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A B S T R A C T

Non-Euclidean complex data analysis becomes increasingly popular in various fields of data
science. In a seminal paper, Petersen and Müller (2019) generalized the notion of regression
analysis to non-Euclidean response objects. Meanwhile, in the conventional regression analysis,
model averaging has a long history and is widely applied in statistics literature. This paper
studies the problem of optimal prediction for non-Euclidean objects by extending the method
of model averaging. In particular, we generalize the notion of model averaging for global
Fréchet regressions and establish an optimal property of the cross-validation to select the
averaging weights in terms of the final prediction error. A simulation study illustrates excellent
out-of-sample predictions of the proposed method.

. Introduction

Non-Euclidean complex data analysis becomes increasingly popular in various fields of data science (see, Marron and Alonso [9]
or an overview). A fundamental object to describe distributions of non-Euclidean random objects is the so-called Fréchet mean [5],
hich is a generalization of the conventional population mean. There is growing literature on statistical inference for the Fréchet
eans (see, e.g., Patrangenaru and Ellingson [10], for a survey). Recently, in a seminal paper, Petersen and Müller [11] generalized

he notion of the Fréchet mean to conditional distributions, and developed nonparametric and least square regression analyses for
on-Euclidean random objects, called the local and global Fréchet regressions, respectively.

In the conventional regression analysis, a central question is how to select or combine information from various predictors, and
odel selection and model averaging are widely applied in the statistics literature (see, Claeskens and Hjort [4], for a survey). Indeed
ucker et al. [12] developed a model selection method for global Fréchet regressions by extending the ridge selection operator to
he present context, and established its selection consistency. See also Ying and Yu [14] for sufficient dimension reduction on non-
uclidean random objects using Euclidean predictors. This paper addresses another open question, model averaging of regression
odels for non-Euclidean response objects. In particular, we focus on optimal prediction for non-Euclidean objects by extending the
ethod of model averaging.

In this paper, we generalize the notion of model averaging for global Fréchet regressions and establish an optimal out-of-sample
rediction property of the cross-validation to select the averaging weights in terms of the final prediction error [1]. First of all, it
s not trivial how to conduct model averaging for global Fréchet regressions that reside in non-Euclidean spaces. By adapting the
onstruction of the empirical Fréchet mean to weighted averages over a class of global Fréchet regressions, we develop a model
veraging scheme as a minimizer of a weighted average of squared metrics of global Fréchet regressions. Second, we introduce and
tudy the notions of the final prediction error for out-of-sample predictions and cross-validation for model averaging of regression
odels on non-Euclidean random objects. We refer to Bhattacharjee and Müller [2] and Ghosal et al. [6] that study out-of-sample
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cross-validation criteria in the context of single index modeling of random objects. In contrast to Tucker et al. [12] who studied
consistent model selection for global Fréchet regressions, this paper investigates optimal model averaging for the out-of-sample
prediction when all global Fréchet regressions are misspecified.

This paper is organized as follows. Section 2 introduces our basic setup and model averaging estimator. Section 3 presents our
ain result, asymptotic optimality of the cross-validation to select the model averaging weights in terms of the final prediction error.

ection 4 illustrates the main result by a simulation study. Technical details to prove our main result are included in Section 5.

2. Model averaging estimator

Let (Y, 𝑑) be a totally bounded metric space and consider a random object 𝑌 that takes values in Y. We are concerned with
the situation where 𝑌 is a complex object so that the space Y may be non-Euclidean and may not lie in a vector space. In such
 situation, a standard notion of mean is the so-called Fréchet mean 𝜂⊕ = ar g min𝜂∈Y E[𝑑2(𝑌 , 𝜂)], and there is rich literature on
tatistical inference for 𝜂⊕.

In a seminal paper, Petersen and Müller [11] extended the notion of the Fréchet mean to regression problems and proposed the
Fréchet regression function

𝜂⊕(𝑥) = ar g min
𝜂∈Y

E[𝑑2(𝑌 , 𝜂)|𝑋 = 𝑥]

for an Euclidean vector of predictors 𝑋. Furthermore, Petersen and Müller [11] generalized the idea of global least squares regression
and developed the global Fréchet regression:

𝐿⊕(𝑥) = ar g min
𝜂∈Y

E[{1 + (𝑥 − 𝜇)⊤𝛴−1(𝑋 − 𝜇)}𝑑2(𝑌 , 𝜂)],

where 𝜇 = E[𝑋] and 𝛴 = Var (𝑋). Note that 𝐿⊕(𝑥) becomes the conventional population least square regression when Y is Euclidean
and 𝑑 is the Euclidean distance.

We now introduce our setup for model averaging of global Fréchet regressions. To simplify the presentation, we hereafter focus
on the case where the researcher conducts model selection based on a nested sequence of predictors 𝑋 = (𝑋1, 𝑋2,… , 𝑋𝑀 )⊤ ∈ R𝑀 .
One can also apply our method to average over other subsets of 𝑋 and analogous theoretical results in Section 3 can be obtained.
Although there is no theoretical difficulty to consider a large (but fixed) number of subsets of 𝑋, practically it needs to be moderate
due to the computational cost. It is beyond the scope of this paper to consider how to select the subsets of 𝑋 to be averaged under
computational constraints.

Let 𝑋(𝑚) = (𝑋1,… , 𝑋𝑚)⊤ ∈ R𝑚, 𝑚 ∈ {1,… , 𝑀}, be a nested sequence of predictors, 𝑥(𝑚) = (𝑥1,… , 𝑥𝑚)⊤ ∈ R𝑚, and for
𝑚 ∈ {1,… , 𝑀}, let

𝐿(𝑚)
⊕ (𝑥(𝑚)) = ar g min

𝜂∈Y
E[{1 + (𝑥(𝑚) − 𝜇(𝑚))⊤(𝛴(𝑚))−1(𝑋(𝑚) − 𝜇(𝑚))}𝑑2(𝑌 , 𝜂)]

be the global Fréchet regression based on the predictors 𝑋(𝑚), where 𝜇(𝑚) = E[𝑋(𝑚)] and 𝛴(𝑚) = Var (𝑋(𝑚)). In this paper, 𝑀 is
reated as fixed. An extension allowing 𝑀 to increase depending on the sample size 𝑛, as assumed in model averaging of linear

regression models for Euclidean data, necessitates a substantial extension in the theoretical analysis of the global Fréchet regression
tself and we left this extension as future research. In order to build the notion of model averaging for the global Fréchet regressions
𝐿(𝑚)
⊕ (𝑥(𝑚))}𝑀𝑚=1, we note that in the 𝑞-dimensional Euclidean space, the weighted average �̄�𝒘 =

∑𝑀
𝑚=1 𝑤𝑚𝐿(𝑚) of points 𝐿(𝑚) ∈ R𝑞

can be defined as

�̄�𝒘 = ar g min
𝜂∈R𝑞

𝑀
∑

𝑚=1
𝑤𝑚𝑑

2
𝐸 (𝐿

(𝑚), 𝜂),

for the Euclidean distance 𝑑𝐸 . Then the model averaging for global Fréchet regressions can be defined as

𝑚⊕(𝒘, 𝑥(𝑀)) = ar g min
𝜂∈Y

𝑀
∑

𝑚=1
𝑤𝑚𝑑

2(𝐿(𝑚)
⊕ (𝑥(𝑚)), 𝜂).

Based on an independent and identically distributed sample 𝑛 = {𝑋𝑖, 𝑌𝑖}𝑛𝑖=1 of (𝑋 , 𝑌 ), 𝐿(𝑚)
⊕ (𝑥(𝑚)) and 𝑚⊕(𝒘, 𝑥(𝑀)) can be estimated

by their sample counterparts:

�̂�(𝑚)
⊕ (𝑥(𝑚)) = ar g min

𝜂∈Y
1
𝑛

𝑛
∑

𝑖=1
{1 + (𝑥(𝑚)−�̄�(𝑚))⊤(�̂�(𝑚))−1(𝑋(𝑚)

𝑖 −�̄�(𝑚))}𝑑2(𝑌𝑖, 𝜂),

�̂�⊕(𝒘, 𝑥(𝑀)) = ar g min
𝜂∈Y

𝑀
∑

𝑚=1
𝑤𝑚𝑑

2(�̂�(𝑚)
⊕ (𝑥(𝑚)), 𝜂),

where �̄�(𝑚) = 𝑛−1
∑𝑛

𝑖=1 𝑋
(𝑚)
𝑖 and �̂�(𝑚) = 𝑛−1

∑𝑛
𝑖=1(𝑋

(𝑚)
𝑖 − �̄�(𝑚))(𝑋(𝑚)

𝑖 − �̄�(𝑚))⊤.
As a criterion to evaluate model averaging weights, we extend the notion of the final prediction error [1] to the global Fréchet

regression as

FPE𝑛(𝒘) = E[𝑑2( , �̂�⊕(𝒘,))|𝑛],

where ( ,) is an independent copy of (𝑋𝑖, 𝑌𝑖). In this paper, we consider the situation where all global Fréchet regressions and
heir averaging versions are misspecified, and develop a selection rule for the averaging weights to achieve an optimal out-of-sample
2 
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prediction property in terms of FPE𝑛(𝒘). This is a sharp contrast with the approach in Tucker et al. [12], which focuses on the
consistent selection of a true model.

As a feasible selection rule for the optimal weights, we propose to minimize the leave-one-out cross-validation criterion:

CV𝑛(𝒘) = 1
𝑛

𝑛
∑

𝑖=1
𝑑2(𝑌𝑖, �̂�⊕,−𝑖(𝒘, 𝑋𝑖)),

where �̂�⊕,−𝑖(𝒘, 𝑥(𝑀)) = ar g min𝜂∈Y
∑𝑀

𝑚=1 𝑤𝑚𝑑2(�̂�
(𝑚)
⊕,−𝑖(𝑥

(𝑚)), 𝜂) and �̂�(𝑚)
⊕,−𝑖(𝑥

(𝑚)) is defined as �̂�(𝑚)
⊕ (𝑥(𝑚)) with the 𝑖th observation deleted.

etting W = {𝒘 = (𝑤1,… , 𝑤𝑀 )⊤ ∈ [0, 1]𝑀 ∶
∑𝑀

𝑚=1 𝑤𝑚 = 1}, our model averaging estimator for global Fréchet regressions is defined
as

�̂�⊕(�̂�, 𝑥(𝑀)), where �̂� = ar g min
𝒘∈W

CV𝑛(𝒘).

Remark 1 (Connection with the Euclidean Case). For the conventional Euclidean case of (Y, 𝑑) = (R, 𝑑𝐸 ), our model averaging estimator
̂⊕(�̂�, 𝑥(𝑀)) reduces to the one studied in Hansen [7]. To see this, consider the following linear regression model

𝑌𝑖 = �̃�⊤
𝑖 𝛽 + 𝜀𝑖,

where �̃�𝑖 = (𝑋𝑖,1,… , 𝑋𝑖,𝑀0
)⊤ is an Euclidean vector of predictors, 𝛽 = (𝛽1,… , 𝛽𝑀0

)⊤ is an unknown vector of parameters, and 𝜀𝑖
s an unobservable error term with E[𝜀𝑗 |�̃�𝑖] = 0. We consider a situation where only a subset of the predictors 𝑋𝑖 = 𝑋(𝑀)

𝑖 =
(𝑋𝑖,𝑗1 ,… , 𝑋𝑖,𝑗𝑀 )⊤ ∈ R𝑀 with 1 ≤ 𝑀 ≤ 𝑀0 are observable, and let 𝑋(𝑚)

𝑖 = (𝑋𝑖,𝑗1 ,… , 𝑋𝑖,𝑗𝑚 )
⊤ for 𝑚 ∈ {1,… , 𝑀}. Assume that for each

∈ {1,… , 𝑀}, E[𝑋(𝑚)
1 𝑋(𝑚)⊤

1 ] is invertible and let 𝐿(𝑚)(𝑥(𝑚)) = 𝑥(𝑚)⊤𝜃(𝑚) be the 𝑚th model, where 𝑥(𝑚) = (𝑥𝑗1 ,… , 𝑥𝑗𝑚 )⊤ ∈ R𝑚 and
(𝑚) = E[𝑋(𝑚)

1 𝑋(𝑚)⊤
1 ]−1E[𝑋(𝑚)

1 𝑌1]. Then the linear prediction of 𝑌𝑖 at 𝑋(𝑚)
𝑖 = 𝑥(𝑚) based on the ordinary least square estimation using

𝑋𝑖}𝑛𝑖=1 is given by �̂�(𝑚)(𝑥(𝑚)) = 𝑥(𝑚)⊤�̂�(𝑚), where

�̂�(𝑚) =

(

1
𝑛

𝑛
∑

𝑖=1
𝑋(𝑚)

𝑖 𝑋(𝑚)⊤
𝑖

)−1
1
𝑛

𝑛
∑

𝑖=1
𝑋(𝑚)

𝑖 𝑌𝑖.

Then the model averaging estimator of E[𝑌𝑖|�̃�𝑖] based on {�̂�(𝑚)(𝑋(𝑚)
𝑖 )}𝑀𝑚=1 is obtained as

�̂�(𝒘, 𝑋(𝑀)
𝑖 ) =

𝑀
∑

𝑚=1
𝑤𝑚𝑋

(𝑚)⊤
𝑖 �̂�(𝑚) =

𝑀
∑

𝑚=1
𝑤𝑚�̂�

(𝑚)(𝑋(𝑚)
𝑖 ) = ar g min

𝜂∈R

𝑀
∑

𝑚=1
𝑤𝑚𝑑

2
𝐸 (�̂�

(𝑚)(𝑋(𝑚)
𝑖 ), 𝜂).

Further, one can see that FPE𝑛(𝒘) and CV𝑛(𝒘) correspond to the final prediction error (or the out-of-sample prediction error) in the
Euclidean case.

3. Optimality

We now present our main result, the optimality of the model averaging estimator �̂�⊕(�̂�, 𝑥(𝑀)) in terms of the final prediction
error. For 𝑧 = (𝑧1,… , 𝑧𝑞)⊤ ∈ R𝑞 , let ‖𝑧‖𝓁2 =

√

∑𝑞
𝑗=1 𝑧

2
𝑗 be the 𝓁2 norm and ‖𝑧‖𝓁1 =

∑𝑞
𝑗=1 |𝑧𝑗 | be the 𝓁1 norm, and

𝑅(𝒘, 𝑥(𝑀), 𝜂) =
𝑀
∑

𝑚=1
𝑤𝑚𝑑

2(𝐿(𝑚)
⊕ (𝑥(𝑚)), 𝜂), �̂�(𝒘, 𝑥(𝑀), 𝜂) =

𝑀
∑

𝑚=1
𝑤𝑚𝑑

2(�̂�(𝑚)
⊕ (𝑥(𝑚)), 𝜂).

We impose the following assumptions.

Assumption 1.
A1. (Y, 𝑑) is a totally bounded metric space, P(‖𝑋‖𝓁2 ≤ 𝐵) = 1 for some constant 𝐵 > 0, 𝐿(𝑚)

⊕ (𝑥) is continuous at 𝑥(𝑀) ∈ R𝑀

with ‖𝑥(𝑀)
‖𝓁2 ≤ 𝐵, and the global Fréchet regression estimators {�̂�(𝑚)

⊕ (𝑥(𝑚))}𝑀𝑚=1 are uniformly consistent in the sense that as
𝑛 → ∞,

max
1≤𝑚≤𝑀

sup
‖𝑥(𝑀)

‖𝓁2≤𝐵
𝑑(�̂�(𝑚)

⊕ (𝑥(𝑚)), 𝐿(𝑚)
⊕ (𝑥(𝑚)))

𝑝
→ 0.

A2. Almost surely, for each 𝒘 ∈ W and ‖𝑥(𝑀)
‖𝓁2 ≤ 𝐵, 𝑚⊕(𝒘, 𝑥(𝑀)) and �̂�⊕(𝒘, 𝑥(𝑀)) exist and are unique. Additionally, for each

𝜀 > 0,

inf
𝒘∈W,‖𝑥(𝑀)

‖𝓁2≤𝐵
inf

𝑑(𝜂 ,𝑚⊕(𝒘,𝑥(𝑀)))>𝜀
𝑅(𝒘, 𝑥(𝑀), 𝜂) − 𝑅(𝒘, 𝑥(𝑀), 𝑚⊕(𝒘, 𝑥(𝑀))) > 0

and there exists 𝜁 = 𝜁 (𝜀) > 0 such that as 𝑛 → ∞,

P

(

inf
𝒘∈W,‖𝑥(𝑀)

‖𝓁2≤𝐵
inf

𝑑(𝜂 , ̂𝑚⊕(𝒘,𝑥(𝑀)))>𝜀
�̂�(𝒘, 𝑥(𝑀), 𝜂) − �̂�(𝒘, 𝑥(𝑀), �̂�⊕(𝒘, 𝑥(𝑀))) ≥ 𝜁

)

→ 1.
3 
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A3. There exist constants �̄�𝐵 > 0 and 0 < 𝛽𝐵 ≤ 1 such that for each 𝒘1,𝒘2 ∈ W,

sup
‖𝑥(𝑀)

‖𝓁2≤𝐵
𝑑(𝑚⊕(𝒘1, 𝑥(𝑀)), 𝑚⊕(𝒘2, 𝑥(𝑀))) ≤ �̄�𝐵‖𝒘1 −𝒘2‖

𝛽𝐵
𝓁1
.

A4. There exists a constant 𝜅 > 0 such that inf𝒘∈W E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))] ≥ 𝜅.

A1 is on the support of 𝑌 and 𝑋, and a high-level condition on the uniform consistency of the global Fréchet regression estimators
whose primitive conditions are given in Theorem 1 of Petersen and Müller [11]. In particular, under Conditions (U0)-(U2) in Petersen
nd Müller [11], we can show A1. A2 is an additional condition to guarantee uniform consistency of the model averaging estimator

�̂�⊕(𝒘, 𝑥(𝑀)), which is an analog of Condition (U0) of Petersen and Müller [11] and is commonly imposed to derive the consistency of
-estimators (see, e.g., van der Vaart and Wellner [13]). A3 and A4 are additional conditions to establish the asymptotic optimality

f our model averaging estimator �̂�⊕(�̂�, 𝑥(𝑀)) using the cross-validation. A3 is a Lipschitz-type condition for weights to derive
uniform convergence of 𝑛−1 ∑𝑛

𝑖=1 𝑑
2(𝑌𝑖, 𝑚⊕(𝒘, 𝑋𝑖)). A4 is imposed to control the approximation error of all the (possibly misspecified)

global Fréchet regressions and their averaged versions.

Remark 2. Although our setup accommodates dependent observations, the leave-one-out cross-validation is known to be affected by
ependence in finite samples [3]. We expect that an analogous remedy by Chu and Marron [3] to delete more than one observation

can be adapted to our context.
Based on these assumptions, our main result is presented as follows.

Theorem 1.
(i) Under A1 and A2, it holds

sup
𝒘∈W,‖𝑥(𝑀)

‖𝓁2≤𝐵
𝑑(�̂�⊕(𝒘, 𝑥(𝑀)), 𝑚⊕(𝒘, 𝑥(𝑀)))

𝑝
→ 0 as 𝑛 → ∞.

(ii) Under Assumption 1, it holds
FPE𝑛(�̂�)

inf𝒘∈W FPE𝑛(𝒘)
𝑝
→ 1 as 𝑛 → ∞.

Theorem 1(i) shows uniform consistency of the model averaging estimator �̂�⊕(𝒘, 𝑥) over the weights 𝒘 and values of predictors 𝑥.
Compared to the uniform consistency result for the global Fréchet regression (Theorem 1 of Petersen and Müller [11]), a technical
hallenge is to establish the uniform convergence over the averaging weight 𝒘 ∈ W (in addition to 𝑥(𝑀)). Since the averaging
stimator �̂�⊕(𝒘, 𝑥(𝑀)) depends on 𝒘 and 𝑥(𝑀) in different ways, our proof of Theorem 1(i) is non-trivially different from that of
heorem 1 by Petersen and Müller [11].

Theorem 1 (ii) establishes the optimal out-of-sample prediction property of our averaging weights �̂� that minimizes the cross-
validation criterion CV𝑛(𝒘). This result says FPE𝑛(�̂�) by using �̂� is asymptotically equivalent to the oracle final prediction error to
minimize FPE𝑛(𝒘) over 𝒘 ∈ W. To the best of our knowledge, in the literature of statistics for non-Euclidean objects, this is the first
optimality result for the weight selection by the cross-validation criterion. We note that our proof strategy is very different from the
conventional Euclidean case (see, e.g., Hansen [7] and Li [8]), where the support of 𝑌 has a linear structure. Instead, we invoke
the empirical process theory to control the difference between the cross-validation and final prediction error criteria uniformly over
he weight space.

We close this section by illustrating our main result with some specific examples.

Example 1 (Symmetric Positive-Definite Matrices with the Frobenius or Cholesky Decomposition Distance). Let Y be the set of symmetric
positive-definite matrices with the Frobenius norm or Cholesky decomposition distance. For SPD matrices 𝐴1 and 𝐴2, the Cholesky
decomposition yields 𝐴1 = (𝐴1∕2

1 )⊤𝐴1∕2
1 and 𝐴2 = (𝐴1∕2

2 )⊤𝐴1∕2
2 , where 𝐴1∕2

1 and 𝐴1∕2
2 are upper triangle matrices with positive diagonal

components. Then define the Cholesky decomposition distance between 𝐴1 and 𝐴2 as

𝑑𝐶 (𝐴1, 𝐴2) =
√

trace((𝐴1∕2
1 − 𝐴1∕2

2 )⊤(𝐴1∕2
1 − 𝐴1∕2

2 )).

For these examples, Propositions 2 and Theorem 1 in Petersen and Müller [11] guarantee A1.
Let 𝐿(𝑚)

⊕ (𝑥(𝑚)) be the global Fréchet regression function of the 𝑚th model. For SPD matrices with the Frobenius distance, the model
average global Fréchet regression function 𝑚⊕(𝒘, 𝑥(𝑀)) is given by 𝑚⊕(𝒘, 𝑥(𝑀)) =∑𝑀

𝑚=1𝑤𝑚𝐿
(𝑚)
⊕ (𝑥(𝑚)). Let (𝐿(𝑚)1∕2

⊕ (𝑥(𝑚)))⊤𝐿(𝑚)1∕2
⊕ (𝑥(𝑚))

e the Cholesky decomposition of 𝐿(𝑚)
⊕ (𝑥(𝑚)). For SPD matrices with the Cholesky decomposition distance, 𝑚⊕(𝒘, 𝑥(𝑀)) is given by

𝑚⊕(𝒘, 𝑥(𝑀)) =
( 𝑀
∑

𝑚=1
𝑤𝑚𝐿

(𝑚)1∕2
⊕ (𝑥(𝑚))

)⊤ ( 𝑀
∑

𝑚=1
𝑤𝑚𝐿

(𝑚)1∕2
⊕ (𝑥(𝑚))

)

.

Applying a similar argument in the proof of Proposition 2 in Petersen and Müller [11], one can see that A2 and A3 are satisfied
with 𝛽𝐵 = 1.
4 
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Example 2 (Probability Distributions with the Wasserstein Metric). Let Y be the set of univariate probability distributions 𝐹 on a
compact set equipped with the Wasserstein metric 𝑑𝑊 defined as

𝑑𝑊 (𝐹1, 𝐹2) =
√

∫

1

0
(𝐹−1

1 (𝑡) − 𝐹−1
2 (𝑡))2𝑑 𝑡

for the quantile functions 𝐹−1
1 and 𝐹−1

2 of probability distributions 𝐹1 and 𝐹2. For this example, Proposition 1 and Theorem 1
n Petersen and Müller [11] guarantee A1. Let 𝐿(𝑚)

⊕ (𝑥(𝑚)) be the global Fréchet regression function of the 𝑚th model, which is a
distribution function on a compact set, and let 𝐿(𝑚)−1

⊕ (𝑥(𝑚)) be the quantile function of 𝐿(𝑚)
⊕ (𝑥(𝑚)). The quantile function of the model

verage global Fréchet regression function 𝑚−1
⊕ (𝒘, 𝑥(𝑀)) is given by 𝑚−1

⊕ (𝒘, 𝑥(𝑀)) = ∑𝑀
𝑚=1 𝑤𝑚𝐿

(𝑚)−1
⊕ (𝑥(𝑚)). Applying a similar argument

n the proof of Proposition 1 in Petersen and Müller [11], one can see that A2 and A3 are satisfied with 𝛽𝐵 = 1.

Example 3 (Spherical Data with the Geodesic Distance). Let Y = S2, the unit sphere in R3, equipped with the geodesic distance
𝑑𝑔(𝑥1, 𝑥2) = ar ccos(𝑥⊤1 𝑥2) for 𝑥1, 𝑥2 ∈ S2. Specifically, Petersen and Müller [11] and Tucker et al. [12] considered the following
réchet regression model. Let 𝜂⊕(𝑥) ∈ S2 be a regression function and 𝑉 be a random vector on the tangent space 𝑇𝜂⊕(𝑋). Define 𝑌
s an exponential map of 𝑉 at 𝜂⊕(𝑋), i.e.,

𝑌 = Exp𝜂⊕(𝑋)(𝑉 ) = cos(‖𝑉 ‖𝓁2 )𝜂⊕(𝑋) + sin(‖𝑉 ‖𝓁2 )
𝑉

‖𝑉 ‖𝓁2
.

Proposition 3 in Petersen and Müller [11] gives sufficient conditions of A1.

4. Simulation

4.1. Data generating processes

We consider two data generating processes: (i) the set of 5 × 5 symmetric positive-definite (SPD) matrices with the Cholesky
decomposition distance and (ii) the set of univariate probability distributions with the Wasserstein metric.

For predictors 𝑋𝑖 = (𝑋𝑖,1,… , 𝑋𝑖,𝑝)⊤ with 𝑝 = 9, we consider the following designs, which are modifications of the data generating
processes considered in Tucker et al. [12]: (i) Generate 𝑝-dimensional multivariate Gaussian random variables 𝑍𝑖 = (𝑍𝑖,1,… , 𝑍𝑖,𝑝)⊤
with E[𝑍𝑖,𝑗 ] = 0 and Cov(𝑍𝑖,𝑗 , 𝑍𝑖,𝑘) = 𝜌|𝑗−𝑘|, and then set 𝑋𝑖,𝑗 = 2𝛷(𝑍𝑖,𝑗 ), where 𝛷(⋅) is the standard normal distribution function.
(ii) Generate 𝑋𝑖,𝑗 = 𝑈𝑖,𝑗 , where {𝑈𝑖,𝑗}1≤𝑖≤𝑛,1≤𝑗≤𝑝 is an array of independent and identically distributed random variables with the
uniform distribution on [0, 2].

4.1.1. SPD matrices with the Cholesky decomposition distance
We set the random object 𝑌𝑖 as 5 × 5 SPD matrix and consider the following Fréchet regression function: 𝜂⊕(𝑥) = E[𝑌 |𝑋 = 𝑥] =

E[𝐴]⊤E[𝐴], where

E[𝐴] =
{

𝜇0+𝛽
(

𝑥1 +
𝑥3
3

+
𝑥5
5

+
𝑥7
7

+
𝑥9
9

)

+𝜎0+𝛾
(𝑥2
2

+
𝑥4
4

+
𝑥6
6

+
𝑥8
8

)}

𝐼𝑇

+
{

𝜎0 + 𝛾
(𝑥2
2

+
𝑥4
4

+
𝑥6
6

+
𝑥8
8

)}

𝑉 ,

with the 𝑇 × 𝑇 identity matrix 𝐼𝑇 and the 𝑇 × 𝑇 matrix 𝑉 = (𝐼{𝑗 <𝑘}). Conditional on 𝑋 = (𝑋1,… , 𝑋9)⊤, the random response 𝑌 is
generated by 𝑌 = 𝐴⊤𝐴, where 𝐴 = (𝜇 + 𝜎)𝐼𝑇 + 𝜎 𝑉 with

𝜇|𝑋 ∼ 𝑁
(

𝜇0 + 𝛽
(

𝑋1 +
𝑋3
3

+
𝑋5
5

+
𝑋7
7

+
𝑋9
9

)

, 𝜈1
)

,

𝜎|𝑋 ∼ Gamma
⎛

⎜

⎜

⎜

⎝

𝜈−12

(

𝜎0 + 𝛾
(

𝑋2
2

+
𝑋4
4

+
𝑋6
6

+
𝑋8
8

))2
,

𝜈2

𝜎0 + 𝛾
(

𝑋2
2 + 𝑋4

4 + 𝑋6
6 + 𝑋8

8

)

⎞

⎟

⎟

⎟

⎠

.

In our simulation study, we set 𝑛 ∈ {50, 100}, 𝑇 = 5, 𝑝 = 9, 𝜌 = 0.5, 𝜇0 = 3, 𝜎0 = 3, 𝛽 = 2, 𝛾 = 3, 𝜈1 = 1, and 𝜈2 = 2.

4.1.2. Univariate probability distributions with the Wasserstein metric
Consider the following Fréchet regression function:

𝜂⊕(𝑥) = E[𝑌 (⋅)|𝑋 = 𝑥] = 𝛽
(

𝑥1 +
𝑥3
3

+
𝑥5
5

+
𝑥7
7

+
𝑥9
9

)

+
{

𝜎0 + 𝛾
(𝑥2
2

+
𝑥4
4

+
𝑥6
6

+
𝑥8
8

)}

𝛷−1(⋅).

Conditional on 𝑋, the random response 𝑌 is generated as follows: 𝑌 = 𝜇 + 𝜎 𝛷−1 with

𝜇|𝑋 ∼ 𝑁
(

𝛽
(

𝑋1 +
𝑋3
3

+
𝑋5
5

+
𝑋7
7

+
𝑋9
9

)

, 𝜈1
)

,

𝜎|𝑋 ∼ Gamma
⎛

⎜

⎜

⎜

⎝

𝜈−12

(

𝜎0 + 𝛾
(

𝑋2
2

+
𝑋4
4

+
𝑋6
6

+
𝑋8
8

))2
,

𝜈2

𝜎0 + 𝛾
(

𝑋2
2 + 𝑋4

4 + 𝑋6
6 + 𝑋8

8

)

⎞

⎟

⎟

⎟

⎠

.

In our simulation study, we set 𝑛 ∈ {50, 100}, 𝑝 = 9, 𝜌 = 0.5, 𝛽 = 0.75, 𝜎 = 5, 𝛽 = 2, 𝛾 = 0.5, 𝜈 = 1, and 𝜈 = 0.5.
0 1 2
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4.2. Results

We consider the following three methods to choose the weights in the model averaging: (i) The proposed cross-validation-
ased model averaging (CV), (ii) AIC-type model averaging, and (iii) BIC-type model averaging. The proposed method is the first
nd currently only asymptotically optimal selection procedure in terms of the final prediction error, and there is no theoretical
ustification for the methods (ii) and (iii) in the present setup (see Claeskens and Hjort [4] for a general discussion of the AIC or
BIC model averaging).

For the 𝑚th model, we define the AIC- and BIC-type information criteria as

AIC𝑚 = 𝑛 ln

(

1
𝑛

𝑛
∑

𝑖=1
𝑑2(𝑌𝑖, �̂�

(𝑚)
⊕ (𝑋𝑖))

)

+ 2𝑚, BIC𝑚 = 𝑛 ln

(

1
𝑛

𝑛
∑

𝑖=1
𝑑2(𝑌𝑖, �̂�

(𝑚)
⊕ (𝑋𝑖))

)

+ 𝑚 ln 𝑛,

where 𝑑 ∈ {𝑑𝐶 , 𝑑𝑊 }. Then the AIC- and BIC-type model average estimators are defined as

�̂�⊕(�̂�
AIC, 𝑥(𝑀)) = ar g min

𝜂∈Y

𝑀
∑

𝑚=1
�̂�AIC

𝑚 𝑑2(�̂�(𝑚)
⊕ (𝑥(𝑚)), 𝜂), �̂�AIC

𝑚 =
exp(−AIC𝑚∕2)

∑𝑀
𝑗=1 exp(−AIC𝑗∕2)

,

�̂�⊕(�̂�
BIC, 𝑥(𝑀)) ∶= ar g min

𝜂∈Y

𝑀
∑

𝑚=1
�̂�BIC

𝑚 𝑑2(�̂�(𝑚)
⊕ (𝑥(𝑚)), 𝜂), �̂�BIC

𝑚 =
exp(−BIC𝑚∕2)

∑𝑀
𝑗=1 exp(−BIC𝑗∕2)

,

respectively, where 𝑑 ∈ {𝑑𝐶 , 𝑑𝑊 }.
We evaluate each method using the out-of-sample prediction error. For each Monte Carlo replication, we generate {𝑋𝑠, 𝑌𝑠}100𝑠=1 as

out-of-sample observations. For the 𝑟th replication, the final prediction error is calculated as

FPE(𝑟) = 1
100

100
∑

𝑠=1
𝑑2(𝑌𝑠, �̂�⊕(�̂�, 𝑋𝑠)).

where 𝑑 ∈ {𝑑𝐶 , 𝑑𝑊 } and �̂� is chosen by one of the three methods. Then we average the out-of-sample prediction error over 𝑅 = 200
replications: FPE = 𝑅−1 ∑𝑅

𝑟=1 FPE(𝑟). We consider six predictors (𝑋𝑖,1,… , 𝑋𝑖,6) from 𝑋𝑖 described in Section 4.1, and compute FPEs
y the averaging methods (i)-(iii) for the following cases:

M1 ∶ the model by 𝑋𝑖,1, M2 ∶ average the models by 𝑋𝑖,1, {𝑋𝑖,𝑘}2𝑘=1,

M3 ∶ average the models by 𝑋𝑖,1, {𝑋𝑖,𝑘}2𝑘=1, {𝑋𝑖,𝑘}3𝑘=1,

M4 ∶ average the models by 𝑋𝑖,1, {𝑋𝑖,𝑘}2𝑘=1, {𝑋𝑖,𝑘}3𝑘=1, {𝑋𝑖,𝑘}4𝑘=1,

M5 ∶ average the models by 𝑋𝑖,1, {𝑋𝑖,𝑘}2𝑘=1, {𝑋𝑖,𝑘}3𝑘=1, {𝑋𝑖,𝑘}4𝑘=1, {𝑋𝑖,𝑘}5𝑘=1,

M6 ∶ average the models by 𝑋𝑖,1, {𝑋𝑖,𝑘}2𝑘=1, {𝑋𝑖,𝑘}3𝑘=1, {𝑋𝑖,𝑘}4𝑘=1, {𝑋𝑖,𝑘}5𝑘=1, {𝑋𝑖,𝑘}6𝑘=1.

Figs. 1–2 present the FPEs for SPD matrices with the predictors generated by (i) and (ii), respectively. Our cross-validation
weights �̂� outperform other averaging weights for all the cases. The improvements in terms of the values of the FPEs are larger
or the case of correlated predictors in Fig. 1. When predictors are correlated, M6 shows the best performance in terms of FPE for
oth 𝑛 = 50 and 𝑛 = 100. This suggests that it is advantageous to average models with a greater number of predictors when making
redictions with correlated predictors. On the other hand, when predictors are independent, M2 demonstrates the best performance
n terms of FPE for 𝑛 = 50, while M4 exhibits the best performance for 𝑛 = 100. This implies that averaging simpler models may lead
o better predictions when using independent or weakly correlated predictors. However, in this scenario as well, with an increase
n sample size, there is a tendency for averaging more complex models to improve FPE.

Figs. 3–4 present the FPEs for univariate probability distributions with the predictors generated by (i) and (ii), respectively. One
can find that the FPEs of our method are significantly smaller than other methods for all the cases. When predictors are correlated,
M5 shows the best performance in terms of FPE for both 𝑛 = 50 and 𝑛 = 100. On the other hand, when predictors are independent,
M2 demonstrates the best performance in terms of FPE for both 𝑛 = 50 and 𝑛 = 100.

5. Technical details

Proof of Theorem 1. (i) Define diam(Y) = sup𝜇1 ,𝜇2∈Y 𝑑(𝜇1, 𝜇2). First, we show the pointwise convergence:

𝑑(�̂�⊕(𝒘, 𝑥(𝑀)), 𝑚⊕(𝒘, 𝑥(𝑀)))
𝑝
→ 0, 𝒘 ∈ W, ‖𝑥(𝑀)

‖𝓁2 ≤ 𝐵 . (1)

Pick any 𝒘 ∈ W and 𝑥(𝑀) with ‖𝑥(𝑀)
‖𝓁2 ≤ 𝐵. By Corollary 3.2.3 in van der Vaart and Wellner [13], it is sufficient for (1) to show

sup
𝜂∈Y

|�̂�(𝒘, 𝑥(𝑀), 𝜂) − 𝑅(𝒘, 𝑥(𝑀), 𝜂)| 𝑝
→ 0.

For this, we show that �̂�(𝒘, 𝑥(𝑀), ⋅) converges weakly to 𝑅(𝒘, 𝑥(𝑀), ⋅) in 𝓁∞(Y), and then apply Theorem 1.3.6 in van der Vaart and
Wellner [13]. By Theorem 1.5.4 in van der Vaart and Wellner [13], this weak convergence follows by showing that

(i) �̂�(𝒘, 𝑥(𝑀), 𝜂) − 𝑅(𝒘, 𝑥(𝑀), 𝜂) 𝑝
→ 0 for each 𝜂 ∈ Y.
6 
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Fig. 1. FPE of CV, AIC, and BIC when (Y, 𝑑) is the space of SPD matrices with the Cholesky decomposition distance for 𝑛 = 50 (left) and 𝑛 = 100 (right)
with correlated predictors. The circles correspond to the proposed cross-validation-based method (CV), the triangles to AIC-type model averaging (AIC), and the
crosses to BIC-type model averaging (BIC). M1, M2, M3, M4, M5, and M6 correspond to the sets of models averaged.

Fig. 2. FPE of CV, AIC, and BIC when (Y, 𝑑) is the space of SPD matrices with the Cholesky decomposition distance for 𝑛 = 50 (left) and 𝑛 = 100 (right) with
independent predictors. The circles correspond to the proposed cross-validation-based method (CV), the triangles to AIC-type model averaging (AIC), and the
crosses to BIC-type model averaging (BIC). M1, M2, M3, M4, M5, and M6 correspond to the sets of models averaged.

(ii) �̂�(𝒘, 𝑥(𝑀), 𝜂) is asymptotically equicontinuous in probability, i.e., for each 𝜀, 𝜁 > 0, there exists 𝛿 > 0 such that

lim sup
𝑛→∞

P

(

sup
𝑑(𝜂1 ,𝜂2)<𝛿

|�̂�(𝒘, 𝑥(𝑀), 𝜂1) − �̂�(𝒘, 𝑥(𝑀), 𝜂2)| > 𝜀
)

< 𝜁 .
Pick any 𝜂 ∈ Y. For (i), observe that

|�̂�(𝒘, 𝑥(𝑀), 𝜂) − 𝑅(𝒘, 𝑥(𝑀), 𝜂)| ≤
𝑀
∑

𝑚=1
𝑤𝑚|{𝑑(�̂�

(𝑚)
⊕ (𝑥(𝑚)), 𝜂) + 𝑑(𝐿(𝑚)

⊕ (𝑥(𝑚)), 𝜂)}{𝑑(�̂�(𝑚)
⊕ (𝑥(𝑚)), 𝜂) − 𝑑(𝐿(𝑚)

⊕ (𝑥(𝑚)), 𝜂)}|

≤ 2diam(Y)
𝑀
∑

𝑚=1
𝑤𝑚|𝑑(�̂�

(𝑚)
⊕ (𝑥(𝑚)), 𝜂) − 𝑑(𝐿(𝑚)

⊕ (𝑥(𝑚)), 𝜂)|

≤ 2diam(Y) max
1≤𝑚≤𝑀

𝑑(�̂�(𝑚)
⊕ (𝑥(𝑚)), 𝐿(𝑚)

⊕ (𝑥(𝑚)))
𝑝
→ 0.
7 
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Fig. 3. FPE of CV, AIC, and BIC when (Y, 𝑑) is the space of univariate probability distributions with the Wasserstein metric for 𝑛 = 50 (left) and 𝑛 = 100 (right)
with correlated predictors. The circles correspond to the proposed cross-validation-based method (CV), the triangles to AIC-type model averaging (AIC), and the
crosses to BIC-type model averaging (BIC). M1, M2, M3, M4, M5, and M6 correspond to the sets of models averaged.

Fig. 4. FPE of CV, AIC, and BIC when (Y, 𝑑) is the space of univariate probability distributions with the Wasserstein metric for 𝑛 = 50 (left) and 𝑛 = 100 (right)
with independent predictors. The circles correspond to the proposed cross-validation-based method (CV), the triangles to AIC-type model averaging (AIC), and
the crosses to BIC-type model averaging (BIC). M1, M2, M3, M4, M5, and M6 correspond to the sets of models averaged.

where the first inequality follows from the triangle inequality, the second inequality follows from 𝑑(�̃� , 𝜂) ≤ diam(Y) for any �̃� ∈ Y,
the third inequality follows from the triangle inequality and ∑𝑀

𝑚=1 𝑤𝑚 = 1, and the convergence follows from A1.
Pick any 𝜂1, 𝜂2 ∈ Y. For (ii), a similar argument yields

|�̂�(𝒘, 𝑥(𝑀), 𝜂1) − �̂�(𝒘, 𝑥(𝑀), 𝜂2)| ≤
𝑀
∑

𝑚=1
𝑤𝑚|{𝑑(�̂�

(𝑚)
⊕ (𝑥(𝑚)), 𝜂1) + 𝑑(�̂�(𝑚)

⊕ (𝑥(𝑚)), 𝜂2)}{𝑑(�̂�(𝑚)
⊕ (𝑥(𝑚)), 𝜂1) − 𝑑(�̂�(𝑚)

⊕ (𝑥(𝑚)), 𝜂2)}|

≤ 2diam(Y)
𝑀
∑

𝑚=1
𝑤𝑚|𝑑(�̂�

(𝑚)
⊕ (𝑥(𝑚)), 𝜂1) − 𝑑(�̂�(𝑚)

⊕ (𝑥(𝑚)), 𝜂2)|

≤ 2diam(Y)𝑑(𝜂1, 𝜂2),

which implies sup𝑑(𝜂1 ,𝜂2)<𝛿 |�̂�(𝒘, 𝑥(𝑀), 𝜂1) − �̂�(𝒘, 𝑥(𝑀), 𝜂2)| = 𝑂𝑝(𝛿) so that we obtain (ii). Therefore, we obtain (1).
Next, we show the uniform convergence. Consider the process 𝑍𝑛(𝒘, 𝑥(𝑀)) = 𝑑(�̂�⊕(𝒘, 𝑥(𝑀)), 𝑚⊕(𝒘, 𝑥(𝑀))). By (1), we have

𝑍 (𝒘, 𝑥(𝑀))
𝑝
→ 0 for each 𝒘 ∈ W and ‖𝑥(𝑀)

‖ ≤ 𝐵. By Theorem 1.5.4 in van der Vaart and Wellner [13], it is sufficient to
𝑛 𝓁2
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show that for each 𝑆 > 0,

lim sup
𝑛→∞

P

⎛

⎜

⎜

⎜

⎜

⎝

sup
𝒘1 ,𝒘2∈W,‖𝒘1−𝒘2‖𝓁1<𝛿 ,

‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 −𝑥(𝑀)

2 ‖

𝓁2<𝛿

|𝑍𝑛(𝒘1, 𝑥(𝑀)
1 ) −𝑍𝑛(𝒘2, 𝑥(𝑀)

2 )|>2𝑆

⎞

⎟

⎟

⎟

⎟

⎠

→0, (2)

as 𝛿 → 0. Since

|𝑍𝑛(𝒘1, 𝑥(𝑀)
1 ) −𝑍𝑛(𝒘2, 𝑥(𝑀)

2 )| ≤ 𝑑(𝑚⊕(𝒘1, 𝑥(𝑀)
1 ), 𝑚⊕(𝒘2, 𝑥(𝑀)

2 )) + 𝑑(�̂�⊕(𝒘1, 𝑥(𝑀)
1 ), �̂�⊕(𝒘2, 𝑥(𝑀)

2 ))

by the triangle inequality, it is sufficient for (2) to show that 𝑚⊕(⋅, ⋅) is uniformly continuous over 𝒘 ∈ W and ‖𝑥(𝑀)
‖𝓁2 ≤ 𝐵 and

that

lim sup
𝑛→∞

P

⎛

⎜

⎜

⎜

⎜

⎝

sup
𝒘1 ,𝒘2∈W,‖𝒘1−𝒘2‖𝓁1<𝛿 ,

‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 −𝑥(𝑀)

2 ‖

𝓁2<𝛿

𝑑(�̂�⊕(𝒘1, 𝑥(𝑀)
1 ), �̂�⊕(𝒘2, 𝑥(𝑀)

2 ))> 𝑆
⎞

⎟

⎟

⎟

⎟

⎠

→0, (3)

as 𝛿 → 0.
Now, pick any 𝛿 > 0 and then pick any 𝒘1,𝒘2 ∈ W with ‖𝒘1 −𝒘2‖𝓁1 < 𝛿, and 𝑥(𝑀)

1 , 𝑥(𝑀)
2 ∈ R𝑀 with ‖𝑥(𝑀)

1 − 𝑥(𝑀)
2 ‖𝓁2 < 𝛿. Note

that A1 guarantees uniformly continuity of 𝐿(𝑚)
⊕ (𝑥(𝑚)) over ‖𝑥(𝑀)

‖𝓁2 ≤ 𝐵 for 𝑚 ∈ {1,… , 𝑀}. Then due to the form of 𝑅(𝒘, 𝑥(𝑀), 𝜂),
we have

𝜁 < sup
𝜂∈Y

|𝑅(𝒘1, 𝑥(𝑀)
1 , 𝜂) − 𝑅(𝒘2, 𝑥(𝑀)

2 , 𝜂)| ≤ max{diam(Y), 2}2
{

‖𝒘1 −𝒘2‖𝓁1 + max
1≤𝑚≤𝑀

𝑑(𝐿(𝑚)
⊕ (𝑥(𝑚)1 ), 𝐿(𝑚)

⊕ (𝑥(𝑚)2 ))
}

≤ 2(1 + 𝐶) max{diam(Y), 2}2(𝑂(𝛿) + 𝑜(1)), 𝛿 → 0,

for some constant 𝐶 > 0. Thus, A2 implies that 𝑚⊕ is continuous at (𝒘, 𝑥) and thus uniformly continuous over (𝒘, 𝑥(𝑀)) ∈
W × {𝑥(𝑀) ∶ ‖𝑥(𝑀)

‖𝓁2 ≤ 𝐵}. To show (3), pick any 𝜀 > 0, and suppose 𝑑(�̂�⊕(𝒘1, 𝑥(𝑀)
1 ), �̂�⊕(𝒘2, 𝑥(𝑀)

2 )) > 𝜀 with 𝒘1,𝒘2 ∈ W and
𝑥(𝑀)
1 ‖𝓁2 , ‖𝑥

(𝑀)
2 ‖𝓁2 ≤ 𝐵. Then A2 and the form of �̂�(𝒘, 𝑥(𝑀), 𝜂) imply that

𝜁 ≤ sup
𝒘1 ,𝒘2∈W,‖𝒘1−𝒘2‖𝓁1<𝛿 ,

‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 −𝑥(𝑀)

2 ‖

𝓁2<𝛿

|�̂�(𝒘1, 𝑥(𝑀)
1 , 𝜂) − �̂�(𝒘2, 𝑥(𝑀)

2 , 𝜂)|

≤ max{diam(Y), 2}2 sup
𝒘1 ,𝒘2∈W,‖𝒘1−𝒘2‖𝓁1<𝛿 ,

‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 −𝑥(𝑀)

2 ‖

𝓁2<𝛿

{

‖𝒘1 −𝒘2‖𝓁1+ max
1≤𝑚≤𝑀

𝑑(�̂�(𝑚)
⊕ (𝑥(𝑚)1 ), �̂�(𝑚)

⊕ (𝑥(𝑚)2 ))
}

≤ max{diam(Y), 2}2 sup
𝒘1 ,𝒘2∈W,‖𝒘1−𝒘2‖𝓁1<𝛿 ,

‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 ‖

𝓁2≤𝐵 ,‖𝑥(𝑀)
1 −𝑥(𝑀)

2 ‖

𝓁2<𝛿

{

‖𝒘1 −𝒘2‖𝓁1+ max
1≤𝑚≤𝑀

𝑑(𝐿(𝑚)
⊕ (𝑥(𝑚)1 ), 𝐿(𝑚)

⊕ (𝑥(𝑚)2 ))
}

+ 𝑜𝑝(1) = 𝑂(𝛿) + 𝑜𝑝(1),

as 𝛿 → 0, where the second inequality follows from the triangle inequality, the third inequality follows from the uniform convergence
of �̂�(𝑚)

⊕ (𝑥(𝑚)) in A1, and the equality follows from uniform continuity of 𝐿(𝑚)
⊕ (𝑥(𝑚)) over ‖𝑥(𝑀)

‖𝓁2 ≤ 𝐵. Therefore, we obtain (3) and
the conclusion of the theorem follows. □

Proof of Theorem 1. (ii) First, we show

sup
𝒘∈W

|CV𝑛(𝒘) − FPE𝑛(𝒘)|
𝑝
→ 0. (4)

Decompose

CV𝑛(𝒘) − FPE𝑛(𝒘) = 1
𝑛

𝑛
∑

𝑖=1
{𝑑2(𝑌𝑖, �̂�⊕,−𝑖(𝒘, 𝑋𝑖)) − 𝑑2(𝑌𝑖, 𝑚⊕(𝒘, 𝑋𝑖))}

+ 1
𝑛

𝑛
∑

𝑖=1
{𝑑2(𝑌𝑖, 𝑚⊕(𝒘, 𝑋𝑖)) − E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))]} + {E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))] − FPE𝑛(𝒘)}

=∶ 𝑇1(𝒘) + 𝑇2(𝒘) + 𝑇3(𝒘).

For 𝑇1(𝒘), Theorem 1(i) implies

sup
𝒘∈W

|𝑇1(𝒘)| ≤ 2diam(Y) sup
𝒘∈W,‖𝑥(𝑀)

‖𝓁2≤𝐵
𝑑(�̂�⊕(𝒘, 𝑥(𝑀)), 𝑚⊕(𝒘, 𝑥(𝑀)))

𝑝
→ 0. (5)

For 𝑇2(𝒘), we show

sup
|

|

|

1
𝑛
∑

{𝑑2(𝑌𝑖, 𝑚⊕(𝒘, 𝑋𝑖)) − E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))]}
|

|

| = 𝑂𝑝(𝑛−1∕2). (6)

𝒘∈W |

|

𝑛 𝑖=1
|

|
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Define ℎ𝒘(𝑦, 𝑥(𝑀)) = 𝑑2(𝑦, 𝑚⊕(𝒘, 𝑥(𝑀))) and W = {ℎ𝒘(𝑦, 𝑥(𝑀)) ∶ 𝒘 ∈ W}. An envelop function of W is 𝐹W = diam(Y)2. By A3, we
have

|ℎ𝒘1
(𝑦, 𝑥(𝑀)) − ℎ𝒘2

(𝑦, 𝑥(𝑀))| ≤ |𝑑(𝑦, 𝑚⊕(𝒘1, 𝑥(𝑀))) + 𝑑(𝑦, 𝑚⊕(𝒘2, 𝑥(𝑀)))||𝑑(𝑦, 𝑚⊕(𝒘1, 𝑥(𝑀))) − 𝑑(𝑦, 𝑚⊕(𝒘2, 𝑥(𝑀)))|

≤ 2�̄�𝐵diam(Y)‖𝒘1 −𝒘2‖
𝛽𝐵
𝓁1
.

Thus, from Theorems 2.14.2 and 2.7.11 in van der Vaart and Wellner [13], it holds

E

[

sup
𝒘∈W

|

|

|

|

|

1
𝑛

𝑛
∑

𝑖=1
{𝑑2(𝑌𝑖, 𝑚⊕(𝒘, 𝑋𝑖)) − E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))]}

|

|

|

|

|

]

≲ 1
√

𝑛∫

1

0

√

1 + ln𝑁[](2𝜀�̄�𝐵diam(Y),W, ‖ ⋅ ‖)𝑑 𝜀

≤ 1
√

𝑛∫

1

0

√

1 + ln𝑁(𝜀,W, ‖ ⋅ ‖𝓁1 )𝑑 𝜀 ≲
1
√

𝑛∫

1

0

√

1 + ln(𝜀−𝑀∕𝛽𝐵 )𝑑 𝜀

≲ 1
√

𝑛

(

1 +
√

𝑀 ∫

1

0

√

− ln 𝜀𝑑 𝜀
)

= 𝑂(𝑛−1∕2),

where 𝑁[](𝜀,W, ‖ ⋅ ‖) is the 𝜀-bracketing number of W with respect to any norm ‖ ⋅ ‖ and 𝑁(𝜀,W, ‖ ⋅ ‖𝓁1 ) denote the 𝜀-covering
number of W with respect to the norm ‖ ⋅ ‖𝓁1 . This yields (6).

For 𝑇3(𝒘), a similar argument to (5) yields

sup
𝒘∈W

|E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))] − FPE𝑛(𝒘)| ≤ 2diam(Y) sup
𝒘∈W,‖𝑥(𝑀)

‖𝐸≤𝐵
𝑑(�̂�⊕(𝒘, 𝑥(𝑀)), 𝑚⊕(𝒘, 𝑥(𝑀)))

𝑝
→ 0, (7)

where the convergence follows from Theorem 1(i). Combining (5)–(7), we obtain (4).
Next, we show

FPE𝑛(�̂�) = inf
𝒘∈W

E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))] + 𝑜𝑝(1). (8)

Observe that

FPE𝑛(�̂�) = CV𝑛(�̂�) + 𝑜𝑝(1) = inf
𝒘∈W

CV𝑛(𝒘) + 𝑜𝑝(1)

= inf
𝒘∈W

FPE𝑛(𝒘) + 𝑜𝑝(1) = inf
𝒘∈W

E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))] + 𝑜𝑝(1),

where the first and third equalities follow from (4), the second equality follows from the definition of �̂�, and the last equality
ollows from (7). Therefore, we obtain (8).

Finally, we complete the proof. From (7), we have

inf
𝒘∈W

FPE𝑛(𝒘) = inf
𝒘∈W

E[𝑑2(𝑌 , 𝑚⊕(𝒘, 𝑋))] + 𝑜𝑝(1). (9)

Combining (8), (9), and A4, we obtain the conclusion. □
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