
ar
X

iv
:2

40
4.

14
25

0v
6

 [
cs

.D
C

]
 3

0
Se

p
20

24

Frosty: Bringing strong liveness guarantees to the Snow

family of consensus protocols.

AARON BUCHWALD, Ava Labs, USA

STEPHEN BUTTOLPH, Ava Labs, USA

ANDREW LEWIS-PYE, London School of Economics, UK

PATRICK O’GRADY, Ava Labs, USA

KEVIN SEKNIQI, Ava Labs, USA

Snowman is the consensus protocol implemented by the Avalanche blockchain and is part of the Snow fam-

ily of protocols, first introduced in the Avalanche whitepaper [30]. A major advantage of Snowman is that

each consensus decision only requires an expected constant communication overhead per processor in the

‘common’ case that the protocol is not under substantial Byzantine attack, i.e. it provides a solution to the

scalability problem which ensures that the expected communication overhead per processor is independent

of the total number of processors = during normal operation. This is the key property that would enable a

consensus protocol to scale to 10,000 or more independent validators (i.e. processors). On the other hand, the

two following concerns have remained:

(1) Providing formal proofs of consistency for Snowman has presented a formidable challenge.

(2) Liveness attacks exist in the case that a Byzantine adversary controls more than $ (
√
=) processors,

slowing termination to more than a logarithmic number of steps.

In this paper, we address the two issues above. We consider a Byzantine adversary that controls at most

5 < =/5 processors. First, we provide a simple proof of consistency for Snowman. Then we supplement

Snowman with a ‘liveness module’ that can be triggered in the case that a substantial adversary launches

a liveness attack, and which guarantees liveness in this event by temporarily forgoing the communication

complexity advantages of Snowman, butwithout sacrificing these low communication complexity advantages

during normal operation.

1 INTRODUCTION

Recent years have seen substantial interest in developing consensus protocols that work efficiently
at scale. In concrete terms, this means looking to minimize the latency and communication com-
plexity per consensus decision as a function of the number of processors (participants/validators)
=. The Dolev-Reischuk bound [14], which asserts that deterministic protocols require Ω(=2) com-
munication complexity per consensus decision, presents a fundamental barrier in this regard: de-
terministic protocols that can tolerate a Byzantine (i.e. arbitrary) adversary of size $ (=) must
necessarily suffer a quadratic blow-up in communication cost as the size of the network grows.
It is precisely this relationship that makes these protocols susceptible to considerable slowdown
when a high number of processors is present.

Probabilistic sortition. One approach to dealing with this quadratic blow-up in communication
cost, as employed by protocols such as Algorand [10], is to utilize probabilistic sortition [1, 20].
Rather than have all processors participate in every consensus decision, the basic idea is to sam-
ple a committee of sufficient size that the proportion of Byzantine committee members is almost
certainly close to the proportion of all processors that are Byzantine. Sampled committees of con-
stant bounded size can then be used to implement consensus, thereby limiting the communication
cost. In practical terms, however, avoiding Byzantine control of committees requires each commit-
tee to have a number of members sufficient that the quadratic communication cost for the committee

is already substantial, e.g. Algorand requires committees with : members, where : is of the order
of one thousand, meaning that :2 is already large.

http://arxiv.org/abs/2404.14250v6

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 2

The Snow family of consensus protocols. In [30], a family of consensus protocolswas specified,
providing an alternative approach to limiting communication costs. These protocols are all based
on a common approach that is best described by considering a binary decision game. For the sake
of simplicity, let us initially consider the Snowflake protocol1, which uses three parameters: : ,
U > :/2, and V (for the sake of concreteness, in this paper wewill focus on the example that: = 80).
Suppose that each processor begins with an initial color, either red or blue. Each processor ? then
proceeds in rounds. In each round, ? randomly samples : processors from the total population
and asks those processors to report their present color. If at least U of the reported values are the
opposite of ?’s present color, then ? adopts that opposite color. If ? sees V consecutive rounds in
which at least U of the reported values are red, then ? decides red (and similarly for blue).

The outcome of this dynamic sampling process can be informally described as follows when
the adversary is sufficiently bounded (a formal analysis for a variant of Snowflake that we call
Snowflake+ is given in Section 4). Once the proportion of the population who are red, say, passes
a certain tipping point, it holds with high probability that the remainder of the (non-Byzantine)
population will quickly become red (and symmetrically so for blue). If V is set appropriately, then
the chance that any correct processor decides on red before this tipping point is reached can be
made negligible, meaning that once any correct processor decides on red (or blue), they can be
sure that all other correct processors will quickly decide the same way. The chance that correct
processors decide differently can thus be made negligible through an appropriate choice of param-
eter values. If correct processors begin heavily weighted in favor of one color, then convergence
on a decision value will happen very quickly, while variance in random sampling is required to
tip the population in one direction in the case that initial inputs are evenly distributed.

While the discussion above considers a single binary decision game, the ‘Snowman’ protocol,
formally described and analysed for the first time in this paper, shows that similar techniques
can be used to efficiently solve State Machine Replication (SMR) [32]. The transition from simple
consensus (Byzantine Agreement [21]) to an efficient SMR protocol is non-trivial, and is described
in detail in Sections 5 and 6. A major benefit of the approach is that it avoids the need for all-to-all
communication. In an analysis establishing that there is only a small chance of consistency failure,
the value of : can be specified independent of =, and each round requires each processor to collect
reported values from only : others.

Our contribution. The Snowman protocol is presently used by the Avalanche blockchain to im-
plement SMR. However, the two following concerns have remained:

(1) Providing formal proofs of consistency for Snowman has presented a formidable challenge.
(2) Liveness attacks exist in the case that a Byzantine adversary controls more than $ (

√
=)

processors [30], meaning that finalization is no longer guaranteed to occur in a logarithmic
number of steps.

In this paper, we consider a Byzantine adversary that controls at most 5 < =/5 processors, and
address the two issues above. With respect to issue (1):

• We describe a variant of Snowflake, called Snowflake+.
• For appropriate choices of parameter values, we give a simple proof that Snowflake+ satisfies
‘validity’ and ‘agreement’ except with small error probability.

• We give a complete specification of a version of Snowman that builds on Snowflake+. This
is the first formal description of the Snowman protocol.

1In [30], other variants such as the Slush and Snowball protocols are also described.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 3

• For appropriate choices of parameter values, we give a simple proof that the resulting Snow-
man protocol satisfies consistency except with small error probability.

• We also describe a variant of Snowflake+ called Error-driven Snowflake+, that can be used
to give very low latency in the ‘common case’.

With regard to issue (2), we note that malicious liveness attacks on Avalanche have not been
observed to date. It is certainly desirable, however, to have strong guarantees in the case that a
large adversary launches an attack on liveness. The approach we take in this paper is therefore
to strike a practical balance. More specifically, we aim to specify a protocol that is optimised to
work efficiently in the ‘common case’ that there is no substantial Byzantine attacker, but which
also provides a ‘fallback’ mechanism in the worst case of a substantial attack on liveness. To this
end, we then describe how to supplement Snowman with a ‘liveness module’. The basic idea is
that one can use Snowman to reach fast consensus under normal operation, and can then trigger
an ‘epoch change’ that temporarily implements some standard quorum-based protocol to achieve
liveness in the case that a substantial adversary attacks liveness. In the (presumably rare) event
that a substantial adversary attacks liveness, liveness is thus ensured by temporarily forgoing the
communication complexity advantages of Snowman during normal operation. The difficulty in
implementing such a module is to ensure that interactions between the different modes of opera-
tion do not impact consistency. We give a formal proof that the resulting protocol, called Frosty,
is consistent and live, except with small error probability.

Paper structure. Section 2 describes the formal model. Section 3 describes Snowflake+ and gives
pseudocode for the protocol. Section 4 gives a proof of agreement and validity for Snowflake+ and
describes Error-driven Snowflake+. Section 5 describes the Snowman protocol, including pseu-
docode. Section 6 gives a proof of consistency for Snowman. Section 7 describes the liveness mod-
ule and gives pseudocode for the resulting protocol, called Frosty. Section 8 proves liveness and
consistency for Frosty.

2 THE MODEL

We consider a set Π = {?0, . . . , ?=−1} of = processors. Processor ?8 is told 8 as part of its input. For
the sake of simplicity, we assume a static adversary that controls up to 5 of the processors, where
5 is a known bound. Generally, we will assume 5 < =/5. The bound 5 < =/5 is chosen only so
as to give as simple a proof as possible in Section 4, and providing an analysis for larger 5 is the
subject of future work. A processor that is controlled by the adversary is referred to as Byzantine,
while processors that are not Byzantine are correct. Byzantine processors may display arbitrary
behaviour, modulo our cryptographic assumptions (described below).

Cryptographic assumptions. Our cryptographic assumptions are standard for papers in dis-
tributed computing. Processors communicate by point-to-point authenticated channels. We use
a cryptographic signature scheme, a public key infrastructure (PKI) to validate signatures, and a
collision-resistant hash function� . We assume a computationally bounded adversary. Following a
common standard in distributed computing, and for simplicity of presentation (to avoid the analy-
sis of certain negligible error probabilities), we assume these cryptographic schemes are perfect, i.e.
we restrict attention to executions in which the adversary is unable to break these cryptographic
schemes. In a given execution of the protocol, hash values are thus assumed to be unique.

Communication. As noted above, processors communicate using point-to-point authenticated
channels. We consider the standard synchronous model: for some known bound Δ, a message sent
at time C must arrive by time C + Δ.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 4

The binomial distribution. Consider : independent and identically distributed randomvariables,
each of which has probability G of taking the value ‘red’. We let Bin(:, G,<) denote the probability
that < of the : values are red, we write Bin(:, G,≥ <) to denote the probability that at least <
values are red (and similarly for Bin(:, G,≤ <)).
Dealing with small probabilities. In analysing the security of a cryptographic protocol, one
standardly regards a function 5 : N → N as negligible if, for every 2 ∈ N, there exists #2 ∈ N
such that, for all G ≥ #2 , |5 (G) | < 1/G2 . Our concerns here, however, are somewhat different.
As noted above, we assume the cryptographic schemes utilized by our protocols are perfect. For
certain fixed parameter values (e.g. setting = = 500, : = 80, U = 41 and V = 12 in an instance
of Snowflake, as described in Section 1), we want to be able to argue that error probabilities are
sufficiently small that they can reasonably be dismissed.
In our analysis, we will therefore identify certain events as occurring with small probability (e.g.

with probability < 10−20), and may then condition on those events not occurring. Often, we will
consider specific events, such as the probability in a round-based protocol that a given processor
performs a certain action G in a given round. In dismissing small error probabilities, one then has to
take account of the fact that there may be many opportunities for an event of a given type to occur,
e.g. any given processormay perform action G in any given round. How reasonable it is to condition
on no correct processor performing action G may therefore depend on the number of processors
and the number of rounds, and we assume ‘reasonable’ bounds on these values. As an example,
consider the Snowflake protocol, as described in Section 1, and suppose : = 80 and that at most
1/5 of the processors are Byzantine. Suppose that, at the beginning of a certain round, at least 75%
of the correct processors are red. Then a calculation for the binomial distribution shows that the
probability a correct processor receives at least 72 blue responses from the 80 processors it samples
in that round is upper bounded by 1.18×10−20,i.e. Bin(80, 0.2+ (0.8×0.25), ≥ 72) < 1.18×10−20. To
upper bound the probability that there exists any round in which at least 75% of correct processors
are red and some correct processor receives at least 72 blue responses, we just apply the union
bound. For the sake of concreteness, suppose that at most 10,000 processors run the protocol for at
most 1000 years, executing at most 5 rounds a second. This means that less than 1.6× 1011 rounds
are executed. Since there are at most 10,000 processors, the union bound thus gives a cumulative
error probability less than (1.18 × 10−20) × 104 × (1.6 × 1011) < 2 × 10−5. We will address such
accountancy issues as they arise.
We stress that accounting for small error probabilities in the manner described above (rather

than showing error probabilities are negligible functions of the parameter inputs) also allows us
to give particularly straightforward security proofs for Snowflake+, Snowman, and Frosty.

A comment on the use of synchrony. We simplify our analysis by having correct processors
execute the protocol executions in cleanly defined rounds. Each correct processor thus samples the
values of some others in round 1, before adjusting local values based on that sample. All correct
processors then proceed to round 2, and so on. As discussed in In Section 10, a follow-up paper
will show how the analysis here can be extended to deal with a responsive version of the protocol
in which each correct processor can proceed through rounds as fast as local message delays allow,
i.e. a processor may proceed to round B + 1 as soon as they receive sufficiently many responses for
round B .

3 A SIMPLE PROTOCOL FOR BYZANTINE AGREEMENT: SNOWFLAKE+.

We begin by describing a simple probabilistic protocol for binary Byzantine Agreement, called
Snowflake+, which will act as a basic building block for the Snowman protocol (described later
in Section 5). While a similar analysis could be given for Snowflake (as described in the original

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 5

whitepaper [30]), an advantage of Snowflake+ is that it allows for a simpler proof to establish that
error probabilities are small and, as described in further detail in Section 4.1, Snowflake+ is also
easily adapted to give flexible termination conditions, giving low latency in the good case that
most processors are correct. Similar considerations also apply when comparing Snowflake+ and
Snowball (also described in the original whitepaper [30]).

The inputs. Each processor ?8 begins with a value input8 ∈ {0, 1}.
The requirements. A probabilistic protocol for Byzantine agreement is required to satisfy the
following properties, except with small error probability:
Agreement: No two correct processors output different values.
Validity: If every correct processor 8 has the same value input8 , then no correct processor outputs
a value different than this common input.
Termination: Every correct processor gives an output.

Recalling Snowflake. Since Snowflake+ is a simple variant of Snowflake, let us first informally
recall the Snowflake protocol. Snowflake uses three parameters: : , U > :/2, and V . Each processor
?8 maintains a variable val8 , initially set to input8 . The instructions proceed in rounds. In each
round, processor ?8 randomly samples : processors from the total population and asks each of
those processors ? 9 to report their present value val9 . If at least U of the reported values are the
opposite of ?8 ’s present value val8 , then ?8 sets val8 := 1 − val8 . If ?8 sees V consecutive rounds
in which at least U of the reported values are 1, then ?8 decides 1 (and similarly for 0).

Snowflake+ is similar to Snowflake, except that we now use two parameters U1 and U2, rather
than a single parameter U .

The protocol parameters for Snowflake+. The protocol parameters are :, U1, U2, V ∈ N>0 and
satisfy the constraints that U1 > :/2 and U2 ≥ U1. Each processor ?8 also maintains a variable
val8 , initially set to input8 . The parameter : determines sample sizes. The parameter U1 is used
to determine when processor ?8 changes val8 . Parameters U2 and V are used to determine the
conditions under which ?8 will output and terminate.

The protocol instructions for Snowflake+. The instructions are divided into rounds, with round
B occurring at time 2ΔB . In round B , processor ?8 :

(1) Sets 〈?1,B , . . . ?:,B〉 to be a sequence of : processors (specific to ?8). For 9 ∈ [1, :], ? 9,B is sam-
pled from the uniform distribution2 on all processors (so sampling is “with replacement”).

(2) Requests each ? 9,B (for 9 ∈ [1, :]) to report its present value val9 .
(3) Waits time Δ and reports its present value val8 to any processor that has requested it in

round B .
(4) Waits another Δ and considers the values reported in round B:

• If at least U1 of the reported values are 1 − val8 , then ?8 sets val8 := 1 − val8 .
• If ?8 has seen V consecutive rounds in which at least U2 of the reported values are equal to
val8 , then ?8 outputs this value and terminates.

The pseudocode is described in Algorithm 1.

In Section 4, we will show that Snowflake+ satisfies agreement and validity for appropriate choices
of the protocol parameters, and so long as 5 < =/5.We do not give a formal analysis of termination
for Snowflake+: Once Snowflake+ has been used to define Snowman in Section 5, in Section 7 we

2In proof-of-stake implementations, sampling will be stake-weighted, but, for the sake of simplicity of presentation, we

ignore such issues here.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 6

will describe how to augment Snowmanwith a liveness module (guaranteeing termination), which
is formally analysed in Section 8.

Algorithm 1 Snowflake+: The instructions for processor ?8

1: Inputs

2: input8 ∈ {0, 1} ⊲ ?8 ’s input
3: Δ, :, U1, U2, V ∈ N ⊲ Protocol parameters
4: Local variables

5: val8 , initially set to input8 ⊲ ?8 ’s present ‘value’
6: count, initially set to 0 ⊲ Output once count reaches V
7: E8 (9 , B), initially undefined ⊲ Stores at most one received value per round
8:

9: The instructions for round B, beginning at time 2ΔB:
10: Form sample sequence 〈?1,B , . . . ?:,B〉; ⊲ Sample with replacement
11: For 9 ∈ [1, :], send B to ? 9,B ; ⊲ Ask ? 9,B for present value
12: Wait Δ;
13: For each 9 such that ?8 has received B from ? 9 :
14: Send (B, val8) to ? 9 ;
15: Wait Δ;
16: For each 9 ∈ [1, :]:
17: If ?8 has received a first message (B, E) from ? 9,B ;
18: Set E8 (9 , B) := E ;
19: Else set E8 (9 , B) := ⊥;
20: If |{ 9 : 1 ≤ 9 ≤ :, E8 (9 , B) == 1 − val8 }| ≥ U1, set val8 := 1 − val8 , count := 0;
21: If |{ 9 : 1 ≤ 9 ≤ :, E8 (9 , B) == val8}| < U2, set count := 0;
22: If |{ 9 : 1 ≤ 9 ≤ :, E8 (9 , B) == val8}| ≥ U2, set count := count + 1;
23: If count ≥ V , output val8 and terminate.

4 SECURITY ANALYSIS OF SNOWFLAKE+

We assume 5 < =/5. For the sake of concreteness, we establish satisfaction of agreement and
validity for : = 80, U1 = 41, U2 = 72, and V = 12, under the assumption that the population size
= ≥ 500. We make the assumption that 5 < =/5 and = ≥ 500 only so as to be able to give as simple
a proof as possible: a more fine-grained analysis for smaller = is the subject of future work.

Coloring the processors. Since 0 and 1 are not generally used as adjectives, let us say a correct
processor ?8 is ‘blue’ in round B if val8 = 0 at the beginning of round B , and that ?8 is ‘red’ in
round B if val8 = 1 at the beginning of round B . Recall (from Algorithm 1) that E8 (9 , B) is the color
that ? 9 reports to ?8 in round B . We’ll say a correct processor ?8 ‘samples G blue’ in round B if
|{ 9 : 1 ≤ 9 ≤ :, E8 (9 , B) = 0}| = G (and similarly for red). We’ll also extend this terminology in the
obvious way, by saying that a processor outputs ‘blue’ if it outputs 0 and outputs ‘red’ if it outputs
1. In the below, we’ll focus on the case that, in the first round in which a correct processor outputs
(should such a round exist), some correct processor outputs red. A symmetric argument can be
made for blue.

In the following argument, we will adopt the conventions described in Section 2 concerning
the treatment of small error probabilities. We will identify certain events as occurring with small

probability (e.g. with probability < 10−20), and may then condition on those events not occurring.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 7

Where there are multiple opportunities for an event of a certain type to occur, one must be careful
to account for the accumulation of small error probabilities. To deal with the accumulation of small
error probabilities, we suppose that at most 10,000 processors execute the protocol for at most 1000
years, executing at most 5 rounds per second.

Establishing Agreement. The argument consists of four parts:

Part 1. First, let us consider what happens when the proportion of correct processors that are red
reaches a certain threshold. In particular, let us consider what happens when at least 75% of the
correct processors are red in a given round B . A direct calculation for the binomial distribution
shows that the probability a given correct processor is red in round B + 1 is then at least 0.9555,
i.e. Bin(80, 0.8 × 0.75,≥ 41) > 0.9555. Assuming a population of at least 500, of which at least
80% are correct (meaning that at least 400 are correct), another direct calculation for the binomial
distribution shows that the probability that it fails to be the case that more than 5/6 of the correct
processors are red in round B + 1 is upper bounded by 1.59 × 10−20, i.e. Bin(=, 0.9555,≤ 5=/6) <

1.59 × 10−20 for = ≥ 400. Note that this argument requires no knowledge as to the state of each
processor in round B , other than the fact that at least 75% of the correct processors are red.
The analysis above applies to any single given round B . Next, we wish to iterate the argument

over rounds in order to bound the probability that the following statement holds for all rounds:

(†1) If at least 75% of the correct processors are red in any round B , then, in all rounds B′ with
B′ > B , more than 5/6 of the correct processors are red.

To bound the probability that (†1) fails to hold, we can bound the number of rounds, and then apply
the union bound to our analysis of the error probability in each round. Suppose that the protocol
is executed for at most 1000 years, with at most 5 rounds executed per second. This means that less
than 1.6× 1011 rounds are executed. The union bound thus gives a cumulative error probability of
less than (1.6 × 1011) × (1.59 × 10−20) < 3 × 10−9, meaning that (†1) fails to hold with probability
at most 3 × 10−9.

Part 2. A calculation for the binomial distribution shows that if at least 75% of correct processors
are red in a given round B , then the probability that a given correct processor ?8 samples at least 72
blue in round B is upper bounded by 1.18×10−20, i.e. Bin(80, 0.2+ (0.8×0.25),≥ 72) < 1.18×10−20.
If at most 10,000 processors execute the protocol for at most 1000 years, executing at most 5 rounds
per second, we can then apply the union bound to conclude that the following statement fails to
hold with probability at most (1.18 × 10−20) × 10000 × (1.6 × 1011) < 2 × 10−5:

(†2) If at least 75% of the correct processors are red in any round B , then no correct processor
samples at least 72 blue in round B .

Part 3. Another direct calculation for the binomial distribution shows that, if at most 75% of correct
processors are red in a given round B , then the probability a given correct processor ? samples 72
or more red in round B is upper bounded by 0.0131, i.e. Bin(80, (0.75 × 0.8) + 0.2, ≥ 72) < 0.0131.
If, for some G ≥ 1 it then holds that at most 75% of correct processors are red in round B + G ,
then (independent of previous events), the probability ? samples 72 or more red in round B + G is
again upper bounded by 0.0131. So, if we consider any 12 given consecutive rounds and any given
correct processor ? , the probability that at most 75% of correct processors are red and ? samples
at least 72 red in all 12 rounds is upper bounded by 0.013112 < 10−22. If at most 10,000 processors
execute the protocol for at most 1000 years, executing at most 5 rounds per second, we can then
apply the union bound to conclude that the following statement fails to hold with probability at
most 10−22 × 10000 × (1.6 × 1011) < 2 × 10−7:

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 8

(†3) If a correct processor outputs red in some round B + 11, then, for at least one round B′ ∈
[B, B + 11], at least 75% of correct processors are red in round B′.

Part 4. Now we put parts 1–3 together. From the union bound and the analysis above, we may
conclude that (†1)−(†3) all hold, except with probability at most (3×10−9)+(2×10−5)+(2×10−7) <
3 × 10−5. So, suppose that (†1) − (†3) all hold. According to (†3), if a correct processor is the
(potentially joint) first to output and outputs red after sampling in round B + 11, at least one round
B′ ∈ [B, B + 11] must satisfy the condition that at least 75% of correct processors are red in round B′.
From (†1), it follows that at least 5/6 of the correct processors must be red in all rounds > B′. From
(†2), it follows that no correct processor ever outputs blue. This suffices to show that Agreement
is satisfied, except with small error probability.

Establishing Validity. A similar (but even simpler) argument suffices to establish validity. Sup-
pose that all honest nodes have the same input, red say (i.e. 1). By the same reasoning as above,
since round 0 satisfies the condition that at least 75% (in fact 100%) of correct processors are red,
the following statement fails to hold with probability at most 3 × 10−9:

(†4) In every round, more than 5/6 of the correct processors are red.

From (†2) and (†4) it follows that no correct processor outputs blue, as required.

Dealing with different parameter values. The argument above is easily adapted to deal with
alternative parameter values. If we fix U1 := ⌊:/2⌋ + 1, then error probabilities will be smaller for
larger values of U2 and V . For smaller values of U2, similar error probabilities can be obtained by
increasing V – the required values for V are easily found by adapting the binomial calculations
above. Examples are given in Section 4.1.

4.1 Error-driven Snowflake+

In Section 4, we considered a fixed value U2 = 72, for : = 80. While considering a fixed U2 suffices
for the analysis there, it is also useful to simultaneously consider multiple values of U2, giving
rise to a number of different conditions for termination. Considering a range of simultaneous
termination conditions for different values of U2 serves two functions: Considering lower values
of U2 allows one to deal with a greater percentage of offline/faulty processors, while higher values
of U2 give quick decision conditions and low latency in the good case.

Error-driven Snowflake+ is the same as Snowflake+, except that one simultaneously considers
multiple possible values of U2 ≤ : . Each U2 now gives rise to a different V that determines the
conditions for termination. The corresponding values are shown in Table 1.

How the values in Table 1 are calculated. In Section 4, it was (†3) which played a crucial role in
establishing the relationship between U2 and V for a given error probability n > 0. Assuming that
at most 75% of correct processors are red, a calculation for the binomial distribution then upper
bounds the probability ? that a given correct processor samples at least U2 red in a given round.
For a given error probability n , the corresponding V shown in Table 1 is the least integer such that
?V < n . The value ?V upper bounds the probability of a given correct processor sampling at least
U2 red in V given consecutive rounds, under the assumption that at most 75% of correct processors
are red in each round.

Table 1 also shows how V depends on U2 for larger error bounds (n < 10−14 and n < 10−6).
Correct processors may use the corresponding lower values of V in the case that they are willing
to accept higher error probabilities for the sake of achieving low latency, i.e. terminating in a small
number of rounds.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 9

U2 V for V for V for
n < 10−22 n < 10−14 n < 10−6

80 3 2 1
79 4 3 1
78 5 3 2
77 5 4 2
76 6 4 2
75 7 5 2
74 9 6 3
73 10 7 3
72 12 8 4
71 15 10 4
70 18 12 5
69 23 15 7
68 29 18 8
67 37 24 10
66 48 31 14
65 65 41 18

Table 1. The required V as a function of U2 and the error bound.

Low latency in standard operation. Analysis of data from the Avalanche blockchain shows
that, at any given point in time, one can expect close to 100% of contributing processors to act
correctly. For Error-driven Snowflake+, this corresponds to a scenario where the vast majority of
processors are correct, and where initial inputs are generally highly biased in favor of one color.
The conditions in Table 1 that allow for quick termination (using V = 3, 4 or 5, say) can therefore be
expected to be commonly satisfied, and give a significant improvement in latency for the standard
case that most processors act correctly.

The accumulation of error probabilities. Accepting multiple conditions for termination gives
an overall error probability that can be (generously) upper bounded simply by applying the union
bound. In Table 1, 16 different termination conditions are listed. If processors apply all of these
termination conditions simultaneously, then this will lead to at most a 16-fold increase in error
probability.

5 THE SNOWMAN PROTOCOL

Since the Snowman protocol is not specified in the original whitepaper [30], we give a precise
description and pseudocode here.

5.1 Transactions and blocks

To specify a protocol for State-Machine-Replication (SMR), we suppose processors are sent (signed)
transactions during the protocol execution: Formally this can be modeled by having processors be
sent transactions by an environment, e.g. as in [22]. Processors may use received transactions to
form blocks of transactions. Tomake the analysis as general as possible, we decouple the process of
block production from the core consensus engine. We therefore suppose that some given process
for block generation operates in the background, and that valid blocks are gossiped throughout

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 10

the network. We do not put constraints on the block generation process, and allow that it may pro-
duce equivocating blocks, etc. In practice, block generation could be specified simply by having a
rotating sequence of leaders propose blocks, or through a protocol such as Snowman++, as actually
used by the present implementation of the Avalanche blockchain (for a description of Snowman++,
see [23]).

Blockchain structure. We consider a fixed genesis block 10. In a departure from the approach
described in the original Avalanche whitepaper [30], which built a directed acyclic graph (DAG)
of blocks, we consider a standard blockchain architecture in which each block 1 other than 10
specifies a unique parent. If 1′ is the parent of 1, then 1 is referred to as a child of 1′. In this case,
the ancestors of 1 are 1 and any ancestors of 1′. Every block must have 10 as an ancestor. The
descendants of any block 1 are 1 and any descendants of its children. The height of a block 1 is its
number of ancestors other than 1, meaning that the height of 10 is 0. By a chain (ending in 1ℎ), we
mean a sequence of blocks 10 ∗ 11 ∗ · · · ∗ 1ℎ , such that 1ℎ′+1 is a child of 1ℎ′ for ℎ′ < ℎ.3

5.2 Overview of the Snowman protocol

To implement SMR, our approach is to runmultiple instances of Snowflake+. To keep things simple,
consider first the task of reaching consensus on a block of height 1. Suppose that multiple children
of 10 are proposed over the course of the execution and that we must choose between them. To
turn this decision problem into multiple binary decision problems, we consider the hash value
� (11) of each proposed block 11 of height 1, and then run one instance of Snowflake+ to reach
consensus on the first bit of the hash. Then we run a second instance to reach consensus on the
second bit of the hash, and so on. Working above a block of any height ℎ, the same process is then
used to finalize a block of height ℎ + 1. In this way, multiple instances of Snowflake+ are used to
reach consensus on a chain of hash values � (10) ∗� (11) ∗
This process would not be efficient if each round required a separate set of correspondences

for each instance of Snowflake+, but this is not necessary. Just as in Snowflake+, at the beginning
of each round B , processor ?8 samples a single sequence 〈?1,B , . . . ?:,B〉 of : processors. Since we
now wish to reach consensus on a sequence of blocks, each processor ? 9,B in the sample is now
requested to report its presently preferred chain, rather than a single bit value. The first bit of
the corresponding hash sequence is then used by ?8 as the response of ? 9,B in a first instance of
Snowflake+. If this first bit agrees with ?8 ’s resulting value in that instance of Snowflake+, then the
second bit is used as the value reported by ? 9,B in a second instance of Snowflake+, and so on.

Anote on some simplifications that aremade for the sake of clarity of presentation.When
a processor ? 9,B is requested by ?8 to report its presently preferred chain (ending with 1, say), we
have ? 9,B simply send the given sequence of blocks. In reality, this would be very inefficient and
the present implementation of Snowman deals with this by having ? 9,B send a hash of 1 instead.
This potentially causes some complexities, because ?8 may not have seen 1 (meaning that it does
not necessarily know how to interpret the hash). This issue is easily dealt with, but it would be a
distraction to go into the details here.

The variables, functions and procedures used by ?8 . The protocol instructions make use of
the following variables and functions (as well as others whose use should be clear from the pseu-
docode):

• 10: The genesis block.

3Throughout this paper, ‘∗’ denotes concatenation.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 11

• blocks: Stores blocks received by ?8 (and verified as valid). Initially it contains only 10, and
it is automatically updated over time to include any block included in any message received
or sent by ?8 .

• val(f): For each finite binary string f , val(f) records ?8 ’s presently preferred value for the
next bit of the chain of hash values � (10) ∗� (11) ∗ . . . , should the latter extend f .

• pref: The initial segment of the chain of hash values that ?8 presently prefers. We write
|pref| to denote the length of this binary string.

• final: The initial segment of the chain of hash values that ?8 presently regards as final.
• chain(f): If there exists a greatest ℎ ∈ N such that f = � (10) ∗ · · · ∗� (1ℎ) ∗ g for a chain of
blocks 10 ∗ · · · ∗ 1ℎ all seen by ?8 , and for some finite string g , then chain(f) := 10 ∗ · · · ∗ 1ℎ .
Otherwise, chain(f) := 10.

• reduct(f): If there exists a greatest ℎ ∈ N such that f = � (10) ∗ · · · ∗ � (1ℎ) ∗ g for a
chain of blocks 10 ∗ · · · ∗ 1ℎ all seen by ?8 , and for some finite string g , then reduct(f) :=
� (10) ∗ · · · ∗ � (1ℎ). Otherwise, reduct(f) := � (10).

• last(f): If there exists a greatest ℎ ∈ N such that f = � (10) ∗ · · · ∗ � (1ℎ) ∗ g for a chain
10 ∗ · · · ∗ 1ℎ all seen by ?8 , and for some finite string g , then last(f) := 1ℎ . Otherwise,
last(f) := 10.

• �� : If � = 10 ∗ 11 ∗ · · · ∗ 1ℎ is a chain, then �� := � (10) ∗ � (11) ∗ . . . � (1ℎ), and if not then
�� is the empty string ∅.

The pseudocode is described in Algorithm 2. For strings f and g , we write f ⊆ g to denote that f
is an initial segment of g . For the sake of simplicity, the pseudocode considers a fixed value for U2,
but one could also incorporate approaches such as Error-Driven Snowflake+, described in Section
4.1.

6 CONSISTENCY ANALYSIS FOR SNOWMAN

We write pref8 and final8 to denote the values pref and final as locally defined for ?8 . We say
?8 finalizes f , or f becomes final for ?8 , if there exists some round during which f ⊆ final8 . We
say f becomes final if it becomes final for all correct processors. A block 1 becomes final if there
exists some chain � = 10 ∗ · · · ∗ 1 such that �� becomes final.

The requirements. A probabilistic protocol for SMR is required to satisfy the following properties,
except with small error probability:
Liveness: Unboundedly many blocks become final.4

Consistency: Suppose f := final8 as defined at the beginning of round B and that f ′ := final9 as
defined at the beginning of round B′. Then, whenever ?8 and ? 9 are correct:

(i) If 8 = 9 and B′ ≥ B then f ⊆ f ′.
(ii) Either f extends f ′, or f ′ extends f .

In this section, we show that Snowman satisfies consistency (except with small error probability)
for appropriate choices of the protocol parameters, and so long as 5 < =/5. As in Section 4, for
the sake of concreteness we give an analysis for : = 80, U1 = 41, U2 = 72, and V = 12, under the
assumption that the population size = ≥ 500. As before, we make the assumption that 5 < =/5 and
= ≥ 500 only so as to be able to give as simple a proof as possible: a more fine-grained analysis for
smaller = is the subject of future work. In Section 7 we will describe how to augment Snowman
with a module guaranteeing liveness, which is formally analysed in Section 8.

4To ensure that transactions are not censored, it is natural also to require the stronger condition that unboundedly blocks

produced by correct processors become final. We initially consider the version of liveness stated above for the sake of sim-

plicity, but describe how to deal with the stronger requirement in Section 8. In Section 8, we will also analyse the maximum

time required to finalize new values.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 12

Algorithm 2 Snowman: The instructions for processor ?8

1: Inputs

2: Δ, :, U1, U2, V ∈ N
3: Local values
4: val(f), initially undefined
5: count(f), initially set to 0
6: rpref(9 , B), initially undefined ⊲ Records preferred chain of ? 9,B

7: blocks, initially contains just 10 ⊲ Automatically updated
8: pref, initially set to � (10)
9: final, initially set to � (10)
10:

11: The instructions for round B, beginning at time 2ΔB:
12: Form sample sequence 〈?1,B , . . . ?:,B〉; ⊲ Sample with replacement
13: For 9 ∈ [1, :], send B to ? 9,B ; ⊲ Ask ? 9,B for preferred chain
14:

15: Wait Δ;
16:

17: For each 9 such that ?8 has received B from ? 9 :
18: Send (B, chain(pref)) to ? 9 ; ⊲ Report preferred chain to ? 9

19:

20: Wait Δ;
21:

22: For each 9 ∈ [1, :]:
23: If ?8 has received a first message (B, �) from ? 9,B s.t. � is a chain;
24: Set rpref(9 , B) := �� ; ⊲ Record preferred chain of ? 9,B

25: Else set rpref(9 , B) := � (10);
26:

27: Set pref := final, end := 0; ⊲ Begin iteration to determine pref for round B + 1
28: While end == 0 do:
29: Set � := {1 ∈ blocks : 1 is a child of last(pref) and pref ⊆ reduct(pref) ∗� (1)};
30: If � is empty, set end := 1;
31: Else: ⊲ Carry out the next instance of Snowflake+

32: If val(pref) is undefined:
33: Let 1 be the first block in � enumerated into blocks;
34: Set val(pref) to be the (|pref| + 1)th bit of reduct(pref) ∗� (1);
35: If |{ 9 ∈ [1, :] : rpref(9 , B) ⊇ pref ∗ 1 − val(pref)}| ≥ U1:
36: Set val(pref) := 1 − val(pref); For all f ⊇ pref, set count(f) := 0;
37: If |{ 9 ∈ [1, :] : rpref(9 , B) ⊇ pref ∗ val(pref)}| < U2:
38: For all f ⊇ pref, set count(f) := 0;
39: If |{ 9 ∈ [1, :] : rpref(9 , B) ⊇ pref ∗ val(pref)}| ≥ U2:
40: Set count(pref) := count(pref) + 1;
41: If count(pref) ≥ V:
42: Set final := pref ∗ val(pref);
43: Set pref := pref ∗ val(pref);

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 13

The proof of consistency. It follows directly from the protocol instructions that (i) in the defini-
tion of consistency is satisfied. To see this, note that, initially, pref8 = final8 = � (10). The values
pref8 and final8 are not redefined during round B prior to line 27, when we set pref8 := final8 .
If pref8 is subsequently redefined during round B , then we redefine it to be an extension of its
previous value. If final8 is redefined during round B , then it is defined to be an extension of the
present value of pref8 .

To argue that (ii) in the definition of consistency is satisfied, we again adopt the conventions
described in Section 2 concerning the treatment of small error probabilities and suppose the pro-
tocol is run by at most 10,000 processors for at most 1000 years, executing at most 5 rounds per
second. We’ll say a correct processor ?8 ‘samples G values extending f ’ in round B if |{ 9 : 1 ≤ 9 ≤
:, rpref(9 , B) ⊇ f}| = G , where rpref(9 , B) is as locally defined for ?8 at the end of round B . We
define fB to be the longest string such that at least 75% of correct processors have local pref values
extending fB at the beginning of round B , and such that no correct processor finalizes any value
incompatible with fB in any round < B . We define f∗

B to be the longest string such that at least 75%
of correct processors have local pref values extending f∗

B at the beginning of round B .

The argument consists of four parts, similar to those described in Section 4.

Part 1. As in Section 4, a calculation for the binomial distribution shows that the probability a
given correct processor has local pref value extending fB at the beginning of round B +1 is at least
0.9555, i.e. Bin(80, 0.8 × 0.75,≥ 41) > 0.9555. To see this, note that if ?8 samples at least 41 values
extending fB in round B , then, by the definition of fB , it must set pref8 to be compatible with fB in
line 27 during round B . The while loop (lines 28–43) will then set pref8 to be an extension of fB
(possibly fB itself). Assuming a population of at least 500, of which at least 80% are correct, another
direct calculation for the binomial distribution shows that the probability that it fails to be the case
that more than 5/6 of the correct processors have local pref values extending fB at the beginning
of round B+1 is upper bounded by 1.59×10−20, i.e. Bin(=, 0.9555,≤ 5=/6) < 1.59×10−20 for= ≥ 400.
If the protocol is executed for at most 1000 years, with at most 5 rounds executed per second, this
means that less than 1.6 × 1011 rounds are executed. Applying the union bound, we conclude that
the statement below holds, except with probability at most (1.6× 1011) × (1.59× 10−20) < 3× 10−9:

(†1) For every B , more than 5/6 of correct processors have local pref values extending fB at the
beginning of round B + 1.

Part 2. A calculation for the binomial distribution shows that the probability that a given correct
processor ?8 samples at least 72 values incompatible with f∗

B in round B is upper bounded by 1.18×
10−20, i.e. Bin(80, 0.2 + (0.8 × 0.25),≥ 72) < 1.18 × 10−20. If the protocol is run by at most 10,000
processors for at most 1000 years, executing at most 5 rounds per second, then we can apply
the union bound to deduce that the following statement holds, except with probability at most
(1.18 × 10−20) × 10000 × (1.6 × 1011) < 2 × 10−5:

(†2) For every B , no correct processor samples at least 72 values incompatible with f∗
B in round B .

Part 3. Now consider a given processor ? and the probability, G say, that there exists some f *
f∗
B such that ? samples 72 or more values in round B extending f . Calculations for the binomial
distribution show that (independent of events prior to round B), this probability is less than 0.0131.
To see this note that G < G0 + G1 + G2, where:

• G0 is the probability that ? samples 72 or more values in round B extending f∗
B ∗ 0.

• G1 is the probability that ? samples 72 or more values in round B extending f∗
B ∗ 1.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 14

• G2 is the probability that ? samples 72 or more values in round B that are incompatible with
f∗
B .

The calculation from Part 2 already shows that G2 < 1.18×10−20. To bound G0 and G1, suppose first
that at least 50% of correct processors have local pref values extending f∗

B ∗ 0 at the beginning of
round B . In this case, G0 is at most Bin(80, (0.75 × 0.8) + 0.2, ≥ 72) < 0.01309, while G1 is at most
Bin(80, (0.5 × 0.8) + 0.2,≥ 72) < 3 × 10−9. If less than 50% of correct processors have local pref
values extending f∗

B ∗ 0 at the beginning of round B , then G0 < 3× 10−9, while G1 < 0.01309. Either
way G0 + G1 + G2 < 0.0131, as claimed. This calculation held irrespective of events prior to round
B . So, if we consider any 12 given consecutive rounds [B, B + 11] and any given correct processor
?8 , the probability that, for every B′ ∈ [B, B + 11], ?8 samples at least 72 values in round B′ that are
not extended by f∗

B′ is upper bounded by 0.013112 < 10−22. If at most 10,000 processors execute
the protocol for at most 1000 years, executing at most 5 rounds per second, we can then apply
the union bound to conclude that the following statement fails to hold with probability at most
10−22 × 10000 × (1.6 × 1011) < 2 × 10−7:

(†3) If a correct processor finalizes some string f in some round B+11, then, for at least one round
B′ ∈ [B, B + 11], f∗

B′ extends f .

Part 4. Now we put parts 1–3 together. From the union bound and the analysis above, we may
conclude that (†1)−(†3) all hold, except with probability at most (3×10−9)+(2×10−5)+(2×10−7) <
3 × 10−5. So, suppose that (†1) − (†3) all hold. Define f−1 = f∗

−1 = � (10). We show by induction
on rounds ≥ 0 that: (a) fB = f∗

B ; (b) fB ⊇ fB−1, and; (c) if correct ?8 finalizes some f in a round < B ,
then f ⊆ fB . The induction hypothesis clearly holds for round 0. Suppose that it holds for round B .
From (†1), it follows that f∗

B+1 ⊇ fB . From (†2), it follows that no correct processor finalizes a value
incompatible with fB in round B , meaning that fB+1 ⊇ fB . From (†3), it follows that if correct ?8
finalizes some string f during round B , then there exists B′ ∈ [B − 11, B] with fB′ = f∗

B′ and fB′ ⊇ f .
By the induction hypothesis, fB ⊇ fB′ . Since fB+1 ⊇ fB , it follows that fB+1 ⊇ f . So, fB+1 = f∗

B+1
and any string finalized by correct ?8 in a round < B + 1 is extended by fB+1. This suffices to show
that the induction hypothesis holds for round B + 1. Consistency is therefore satisfied, except with
small probability.

7 FROSTY

Recall that our next aim is to augment Snowman with a liveness module, allowing us to guarantee
liveness in the case that 5 < =/5.

7.1 Overview of Frosty

In what follows, we assume that all messages are signed by the processor sending the message. We
also suppose that 5 < =/5. Recall that the local variable pref is a processor’s presently preferred
chain and that final is its presently finalized chain.

The use of epochs. As outlined in Section 1, the basic idea is to run the Snowman protocol during
standard operation, and to temporarily fall back to a standard ‘quorum-based’ protocol in the event
that a substantial adversary attacks liveness for Snowman. We therefore consider instructions that
are divided into epochs. In the first epoch (epoch 0), processors implement Snowman. In the event
of a liveness attack, processors then enter epoch 1 and implement the quorum-based protocol to
finalize the next block. Once this is achieved, they enter epoch 2 and revert to Snowman, and so
on. Processors only enter each odd epoch and start implementing the quorum-based protocol if

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 15

a liveness attack during the previous epoch forces them to do so. The approach taken is reminis-
cent of Jolteon and Ditto [17], in the sense that a view/epoch change mechanism is used to move
between an optimistic and fallback path.

Adding a decision condition. In even epochs, and when a processor sees sufficiently many con-
secutive rounds during which its local value final remains unchanged, it will send a message
to others indicating that it wishes to proceed to the next epoch. Before any correct processor ?8
enters the next epoch, however, it requires messages from at least 1/5 of all processors indicating
that they wish to do the same. This is necessary to avoid the adversary being able to trigger a
change of epoch at will, but produces a difficulty: some correct processors may wish to enter the
next epoch, but the number who wish to do so may not be enough to trigger the epoch change.
To avoid such a situation persisting for an extended duration, we introduce an extra decision con-
dition. Processors now report their value final as well as their value pref when sampled. We
consider an extra parameter U3: for our analysis here, we suppose U3 = 48 (since 48 = 3

5 · 80). If ?8
sees two consecutive samples in which at least U3 processors report final values that all extend
f , then ?8 will regard f as final. For : = 80, U3 = 48 and if 5 < =/5, the probability that at least 3/5
of ?8 ’s sample sequence in a given round are Byzantine is less than 10−14, so the probability that
this happens in two consecutive rounds is small. Except with small probability, the new decision
rule therefore only causes ?8 to finalize f in the case that a correct processor has already finalized
this value, meaning that it is safe for ?8 to do the same. Using this new decision rule, we will be
able to argue below that epoch changes are triggered in a timely fashion: either the epoch change
is triggered soon after any correct ?8 wishes to change epoch, or else sufficiently many correct
processors do not wish to trigger the change that ?8 is quickly able to finalize new values.

Epoch certificates. While in even epoch 4 , and for a parameter W (chosen to taste),5 ?8 will send
the (signed) message (stuck, 4, final) to all others when it sees W consecutive rounds during which
its local value final remains unchanged. This message indicates that ?8 wishes to enter epoch 4+1
and is referred to as an ‘epoch 4 + 1 message’. For any fixed f , a set of messages of size at least =/5,
each signed by a different processor and of the form (stuck, 4, f), is called an epoch certificate (EC)
for epoch 4 + 1.6 When ?8 sees an EC for epoch 4 + 1, it will send the EC to all others and enter
epoch 4 + 1. This ensures that when any correct processor enters epoch 4 + 1, all others will do so
within time Δ.

Ensuring consistency between epochs. We must ensure that the value finalized by the quorum-
based protocol during an odd epoch 4+1 extends all final values for correct processors. To achieve
this, the rough idea is that we have processors send out their local pref values upon entering epoch
4 + 1, and then use these values to extract a chain that it is safe for the quorum based protocol to
build on. Upon entering epoch 4 + 1, we therefore have ?8 send out the message (start, 4 + 1, pref).
This message is referred to as a starting vote for epoch 4 + 1 and, for any string f , we say that the
starting vote (start, 4 + 1, pref) extends f if f ⊆ pref. By a starting certificate (SC) for epoch 4 + 1
we mean a set of at least 2=/3 starting votes for epoch 4 + 1, each signed by a different processor.
If (is an SC for epoch 4 + 1, we set Pref∗ (() to be the longest f extended by more than half of the
messages in (. The basic idea is that Pref∗(() must extend all final values for correct processors,
and that consistency will therefore be maintained if we have the quorum-based protocol finalize
a value extending this string.

5In Section 8, we suppose W ≥ 300.
6To ensure ECs are strings of constant bounded length (independent of=), one could use standard ‘threshold’ cryptography

techniques [7, 33], but we will not concern ourselves with such issues here.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 16

To argue that this is indeed the case, recall the proof described in Section 6 (and recall that
5 < =/5). We argued there that, if any correct processor ?8 finalizes f in a given round, then
(except with small error probability), more than 5/6 of the honest processors must have local pref
values that extend f by the end of that round, and that this will also be the case in all subsequent
rounds. This might seem to ensure that Pref∗ (() will extend f : since 5

6 ·
4
5 =

2
3 , and since (contains

at least 2=/3 starting votes, it is tempting to infer that more than half the votes in (must extend f .
A complexity here, however, is that this reasoning only applies if all Pref values are reported in the
same round. We can’t (easily) ensure that all correct processors enter 4+1 epoch in the same round,
meaning that some correct processors may send their Pref values in one round, while others send
them in the next round. To deal with this, we increase the V parameter from 12 to 14. This ensures
(except with small error probability) that, when a correct processor ?8 finalizes f , more than 11/12
of correct processors have local pref values that extend f by the end of the previous round, and
that this is also true in all subsequent rounds. If B and B + 1 are two consecutive rounds after ?8
finalizes f , and if we partition the correct processors arbitrarily so that some report their pref
value in round B , while the rest do so in round B +1, then at least 5/6 of the correct processors must
report values extending f .

The choice of quorum-based protocol. While any of the standard quorum-based protocols
could be implemented during odd epochs, for the sake of simplicity we give an exposition that
implements a form of Tendermint, and we assume familiarity with that protocol in what follows.
Let 5 ∗ be the greatest integer less than =/3. Recall that the instructions for Tendermint are divided
into rounds (sometimes called ‘views’). Within each round, there are two stages of voting, each
of which is an opportunity for processors to vote on a block proposed by the leader of the round.
The first stage of voting may establish a stage 1 quorum certificate (QC) for the proposed block,
which is a set of stage 1 votes from = − 5 ∗ distinct processors. In this event, the second stage may
establish a stage 2 QC for the block. The protocol also implements a locking mechanism. Processor
?8 maintains a value Q+. When they cast a stage 2 vote during round B , meaning that they have
seen some & which is a stage 1 QC for the proposal they are voting on, they set &+ := & .
In our version of Tendermint, each leader will make a proposal % , and other processors will then

vote on the proposal (so our ‘proposals’ play the role of blocks in Tendermint).

7.2 Further terminology

Weconsider the following new variables and other definitions (in addition to those used in previous
sections).

5 ∗: The greatest integer less than =/3.
e: The epoch in which ?8 is presently participating (initially 0).

stuckcount: Counts the number of consecutive rounds with final unchanged.

ready(4): Indicates whether we have already initialized values for epoch 4 . Initially, ready(4) = 0.
Processor ?8 sets ready(4) := 1 upon entering epoch 4 after initializing values so that it is ready
to start executing instructions for the epoch.

Init(4): This process is run at the beginning of even epoch 4 , and performs the following: Set
pref := final, stuckcount := 0, and for all f set count(f) := 0, primed(f) := 0, and make
val(f) undefined.
M: The set of all messages so far received by ?8 .

lead(B): The leader of round B while in an odd epoch. We set lead(B) = ? 9 , where 9 = B mod =.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 17

primed(f): Used to help implement the new decision rule. This value is initially 0, and is set to
1 when ?8 sees sufficiently many sampled final values extending f . In the next round, ?8 either
finalizes f (if the same holds again), or else resets primed(f) to 0.

Starting votes: A starting vote for epoch 4 is a message of the form (start, 4, f) for some f . For
any string f ′, we say that the starting vote (start, 4, f) extends f ′ if f ′ ⊆ f .

Starting certificates: A starting certificate for epoch 4 is set of at least 2=/3 starting votes for
epoch 4 , each signed by a different processor.

Pref∗ ((): If (is a starting certificate (SC) for epoch 4 , we set Pref∗ (() to be the longest f extended
by more than half of the messages in (.

Votes. A vote + (for a proposal) is entirely specified by the following values:

P(+): The proposal for which + is a vote.

st(+): The stage of the vote (1 or 2).
The empty proposal. We call ∅ the empty proposal, and also let ∅ be a stage 1 QC for the empty
proposal. We set r(∅) := 0. The empty proposal is"-valid for any set of messages" .

Proposals. A proposal % other than the empty proposal is entirely specified by the following
values:
r(%): The round corresponding to the proposal.
e(%): The epoch corresponding to the proposal.
par(%): A proposal which is called the parent of P.7

QCprev(%): A stage 1 QC for par(%).
final(%): The value that % attempts to finalize.
SC(%): A starting certificate justifying the proposed value for finalization.

"-valid proposals. Let " be a set of messages. A proposal % other than the empty proposal is
"-valid if it satisfies all of the following:

• % ∈ " .
• % has the empty proposal as an ancestor.
• par(%) is"-valid.
• If par(%) is not the empty proposal, then e(%) = e(par(%)).
• If par(%) is not the empty proposal, then final(%) = final(par(%)).
• QCprev(%) is a stage 1 QC for par(%).
• SC(%) is a starting certificate for epoch e(%).
• final(%) extends Pref∗ (SC(%)).

An M-valid proposal for round B . Let M, blocks and e be as locally defined for ?8 . While in round
B , at time 3BΔ + Δ, ?8 will regard the proposal % as an M-valid proposal for round B if all of the
following are satisfied:

• % is M-valid.
• r(%) = B and % is signed by lead(B).
• e(%) = e.
• There exists a chain � = 10∗· · ·∗1ℎ such that final(%) = �� and, for 9 ∈ [1, ℎ],1 9 ∈ blocks.

7We adopt similar terminology for proposals and blocks: If % ′ is the parent of % , then % is referred to as a child of % . In this

case, the ancestors of % are % and any ancestors of % ′. The descendants of any proposal % are % and any descendants of its

children.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 18

"-confirmed proposals. For any set of messages" , a proposal % is"-confirmed if a descendant
% ′ of % (possibly % itself) is "-valid and" contains a stage 2 QC for % ′.

Epoch certificates. For any fixed f , a set of messages of size at least=/5, each signed by a different
processor and of the form (stuck, 4, f), is called an epoch certificate (EC) for epoch 4 + 1.

Quorum certificates. If % is any proposal other than the empty proposal, then, by a stage G QC
for % , we mean a set of votes & of size = − 5 ∗, each signed by a different processor, and such
that P(+) = % and st(+) = G for each + ∈ & . If & is a (stage 1 or 2) QC for % , then we define
r(&) := r(%).
The procedure MakeProposal. If ?8 = lead(B), then this procedure is used by ?8 while in odd
epochs to send an appropriate proposal to all:

• If ?8 has not seen an SC for epoch 4 , then do not send any proposal. Otherwise, let (be such
an SC and proceed as follows.

• Let B′ be the greatest such that M contains an M-valid proposal % ′ with r(% ′) = B′, e(% ′) = e

if B′ > 0, and such that M also contains & which is a stage 1 QC for % ′.
• Set r(%) := B , e(%) := e, par(%) := % ′ , QCprev(%) := & .
• If B′ = 0, i.e. if % ′ is the empty proposal, then proceed as follows. Set SC(%) := (. Let � =

10 ∗ · · · ∗ 1ℎ be a chain such that �� extends Pref∗ (() and, for 9 ∈ [1, ℎ], 1 9 ∈ blocks (if
there exists no such � then do not send a proposal). Set final(%) := �� .

• If B′ > 0, then set SC(%) := SC(% ′) and final(%) := final(% ′).
• Send % to all.

Conventions regarding the gossiping of blocks, proposals and QCswhile in an odd epoch.
While in odd epochs, we suppose that correct processors automatically gossip received blocks,
proposals and QCs for proposals. This means that if ?8 is correct and sees a QC (for example) at
time C , then all correct processors see that QC by time C + Δ. When ?8 sends a message to all, it is
also convenient to assume ?8 regards that message as received (by ?8) at the next timeslot.

For ease of reference, inputs and local variables are listed in the table below. The pseudocode
appears in Algorithms 3 and 4.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 19

Frosty: The inputs and local values for processor ?8
Inputs
Δ, :, U1, U2, U3, V, W ∈ N
Local values

val(f), initially undefined.
count(f), initially set to 0
primed(f), initially set to 0
stuckcount, initially set to 0
rpref(9 , B), initially undefined
final(9 , B), initially undefined
blocks, initially contains just 10
pref, initially set to � (10)
final, initially set to � (10)
e, initially set to 0
ready(4), initially set to 0 for all 4 ∈ N≥0
Q+, initially set to ∅
M, initially contains just 10
P, initially undefined

8 FROSTY: CONSISTENCY AND LIVENESS ANALYSIS

We give an analysis for the case that : = 80, U1 = 41, U2 = 72, U3 = 48, V = 14, W ≥ 300, and under
the assumption that = ≥ 500 and 5 < =/5. As before, we make the assumption that = ≥ 500 only
so as to be able to give as simple a proof as possible: a more fine-grained analysis for smaller = is
the subject of future work.

8.1 The proof of consistency

Section 6 already established that Snowman satisfies consistency (except with small error prob-
ability). To establish consistency for Frosty, we must show that, if an odd epoch 4 finalizes any
value, then it finalizes a single value extending any values finalized by correct processors during
previous epochs. Before considering the instructions during odd epochs, however, there are three
new complexities with respect to the instructions during an even epoch 4 , which we must check
cannot lead to a consistency violation during the same epoch:

(i) The new decision rule.
(ii) Players may not enter epoch 4 + 1 entirely simultaneously.
(iii) Players may not enter epoch 4 entirely simultaneously.

Dealing with (i). Suppose ?8 is correct. A calculation for the binomial distribution shows that the
probability that at least 3/5 of ?8 ’s sample sequence in a given round are Byzantine is less than
10−14. The probability that this happens in two given consecutive rounds is therefore less than
10−28. We may therefore condition on the following event (letting final(9 , B) and final(9 , B + 1)
be as locally defined for ?8 at the end of rounds B and B + 1 respectively):

(⋄0): If there exists B and f such that |{ 9 ∈ [1, :] : final(9 , B) ⊇ f}| ≥ U3 and |{ 9 ∈ [1, :] :
final(9 , B +1) ⊇ f}| ≥ U3, then some correct processor has already finalized a value extend-
ing f by the end of round B .

Conditioned on (⋄0), it is not possible for the new decision rule to cause a first consistency viola-
tion.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 20

Algorithm 3 Frosty: The instructions for processor ?8 while e is even

1: At every C if ready(e) == 0 then Init(4), set ready(4) := 1; ⊲ Initialise values for epoch e

2:

3: At C = 3ΔB if ready(e) == 1: ⊲ For any B ∈ N≥1
4: Form sample sequence 〈?1,B , . . . ?:,B〉; ⊲ Sample with replacement
5: For 9 ∈ [1, :], send (B, e) to ? 9,B ; ⊲ Ask ? 9,B for preferred chain
6: If M contains an EC for epoch e + 1: send the EC to all, set e := e + 1; ⊲ Enter next epoch
7:

8: At C = 3ΔB + Δ if ready(e) == 1:
9: For each 9 such that ?8 has received (B, e) from ? 9 :
10: Send (B, e, chain(pref), chain(final)) to ? 9 ; ⊲ Report present values to ? 9

11: If M contains an EC for epoch e + 1: send the EC to all, set e := e + 1; ⊲ Enter next epoch
12:

13: At C = 3ΔB + 2Δ if ready(e) == 1:
14: Form sample sequence 〈?1,B , . . . ?:,B〉 if not already formed.
15: For each 9 ∈ [1, :]:
16: If ?8 has received a first message (B, e, �1, �2) from ? 9,B s.t. �1, �2 are chains;
17: Set rpref(9 , B) := ��1 , final(9 , B) := ��2 ; ⊲ Record values from ? 9,B

18: Else set rpref(9 , B) := � (10), final(9 , B) := � (10);
19: If M contains an EC for epoch e + 1: send the EC to all, set e := e + 1; ⊲ Enter next epoch
20:

21: At C = 3ΔB + 2Δ if ready(e) == 1: ⊲ Execute instructions above first and re-check ready(e)
22: Set �∗ := {1 ∈ block : 1 is a child of last(final)};
23: Set pref := final, end := 0. If �∗ is non-empty: stuckcount + +;
24: While end == 0 do: ⊲ Iteration to determine pref for round B + 1
25: Set � := {1 ∈ block : 1 is a child of last(pref) and pref ⊆ reduct(pref) ∗� (1)};
26: If � is empty, set end := 1;
27: Else: ⊲ Carry out the next instance of Snowflake+

28: If val(pref) is undefined:
29: Let 1 be the first block in � enumerated into block;
30: Set val(pref) to be the (|pref| + 1)th bit of reduct(pref) ∗� (1);
31: If |{ 9 ∈ [1, :] : rpref(9 , B) ⊇ pref ∗ 1 − val(pref)}| ≥ U1:
32: Set val(pref) := 1 − val(pref); For all f ⊇ pref, set count(f) := 0;
33: If |{ 9 ∈ [1, :] : rpref(9 , B) ⊇ pref ∗ val(pref)}| < U2:
34: For all f ⊇ pref, set count(f) := 0;
35: If |{ 9 ∈ [1, :] : rpref(9 , B) ⊇ pref ∗ val(pref)}| ≥ U2: count(pref) + +;
36: If count(pref) ≥ V:
37: Set final := pref ∗ val(pref), stuckcount := 0; ⊲ Finalize and reset stuckcount
38: If count(pref) < V then for G ∈ {0, 1} do: ⊲ New decision rule
39: If |{ 9 ∈ [1, :] : final(9 , B) ⊇ pref ∗ G}| ≥ U3:
40: If primed(pref ∗ G) == 1; ⊲ previous round primed pref ∗ G for finalization
41: Set final := pref ∗ G , stuckcount := 0; ⊲ Finalize and reset stuckcount
42: Else set primed(pref ∗ G) := 1; ⊲ Prime pref ∗ G for finalization
43: Else set primed(pref ∗ G) := 0;
44: Set pref := pref ∗ val(pref);
45: If stuckcount ≥ W then send (stuck, e, final) to all; ⊲ After completing while loop

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 21

Algorithm 4 Frosty: The instructions for processor ?8 while e is odd

1: At every C if ready(e) == 0 then:
2: Send (start, e, pref) to all; ⊲ Send starting vote
3: Set Q+ := ∅; ⊲ Initialize Q+

4: Set ready(4) := 1;
5:

6: At every C , if there exists proposal % ∈ M with e(%) == e which is M-confirmed then:
7: Set final := final(%); ⊲ Finalize next block
8: Set e := e + 1; ⊲ Enter next epoch. Others will do so within Δ (due to gossiping)
9:

10: At C = 3ΔB if lead(B) == 8 : ⊲ For any B ∈ N≥1
11: MakeProposal;
12:

13: At C = 3ΔB + Δ:
14: Set P to be undefined.
15: If ?8 has received a first M-valid proposal % for round B and r(QCprev(%)) ≥ r(Q+):
16: Set P := % ;
17: Send vote + to all, with P(+) := P, st(+) := 1; ⊲ Send stage 1 vote
18:

19: At C = 3ΔB + 2Δ:
20: If P is defined and ?8 has received a first & which is a stage 1 QC for P:
21: Set Q+ := & ; ⊲ Set lock
22: Send vote + to all, with P(+) := P, st(+) := 2; ⊲ Send stage 2 vote

Dealing with (ii). If any correct processor enters epoch 4 + 1 at C , then they send an EC for epoch
4 + 1 to all. All correct processors therefore enter epoch 4 + 1 by C + Δ. In particular, this means
that if correct ?8 is in epoch 4 at time 3BΔ + 2Δ (when considering values reported during round B),
no correct processor will have entered epoch 4 + 1 prior to reporting their values during round B
(lines 8–11 of the pseudocode). The distribution on reported values is thus unaffected by the fact
that some correct processors may have already entered epoch 4 + 1 at that point.

Dealing with (iii). If 4 > 0 is even and some correct processor enters epoch 4 at C because there
exists % ∈ M with e(%) = 4 − 1 which is M-confirmed, then (due to the gossiping of blocks and
QCs) all correct processors will enter epoch 4 by C + Δ. The arguments of Section 6 are unaffected
if we allow that some correct processors only begin executing instructions midway through the
first round of an epoch (this just means that some correct processors might not report values or
ask for values in the first round).

Let M be as locally defined for correct ?8 and say that a proposal % becomes confirmed for ?8 if
there is some timeslot at which % is M-confirmed. Suppose 4 is odd and that no consistency violation
occurs prior to the first point at which any correct processor enters epoch 4 . To complete the proof
of consistency, it suffices to establish the two following claims:

Claim 1. If the proposal % with e(%) = 4 becomes confirmed for correct ?8 , then final(%) extends
any values finalized by correct processors during previous epochs.

Claim 2. If % and % ′ are proposals with e(%) = e(% ′) = 4 , and if % becomes confirmed for correct
?8 and %

′ becomes confirmed for correct ? 9 , then final(%) = final(% ′).

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 22

Establishing Claim 1. If the proposal % becomes confirmed for correct ?8 , then some correct
processors must produce votes for the proposal, which implies that:

• SC(%) is a starting certificate for epoch 4 .
• final(%) extends Pref∗ (SC(%)).

We argued in Section 6 that, when V = 12, if some correct processor is the first to finalize the value
f and does so in some round B + 11, say, then at least one round B′ ∈ [B, B + 11] must satisfy the
condition that at least 75% of correct processors have local pref values extending f in round B′ and
that at least 5/6 of the correct processors must have local pref values extending f (by the end of
round B′ and) in all rounds > B′. Now consider Frosty for the case that V = 14. Suppose that some
correct processor is the first to finalize the value f while in epoch 4 − 1 and does so in some round
B + 13 (the case that no processor finalizes any new values while in epoch 4 − 1 is similar). Then,
by the same reasoning as in Section 6, at least one round B′ ∈ [B, B + 11] must satisfy the condition
that at least 5/6 of correct processors have local pref values extending f at the end of round B′.
Let B′′ be the greatest round such that some correct processor completes round B′′ before entering
epoch 4 . A calculation for the binomial then shows that, except with small error probability, at the
end of each round in [B +12, B′′] (and even if some correct processors have already moved to epoch
4 during round B′′), at least 11/12 of the correct processors must have local pref values extending
f . Note that the local pref values reported by correct processors in the starting certificate SC(%)
are either those defined at the end of round B′′ or round B′′ − 1. We conclude that at least 5/6 of
correct processors must send starting votes of the form (start, 4, pref) such that pref extends f .
Since SC(%) contains at least 2=/3 starting votes, more than half the votes in SC(%) must extend f ,
so that final(%) extends f , as required.
Establishing Claim 2. Towards a contradiction, suppose there exists some least B and some least
B′ ≥ B such that:

• Some proposal % with e(%) = 4 and r(%) = B receives stage 1 and 2 QCs, &1 and &2 respec-
tively;

• Some proposal % ′ with e(% ′) = 4 and r(%) = B′ receives a stage 1 QC, & ′
1;

• final(%) ≠ final(% ′).
Suppose first that B = B′. Then, since each QC contains votes from at least = − 5 ∗ distinct pro-
cessors, some correct processor must produce votes in both &1 and & ′

1. This gives an immediate
contradiction, because correct processors do not produce more than one stage 1 vote in any single
round.
So, suppose that B′ > B . In this case, some correct processor ?8 must produce votes in both &2

and & ′
1. Since final(%) ≠ final(% ′), our choice of B and B′ implies that r(QCprev(% ′)) < B . We

reach a contradiction because ?8 sets its lock Q+ so that r(Q+) = B while in round B , and so would
not vote for % ′ in round B′ (line 15 of the pseudocode).

The accumulation of small error probabilities. The analysis is the same as in Section 6, except
that we must now account for two new assumptions on which we have conditioned in the argu-
ment above. Previously, we assumed that if at least 75% of the correct processors have local pref
values extending f at the beginning of round B , then at least 5/6 of the correct processors will have
pref values extending f by the end of round B . Now, we require the additional assumption that if
5/6 of the correct processors have local pref values extending f at the beginning of round B , then
at least 11/12 of the correct processors will have pref values extending f by the end of round B .
For a given round B , a calculation for the binomial distribution shows that this holds, except with
probability at most 2 × 10−47. If there are five rounds per second then, over a period of 1000 years,

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 23

this means that less than 1.6 × 1011 rounds are executed. Applying the union bound, we conclude
that this adds less than 4 × 10−36 to the cumulative error probability.
We must also account for the new decision condition. As noted previously, a calculation for the

binomial distribution shows that if ?8 is correct then the probability that at least 3/5 of ?8 ’s sample
sequence in a given round are Byzantine is less than 10−14. The probability that this happens in
two given consecutive rounds is therefore less than 10−28. If at most 10,000 processors execute at
most 5 rounds per second for 1000 years, this therefore adds less than 2 × 10−13 to the cumulative
error probability.
Overall, the same error bound of 3 × 10−5 that was established in Section 4 can be seen to hold

here.

8.2 The proof of liveness

Throughout this section, we assume that the value �∗ (specified in line 22 of the pseudocode for
even epochs) is never empty for correct ?8 , i.e. there are always new blocks to finalize.

Defining finalC . At any timeslot C , let finalC be the shortest amongst all local values final for
correct processors (by Section 8.1 this value is uniquely defined, except with small error probabil-
ity).

The proof of liveness breaks into two parts:

Claim 3. Suppose that all correct processors are in even epoch 4 at C . Then, except with small error
probability, either finalC+6ΔW properly extends finalC or else all correct processors enter epoch
4 + 1 by time C + 6ΔW .

Claim 4. If all correct processors enter the odd epoch 4 + 1, this epoch finalizes a new value.

In Claim 4, the number of rounds during epoch 4 + 1 required to finalize a new value is bounded
by the maximum number of consecutive faulty leaders. Since we make the simple choice of using
deterministic leader selection during odd epochs, this means that the number of required rounds
is$ (5), but one could ensure the number of required rounds is$ (1) and maintain a small chance
of liveness failure by using random leader selection.

Establishing Claim 3. Given the conditions in the statement of the claim, let �⋄ be the set of
correct processors that have local final values properly extending finalC at time C1 := C + 3ΔW .
If |�⋄ | ≤ 3=/5, then at least =/5 correct processors send epoch 4 + 1 messages (stuck, 4, finalC)
by time C1, and all correct processors enter epoch 4 + 1 by time C1 + Δ. So, suppose |�⋄ | > 3=/5
and that it is not the case all correct processors enter epoch 4 + 1 by time C + 6ΔW . Let G ∈ {0, 1}
be such that some correct processor finalizes finalC ∗ G , and (by consistency) condition on there
existing a unique such G . Consider the instructions as locally defined for correct ?8 when executing
any round B of epoch 4 that starts subsequent to C1. A calculation for the binomial shows that the
probability |{ 9 ∈ [1, :] : final(9 , B) ⊇ finalC ∗ G}| ≥ 48 is at least 0.548. The probability that
this holds in both of any two such consecutive rounds B and B + 1 is therefore at least 0.3. Since we
suppose W ≥ 300, the probability that ?8 fails to finalize a value extending finalC by time C + 6ΔW
is therefore at most 0.71150 < 10−22.

Establishing Claim 4. Towards a contradiction, suppose that all correct processors enter odd
epoch 4 + 1, but that the epoch never finalizes a new value. Let C = 3ΔB be such that lead(B) is
correct and all correct processors are in epoch 4 + 1 at C , with their local value ready(4 + 1) equal
to 1. Let B′ be the greatest such that any correct processor has a local value Q+ at C with r(Q+) = B′.
Note that either B′ = 0, or else any correct processor that has set is local value Q+ so that r(Q+) = B′,
did so at a timeslot ≤ C − Δ. According to our conventions regarding the gossiping of QCs, this

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 24

means that lead(B) will receive a QC, & say, with r(&) ≥ B′ by C . The correct processor lead(B)
will then send out a proposal % during round B that will be regarded as an M-valid proposal for
round B by all correct processors. If Q+ is as locally defined for any correct processor at C +Δ, % will
also satisfy the condition that r(QCprev(%)) ≥ r(Q+). All correct processors will therefore send
stage 1 and 2 votes for % , and % will be confirmed for all correct processors.

A comment on the finalization of blocks produced by correct leaders and the length of

odd epochs. For the sake of simplicity, we have structured the instructions for odd epochs so as
to ensure the finalization of one more block, rather than so as to ensure the finalization of at least
one more block produced by a correct leader. Of course, one could achieve the latter result simply
by running odd epochs until at least 5 + 1 distinct leaders have produced finalized blocks.

9 RELATED WORK

The Snow family of consensus protocols was introduced in [30]. Subsequent to this, Amores-Sesar,
Cachin and Tedeschi [3] gave a complete description of the Avalanche protocol8 and formally es-
tablished security properties for that protocol, given an $ (

√
=) adversary and assuming that the

Snowball protocol (a variant of Snowflake+) solves probabilistic Byzantine Agreement for such
adversaries. The authors also described (and provided a solution for) a liveness attack. As noted in
[3], the original implementation of the Avalanche protocol used by the Avalanche blockchain (be-
fore replacing Avalanche with a version of Snowman that totally orders transactions) had already
introduced modifications avoiding the possibility of such attacks.
In [2], Amores-Sear, Cachin and Schneider consider the Slush protocol and show that coming

close to a consensus already requires a minimum of Ω
(

log =
log :

)

rounds, even in the absence of ad-

versarial influence. They show that Slush reaches a stable consensus in $ (log =) rounds, and that
this holds even when the adversary can influence up to $ (

√
=) processors. They also show that

the Ω
(

log =
log :

)

lower bound holds for Snowflake and Snowball.

There is a vast literature that considers a closely related family of models, from the Ising model

[9] as studied in statistical mechanics, to voter models [19] as studied in applied probability and
other fields, to the Schelling model of segregation [31] as studied by economists (and more recently
by computer scientists [4, 8] and physicists [24–26]). Within this family of models there are many
variants, but a standard approach is to consider a process that proceeds in rounds. In each round,
each participant samples a small number of other participants to learn their present state, and
then potentially updates their own state according to given rule. A fundamental difference with
our analysis here is that, with two exceptions (mentioned below), such models do not incorporate
the possibility of Byzantine action. Examples of such research aimed specifically at the task of
reaching consensus include [6, 11–13, 15, 18] (see [5] for an overview). Amongst these papers, we
are only aware of [6] and [13] considering Byzantine action, and those two papers deal only with
an $ (

√
=) adversary.

FPC-BI [28, 29] is a protocol which is closely related to the Snow family of consensus protocols,
but which takes a different approach to the liveness issue (for adversaries which are larger than
$ (

√
=)) than that described here. The basic idea behind their approach is to use a common random

coin to dynamically and unpredictably set threshold parameters (akin to U1 and U2 here) for each
round, making it much more difficult for an adversary to keep the honest population split on

8The Avalanche protocol is a DAG-based variant of Snowman that does not aim to produce a total ordering on transactions,

and was only described at a high level in [30]. It is not used in the present instantiation of the Avalanche blockchain.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 25

their preferred values. Since the use of a common random coin involves practical trade-offs, their
approach and ours may be seen as complementary.

10 FINAL COMMENTS

In this paper, we have considered the case that the adversary controls at most 5 < =/5 processors.
We described the protocol Snowflake+ and showed that it satisfies validity and agreement, except
with small error probability. We showed how Snowflake+ can be adapted to give an SMR protocol,
Snowman, which satisfies consistency, except with small error probability. We then augmented
Snowman with a liveness module, to form the protocol Frosty, which we proved satisfies liveness
and consistencty except with small error probability.We note that Avalanche presently implements
Snowflake, rather than Snowflake+, and uses different parameters than those used in the proofs
here. Snowflake+ was implemented a few months prior to the writing of this paper, but is not
yet activated. Error-driven Snowflake+ is planned for implementation in the coming months. The
community may consider adopting the parameters proposed in this paper because they provide a
good tradeoff between consistency and latency.

In future work, we aim to expand the analysis here as follows:

(i) The bounds 5 < =/5 and = ≥ 500 were used only so as to be able to give as simple a proof
as possible in Section 4. In subsequent papers, we intend to carry out a more fine-grained
analysis for smaller = and larger 5 .

(ii) The analysis here was simplified by the assumption that processors execute instructions in
synchronous rounds. In a follow-up work, we will show how the methods described here
can be adapted to give formal proofs of consistency and liveness for a responsive form of the
protocol, allowing each processor to proceed individually through rounds as fast as network
delays allow.

(iii) While the liveness module described here achieves (probabilistic) liveness when 5 < =/5, we
aim to explore ways in which slashing can be implemented for liveness attacks. For 5 < =/3
this may be possible, if one can show that liveness attacks require the adversary either to
give provably false information to others, or else execute sampling that is provably biased.

11 ACKNOWLEDGEMENTS

The authors would like to thank Christian Cachin, Philipp Schneider, and Ignacio Amores Sesar
for a number of very useful conversations.

REFERENCES

[1] Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine Shi. Communication

complexity of byzantine agreement, revisited. In Proceedings of the 2019 ACM Symposium on Principles of Distributed

Computing, pages 317–326, 2019.

[2] Ignacio Amores-Sesar, Christian Cachin, and Philipp Schneider. An analysis of avalanche consensus. arXiv preprint

arXiv:2401.02811, 2024.

[3] Ignacio Amores-Sesar, Christian Cachin, and Enrico Tedeschi. When is spring coming? a security analysis of

avalanche consensus. arXiv preprint arXiv:2210.03423, 2022.

[4] George Barmpalias, Richard Elwes, and Andy Lewis-Pye. Digital morphogenesis via schelling segregation. In 2014

IEEE 55th Annual Symposium on Foundations of Computer Science, pages 156–165. IEEE, 2014.

[5] Luca Becchetti, Andrea Clementi, and Emanuele Natale. Consensus dynamics: An overview. ACM SIGACT News,

51(1):58–104, 2020.

[6] Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca Trevisan. Stabilizing consensus

with many opinions. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages

620–635. SIAM, 2016.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In International conference on

the theory and application of cryptology and information security, pages 514–532. Springer, 2001.

Aaron Buchwald, Stephen Buttolph, Andrew Lewis-Pye, Patrick O’Grady, and Kevin Sekniqi 26

[8] Christina Brandt, Nicole Immorlica, Gautam Kamath, and Robert Kleinberg. An analysis of one-dimensional schelling

segregation. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 789–804, 2012.

[9] Stephen G Brush. History of the lenz-ising model. Reviews of modern physics, 39(4):883, 1967.

[10] Jing Chen and Silvio Micali. Algorand. arXiv preprint arXiv:1607.01341, 2016.

[11] Colin Cooper, Robert Elsässer, and Tomasz Radzik. The power of two choices in distributed voting. In International

Colloquium on Automata, Languages, and Programming, pages 435–446. Springer, 2014.

[12] Emilio Cruciani, Hlafo AlfieMimun,MatteoQuattropani, and Sara Rizzo. Phase transitions of the k-majority dynamics

in a biased communication model. In Proceedings of the 22nd International Conference on Distributed Computing and

Networking, pages 146–155, 2021.

[13] Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Christian Scheideler. Stabilizing con-

sensus with the power of two choices. In Proceedings of the twenty-third annual ACM symposium on Parallelism in

algorithms and architectures, pages 149–158, 2011.

[14] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. Journal of the ACM

(JACM), 32(1):191–204, 1985.

[15] Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Frederik Mallmann-Trenn, and Horst Trinker. Brief announcement:

rapid asynchronous plurality consensus. In Proceedings of the ACM symposium on principles of distributed computing,

pages 363–365, 2017.

[16] Juan A Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications. 2018.

[17] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang. Jolteon and

ditto: Network-adaptive efficient consensus with asynchronous fallback. In International conference on financial cryp-

tography and data security, pp. 296-315. Cham: Springer International Publishing, 2022.

[18] Mohsen Ghaffari and Johannes Lengler. Nearly-tight analysis for 2-choice and 3-majority consensus dynamics. In

Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pages 305–313, 2018.

[19] Richard A Holley and Thomas M Liggett. Ergodic theorems for weakly interacting infinite systems and the voter

model. The annals of probability, pages 643–663, 1975.

[20] Valerie King and Jared Saia. Breaking the o (n 2) bit barrier: scalable byzantine agreement with an adaptive adversary.

Journal of the ACM (JACM), 58(4):1–24, 2011.

[21] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[22] Andrew Lewis-Pye and Tim Roughgarden. Permissionless consensus. arXiv preprint arXiv:2304.14701, 2023.

[23] Patrick O’Grady. Apricot Phase Four: Snowman++ and Reduced C-Chain Transaction Fees.

https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf

[24] Hamed Omidvar and Massimo Franceschetti. Self-organized segregation on the grid. In Proceedings of the ACM

Symposium on Principles of Distributed Computing, pages 401–410, 2017.

[25] Hamed Omidvar and Massimo Franceschetti. Improved intolerance intervals and size bounds for a schelling-type

spin system. Journal of Statistical Mechanics: Theory and Experiment, 2021(7):073302, 2021.

[26] Diego Ortega, Javier Rodríguez-Laguna, and Elka Korutcheva. A schelling model with a variable threshold in a closed

city segregation model. analysis of the universality classes. Physica A: Statistical Mechanics and its Applications,

574:126010, 2021.

[27] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. Cryptology ePrint

Archive, 2016.

[28] Serguei Popov andWilliam J Buchanan. Fpc-bi: Fast probabilistic consensus within byzantine infrastructures. Journal

of Parallel and Distributed Computing, 147:77–86, 2021.

[29] Serguei Popov and Sebastian Müller. Voting-based probabilistic consensuses and their applications in distributed

ledgers. Annals of Telecommunications, pages 1–23, 2022.

[30] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer. Scalable and probabilistic lead-

erless bft consensus through metastability. arXiv preprint arXiv:1906.08936, 2019.

[31] Thomas C Schelling. Models of segregation. The American economic review, 59(2):488–493, 1969.

[32] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing

Surveys (CSUR), 22(4):299–319, 1990.

[33] Victor Shoup. Practical threshold signatures. In Advances in Cryptology—EUROCRYPT 2000: International Conference

on the Theory and Application of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings 19, pages

207–220. Springer, 2000.

https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf

	Abstract
	1 Introduction
	2 The model
	3 A simple protocol for Byzantine Agreement: Snowflake+.
	4 Security analysis of Snowflake+
	4.1 Error-driven Snowflake+

	5 The Snowman protocol
	5.1 Transactions and blocks
	5.2 Overview of the Snowman protocol

	6 Consistency analysis for Snowman
	7 Frosty
	7.1 Overview of Frosty
	7.2 Further terminology

	8 Frosty: Consistency and liveness analysis
	8.1 The proof of consistency
	8.2 The proof of liveness

	9 Related work
	10 Final comments
	11 Acknowledgements
	References

