), while, for large-tick stocks, it is the best-performing model
n 5∕6 cases (i.e., BAC, CSCO, KO, ORCL, VZ), being the second-best

alternative in the case of PFE. The HLOB average F1 score is equal
to 0.36 for small-tick stocks (with a percentage decrease of 16.66%
compared to the realization at H𝛥𝜏 = 10), 0.40 for medium-tick stocks
(with a percentage decrease of 2.50% compared to the realization at
H𝛥𝜏 = 10), and 0.58 for large-tick stocks (with a percentage increase
of 17.24% compared to the realization at H𝛥 = 10). The average MCC
𝜏
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Table 5
Models’ performances at H𝛥𝜏 = 50. For each deep learning architecture we report three key metrics: (i) the F1 score; (ii) the MCC; and (iii) the 𝑝T. For each stock, we highlight
the best performing model (green), the second-best performing model (blue) and the worst performing alternative (red); a model is considered superior to the others if the sum
of the 3 performance metrics is maximal.

H50
cnn1 cnn2 dla transformer itransformer lobtransformer binbtabl binctabl deeplob hlob

F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇
CHTR 0.34 0.07 0.03 0.33 0.03 0.02 0.36 0.09 0.04 0.36 0.09 0.05 0.29 0.03 0.04 0.22 0.01 0.00 0.38 0.15 0.05 0.38 0.13 0.05 0.36 0.06 0.03 0.36 0.09 0.05
GOOG 0.31 0.06 0.03 0.35 0.06 0.03 0.30 0.06 0.05 0.37 0.12 0.05 0.29 0.03 0.04 0.31 0.07 0.03 0.42 0.17 0.07 0.43 0.17 0.07 0.37 0.09 0.05 0.42 0.16 0.06

GS 0.30 0.03 0.04 0.25 0.00 0.03 0.29 0.04 0.05 0.32 0.04 0.06 0.26 0.01 0.03 0.22 0.00 0.00 0.32 0.11 0.08 0.35 0.11 0.08 0.29 0.03 0.06 0.34 0.09 0.08
IBM 0.30 0.04 0.06 0.29 0.01 0.04 0.33 0.05 0.07 0.34 0.07 0.07 0.25 0.02 0.02 0.23 0.03 0.00 0.36 0.07 0.10 0.34 0.07 0.10 0.28 0.03 0.04 0.37 0.08 0.09
MCD 0.32 0.05 0.06 0.29 0.04 0.04 0.31 0.06 0.07 0.32 0.06 0.06 0.28 0.02 0.03 0.23 0.01 0.00 0.36 0.08 0.09 0.36 0.08 0.09 0.32 0.04 0.05 0.36 0.07 0.08
NVDA 0.26 0.02 0.03 0.17 0.00 0.00 0.34 0.04 0.06 0.28 0.05 0.05 0.17 0.01 0.01 0.23 0.01 0.00 0.37 0.12 0.09 0.37 0.12 0.09 0.20 0.01 0.01 0.30 0.06 0.07
AAPL 0.35 0.09 0.11 0.37 0.09 0.06 0.38 0.09 0.11 0.39 0.11 0.10 0.26 0.04 0.02 0.32 0.09 0.04 0.40 0.11 0.12 0.40 0.11 0.12 0.36 0.11 0.07 0.40 0.12 0.11
ABBV 0.35 0.09 0.08 0.34 0.08 0.05 0.36 0.10 0.11 0.36 0.10 0.09 0.24 0.03 0.01 0.25 0.04 0.01 0.37 0.11 0.11 0.38 0.11 0.11 0.32 0.08 0.06 0.40 0.12 0.10
PM 0.35 0.07 0.09 0.33 0.06 0.05 0.35 0.06 0.09 0.37 0.07 0.09 0.26 0.02 0.02 0.27 0.02 0.01 0.37 0.09 0.11 0.37 0.09 0.10 0.36 0.07 0.10 0.39 0.09 0.10
BAC 0.59 0.39 0.09 0.55 0.39 0.08 0.53 0.36 0.08 0.58 0.41 0.09 0.41 0.24 0.08 0.55 0.33 0.07 0.59 0.40 0.11 0.59 0.40 0.09 0.61 0.44 0.10 0.62 0.47 0.09

CSCO 0.55 0.34 0.14 0.55 0.34 0.12 0.54 0.31 0.15 0.57 0.36 0.13 0.41 0.18 0.11 0.53 0.31 0.10 0.52 0.33 0.15 0.53 0.33 0.13 0.58 0.37 0.13 0.60 0.40 0.16
KO 0.53 0.30 0.13 0.51 0.29 0.11 0.56 0.34 0.15 0.56 0.34 0.13 0.43 0.20 0.11 0.57 0.35 0.14 0.54 0.34 0.13 0.55 0.35 0.13 0.56 0.34 0.14 0.59 0.39 0.15

ORCL 0.53 0.30 0.15 0.51 0.30 0.14 0.52 0.30 0.15 0.54 0.33 0.15 0.40 0.17 0.12 0.52 0.30 0.14 0.52 0.29 0.15 0.51 0.29 0.15 0.56 0.34 0.15 0.57 0.36 0.16
PFE 0.53 0.32 0.13 0.53 0.32 0.10 0.54 0.34 0.12 0.53 0.33 0.13 0.42 0.20 0.10 0.55 0.35 0.11 0.55 0.34 0.13 0.56 0.35 0.13 0.57 0.38 0.11 0.56 0.37 0.12
VZ 0.50 0.27 0.13 0.46 0.24 0.13 0.47 0.26 0.13 0.51 0.30 0.15 0.39 0.14 0.11 0.53 0.30 0.14 0.51 0.28 0.16 0.51 0.28 0.15 0.50 0.28 0.12 0.52 0.31 0.15
o
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is equal to 0.09 for small-tick stocks (with a percentage decrease of
7.78% compared to the realization at H𝛥𝜏 = 10), 0.11 for medium-
ick stocks (with a percentage decrease of 45.45% compared to the

realization at H𝛥𝜏 = 10), and to 0.38 for large-tick stocks (with a
percentage increase of 13.15% compared to the realization at H𝛥𝜏 =
10). The average 𝑝T is equal to 0.07 for small-tick stocks (with a
ercentage decrease of 57.14% compared to the realization at H𝛥𝜏 =
0), 0.10 for medium-tick stocks (with a percentage decrease of 40.00%
ompared to the realization at H𝛥𝜏 = 10), and 0.14 for large-tick stocks
with a percentage decrease of 35.71% compared to the realization at

H𝛥𝜏 = 10). Focusing on inter-models’ dynamics, we observe that, also
in this case, for small- to medium-tick stocks, performances are very
similar for all the 3 evaluation metrics, except for iTransformer and
LobTransformer architectures; however, differently from what observed
at H𝛥𝜏 = 10, for the iTransformer model, this observation remains
true also for large-tick stocks. Comparing HLOB performances with
DeepLOB ones, we observe that (i) the average gain in F1 score is equal
to 0.05 for small-tick stocks (with a percentage increase of 40.00%
compared to what observed at H𝛥𝜏 = 10), 0.05 for medium-tick stocks
(with a percentage increase of 60.00% compared to what observed at
H𝛥𝜏 = 10), and 0.01 for large-tick stocks (with a percentage increase
of 70.00% compared to what observed at H𝛥𝜏 = 10); (ii) the average
gain in MCC is equal to 0.05 for small-tick stocks (with a percentage
increase of 20.00% compared to what observed at H𝛥𝜏 = 10), 0.02 for
medium-tick stocks (with no increase compared to what observed at
H𝛥𝜏 = 10), and 0.03 for large-tick stocks (with a percentage increase of
33.33% compared to what observed at H𝛥𝜏 = 10); (iii) the average gain
in 𝑝T is equal to 0.03 for large-tick stocks (with a percentage increase
of 33.33% compared to what observed at H𝛥𝜏 = 10), 0.03 for medium-
tick stocks (with a percentage increase of 66.00% compared to what
observed at H𝛥𝜏 = 10), and 0.01 for large-tick stocks (with a percentage
increase of 100.00% compared to what observed at H𝛥𝜏 = 10).

Looking at Table 6, we notice that, at H𝛥𝜏 = 100, the HLOB
model outperforms state-of-the art (SOTA) alternatives in the 33% of
cases (37% less than what happens at H𝛥𝜏 = 10 and 27% less than
what happens at H𝛥𝜏 = 50). For small-tick stocks, HLOB is the best-
performing model in 1∕6 scenarios (in particular for IBM stock); in the
case of CHTR, it is the second-best alternative, while in all the other
cases (i.e., GOOG, GS, MCD, and NVDA), it is the third-best alternative.
For medium-tick stocks, it is the third-best performing model in 3∕3
scenarios (i.e., AAPL, ABBV, PM). For large-tick stocks, it is the best-
performing model in 4∕6 cases (i.e., BAC, CSCO, KO, ORCL), being the
second-best alternative in the case of PFE and the third-best alternative
in the case of VZ.

The HLOB average F1 score is equal to 0.32 for small-tick stocks
(with a percentage decrease of 31.25% compared to the realization at
H𝛥 = 10 and a decrease of 12.50% compared to the realization at
𝜏
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H𝛥𝜏 = 50), 0.35 for medium-tick stocks (with a percentage decrease
of 17.14% compared to the realization at H𝛥𝜏 = 10 and a decrease
f 14.28% compared to the realization at H𝛥𝜏 = 50), and to 0.52 for

large-tick stocks (with a percentage increase of 7.69% compared to the
realization at H𝛥𝜏 = 10 and a decrease of 11.54% compared to the
realization at H𝛥𝜏 = 50).

The HLOB average MCC score is equal to 0.05 for small-tick stocks
(with a percentage decrease of 220.00% compared to the realization
at H𝛥𝜏 = 10 and a decrease of 80.00% compared to the realization at
H𝛥𝜏 = 50), 0.06 for medium-tick stocks (with a percentage decrease
of 166.67% compared to the realization at H𝛥𝜏 = 10 and a decrease
of 83.33% compared to the realization at H𝛥𝜏 = 50), and to 0.30 for
large-tick stocks (with a percentage decrease of 10.00% compared to
the realization at H𝛥𝜏 = 10 and a decrease of 26.66% compared to the
realization at H𝛥𝜏 = 50).

The HLOB average 𝑝T score is equal to 0.05 for small-tick stocks
(with a percentage decrease of 120.00% compared to the realization
at H𝛥𝜏 = 10 and a decrease of 40.00% compared to the realization at
H𝛥𝜏 = 50), 0.07 for medium-tick stocks (with a percentage decrease
of 100.00% compared to the realization at H𝛥𝜏 = 10 and a decrease
of 42.86% compared to the realization at H𝛥𝜏 = 50), and to 0.15
for large-tick stocks (with a percentage increase of 40.00% compared
to the realization at H𝛥𝜏 = 10 and an increase of 6.67% compared
to the realization at H𝛥𝜏 = 50). Focusing on inter-models’ dynamics,
we observe that, consistently with what observed at H𝛥𝜏 ∈ {10, 50},
for small- to medium-tick stocks, performances are similar for all
the 3 evaluation metrics with very minor oscillations; the two main
xceptions are represented by the iTransformer and LobTransformer

which present considerably lower realizations. Similarly to H𝛥𝜏 = 50,
ut differently from H𝛥𝜏 = 10, this behavior persists also for large-tick
tocks.

Comparing HLOB performances with DeepLOB ones, we observe
that (i) the average gain in F1 score is equal to 0.006 for small-
ick stocks (with a percentage decrease of 400.00% compared to what
bserved at H𝛥𝜏 = 10 and a decrease of 733.33% compared to what
bserved at H𝛥𝜏 = 50), 0.03 for medium-tick stocks (with a percentage
ncrease of 33.33% compared to what observed at H𝛥𝜏 = 10 and a

decrease of 66.67% compared to what observed at H𝛥𝜏 = 50), and 0.04
for large-tick stocks (with a percentage increase of 92.50% compared
o what observed at H𝛥𝜏 = 10 and an increase of 75.00% compared
o what observed at H𝛥𝜏 = 50); (ii) the average gain in MCC is equal

to 0.04 for small-tick stocks (with no percentage increase compared
to what observed at H𝛥𝜏 = 10 and a decrease of 25.00% compared
to what observed at H𝛥𝜏 = 50), 0.02 for medium-tick stocks (with no
percentage increase compared to what observed at H𝛥𝜏 ∈ {10, 50}),
and 0.04 for large-tick stocks (with a percentage increase of 100.00%

compared to what observed at H𝛥𝜏 = 10 and an increase of 33.33%
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Table 6
Models’ performances at H𝛥𝜏 = 100. For each deep learning architecture we report three key metrics: (i) the F1 score; (ii) the MCC; and (iii) the 𝑝T. For each stock, we highlight
the best performing model (green), the second-best performing model (blue) and the worst performing alternative (red); a model is considered superior to the others if the sum
of the 3 performance metrics is maximal.

H100
cnn1 cnn2 dla transformer itransformer lobtransformer binbtabl binctabl deeplob hlob

F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇 F1 MCC 𝑝𝑇
CHTR 0.29 0.04 0.02 0.30 0.00 0.02 0.32 0.05 0.03 0.31 0.06 0.03 0.25 0.01 0.03 0.23 0.00 0.01 0.34 0.11 0.04 0.35 0.10 0.04 0.34 0.03 0.04 0.35 0.08 0.04
GOOG 0.29 0.04 0.03 0.28 0.01 0.02 0.26 0.03 0.03 0.32 0.06 0.04 0.25 0.02 0.03 0.24 0.02 0.01 0.39 0.13 0.06 0.40 0.14 0.07 0.32 0.01 0.05 0.36 0.10 0.05

GS 0.29 0.01 0.04 0.30 0.01 0.03 0.28 0.01 0.04 0.28 0.01 0.04 0.22 0.01 0.00 0.22 0.00 0.00 0.28 0.06 0.06 0.29 0.06 0.06 0.31 0.00 0.06 0.30 0.02 0.05
IBM 0.29 0.02 0.02 0.32 0.01 0.04 0.29 0.03 0.04 0.28 0.03 0.04 0.28 0.01 0.00 0.26 0.01 0.02 0.29 0.03 0.06 0.29 0.03 0.06 0.29 0.00 0.04 0.32 0.03 0.06
MCD 0.24 0.02 0.03 0.28 0.00 0.03 0.26 0.03 0.03 0.27 0.03 0.05 0.22 0.01 0.03 0.25 0.01 0.02 0.30 0.05 0.06 0.32 0.05 0.07 0.29 0.01 0.06 0.29 0.04 0.05
NVDA 0.23 0.01 0.01 0.17 0.00 0.00 0.24 0.02 0.03 0.23 0.01 0.01 0.18 0.00 0.01 0.22 0.00 0.00 0.34 0.09 0.08 0.36 0.09 0.07 0.31 0.01 0.03 0.28 0.05 0.05
AAPL 0.34 0.06 0.07 0.30 0.05 0.03 0.33 0.06 0.08 0.33 0.06 0.06 0.24 0.02 0.01 0.27 0.03 0.01 0.37 0.08 0.09 0.38 0.08 0.09 0.34 0.07 0.05 0.35 0.08 0.07
ABBV 0.26 0.04 0.03 0.32 0.02 0.03 0.33 0.05 0.08 0.31 0.05 0.06 0.22 0.03 0.03 0.24 0.01 0.02 0.35 0.07 0.08 0.36 0.08 0.08 0.31 0.03 0.05 0.34 0.06 0.06
PM 0.33 0.03 0.06 0.27 0.00 0.02 0.32 0.04 0.08 0.33 0.04 0.06 0.19 0.01 0.01 0.23 0.00 0.00 0.35 0.05 0.08 0.36 0.05 0.08 0.31 0.01 0.05 0.35 0.04 0.07
BAC 0.56 0.36 0.10 0.55 0.34 0.12 0.55 0.35 0.13 0.57 0.38 0.14 0.41 0.21 0.09 0.52 0.29 0.14 0.58 0.36 0.17 0.58 0.37 0.18 0.57 0.37 0.16 0.63 0.44 0.17

CSCO 0.52 0.28 0.16 0.52 0.29 0.15 0.50 0.27 0.18 0.52 0.29 0.15 0.38 0.14 0.12 0.47 0.23 0.12 0.49 0.27 0.16 0.50 0.27 0.15 0.52 0.28 0.14 0.52 0.30 0.18
KO 0.50 0.26 0.14 0.48 0.23 0.11 0.50 0.26 0.16 0.49 0.26 0.14 0.35 0.12 0.09 0.47 0.23 0.11 0.48 0.26 0.13 0.50 0.27 0.12 0.51 0.26 0.13 0.53 0.30 0.16

ORCL 0.48 0.23 0.14 0.46 0.21 0.12 0.45 0.22 0.16 0.47 0.24 0.16 0.30 0.07 0.08 0.48 0.24 0.16 0.48 0.22 0.17 0.48 0.22 0.17 0.48 0.25 0.16 0.49 0.26 0.17
PFE 0.50 0.26 0.13 0.53 0.29 0.12 0.48 0.26 0.13 0.48 0.27 0.12 0.38 0.12 0.09 0.49 0.27 0.10 0.52 0.27 0.16 0.50 0.27 0.14 0.50 0.28 0.11 0.50 0.28 0.13
VZ 0.45 0.19 0.12 0.41 0.17 0.12 0.42 0.19 0.13 0.45 0.20 0.13 0.28 0.07 0.07 0.36 0.14 0.08 0.47 0.21 0.16 0.47 0.21 0.17 0.33 0.12 0.10 0.47 0.22 0.11
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compared to what observed at H𝛥𝜏 = 50); (iii) the average gain in 𝑝T
s equal to 0.003 for small-tick stocks (with a percentage decrease of
66.67% compared to what observed at H𝛥𝜏 = 10 and a decrease of
00.00% compared to what observed at H𝛥𝜏 = 50), 0.02 for medium
ick stocks (with a percentage increase of 50.00% compared to what
bserved at H𝛥𝜏 = 10 and a decrease of 50.00% compared to what
bserved at H𝛥𝜏 = 50), and 0.02 for large-tick stocks (with a percentage

increase of 200.00% compared to what observed at H𝛥𝜏 = 10 and an
increase of 100.00% compared to what observed at H𝛥𝜏 = 50).

In Fig. 5, we report, for each prediction horizon H𝛥𝜏 ∈ {10, 50, 100}
and for each considered model, the distribution of 𝑝T as a function
of the total number of executed round-trip transactions (TT) (Briola
t al., 2024). In this case we do not distinguish between different

classes of stocks, and we use different markers to report the average
odels’ performance values. We divide each plot into four quadrants.
he upper-left quadrant (i.e., (I)), contains the architectures with an
verage TT lower than the 25% percentile (computed across the to-

tality of models), and an average 𝑝T greater than the 75% percentile
(computed across the totality of models); intuitively, models located in
his quadrant are the ones that achieve the best performances while
emaining parsimonious in terms of executed transactions. The upper-
ight quadrant (i.e., (II)) contains the architectures with an average
T higher than the 25% percentile (computed across the totality of
odels), and an average 𝑝T greater than the 75% percentile (com-

puted across the totality of models); intuitively, models located in this
quadrant are the ones that achieve the best performances being less
parsimonious in terms of executed transactions. The lower-left quadrant
(i.e., (III)) contains the architectures with an average TT lower than
the 25% percentile (computed across the totality of models), and an
average 𝑝T lower than the 75% percentile (computed across the totality
of models); intuitively, models located in this quadrant are the ones that
achieve the worst performances being, however, parsimonious in terms
of executed transactions. Finally, The lower-right quadrant (i.e., (IV))
contains the architectures with an average TT higher than the 25%
ercentile (computed across the totality of models), and an average
T higher than the 75% percentile (computed across the totality of
odels); intuitively, models located in this quadrant are the ones that

chieve the worst performances being less parsimonious in terms of
xecuted transactions.

From this representation, it is possible to distinguish between 3
roups of models showing a consistent behavior across prediction
orizons. The first group of models is made of BinBTabl, BinCTabl and
LOB. They are always placed in the upper-right quadrant, demonstrat-

ng to be the most effective models in correctly predicting round-trip
ransactions, even if not being particularly parsimonious in number of
rading actions. At H𝛥𝜏 = 10, HLOB is more effective than the other two

enchmark alternatives, showing, however, yet the most pronounced

10 
attitude to perform active trading actions. This tendency disappears
moving to H𝛥𝜏 ∈ {50, 100}, where HLOB demonstrates to be slightly
nferior to its benchmark alternatives. The second group of models is
ade of iTransformer and LobTransformer. They are always placed

n the lower-left quadrant, demonstrating the worst performances in
erms of practicability of forecasts. Finally, the third group is the most
eterogeneous one and is made of CNN1, CNN2, DLA, Transformer, and
eepLOB architectures. Among them, DeepLOB and Transformer are

he only two models which permanently remain in the same quadrant,
emonstrating to be less parsimonious in terms of predicted transac-
ion, but more accurate in terms of round-trip transactions’ forecast.
NN1, CNN2, and DLA, on the other side, independently from the pre-
iction horizon, present borderline behaviors, often placing themselves
n an area between the third and the fourth quadrant.

HLOB-related results discussed previously in this Section allow us
o formulate new considerations on the LOB microstructural working
echanics. As explained in Section 4, the success of the proposed archi-

tecture mainly relies on the meaningfulness of higher-order dependency
structures captured by the underlying IFN. Its effectiveness is evident
and persistent across different prediction horizons since it ties SOTA
performances in the case of BinCTabl and BinBTabl, constantly outper-
forming other benchmark alternatives and, specifically, the DeepLOB
model, which represents its structure-agnostic ancestor. Specifically,
compared to DeepLOB, HLOB demonstrates a broad effectiveness, cap-
uring two microstructural aspects: (i) the LOB has an underlying
patial structure that requires the modeling of higher-order and non-

trivial dependency structures among volume- (and price-) levels; (ii)
the emergence of dependency structures can be modeled as a function
of the asset’s tick size (i.e., small-, medium-, and large-tick) and their
persistence varies depending on the same factor at different prediction
horizons. The first finding can be directly derived by observing that
DeepLOB, which has an architecture conceptually similar to HLOB but
designed to act only on consecutive LOB’s volume- and price-levels,
is less effective than HLOB at all prediction horizons, remarking the
necessity for modeling higher-order and deeper dependency structures.
The second finding can be derived from the observation of HLOB’s per-
formance across prediction horizons for different classes of stocks. At
H𝛥𝜏 = 10, HLOB is superior to all the other models independently of the
stocks’ tick size, showing that the average structure extracted through
the IFN effectively models short-term mid-price change dynamics. At
H𝛥𝜏 = 50, HLOB remains effective for medium- to large-tick stocks,
where the risk (expressed via the bid–ask spread) and the LOB’s actual
depth (see the work by Briola et al. (2024)) are lower. This is not
true for small-tick stocks, where the average structure captured by the
TMFG is less robust to the LOB’s changes. The same findings apply to
H𝛥𝜏 = 100, where, however, the average structure is also ineffective for
medium-tick stocks. At H𝛥 ∈ {50, 100}, HLOB is superior to DeepLOB,
𝜏
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Fig. 5. Distribution of 𝑝T (see the work by Briola et al. (2024)) as a function of the total number of executed round-trip transactions (TT) computed for each model in Table 3
at H𝛥𝜏 ∈ {10, 50, 100}.
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but slightly inferior to BinBTabl and BinCTabl. We postulate that these
ast two models perform better on longer horizons because they apply
 dual-attention mechanism on the input’s spatial and temporal dimen-

sion (the IFN behind the HLOB model only handles spatial dynamics).
This means that they orchestrate a selective focus on specific elements
of the input by assigning varying weights indicative of their relative
significance for the given task across spatial and time LOB features,
allowing the refinement of the captured non-linear relationships across
ime. This advantage comes with a drawback. Indeed, the high level of
nterpretability offered by the standard attention decreases in systems
mploying the dual-attention mechanism due to the inherent complex-
ty of capturing evolving spatial dependencies over time, leading to
 more dynamic and nuanced understanding of the data that might
ot be as easily interpreted statically. The supremacy of BinBTabl and

BinCTabl models is finally annihilated in the case of large-tick stocks,
which show a higher level of structure across volume levels, avoiding
informational drifts that are damaging in the case of deep learning
models.

5.2. Spatial distribution of information in limit order books

As a further instrument to understand the theoretical implications
f empirical results obtained in Section 5.1, in Figs. 6, 7, 8, we report

the average (computed across the 3-year analysis period) MI matri-
ces computed on the training set for each of the 15 stocks under
investigation (see Section 4.1). This analysis sheds light on (i) the
olume levels where most of the LOB information is concentrated, and
ii) how different spatial distributions impact the model’s forecasting
apabilities13. As average matrices, the ones presented in the following
a

11 
Figures are not used to build the HLOB. However, they are useful in
capturing the intuition behind the scenario-dependent effectiveness of
the HLOB model.

Fig. 6 reports the normalized average MI matrices for small-tick
stocks. CHTR and GOOG present similar dynamics. Their
not-normalized average mutual information is 0.35 and 0.26, respec-
tively. In the case of CHTR, we observe a weak hierarchical or-
anization across LOB levels. The best ask and bid volume levels
i.e., 𝑣𝑠∈{ask, bid}

1 ) present the highest cumulative mutual informational,
hich smoothly decreases moving to deeper levels. The highest punc-

tual realizations of the chosen similarity measure are generally ex-
pressed among contiguous levels on the same side of the LOB. In the
ase of GOOG, we notice that the decrease in the cumulative mutual
nformation across volume levels is steeper, with a clear break after
𝑠∈{ask, bid}
4 . Also in this case, the highest punctual realizations of the
hosen similarity measure are generally expressed among contiguous
evels on the same side of the LOB. GS presents a not-normalized
verage mutual information equal to 0.45. Compared to the previous
wo alternatives, this value turns out to be not only higher, but also
ifferently spatially distributed. Indeed, looking at the volume levels’
umulative mutual information, we isolate three different groups: (i)
𝑠∈{ask, bid}
𝓁∈{1,3} , (ii) 𝑣𝑠∈{ask, bid}

𝓁∈{4,7} , and (iii) 𝑣𝑠∈{ask, bid}
𝓁∈{8,10} . The first and the last

roup are characterized by a similar cumulative mutual information
alue, which, however is lower than the one of the second group.

13 Similar attempts were performed by Libman, Ariel, Schaps, and Haber
(2022) and Cont, Cucuringu, and Zhang (2023). However, their works differ
rom ours both in terms of the adopted methodology, granularity of analysis
nd results’ interpretation.
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Fig. 6. Normalized (over the 15 stocks in Table 1) version of the average (computed across the 3-year analysis period) MI matrices computed on small-tick stocks (i.e., CHTR,
GOOG, GS, IBM, MCD, NVDA). For the sake of readability, we renamed LOB volume levels following a mapping schema that can be summarized as follows 𝑣ask

𝓁 → A𝓁, 𝑣bid
𝓁 → B𝓁.
These three clusters are clearly separated, with an absence of smoothed
transition. In this sense, GS presents the first signs of a hierarchical
structure where the central levels of the LOB play an increasingly
central role. This behavior is markedly evident in the case of IBM. This
stock presents a not-normalized average mutual information equal to
0.74 (i.e., the highest among small-tick stocks), with a clear concen-
tration towards the central levels of the LOB (i.e. 𝑣𝑠∈{ask, bid}

𝓁∈{4,6} ). In this
case, the transition from volume levels characterized by a lower cumu-
lative mutual information to volume levels characterized by a higher
cumulative mutual information is smooth and incremental moving from
top to middle volume levels and is even less evident moving from
middle to deep ones (i.e. 𝑣𝑠∈{ask, bid}

𝓁∈{7,10} ), which are organized in a clear
cluster with a medium-to-high level of cumulative mutual information.
Even if visually similar to IBM, the MI matrix characterizing MCD
conveys a different message. Here, the not-normalized average mutual
information is equal to 0.58 and is mostly distributed across the top
8 levels of the LOB (i.e., 𝑣𝑠∈{ask, bid}

𝓁∈{1,8} ). In this sense, the emerging
hierarchical structure is less clear compared to the one of IBM, and
more similar to the one of GS. The case of NVDA, finally, is unique
in the class of small-tick stocks. Here, the average mutual information
is equal to 0.31 and is mainly concentrated on the deepest 6 levels
of the LOB. Complementary to what observed for CHTR and GOOG,
the top volume levels (i.e., 𝑣𝑠∈{ask, bid}

1 ) are characterized by the lowest
cumulative mutual information, which incrementally increases moving
to deeper levels of the LOB. However, also in this case, the highest
punctual realizations of the chosen similarity measure are generally
expressed among contiguous levels on the same side of the LOB. All
the results discussed above directly derive from one of the findings
in the work by Briola et al. (2024). There, the authors, following
the intuition proposed by Wu et al. (2021), introduce 𝛯Bid and 𝛯Ask

to measure the ‘actual LOB depth’ (see Table 7) on the bid and ask
side of the LOB, respectively. Indeed, as described in Section 2.1, the
LOB representation characterizing the data used in the current paper,
suffers a lack of homogeneity in the spatial structure (since there
is no assumption for adjacent price levels to be separated by fixed
intervals). As a consequence, when the average 𝛯{Bid, Ask} ≫ 9.0, as it
12 
happens for CHTR and GOOG, the computation of the average mutual
information across levels is negatively affected due to the drifts that
make the concept of ‘level’ a pure theoretical artifact with a short-
term practical feedback. On the contrary, the meaningfulness of MI
matrices and, consequently, the persistence of related higher-order
structures across longer time horizons, increases when 𝛯{Bid, Ask} ≃ 9.0,
with IBM providing an example of ideal environment to challenge
spatially-informed deep learning models.

Fig. 7 reports the normalized average MI matrices for medium-tick
stocks. AAPL is characterized by a not-normalized average mutual infor-
mation equal to 0.41 which is mainly concentrated across 𝑣𝑠∈{ask, bid}

𝓁∈{2,10} .
The top volume levels of the LOB are markedly detached from the oth-
ers, which, in contrast, show a strong interdependence. This behavior
is far from that of ABBV and PM, which have a not-normalized average
mutual information equal to 0.59 and 0.63, respectively. In both cases,
the distribution of the chosen similarity metric is very similar to the
one of MCD, with most of the mutual information concentrated on the
top 7 volume levels of the LOB and a clear drop for the remaining 3
ones. Looking at Table 7, we notice that, in the case of AAPL, a lower
average mutual information is compensated by a higher stability of the
LOB, which increases the persistence of the structure extracted from the
MI matrix through the IFN (described in Section 4.1). ABBV and PM, in
contrast, present average 𝛯Bid and 𝛯Ask values that are more similar to
the ones observed for small-tick stocks and are consequently exposed
to the adverse consequences described previously in this Section.

Fig. 8 reports the normalized average MI matrices for large-tick
stocks. The not-normalized average mutual information of BAC is equal
to 1.18. It is unevenly spatially distributed across LOB levels with
an evident hierarchical organization: (i) 𝑣𝑠∈{ask, bid}

1 express the lowest
pairwise mutual information realizations; (ii) 𝑣𝑠∈{ask, bid}

𝓁∈{2,3} express an in-
termediate amount of pairwise mutual information; and (iii) 𝑣𝑠∈{ask, bid}

𝓁∈{4,10}
contain the highest concentration of mutual information. For each of
these 3 groups, it is possible to notice a smooth decrease of mutual
information moving from top to deeper LOB levels. A similar dynamics
can be observed for all the other stocks characterized by the same
tick size, with the only difference of being able to clearly identify two
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Fig. 7. Normalized (over the 15 stocks in Table 1) version of the average (computed across the 3-year analysis period) MI matrices computed on medium-tick stocks (i.e., AAPL,
ABBV, PM). For the seek of readability, we renamed LOB volume levels following a mapping schema that can be summarized as follows 𝑣ask

𝓁 → A𝓁, 𝑣bid
𝓁 → B𝓁.
Fig. 8. Normalized (over the 15 stocks in Table 1) version of the average (computed across the 3-year analysis period) MI matrices computed on large-tick stocks (i.e., BAC, CSCO,
KO, ORCL, PFE, VZ). For the seek of readability, we renamed LOB volume levels following a mapping schema that can be summarized as follows 𝑣ask

𝓁 → A𝓁, 𝑣bid
𝓁 → B𝓁.
(instead of three) groups of volume levels. In all the cases, 𝑣𝑠∈{ask, bid}
1

express the lowest pairwise mutual information, while 𝑣𝑠∈{ask, bid}
𝓁∈{3,5} con-

tain the highest realizations. The not-normalized average mutual in-
formation of CSCO, KO, ORCL, PFE, and VZ is equal to 1.00, 0.83,
0.62, 0.90, and 0.74, respectively. ORCL and VZ present the lowest
realizations; however, compared to small- to medium-tick stocks, they
maintain a considerably higher level of structure. Looking at Table 7,
we observe that all the stocks consistently exhibit the lowest real-
izations of 𝛯Bid and 𝛯Ask. This indicates a high level of stability in
LOB structures, consequently justifying the advantage of deep learning-
based models in the related forecasting tasks. Additionally, the distinct
emerging structure observed across LOB levels supports their sustained
effectiveness over extended prediction horizons.

To summarize, we state that (i) small- and medium-tick stocks gener-
ally suffer from a lack of structure in the LOB informational content,
which causes a faster degradation of deep learning models’ forecasting
13 
capabilities moving from closer to farther prediction horizons; (ii) while
large-tick stocks present a more compact and meaningful structure of the
LOB, guaranteeing a direct mapping between the theoretical concept
of ‘level’ and its practical realization as an informational channel for
deep learning models, which consequently has a positive effect on deep
learning models’ forecasting performances at both closer and farther
prediction horizons.

6. Conclusion and future work

This paper introduces HLOB, a novel large-scale deep learning archi-
tecture for high-frequency Limit Order Book (LOB) mid-price changes’
direction forecasting. The novelty of the model lies in the possibility
to deterministically model higher-order interactions among LOB vol-
ume (and price) levels leveraging the power of a class of Information
Filtering Networks (IFNs): the Triangulated Maximally Filtered Graph
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Table 7
Mean and median ‘actual depth’ for bid and ask side of the LOB (i.e., 𝛯Bid and 𝛯Ask) for the 15 stocks of interest, in the 3-year analysis period.

2017 2018 2019

Mean Median Mean Median Mean Median

Ask Bid Ask Bid Ask Bid Ask Bid Ask Bid Ask Bid

CHTR 53.83 50.14 34.00 35.00 71.67 68.84 55.00 54.00 44.56 45.64 35.00 36.00
GOOG 55.45 53.57 49.00 47.00 93.67 91.83 82.00 81.00 61.92 62.14 58.00 58.00
GS 14.97 15.30 13.00 13.00 19.07 20.33 15.00 16.00 13.98 14.12 13.00 13.00
IBM 10.29 10.47 9.00 10.00 12.47 12.70 11.00 11.00 9.93 9.93 9.00 9.00
MCD 126.97 9.95 9.00 9.00 12.32 12.73 10.00 11.00 13.35 13.59 12.00 12.00
NVDA 10.79 10.73 9.00 9.00 16.30 16.12 15.00 15.00 10.87 10.88 10.00 10.00

AAPL 9.02 9.02 9.00 9.00 9.52 9.54 9.00 9.00 9.13 9.14 9.00 9.00
ABBV 10.95 11.13 9.00 9.00 23.27 19.79 11.00 11.00 9.74 9.69 9.00 9.00
PM 10.09 10.07 9.00 9.00 13.64 13.60 11.00 11.00 10.22 10.20 9.00 9.00

BAC 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
CSCO 9.00 9.00 9.00 9.00 9.01 9.01 9.00 9.00 9.00 9.00 9.00 9.00
KO 9.14 9.19 9.00 9.00 9.04 9.04 9.00 9.00 9.01 9.01 9.00 9.00
ORCL 9.11 9.11 9.00 9.00 9.05 9.06 9.00 9.00 9.01 9.01 9.00 9.00
PFE 9.20 9.21 9.00 9.00 9.03 9.03 9.00 9.00 9.01 9.01 9.00 9.00
VZ 9.09 9.09 9.00 9.00 9.07 9.09 9.00 9.00 9.01 9.01 9.00 9.00
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(TMFG). Its computation exploits the pairwise mutual information
across volume levels, and its structure only retains statistically relevant
dependencies, pruning the weakest ones. The informational content of
the emerging homological priors (i.e., tetrahedra, triangles, and edges)
is then mapped as input to the class of Homological Convolutional
Neural Networks (HCNNs), and processed to forecast the direction of
high-frequency mid-price changes for 15 stocks belonging to 3 different
classes (i.e., small-, medium-, and large-tick stocks) over a 3-year
analysis period (i.e., 2017, 2018, and 2019). This class of neural networks
naturally models the spatial dimension of the LOB and is modified here
to handle long-term temporal dependencies through the introduction
of the long short-term memory (LSTM) module. This modification
sets off the transition from a simple HCNN to an HLOB model. The
evelopment of this architecture is backed by the hypothesis that a
ore structured architectural grasp of the LOB’s spatial dependency

tructures would enhance a model’s predictive precision. To test this
ypothesis, we test our architecture against 9 SOTA models, demon-
trating not only the supremacy of our architecture in specific scenarios
ut also using the empirical results to prove some theoretical conjec-
ures on the microstructural mechanics of the LOBs. Specifically, we
btain 3 main findings:

• We demonstrate that the LOB has an underlying spatial structure
that requires modeling higher-order and non-trivial dependency
structures among volume (and price) levels, making the descrip-
tion of interactions among consecutive levels (used for instance
in DeepLOB (Zhang, Zohren, & Roberts, 2019)) a sub-optimal
solution. This result is achieved by leveraging the Triangulated
Maximally Filtered Graph (TMFG) as a tool for undirected graph-
ical modeling, allowing for a comprehensive investigation of
both local and non-local interactions within the LOB. Through a
likelihood maximization framework, the chosen model captures
intricate dependency structures that encompass both immediate
and deeper spatial relationships among volume and price levels.

• We show that the emergence of dependency structures can be
modeled as a function of the asset’s tick size; different structures
emerge for different types of assets, and the ones characterized
by a clear hierarchical structure (i.e., large-tick stocks) have more
chances to be correctly forecast by deep learning models.

• We demonstrate that the persistence of the informational con-
tent that can be captured through a modeling exercise on the
LOB spatial dependency structure varies at different prediction
horizons. Indeed, when the LOB structure is sparse and subject
to informational drifts (i.e., small- and medium-tick stocks), the
concept of ‘level’ becomes a purely theoretical artifact with a
limited-in-time realization in practical scenarios. In this case, a
14 
deep learning model built on the average mutual information
across volume levels is also exposed to the adverse impact of
outliers (i.e., informational drifts) being effective only at short-
term prediction horizons, where the likelihood of informational
drifts is lower.

HLOB represents a step forward in building microstructurally-
informed models for the prediction of the direction of high-frequency

id-price changes. The overall performance of the proposed archi-
tecture is commendable. It marks a significant advancement in the
ield of microstructural modeling, providing practitioners and aca-
emics with a powerful tool that combines the power of deep learning
ith a nuanced understanding of LOB mechanics, facilitating better
ecision-making in high-frequency environments. From its comparison

with alternative SOTA models, some limitations emerge. Specifically,
pplying a dual-attention mechanism on the input data spatial and tem-
oral dimensions guarantees, at the price of a reduced interpretability,
nhanced performances, allowing for a refinement of the captured non-
inear relationships over time and offering an edge over HLOB, which
rimarily handles spatial dynamics.

There are several avenues for further development of the HLOB
odel. As a future research work, (i) we should reason about more

efined ways to compute the similarity matrices at the core of the pro-
osed architecture and, as a consequence of this, (ii) we should think
bout the possibility of modifying the HLOB to incorporate temporally-
volving IFNs capturing the evolving complexity of the LOB. Further,
rom the market microstructure perspective, it would be useful to
epeat our experiments on data from exchanges other than the NASDAQ
ne in order to study how different or temporally evolving tick sizes
mpact our observations. This research marks an initial step towards
eveloping microstructurally informed models that can adapt to the
omplexities of high-frequency market phase transitions. Future work
ill build on these foundations to enhance models’ adaptability and
ccuracy, paving the way for more robust and practical applications in
inancial markets forecasting.
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