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Electric vehicles are increasingly being adopted in Great Britain and other 
parts of the world, driven by the perception that they offer a cost-effective 
alternative to internal combustion engine vehicles while reducing 
emissions. However, a key element that underpins this perception is the 
longevity of electric vehicles, which remains relatively under researched. 
Here we show that although early battery electric vehicles (BEVs) 
exhibited lower reliability than internal combustion engine vehicles, 
rapid technological advancements have allowed newer BEVs to achieve 
comparable lifespans, even under more intensive use. Longevity is also 
found to be impacted by engine size, location and make of vehicle. We 
provide parameter estimates for life mileage that can be used to update life 
cycle assessment and total cost of ownership studies of different vehicle 
powertrains. Our results also shed light on BEV diffusion patterns, fleet 
replacement strategies and end-of-life treatment planning, including the 
increasingly important debate around BEV battery recycling and second-life 
options.

The electric vehicle (EV) revolution is widely considered as a way to 
decarbonize the transport sector and to reduce air pollution from 
tailpipe emissions1. To estimate the true environmental benefits of 
EVs, in particular the fully battery electric vehicles (BEVs), and how 
they compare with existing petrol and diesel vehicles with internal 
combustion engines (ICEVs), one needs to consider the entire life cycle 
of a vehicle and how any benefits are spread across the life cycle.

The production of a typical EV is relatively resource intensive 
(requiring six times the critical mineral inputs of a conventional vehi-
cle2) and has an environmental impact 50% higher than an ICEV3. The 
key argument in favour of an EV transition is that this additional initial 
environmental cost is more than offset during the use phase if the 
vehicle has a long enough useful life. Plug-in vehicles such as BEVs 
offer the opportunity to entirely replace fossil fuels with low-carbon 
electricity generated from renewable sources such as solar, wind, tidal 

and geothermal energy. However, if EVs are charged using electricity 
from coal or gas-fired plants, the environmental benefits could be 
substantially reduced, resulting in a varied and spatially dispersed 
impact4. Assuming that travel demand remains constant, the current 
energy mix in Europe means that the longer an EV stays on the road, 
the greater the environmental benefits3. As Europe continues with 
its own green transition, the energy mix should become increasingly 
renewable based, making the benefits even larger.

The economic justification for the introduction of policies to 
promote wider EV adoption is also strengthened if there is a prolonged 
EV use phase. Putting the environmental impact of production aside, 
although typically EVs have a higher upfront cost than traditional 
ICEVs (currently a difference of around US$12,000 according to  
ref. 5), owners tend to benefit from lower operating costs owing to the 
typically lower cost of electricity compared with gasoline and lower 
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growing interest in understanding the adoption and diffusion of these 
new powertrains15,29–32. So far, however, there has been limited research 
on estimating the longevity of newer powertrains at the fleet level.

This study makes a unique contribution using the anonymized 
MOT test dataset, which is increasingly being recognized as a valuable 
source of big data for addressing different management and socioeco-
nomic issues20,33. Here we document that although early BEVs exhibited 
lower reliability than ICEVs, rapid technological advancements have 
allowed newer BEVs to achieve comparable lifespans, even under more 
intensive use. To this end, we demonstrate how big data can be used 
to better support risk analysis, especially in the transport sector34.

Determinants of vehicle longevity
The purpose of this paper is to use the compulsory roadworthiness 
tests (MOT tests) in Great Britain to estimate the longevity of different 
powertrains with particular emphasis on benchmarking estimates for 
BEVs against incumbent ICEVs (see Supplementary Note 1 and Extended 
Data Fig. 1 for the broader context and see Supplementary Note 2 for 
additional results on hybrid vehicles as presented in a preprint version 
of this study35). To this end, we define vehicle longevity as the service 
time on British roads, which could end owing to a scrappage decision 
or export36, typically to countries with less stringent environmental 
regulations and lower operating, maintenance and repair costs. More 
specifically, statistical analysis on nearly 300 million compulsory MOT 
tests using STATA and High-Performance Computing allows us to 
provide timely information on the survival rates of different vehicles, 
including the newer BEV powertrains, which is information not avail-
able from scrappage data alone.

The advantage of using MOT data is twofold. First, as MOT tests 
are legally required for almost every vehicle on the road, the dataset is 
comprehensive and represents the actual vehicle fleet. These tests are 
compulsory for vehicles over 3 years old (or 1 year for certain special 
vehicles), with exemptions for electric goods vehicles, tractors and 
historic vehicles, which make up only a small portion of the overall 
fleet and do not substantially affect the representativeness of our 
study focused on more recent passenger vehicles. As such, analysing 
MOT data provides a more holistic view of the fate of the fleet at the 
end of its life rather than estimates derived from studies that use the 
small set of vehicles included in commercial survey datasets. Second, 
anonymized MOT test data are freely available and provide a source of 
information that is transparent and regularly updated. Unlike other 
free administrative vehicle registration datasets, anonymized MOT test 
data includes mileage (odometer reading), cylinder capacity, colour 
and test location. Mileage data and the date of first registration are 
particularly important as they allow us to estimate longevity in terms 
of both years and distance travelled.

The process outlined in the section ‘Data processing’ from over 
264 million test results for the period 2005 to 2022 gives us a final 
population of 29.8 million vehicles as summarized in Supplementary 
Table 1, which does not include the sample of 371.3 thousand (plug-in) 
hybrid electric vehicles in Supplementary Note 2. The majority of cars 
in our sample are petrol (15.1 million) or diesel (14.7 million) and a much 
smaller number of BEVs (41.6 thousand). This is consistent with official 
statistics trends in the United Kingdom where petrol and diesel cars 
still dominate the market despite growing EV sales.

Looking at the cohort variable (the year of first registration) shows 
that the average petrol car in our sample is slightly older (2010.7) than 
the average diesel car (2011.3) but also highlights that in contrast the 
BEVs in our sample are much newer, with an average cohort year of 
2015.1. In terms of mileage, unsurprisingly, diesel cars that tend to 
be used for longer trips have an average mileage of 28.8 miles per day 
compared with petrol cars, which average 18.2 miles per day. BEVs 
are somewhere in between these figures averaging around 18.9 miles 
per day, closer to petrol vehicles. There was a wide range of makes for 
petrol and diesel vehicles in the dataset, each occupying a small share 

maintenance costs. Argonne National Laboratory6 estimate mainte-
nance costs to be US$0.06 per mile for BEVs and US$0.10 per mile for 
ICEVs. Overall costs may also be reduced further as a result of various 
policies that improve the financial incentives for purchasing an EV, 
which range from direct subsidies to reduced or waived road taxes, 
parking fees and tolls7–9. However, policies can also increase costs. For 
example, the United States recently proposed imposing tariffs of 100% 
on Chinese-made EVs.

There are several reasons to question the disparity between the 
expected longevity of EVs and ICEVs. First, emerging technologies, 
such as EVs, are still in a developmental stage with various new features 
and configurations, making it uncertain whether they can match the 
mechanical longevity of ICEVs, which have benefited from decades of 
continuous research and development and constant marginal improve-
ments. Second, the differences in market structure where the produc-
ers of EVs, especially those that are fully electrified, are concentrated 
in several companies, including new automotive entrants, mean that 
the new powertrain producers may have different incentives to engage 
in ‘planned obsolescence’10. This refers to a situation where firms with 
market power produce products with suboptimal quality or durability 
to maximize profits. Third, early models of new powertrains with high 
upfront costs may target different subsets of customers11 who have 
different demands for vehicle longevity and exhibit different driving 
and vehicle care behaviour compared with the average ICE driver. For 
example, within a household, EVs are often purchased in addition to 
an existing ICEV12.

Having an accurate measure of the longevity of different power-
trains, whether the lifetime is measured in time or distance, matters 
because it is an important input into life cycle assessment (LCA) and 
total cost of ownership (TCO) models that compare the environmental 
impact and economic cost between EVs and ICEVs. LCA is a methodol-
ogy used to assess the environmental impacts of a product or process 
throughout its entire life cycle and includes raw material extraction, 
production, use and disposal. See ref. 13 for a review and ref. 14 for an 
LCA comparison of EVs and ICEVs. TCO, however, is an estimation of 
the expenses associated with buying, deploying, using and retiring 
a product with recent work using this method, including refs. 15–17.

Longevity estimates are also important for forecasting automo-
tive sales and planning for end-of-life vehicle treatment. However, 
knowledge about the longevity of EVs remains relatively limited and 
what research does exist tends to assume a common functional unit 
for all EVs and is often extrapolated from an estimate based on the 
evidence from ICEVs, despite the increasing variety of EVs available on 
the market, differences in their usage patterns and large technological 
differences between EVs and ICEVs.

There are two relevant previous studies in this regard. First, ref. 18 
assumes a common life mileage of 130,000 to compare the emission 
and cost of 44 hybrid and plug-in hybrid vehicle models in the United 
States. Second, a recent study commissioned by the UK Department of 
Transport to assess the environmental impact of a wide range of hybrid 
and electric vehicles in the United Kingdom assumes that all vehicles 
stay on the road for 200,000 km (around 124,000 miles) over 14 years19. 
However, the estimates from refs. 18 and 19 are based on restrictive 
assumptions owing to the difficulty of accessing data on scrappage 
rates by powertrain20. While there is scrappage data that can provide 
insights into the longevity of some already scrapped vehicles, this data 
does not help with estimating future scrappage rates of newer vehicle 
models, particularly those that use newer technology stacks. The lack 
of data is most keenly felt for EVs where the main source of information 
on lifespan is based on lab-based data, expert judgement and educated 
guesses21. It is this gap in knowledge that we attempt to fill in this study.

Our study relates to several strands of literature. Researchers have 
long been interested in modelling the scrappage and survival rates 
of petrol and diesel cars22–24 as well as the impact of policies aimed at 
encouraging vehicle scrappage25–28. The rise of EVs has also led to a 
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of the market. However, the choice for electric powertrains is more 
limited with Nissan (49%), Tesla (19%) and Renault (17%) being the three 
largest BEV makes.

Supplementary Table 1 also shows that in terms of colour, black 
followed by silver and then blue are the most popular choices for pet-
rol vehicles while black and then silver and white were more popular 
among diesel vehicles. Meanwhile white dominated the BEV sample 
with more than 33% being this colour. In terms of cylinder capacity, 
a medium engine between 1.0 l and 2.0 l was the most popular across 
all powertrains (except engine-less BEVs). South East England had the 
largest population of petrol, diesel and BEVs.

A concern that one might have using MOT test data to determine 
a vehicle’s lifespan is that the dataset does not provide the exact date 
when a vehicle retires. To classify a vehicle as no longer on British roads, 
extra steps need to be taken. In statistical terms, our dataset includes 
two types of censored data (Fig. 1). Right censored data consists of 
vehicles that have attended a recent MOT test, providing information 
about the ‘survival’ of the vehicle up to that point and interval censored 
data that includes vehicles that have missed a recent MOT test, indicat-
ing that they may have been retired at some point between the previous 
MOT test and the expected but missing MOT test.

To address these censoring issues, we use a parametric regression 
model taking into account interval censor mechanism with a Weibull 
distribution, commonly used to model the survival of vehicles in a fleet. 
The choice of using a parametric functional form helps greatly enhance 
computational efficiency, a crucial benefit given the unusually large 
size of the dataset for this type of nonlinear estimation.

Table 1 presents the results of the survival analysis for three dif-
ferent powertrain categories: petrol (columns 1–3), diesel (columns 
4–6) and BEV (columns 7–9). Table 1 shows three specifications for 
each powertrain using different definitions of retirement for buffers 
15, 18 and 21 months (see details in the section ‘The heuristic of death 
definition’). To enhance interpretability, we present the coefficients 
in the exponentiated form, capturing hazard ratios. Our preferred 
specification utilizes the coefficients corresponding to the 18-month 
cut-off point. Overall, the choice of buffer makes little difference to the 
sign and significance of the results.

The regressions in Table 1 use a parametric approach and assume 
a Weibull distribution for the baseline hazard. Estimates of Weibull 
parameters ρ for all powertrains are consistently greater than 1, indi-
cating that the failure rate increases over time. When comparing the 
18-month estimates of the ρ parameter, the ageing process appears to 
be more aggressive for petrol vehicles (4.06) and diesel (3.41) than BEVs 
(2.45). These ρ parameters are presented in Fig. 2. The suggestion is that 

the differences can be attributed to the fact that internal combustion 
engines have more moving parts and are subject to more wear and tear 
than electric motors, which are simpler in design.

It is reassuring that for all powertrains, usage patterns appear to 
be an important predictor of lifespan (significant at the 0.1% level). An 
increase of 1 mile per day increases the hazard rate by 8.4% for petrol 
vehicles, 6.4% for diesel and 2.5% for BEVs. This confirms the hypothesis 
that the more intensively a vehicle is driven, the shorter is its longevity 
but that BEVs appear to be responding well to increased intensity of use.

Perhaps the most interesting results concern the coefficients for 
the cohort variable, which are statistically significant and are consist-
ently smaller than 1 for the petrol, diesel and BEV powertrains. A value 
below 1 implies that over this time period, each of these powertrains 
has benefited to some extent from technological improvements and 
that newer models from the same manufacturers exhibit improved 
reliability over time.

Of these three powertrains, BEVs demonstrate the most rapid 
improvement, with a 12.0% lower hazard rate for the cohort born 1 
year later. By contrast, petrol and diesel vehicles show more modest 
decreases in hazard rates of 6.7% and 1.9%, respectively. One explana-
tion for these results is that both petrol and diesel powertrains are 
established technologies that only experience marginal improvements 
year on year while BEV manufacturers are still on a rapid learning curve. 

MOT attendance MOT attendance MOT attendance

MOT attendance

t1 t2 t3 t4
Death between
t2 and t3 + ∆t

Death
after t3

∆t

MOT attendance Missing MOT

Last data
31/12/2022

Bu�er time

Fig. 1 | Schema of interval-censored data and the heuristic of death definition. 
This figure illustrates two types of censored data in our study. Right censored 
data (upper) consists of vehicles that have attended a recent MOT test, providing 
information about the ‘survival’ of the vehicle up to that point. Interval censored 
data (lower) includes vehicles that have missed a recent MOT test, indicating that 

they may have been retired at some point between the previous MOT test and the 
expected but missing MOT test. We allow for a ‘buffer period’ after the date the 
test should have been taken before concluding that a vehicle has been retired to 
account for delays in taking the MOT.
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Fig. 2 | Survival function of different powertrains. The survival function, 
using the parametric survival estimates from the preferred specifications (18 
months) in Table 1, along with the covariate means for three samples: petrol 
(N = 15,131,145), diesel (N = 14,685,673) and BEV (N = 41,640).
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As illustrated in Supplementary Note 4, this finding remains robust 
when using different sets of covariates and varying thresholds for 
removing minor BEV makes.

In addition to the previously mentioned variables, MOT data offer 
a diverse set of details on factors influencing the longevity of vehicles, 
such as colour, make and location. These categorical variables are incor-
porated into our model as sets of indicator variables. The Wald χ2-tests 
shown in Table 1 confirm that each set of variables collectively signifi-
cantly correlates with vehicle longevity at the 5% levels and beyond.

Our analysis also reveals a notable variation in vehicle lifespan 
based on manufacturer. Figure 3 shows the coefficient of hazard ratio 
for major makes exceeding 100 unique vehicles for BEVs and 1,000 
unique cars for other powertrains, relative to the reference make (Mit-
subishi). Accordingly, all else equal, relative to the reference group 
Mitsubishi, the make with the lowest hazard ratio for each powertrain 
is Honda (petrol), Skoda (diesel) and Tesla (BEV). We only report the 
top 30 performing makes for petrol and diesel and all makes for BEVs 
while results for all makes of ICEVs included in our sample are avail-
able from the authors upon request. Engine sizes, vehicles’ colour and 
regions are also significant predictors of hazard rates, as discussed in 
Supplementary Note 3 and illustrated in Extended Data Figs. 2 and 3.

Estimated longevity and life mileage
Having considered the other covariates, we now estimate the lifespan 
of vehicles, which is important for planning fleet replacement and 
the treatment for the end-of-life of vehicles (for example, organizing 

scrapping and recycling facilities and hiring skilled labours for these 
facilities). From a life cycle perspective, the total distance travelled 
during a vehicle’s lifetime is perhaps more relevant for assessing the 
emissions of vehicles to provide more information on how driving an 
EV can offer environmental benefits.

Table 2 presents the estimated median longevity and lifetime 
mileage for the entire fleet, broken down by powertrain, and the five 
most popular makes of vehicle. The 18-month specification remains our 
preferred estimates with the 15- and 21-month results being thought 
of as providing upper and lower bound estimates.

When all powertrains are combined, panel A shows that the aver-
age vehicle lifetime is 17.8 years and travels about 138,000 miles dur-
ing this lifetime (columns 2 and 5). This lifetime mileage is close to 
the 130,000 miles/200,000 km widely used in the LCA literature18. A 
decrease in the buffer time for our assumption of a vehicle’s death leads 
to a slightly reduced estimate. The 15-month specification suggests 
an average lifespan of 17.1 years and 133,000 miles travelled, while the 
21-month buffer time suggests an average lifespan of 17.9 years and 
139,000 miles travelled.

Our lifetime estimates are higher than the average age of a vehicle 
at scrappage, which was reported as 13.9 years in 201537. There are sev-
eral reasons for this disparity. First, we provide lifetime estimates for 
almost every car that has ever joined the fleet, including a large number 
that are still in operation, rather than conditioning our estimates on 
those that have already been scrapped. However, we do exclude cars 
that are scrapped early, for example, owing to accidents within the first 

Table 1 | Survival regressions

Petrol Diesel BEV

15m 18m 21m 15m 18m 21m 15m 18m 21m

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Cohort
0.952*** 0.933*** 0.930*** 0.990*** 0.981*** 0.982*** 0.914*** 0.880*** 0.879***

(0.0003) (0.0004) (0.0004) (0.0002) (0.0002) (0.0002) (0.01) (0.01) (0.01)

Mileage rate (last)
1.082*** 1.084*** 1.085*** 1.063*** 1.064*** 1.065*** 1.021*** 1.025*** 1.028***

(0.0003) (0.0003) (0.0004) (0.00006) (0.00007) (0.00007) (0.002) (0.002) (0.002)

Under 1.0 l
0.973*** 0.961*** 0.959*** 1.343*** 1.356*** 1.370***

(0.004) (0.004) (0.004) (0.05) (0.05) (0.05)

1.0–2.0 l 1 1 1 1 1 1

Above 2.0 l
1.068*** 1.061*** 1.056*** 0.798*** 0.791*** 0.786***

(0.004) (0.004) (0.004) (0.001) (0.001) (0.001)

ρ
4.069*** 4.056*** 4.109*** 3.406*** 3.412*** 3.468*** 2.507*** 2.453*** 2.503***

(0.004) (0.004) (0.004) (0.002) (0.002) (0.002) (0.03) (0.03) (0.03)

Region indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes

Colour indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes

Make indicators Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 15,131,145 15,131,145 15,131,145 14,685,673 14,685,673 14,685,673 41,640 41,640 41,640

Number of 
right-censored 
observations

11,983,876 12,171,912 12,276,601 11,127,288 11,315,899 11,423,605 37,744 38,112 38,265

Number of 
interval-censored 
observations

3,147,269 2,959,233 2,854,544 3,558,385 3,369,774 3,262,068 3,896 3,528 3,375

P value (χ2 region) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

P value (χ2 colour) 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.020 0.026

P value (χ2 make) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The exponentiated coefficients and standard errors (in parentheses, not available for reference groups) of baseline survival regressions for petrol (columns 1–3), diesel (columns 4–6) and 
BEVs (columns 7–9). These regressions include petrol/diesel makes with a minimum of 1,000 vehicles or BEV makes with a minimum of 100 vehicles. Column titles specify the buffer time used 
to determine the ‘death’ of vehicles, ranging from 15 months, 18 months (preferred), to 21 months. *, ** and *** respectively indicate significance at 0.05, 0.01 and 0.001 levels. The P values 
reported are for two-sided joint Wald tests, which assess whether each set of indicator variables (makes, regions and colours), taken as a whole, are significant.

http://www.nature.com/natureenergy


Nature Energy

Article https://doi.org/10.1038/s41560-024-01698-1

few years, preventing them from undergoing their first MOT test at 3 
years old. The selection bias means that scrapped cars would have a  
lower estimated lifetime than surviving cars. Second, our updated 
analysis focuses on cars registered between 2005 and 2017, with an 
average registration year of 2011. These are newer models compared 
with those scrapped in 2015, most of which were likely registered in 
the early 2000s. Technological advances over the last two decades 
have contributed to prolong lifespan, as indicated for the majority of 
vehicles in Table 1. Furthermore, these relatively newer vehicles in our 
samples are also less susceptible to the major scrappage scheme that 
was introduced in the 2009 United Kingdom Budget38 and concluded 
in March 2010, which incentivized the scrappage of cars over 10 years 
old. Finally, reduced vehicle usage, as measured by miles travelled per 
year, has also contributed to a longer overall lifetime.

Panel B reveals substantial disparities in the lifespan and mileage 
performance across different powertrains. When comparing petrol 
and diesel, our baseline estimates indicate that a petrol vehicle survives 
for 1.9 more years, but covers 44,000 miles less compared with a diesel 
vehicle. BEVs offer promising characteristics, with an average lifespan 
of 18.4 years, which approximates that of an average petrol vehicle. 
Importantly, BEVs surpass petrol cars in terms of lifetime mileage, 
covering 124,000 miles across their lifetime. Panel C provides a break-
down of lifetime mileage estimates for the leading five brands within 
each powertrain category. The top-performing BEV make is Tesla, while 
Skoda and Audi lead the way for diesel and petrol, respectively. While 
intuitive, these findings contribute to a systematic and granular under-
standing of reliability in powertrains, including the emerging one.

Trends in vehicles use and longevity
The next stage is to look at the evolution of the patterns of vehicles 
use by different powertrains, their expected longevity and miles trav-
elled throughout their life cycle using the predictions generated from 
our preferred 18-month specifications from Table 1 and odometer 
information recorded at the last test of each vehicle. The aggregate 

trend in Fig. 4 captures several factors, including shifts in technology, 
driver preferences, behaviour and the range of products available in 
the market.

Figure 4a shows a fairly flat or even declining trend in vehicle usage, 
measured as miles travelled per year across the entire sample. This 
decline aligns with a broader reduction in travel demand, as reported 
in the National Travel Survey, which has a particularly pronounced 
impact on newer models39. BEVs show a substantial increase in usage, 
with mileage rates increasing from approximately 2,200 miles per 
year for the 2010 cohort to 7,800 miles per year for the 2017 cohort.

This result can be attributed to the diffusion of BEVs into various 
segments, including those with higher travel demands, and improve-
ments in technology that have reduced range anxiety. It is important to 
note that BEV usage patterns may differ from those of ICEVs owing to 
distinct purchase motivations. Some buyers may choose small-battery, 
low-range BEVs for inner-city trips or as second vehicles, while oth-
ers may favour BEVs for higher mileage, as the return on investment 
improves with greater use. Technological advancements, such as the 
increase in average BEV range from 79 miles to 151 miles between 2010 
and 201740, have made BEVs a viable and attractive choice for individu-
als who require longer travel distances on a regular basis.

Figure 4b aligns with our survival analysis results presented in the 
section ‘Determinants of vehicle longevity’, highlighting an increase 
in the expected median lifespan for all powertrains. Figure 4c reveals 
analogous trends in the expected median lifetime mileage. Notably, 
BEVs have experienced rapid improvements and surpassed the average 
fleet lifetime mileage in 2017.

Discussion and conclusion
Technological advances, supportive policies and increasing concern 
for the environment have driven the shift from traditional internal com-
bustion engines towards cleaner powertrains, paving the way towards 
a net-zero carbon future. To effectively plan for fleet replacement and 
properly handle retired vehicles in an environmentally friendly manner, 
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the reference group (Mitsubishi). For illustrative purposes, a and b only show the 
top 30 brands in terms of reliability (with the lowest hazard ratios), while c shows 
all brands included in the regressions.
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a better understanding of vehicle longevity is critical. In light of the 
shortage of accessible detailed data on vehicle retirement, we propose 
the use of compulsory MOT test data to track vehicle operation, infer 
information on its end-of-life and associate it with a wealth of vehicle 
characteristics recorded during MOT tests.

Our analysis of about 30 million vehicles and nearly 300 million 
MOT test results uses a Weibull proportional hazard model to identify 
key predictors of a vehicle’s longevity, including driving intensity, 
engine size, colour, make and location. The freely accessible data 
enabled us to conduct a timely evaluation and compare the impact of 
each determinant among different powertrains, including traditional 
petrol and diesel engines against newer powertrains such as BEVs.

Our analysis highlights that while BEVs represent a newer technol-
ogy that was traditionally less reliable, they have rapidly evolved, with 
the latest BEVs expected to outlast the average ICEVs within the same 
cohort. This finding necessitates a dynamic approach in assessing the 
environmental and economic benefits of EVs, rather than assuming a 
uniform functional unit for all powertrains. Earlier batches of EVs were 
not only costly but also offered little environmental benefits given 
their limited lifespan and use. However, if the trends estimated in this 
study persist, the TCO and environmental advantages of upcoming 
BEV models could far exceed previous estimations.

However, there are a number of caveats. Government interven-
tions, such as large-scale scrappage schemes largely absent during our 

study period, could alter patterns of retirement. In addition, it is still 
early in the ‘S curve’ of EV adoption, and further observation beyond 
the results presented in this study is needed for newer BEVs, given the 
variety of technological and business issues that may arise.

Technological developments present both opportunities and chal-
lenges. The extended lifespan of EVs may require battery replacements 
if the original batteries degraded prematurely. Lithium-ion batteries 
remain the dominant technology for powering EVs and the longevity of 
these batteries is uncertain41. Most new EVs come with warranties of 8 
years and 100,000 miles for their batteries42 and most research antici-
pates a lifespan of approximately 8–10 years43. Industrial sources tend to 
be more optimistic about their products, with Tesla claiming that their 
batteries are designed to outlast the vehicle44, and Nissan reporting that 
almost all of the batteries that they have ever produced are still in use in 
the EVs they sold over the last 12 years45. The analysis of over 6,300 EVs 
by the fleet management company Geotab suggests that the majority 
of EV batteries will outlast the usable life of the vehicles they power46.

To fully realize the benefits of a longer BEV lifespan, replacement 
batteries, if necessary, must be affordable relative to the residual value of 
BEVs without their original batteries. The establishment of a robust circu-
lar economy for batteries is imperative to effectively support the dynam-
ics of this technological advancement. As of 2020, the cost to replace a 
battery ranged from US$4,000 for a 30 kWh Nissan battery to US$10,275 
for a 75 kWh Tesla Model 3, compared with US$1,100 to US$3,400 for an 

Table 2 | Estimated median lifetime and mileage by powertrain and make

Median lifetime (years) Median life mileage (miles) Observations

15m 18m 21m 15m 18m 21m

(1) (2) (3) (4) (5) (6) (7)

All vehicles

Average 17.1 17.8 17.9 133,076.1 137,567.6 139,021.6 29,858,458

Average by powertrain

BEV 16.9 18.4 18.6 113,643.4 124,207.8 125,056.2 41,640

Diesel 16.3 16.8 16.9 155,170.3 159,775.1 161,271.6 14,685,673

Petrol 18 18.7 18.9 111,685.8 116,050.7 117,465 15,131,145

Average of top five makes by powertrain

Fully battery electric vehicles

TESLA 17.7 20.3 20.9 179,972.9 204,197.9 208,873.4 7,810

HYUNDAI 15.1 15.6 15.4 134,883.8 138,463.5 136,038.1 192

NISSAN 17.4 18.8 18.8 113,252.3 121,771.1 121,263.6 20,449

KIA 17.9 18.5 18.9 113,388.4 116,654.4 118,963.1 438

MERCEDES 15 16.1 15.8 85,405.4 90,926.3 89,193.6 413

Diesel

SKODA 17.2 17.7 17.9 176,392.3 181,849 183,564.9 316,592

VOLVO 18.1 18.6 18.8 174,806 180,176.9 181,445.2 371,857

LAND ROVER 19.5 20.4 20.6 169,205.7 176,211.5 178,144.9 653,027

VOLKSWAGEN 17.1 17.6 17.8 170,776.8 175,653.2 177,150.6 1,572,090

HONDA 17.7 18.2 18.4 170,581.9 175,141.2 176,501.6 238,388

Petrol

AUDI 19.9 20.9 21.2 135,997.6 143,100.4 145,168.8 493,401

VOLVO 19.7 20.5 20.7 137,314 142,308.8 144,023.5 70,294

LAND ROVER 18 18.7 18.9 130,251.8 134,874.3 136,626.5 25,756

LEXUS 18 18.4 18.6 130,450.3 133,259.7 134,500.2 33,338

SAAB 17.2 17.6 17.8 130,250.8 132,722.3 134,218 38,591

This table presents the estimated median lifetimes of all vehicles included in the regression sample, using the results shown in Table 1 and a breakdown by powertrain and make. The median 
life mileages have been estimated from the median lifetime and the mileage rate calculated at the final test of each vehicle then averaged over the sample or subsamples. We prefer the 
18-month specification and use the 15-month and 21-month as the lower and upper bounds of our estimates.

http://www.nature.com/natureenergy


Nature Energy

Article https://doi.org/10.1038/s41560-024-01698-1

ICEV transmission replacement11. If battery and replacement costs do 
not fall quickly enough, owners may choose to prematurely write off 
their BEVs, which could skew the comparison of BEV longevity against 
ICE vehicles. This could lead to an overestimation of BEV longevity in our 
analysis, which TCO and LCA modellers should consider.

In addition, unforeseen technological or business challenges aris-
ing later in these vehicles’ lives could disrupt the patterns observed in 
our model. The widespread adoption of EVs may give rise to new busi-
ness models such as car leasing and car-hailing. To prevent potential 
environmental issues, regulation is crucial, as exemplified by the emer-
gence of ‘EV graveyards’ in China47, where a substantial number of EVs 
are left unused before reaching the end of their mechanical lifespan as 
the new businesses fail. Anecdotal reports on expensive repair costs48, 
high insurance premiums49, challenges with battery performance in 
cold weather50 and the increased likelihood of tyre failure51 could influ-
ence decisions regarding the scrappage of used EVs.

Finally, the quality of MOT data and potential compliance issues, 
such as incomplete or inaccurate records, delayed testing or failure to get 
tested, could impact the accuracy of our findings. Although driving with 
an expired or invalid MOT certificate can result in fines of up to £1,000 
and may invalidate an insurance policy, leading to additional penalties, 
points on the licence or even more severe court action, future research 
could examine MOT compliance by fuel type and other characteristics, 
which may help explain some potential biases in the findings of this study. 
We assume that the robustness of our findings can be strengthened by 
presenting results under different assumptions and users are advised to 
use their institutional knowledge to select the results that best suit their 
analytical purposes. Future research could be enriched by integrating 
our methodology with data on the export pattern of used EVs from Great 
Britain36, enabling a deeper understanding of scrappage patterns. In 
addition, the analytical framework in this study could be extended to 
similar sources of administrative big data available elsewhere or to other 
sectors, such as heavy-duty goods vehicles, where decarbonization 
efforts are increasingly important to meet net-zero targets.

Methods
Anonymized MOT test dataset
The main dataset used in this study is the anonymized MOT (Ministry 
of Transport) test database. The MOT test is mandatory for almost all 

passenger and light-goods vehicles, private buses and motorbikes in 
the United Kingdom, as required by the Road Traffic Act of 1988. The 
anonymized MOT test dataset used in this study however only covers 
tests in Great Britain. To ensure that vehicles are roadworthy and meet 
minimum environmental requirements, an MOT test must be taken 
at least once a year for vehicles that are 3 years or older. For certain 
vehicles, such as taxis, ambulances, and some motor caravans and 
dual-purpose vehicles, the age at which the first test is required is 1 year. 
The dataset includes not only information about the time, location 
and final outcome of the MOT test but also a number of vehicle char-
acteristics. MOT test outcomes were computerized in 2005. As MOT 
computerization was not fully implemented across Great Britain until 
1 April 2006, the dataset is not complete for tests conducted between 1 
January 2005 and 31 March 2006. We waited for the May 2023 update, 
which covers tests from 2005 to 2022, and includes revised 2017 results 
that were previously missing due to a recording error (corrected in 
June 2022).

MOT tests are carried out primarily in private garages and by cer-
tain local authorities. The locations, known as Vehicle Testing Stations 
(VTS), are authorized and designated as appropriate by the Driver and 
Vehicle Standards Agency (DVSA). The VTS and their staff are subject to 
inspections by the DVSA to ensure that testing is conducted properly 
using approved equipment. Only specifically approved individuals 
are permitted to conduct tests, sign official test documents and make 
database entries. Information about the vehicles, such as the mile-
age, colour, fuel type and cylinder capacity, is entered or validated 
by the tester at the time of the test. Vehicles can be tracked using the 
vehicle ID field, which is based on the registration and vehicle identifi-
cation number. A high-level postcode region (the first 1–2 digits of the 
postcode of the VTS) is also provided, but to prevent identifying any 
individual VTS, any region with fewer than five active sites is merged 
under the code ‘XX’.

Data processing
The first stage was to download the MOT test data for each year between 
2005 and 2022 from the UK’s Department for Transport (DfT) website 
and combine them into a single dataset. During the initial cleaning 
process (Supplementary Table 4), we checked and verified that no 
records had a missing vehicle ID. As part of data quality control, it was 
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discovered that there were occasional discrepancies in the informa-
tion provided for the same vehicle in different tests. As a result, rules 
were established to deal with these inconsistencies. For vehicle types 
and fuel, information from the most recent test was used, as the clas-
sification of vehicles tends to improve over time as testers become 
more familiar with the new technologies. Information provided in the 
first test was used for colour and first use time. For cylinder capacity, 
a majority rule was used and the odometer information and test date 
from the last test in the dataset was taken to calculate the average 
mileage of each vehicle throughout its lifetime. Since a car can be 
brought back for multiple MOT tests on the same day (for example, 
for retesting), we select the record from the last test day that has the 
highest non-missing odometer reading. After resolving conflicts in 
the data, we removed all vehicles that had their first MOT test before 
it was 2 years old since these vehicles were more likely to be taxis and 
ambulances. We only analysed Class 4 vehicles that mainly consist of 
passenger and light-goods vehicles.

The final sample is restricted to four major powertrains: PE (pet-
rol), DI (diesel), EL (electric) or HY (hybrid). We treat electric/hybrid 
electric (clean) codes (added since 2022) as EL/HY, respectively. While 
classifying petrol and diesel was straightforward, it was initially neces-
sary to combine EL and HY together as there was no clear and consistent 
rule to differentiate them, especially in the early years when EVs are 
much less popular. For example, there were a large number of Toyota 
Prius (a famous HEV model) and Mitsubishi Outlander (a famous plug-in 
hybrid electric vehicle (PHEV) model) classified or misclassified as 
either HY or EL. After an initial pooling, we were then able to split the 
HY/EL pool into two samples.

First, those with non-missing and non-zero cylinder capacity are 
put into the (P)HEV sample as they all have an electric motor and an 
engine (suggested by the cylinder capacity information) and so must 
be either an HEV or PHEV. Unfortunately, the information provided in 
the MOT test data did not allow us to differentiate between PHEVs and 
HEVs so we call this sample (P)HEV. Given this limitation, our primary 
analysis above focuses on comparing BEVs against petrol and diesel 
vehicles only. However, Supplementary Note 2 provides some results 
for this mixed sample of HEVs (which are closer to ICEVs) and PHEVs 
(which are closer to BEVs).

Second, those with missing or zero cylinder capacity are more 
likely to have no engine and hence are classified as fully electric vehicles 
(BEVs). In those cases where vehicles with an engine failed to record an 
engine size during the MOT test, we consolidated the information on 
the make and models of these cars and kept only those recognized by 
the DVSA as BEVs so we did not accidentally include other powertrains. 
This means that we exclude the small number of (P)HEV vehicles that 
did not have information on engine size of which the make and model 
was not recognized by the DVSA as a BEV.

For petrol and diesel cars, we also excluded a negligible fraction of 
vehicles with missing or zero cylinder capacity. Petrol and diesel were 
placed into one of the three bins based on cylinder capacity: under 1 l, 
between 1 l and 2 l, and above 2 l. We dropped the make ‘LONDON TAXIS 
INT’ and standardized major makes. For example, any vehicles with a 
make of BMW and other characters (that is, additional details regarding 
the BMW model) were shortened to just BMW. Similar rules were applied 
to other makes. We also removed vehicles with unusually high mileages 
(exceeding 100 miles per day, as recorded at the first/last tests).

Vehicle location was inferred from the postcode area of the first 
recorded MOT result. Postcodes were then mapped to 11 regions in 
Great Britain. Relatively aggregated regions were used not only to 
speed up the computational process but also to allow for easier inter-
pretation since these regions are sufficient to capture some aspects 
of natural driving patterns, weather conditions and certain socio-
economic characteristics. Vehicles with postcodes coded as ‘XX’ were 
excluded. Location assumes that owners take the vehicle to a VTS 
relatively close to where they live.

Finally, a cohort variable was created to capture the vintage of 
the technology, determined by ‘first use time’ information. Each year 
is defined as a new cohort and our sample includes vehicles registered 
in 2005–2017. Cohorts after 2017 are excluded as we want to follow a 
vehicle for at least two MOT tests from the first test or roughly 5 years 
from the first use if the vehicle still exists. For sample size reasons, only 
makes with at least 1,000 unique vehicles for petrol and diesel were 
included. For BEVs, the threshold was lowered to 100 as this powertrain 
was still growing from a low base during this period but provides the 
main motivation for the study. In robustness checks, we also restricted 
the sample to BEV makes with at least 1,000 vehicles.

The heuristic of death definition
As the anonymized MOT dataset does not contain explicit information 
on the retirement of vehicles, we use the date of a vehicle attending 
an MOT test as evidence of its survival up to that point in time. As our 
data ends on 31 December 2022, we have a right-censoring issue. More 
precisely, for a vehicle that regularly attends MOT tests, we do not know 
the exact date of its death but can conclude that it must have happened 
after the last MOT test is recorded in the data.

The use of MOT records allows us to infer that death occurred 
within a certain interval of time. A legal requirement is that if a vehicle 
is over 3 years old and still operating on British roads, it must attend an 
MOT test every year. As our database contains all MOT tests taken within 
our sample period, if a vehicle is not recorded as having taken a test, 
then it raises questions about the continued survival of that vehicle. If 
all vehicles strictly follow the legal requirement, we can confidently clas-
sify a vehicle as ‘retired’ if no test result is observed for a certain period 
(usually 1 year) after the last MOT test result recorded in the system.

However, there are a number of practical reasons why a vehicle MOT 
test may be delayed so we allow for a ‘buffer period’ after the date the test 
should have been taken before concluding that a vehicle has been retired. 
For example, some drivers may be unaware of the importance of regular 
MOT testing or when their MOT is due, particularly if the vehicle recently 
changed ownership. The cost of an MOT test and any necessary repairs 
can also be a factor for some owners, particularly if they are facing finan-
cial difficulties. Vehicles that are not used frequently or have mechanical 
issues may be kept off the road until they can be repaired, which can also 
push back the eventual MOT date that is recorded in the system.

Figure 1 gives an example of an MOT attendance pattern and illus-
trates the vehicle retirement assumptions used in the analysis. The top 
line shows that the vehicle regularly attended MOT tests at times t1, t2 
and t3. As the cut-off point of our data is the end of 2022, in this case, 
we do not observe the vehicle fate as the expected MOT t4 has not yet 
happened and thus we conclude that the vehicle fails at some point after 
t3, or in other words within the interval (t3, ∞). However, the second line 
shows a vehicle that attended regular MOT tests up to t2 but missed the 
MOT test that should have happened in t3. To account for delays in tak-
ing the MOT in that year, we allow a buffer Δt and search again. If we do 
not see the vehicle attending an MOT test within the designated buffer 
period, we conclude that the vehicle no longer operates on British roads 
and classify it as retired between the interval (t2, t3 + Δt).

The selection of buffer time Δt is an empirical matter. One should 
note that if we allow for a long Δt, we may miss information on some 
real deaths of vehicles and lose useful information (that is, classify an 
interval-censored death as a right-censored death). By contrast, if we 
assume too short a Δt, we may misclassify some surviving vehicles 
with late MOT attendance as retired. Our heuristic approach to select-
ing the appropriate buffer time is to analyse the distribution of the 
gaps between consecutive MOT test dates in our cleaned database 
(which includes more than 264 million tests). Our analysis suggests 
that around 50% of tests, including those impacted by COVID-19 disrup-
tions, fall strictly within a year of the previous MOT test. Recent research 
indicates that up to 5.2 million cars could be on UK roads without a 
valid MOT certificate, with 360,000 of these being presented for a new 
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MOT more than a year after their previous certificate had expired52. 
Therefore, setting a buffer time to zero would classify any vehicle that 
misses an MOT test within 1 year as retired and would be too strong 
an assumption. By contrast, when we set the baseline buffer time to 
6 months, we capture 99% of tests since results show that less than 1% 
of tests occur more than 6 months after the original due date. As our 
baseline, we classify as retired any vehicles that fail to attend an MOT 
test within 18 months of their last recorded test. As a sensitivity check, 
our results also include estimates based on two alternative thresholds 3 
months early and later than our 18-month baseline at 15 and 21 months.

Survival analysis
To model the longevity of a vehicle, we use survival analysis, a statistical 
technique that deals with the expected duration of time until an event 
occurs53. More specifically, we are interested in a non-negative ran-
dom variable T representing the lifetime of a vehicle, that is, the dura-
tion until retirement (being scrapped or no longer driving on British 
roads). The distribution of T can be characterized by a survival function, 
S(t) = P(T > t), which gives the probability that a vehicle will survive past 
a certain time t, and a hazard function, which specifies the probability 
for a vehicle to be scrapped in the next infinitely small period of time, 
Δt, conditional on the fact that the vehicle survives to time t.

h(t) = limΔt→0
P(t < T < t + Δt)

ΔtS(t) = f(t)
S(t) =

f(t)
1 − F(t) (1)

In this equation, f(t) and F(t) are respectively the density function 
and the cumulative distribution function and the survival function can 
be expressed as S(t) = 1 − F(t).

Adopting the proportional hazard function, a common approach 
to model hazard function h(t), we assume that the hazard function of 
a vehicle is proportionate to a baseline hazard function, h0k(t), and is 
adjusted by a vector of time-invariant covariates, xj, that is specific to 
vehicle j, and a vector of coefficients, βk. Here we use the subscript k 
to denote the different powertrain types, including petrol, diesel and 
BEVs, in both the baseline hazard and the vector of coefficients, to 
clarify that we model the data separately for each type.

h j(t) = h0k(t) exp(x′jβk) (2)

A range of covariates are included in the analysis. (1) We use the 
mileage rate (MileageRatej) recorded at the last test date as a proxy 
for the usage pattern of vehicles hypothesizing that a vehicle driven 
more often will tend to retire earlier. (2) We include a cohort variable 
(Cohortj) as a proxy for the technology available at the time the vehi-
cle is first on the road. (3) For powertrains with internal combustion 
engines, we include a vector of indicator variables (EngineSizej) for 
cylinder capacity to account for the variation in lifespan across engine 
sizes (1 l and below, 1–2 l, and 2 l and above). (4) We include a vector 
(Colourj) to capture the colour of the vehicle as this choice may be 
correlated with some unobserved traits related to the choice of colour 
and the characteristics of drivers that may influence driving patterns  
(refs. 54,55 have suggested that the visibility of vehicles may affect their 
safety). (5) We use the region that the MOT test was taken (Regionj) to 
proxy regional driving and road conditions. (6) We include a set of 
vehicle make indicator variables (Makej) to explain the variation in 
vehicle popularity, demand for luxury or cost sensitivity and to capture 
the possibility that the make of a vehicle may also be correlated with 
driver characteristics. Equation 2 can be expanded as follows, where 
Greek lowercase characters denote coefficients and Greek uppercase 
characters denote vectors of coefficients:

h j(t) = h0k(t) exp (αk + γkMileageRatej + δkCohortj

+ΠkEngineSizej +ΦkColourj +ΨkMakej +ΩkRegionj)
(3)

Here we do not explicitly model the impact of policies on the 
scrappage decisions of vehicle owners. Although there was a UK-wide, 
government-backed scrappage scheme introduced in the 2009 UK 
Budget38, it was terminated in March 2010 and did not target vehicles 
registered after 2005 (which is the first cohort included in our sam-
ple). More recent regional scrappage schemes, including Birmingham 
(2021), Bristol (2022), London (2023) and Scotland (2023)56, had only 
a negligible effect on the vehicles in our dataset, given their proximity 
to the end of our study period (2022). As such, the longevity estimates 
are mainly driven by mechanical ageing, user behaviour, accidents and 
market factors, rather than explicit policies. Market factors may include 
various scrappage schemes run by car manufacturers, which typically 
offer financial incentives to trade in old vehicles for new.

We further assume that the baseline hazard function is parametric 
and follows a Weibull distribution such that

h j(t) = ρktρk−1 exp(x jβk) (4)

The key implication of this parametric form is that the hazard 
rate is monotonic and increasing or decreasing over time, depend-
ing on whether the shape parameter ρk is greater or smaller than 1, 
respectively. If ρk = 1, the hazard rate is constant over time and the 
Weibull simplifies to an exponential distribution. The parameteriza-
tion λj = exp(xjβk), which is non-negative, time invariant and covariate 
dependant, scales the baseline hazard rate up or down and is specific to 
each vehicle27. We use the Weibull proportional hazard model as the lit-
erature suggests that it is well suited to model the retirement of vehicles 
with censored data27,57. Again, the subscription k of ρk highlights the fact 
that our models permit distinct shape parameters across powertrains. 
Meanwhile, other observable covariates come into play, affecting the 
scale parameter of the Weibull distributions within each powertrain.

The vector of the coefficient β and the shape parameter ρ were 
estimated with maximum likelihood. As discussed above, the observa-
tions are either right-censored (j ∈ RC) or interval-censored (j ∈ IC). 
This means that we do not observe tj directly but instead have its lower 
bound tlj (the last MOT test the vehicle attended) and the upper bound tuj  
for some vehicles that missed a recent MOT test. The log-likelihood 
function for estimation can be written as follows:

log L = ∑
j∈RC

log S j(tlj) + ∑
j∈IC

log[S j(tlj) − S j(tuj)] (5)

For each vehicle and standard in the literature, we estimate the 
median lifetime as the point in time where the survival function reaches 
a value of 0.5:

̂lj = {t ∶ ̂Sj(t) = 0.5} (6)

The median lifetime mileage is then estimated as the product of 
the estimated median lifespan and the estimated mileage rate ( ̂rj) 
recorded in the last MOT test.

m̂j = ̂lj × ̂rj (7)

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw data (MOT testing data results files) were obtained from 
the Department for Transport as of 23 May 2023 and are regularly 
updated at https://www.data.gov.uk/dataset/e3939ef8-30c7-4ca8-
9c7c-ad9475cc9b2f/anonymised-mot-tests-and-results. The cleaned 
datasets are available in the figshare repository (https://figshare.
com/s/4eb6d5cdd88922030990?file=49753833)58. The repository 
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contains data from the Office for National Statistics licensed under 
the Open Government Licence v.3.0 and contains OS data ⓒCrown 
copyright and database right (2024).

Code availability
Codes are available in the figshare repository (https://figshare.com/s/4
eb6d5cdd88922030990?file=49753833)58 together with cleaned data.
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Extended Data Fig. 1 | Licensed Electric Vehicles in Great Britain (2005-2013) 
and United Kingdom (2014-2022). This figure shows the number of licensed 
electric cars and light goods vehicles by fuel types: hybrid electric vehicles (HEV), 
plugin electric vehicles (PHEV) and battery electric vehicles (BEV) as recorded 
in Table 1103 by the Department for Transport (Dft) and Driver and Vehicle 

Licensing Agency (DVLA). A negligible number of range-extended electric and 
fuel cell electric are excluded. Data for the United Kingdom is available from 
2014. Data from earlier years is for Great Britain. See details in Supplementary 
Note 1.
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Extended Data Fig. 2 | Coefficients and 95% Confidence Intervals of Colour 
Indicator Variables. This figure illustrates the exponentiated coefficients 
and 95% confidence intervals of colour indicator variables in Table 1 for three 
samples: Petrol (panel a, N=15,131,145), Diesel (panel b, N= 14,685,673), and 
Battery Electric Vehicle (panel c, BEV, N=41,640); and three thresholds 15 months, 

18 months (preferred) and 21 months. Coefficients smaller than one (positioned 
to the left of the vertical lines) indicate colours with lower hazard rates than the 
reference group (black colour). Less visible confidence intervals for the samples 
of Petrol and Diesel indicate estimates with near-zero standard errors and high 
precision. See details in Supplementary Note 3.
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Extended Data Fig. 3 | Coefficients and 95% Confidence Intervals of Region 
Indicator Variables. The upper panels display the exponentiated coefficients 
and 95% confidence intervals of regional indicator variables in Table 1 for three 
samples: Petrol (panel a, N=15,131,145), Diesel (panel b, N= 14,685,673), and 
Battery Electric Vehicles (BEV) (panel c, N=41,640) at three thresholds 15 months, 
18 months (preferred) and 21 months. Coefficients smaller than one (positioned 
to the left of the vertical lines) indicate regions with lower hazard rates than the 

reference group (East Midlands). Less visible confidence intervals for the samples 
of Petrol and Diesel indicate estimates with near-zero standard errors and 
high precision. The lower panels (d-f) focus on the exponentiated coefficients 
from the preferred specification (18-month threshold) for the three samples 
respectively. See details in Supplementary Note 3. The maps use region boundary 
data from the Office for National Statistics licensed under the Open Government 
Licence v.3.0 and contain OS data ⓒ Crown copyright and database right (2024).
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We processed the full dataset, applied restriction criteria where needed (see below and the main text). The data sample is large in
the nature.

We downloaded data from UK Department for Transport.

We collected the full set of anonymised MOT tests and results data in 2023.

We excluded hybrid electric vehicles (including plugin versions) as we cannot differentiate them. We've applied some criteria to
restrict the main sample (keep recent cohorts and remove outliers in mileages, minor brands for example). There exclusions are
listed and carefully justified in the method session.

The research is reproduced using STATA codes.

No randomization is invovled.

The original data was anonymised by the provider.
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Materials & experimental systems

n/a Involved inin the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research ofof concern

Methods

n/a Involved inin the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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