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Abstract: (1) Background: “Kidney Disease: Improving Global Outcomes” (KDIGO) provides
guidelines for identifying the stages of acute kidney injury (AKI) and chronic kidney disease (CKD).
A data-driven rule-based engine was developed to determine KDIGO staging compared to KD-
related keywords in discharge letters. (2) Methods: To assess potential differences in outcomes,
we compare the patient subgroups with exact KDIGO staging to imprecise or missing staging for
all-cause mortality, in-hospital mortality, selection bias and costs by applying Kaplan–Meier analysis
and the Cox proportional hazards regression model. We analysed 63,105 in-patient cases from 2016 to
2023 at a tertiary hospital with AKI, CKD and acute-on-chronic KD. (3) Results: Imprecise and
missing CKD staging were associated with an 85% higher risk of all-cause and in-hospital mortality
(CI: 1.7 to 2.0 and 1.66 to 2.03, respectively) compared to exact staging for any given disease status;
imprecise or missing AKI staging increased in-hospital mortality risk by 56% and 57% (CI: 1.43 to
1.70 and 1.37 to 1.81, respectively) in patients with AKI. (4) Conclusions: Exact staging is associated
with better outcomes in KD management. Our study provides valuable insight into potential quality
and outcome improvements and lower costs, considering elderly patients, women and patients with
acute-on-chronic KD as the most vulnerable.

Keywords: data-driven diagnosis; electronic health records; digital markers; rule engine; precision
medicine; real-world data; kidney disease; KDIGO staging

1. Introduction

Global priorities are changing to an increased focus on non-communicable diseases
(NCD). Kidney disease (KD) is one of the ten most important fastest-growing drivers
of burden [1] and a significant contributor to mortality and disability. However, the
uncertainty of obtaining a baseline and KD’s mostly asymptomatic progression complicates
the diagnostic and staging process. In 2017, 697.5 million cases of all-stage CKD were
recorded worldwide, with a global prevalence of 9.1% (8.5 to 9.8) [1,2]. Neuen describes
the importance of CKD for the global NCD agenda [3]. According to the Burden of Disease
scenarios for 204 countries and territories, a forecasting analysis for the Global Burden of
Disease Study 2021, diabetes and kidney disease are the two most extensive Level 2 causes
of the increase in the number of disability-adjusted life years (DALYs), from 117.3 million
(103.7–134.3) in 2022 to 240.1 million in 2050 (192.6–287.8) [4].
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Historically, more than 35 definitions of KD have been proposed, reflecting the dif-
ficulty of capturing the disease pattern; the uncertainty of obtaining a baseline and the
mostly asymptomatic progression complicates the staging process [5]. Considering the
underlying physiological processes of acute kidney injury (AKI) and chronic kidney disease
(CKD) as a unified and bidirectional clinical syndrome facilitates effective prevention and
treatment strategies [6–10]. In 2012, the “Kidney Disease: Improving Global Outcomes”
(KDIGO) clinical practice guideline harmonised these definitions into one universal set of
criteria [5].

The definition of KD requires a multi-level analysis of a patient’s recent and historical
laboratory values. If conducted manually, the calculation is prone to errors and time-
consuming, often aggravated by the baseline uncertainty. Although it is possible to detect
KD using routine laboratory data, many clinicians currently fail to assess KD correctly.

Why might it be essential to assess the KD stage correctly? The treatment approach
for kidney disease varies significantly depending on the stage; correctly assessing the stag-
ing helps monitor and prevent complications and disease progression. KDIGO provides
recommendations for KD management based on the stage. For AKI, actions such as discon-
tinuing nephrotoxic agents, avoiding radiocontrast procedures, ensuring sufficient volume
status and perfusion pressure, monitoring kidney function and timely consideration of
Intensive Care Unit (ICU) admission and Renal Replacement Therapy (RRT) are connected
to the defined stages of functional impairment. These actions can be supported by using
Clinical Decision Support Systems (CDSSs). Multiple clinical practice guidelines for early
identification, treatment and the beneficial usage of CDSSs are available [11–14].

Decisions made by health professionals influence disease progression and
survival [7,15–19]. Considering the high costs of treatment of KD and KD-associated
complications, the incentive to reduce the risk of complications and progression of the
disease is high. Internationally, early detection, including proteinuria or microalbuminuria
screening, is considered cost-effective [11,20–27]. In the UK, a mandatory CDSS within
all acute National Health Service (NHS) trusts was introduced in 2015 to improve the
detection, alerting and response to AKI. This intervention led to a 22% improvement in
hospital AKI 3 recoveries [28]. The NHS has published numerous guidelines for detecting
and treating KD and has made best practice recommendations [12].

CDSSs often need to be more comprehensive. The usefulness of the existing tools
and health care standardisation might be perceived as controversial or constraining or
considered a countertrend to personalised medicine. On the other hand, the current
decision-making process needs to be better understood, and the consequences of the ad
hoc approach need to be uncovered.

Although standardised staging is widely accepted in different fields of medicine, the
currently observed KD staging process is more intuition-driven and, to some extent, ran-
dom. In 2018, our hospital developed and validated a near-real-time data-driven rule engine
(“DDD” for Data-Driven Diagnosis) to support the clinical diagnostic and staging processes.
The main goal of the DDD rule engine was to implement the compulsory, automatised
KDIGO classification of KD based on routinely administrated laboratory measurements [29].
Glomerular filtration rates (eGFRs CKD-EPI 2009 equation [30]), plasma/serum creatinine
(SCr) and the albumin-to-creatinine ratio (ACR) were used to calculate an individual
baseline and incremental change for each patient treated.

According to the KDIGO Clinical Practice Guidelines (2012) [31], the AKI stages are
defined as follows:

• Stage 3: increase in SCr from under 4 mg/dL (353.6 µmol/L) to over 4 mg/dL within
7 days;

• Stage 3: increase in SCr by 200% or more within 7 days;
• Stage 2: increase in SCr by 100–200% within 7 days;
• Stage 1: increase in SCr by 50–100% within 7 days;
• Stage 1: increase in SCr by 0.3 mg/dL (26.52 µmol/L) within 48 h.
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CKD is defined according to the KDIGO Clinical Practice Guideline for the Evaluation
and Management of CKD (2012), i.e., a decreased GFR of <60 mL/min/1.73 m2, an albumin
creatinine ratio (ACR) of >30 mg/g (>3 mg/mmol) or a history of kidney transplantation
(estimated according to the CKD-EPI equation). GFR categories are assigned as follows:

• Stage 5: all values under 15 mL/min/1.73 m2 for >91 days;
• Stage 4: all values under 30 mL/min/1.73 m2 for >91 days;
• Stage 3: all values under 60 mL/min/1.73 m2 for >91 days;
• Stage 2: all values under 90 mL/min/1.73 m2 for >91 days.

The KDIGO guidelines do not specifically define a baseline; however, several methods
were compared for baseline estimation [31,32]. In our approach, we defined the baseline
value as either the lowest value during hospitalisation or the arithmetic mean of all available
SCr measurements 90 days before the index admission.

Albuminuria is integrated into the KDIGO staging as a marker of kidney damage and
has an essential prognostic value; the ACR values are defined as follows:

• Severely increased: SCr (µmol/L)/albumin (g/L) > 30 mg/g;
• Moderately increased: SCr (µmol/L)/albumin (g/L) between 3 and 30 mg/g;
• Normal to mildly increased: SCr (µmol/L)/albumin (g/L) < 30 mg/g.

The rule engine was designed to meet the criteria for certification to the software
standards for medical devices. The validation included a testing with synthetic data (Phase
1), with an annotated real-world data set (Phase 2) and a proof-of-concept testing (Phase 3).
The outputs of the rule engine were presented in a confusion matrix and used for release
approval, aiming for 100% accuracy in identifying true positive and true negative cases.

The initial goal of a near-real-time alert system has yet to be realised, primarily due
to the generally slow adoption of CDSSs in Switzerland, which means that the DDD rule
engine is disconnected from the clinical treatment process. As of 2018, this rule engine has
been used productively to identify, validate and encode the diagnoses retrospectively after a
patient’s discharge using the International Classification of Diseases, German Modification
(ICD-10 GM). A list of the ICD-10 GM diagnoses and the corresponding KDIGO KD stages
is available in Supplementary File S1.

The coding experts review and validate each diagnosis generated by the rule engine
by cross-referencing the information from the electronic health record system (EHR). If
necessary, they also confirm the diagnosis with the clinician. A documented treatment,
such as medication, volume management or RRT, is required for a diagnosis to be encoded.
ICD coding is performed by certified coding experts and governed by guidelines revised
annually by the Swiss Federal Office of Statistics. Encoding is based on discharge letters,
all available hospital documents and information and the output of the DDD rule engine.
According to the insurance law, the national governmental tariff body requires an annual
audit of coded data to prevent upcoding and ensure coding consistency. The entire process,
from patient admission to the encoded diagnosis, is visualised in Figure 1. During the last
seven years, the DDD rule engine substantially enhanced the quality of encoded ICD-10
diagnoses for KD and created a valuable baseline for the true prevalence of KD in our
hospital [29]. In 2018, an observational study was initiated and approved to analyse the
impact of DDD-supported staging (ethic approval BASEC-Req-2018-01184).

The main research objective of our retrospective observational study was to understand
how KDIGO staging may impact the treatment and outcome. If the decision-making process
can be influenced when considering a potential kidney disease, ordering a KD-specific
laboratory test and documenting an explicit KD stage might be a digital marker of such
consideration. Precise staging may lead to earlier detection, guideline-aligned treatment
and rigorous monitoring of laboratory values and may also prevent iatrogenic events such
as nephrotoxic medication and contrast-agent-induced kidney function damage. In general,
we cannot observe the intention or the decision-making process, but the realisation of the
treatment choices is observable and can be analysed using digital markers.
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Figure 1. The current process of assessment, treatment, documentation and coding of KD in cases of
in-patient hospitalisation. Created in BioRender. Endrich, O. (2024) [33].

To assess potential differences in outcomes, we compare the patient subgroups with
exact KDIGO staging to imprecise or missing staging for all-cause mortality, in-hospital
mortality, selection bias and costs. If precise staging is associated with a better outcome, it
presents a strong case for implementing a CDSS and using KDIGO staging as a clinical tool
to promote patient safety and better outcomes.

2. Materials and Methods

Our observational study was started in 2018 to detect the potential impacts of the rule
engine on the patients’ individual trajectories and the hospital’s population. The analysis
used routine data collected from patients who did not refuse general consent (90% of all
patients treated).

The clinical and administrative data for all patients treated are available in the Insel
Group Clinical Data Warehouse CDWH. The DDD Kidney Disease rule engine output is
stored in a defined data mart and updated daily. The patient’s civil status (alive, deceased)
is automatically updated weekly by the Swiss Unique Person Identification Registry (UPI).
The hospital costs accounting is carried out using the standardised method RECOLE. The
outputs of the existing rule engine, episodes of hospital care and relevant attributes and
data points are validated and prepared for extraction.

Data Extraction Clinical Data Warehouse: Inclusion criteria: predefined routinely
collected data and DDD output were extracted on 27 March 2024 from all inpatient cases
discharged from 1 January 2016 to 31 December 2023 with a coded diagnosis of KD (ICD-10
N17, N18, N19), 18 years or older by hospitalisation, who did not refuse general consent.

KD staging: AKI staging corresponds to ICD-10 codes N17.x, CKD staging to the ICD-
10 codes N18.x and KD not specified to N19; details can be found in Supplementary File S1.
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Digital marker: A text analysis approach was used to identify the KD staging in the clin-
ical documentation, generally in discharge letters, stored in the CDWH. The KD staging dig-
ital marker was defined as exact CKD: ‘G’ + g + ‘A’ + str(a), for g in [‘1’,‘2’,‘3’,‘3a’,‘3b’,‘4’,‘5’];
as “exact AKI KDIGO”: ‘AKI’ + n + space + g’, for g in [‘1’,‘2’,‘3’,‘I’,‘II’,‘III’,‘l’,‘ll’,‘lll’], for
n in ['','N'], for space in ['',' '], while following the KDIGO definition. The KD staging
imprecise contains different kidney-related terms (Supplementary File S2). The no staging
was applied if none of the KD staging imprecise terms were found. A fuzzy search algo-
rithm was applied for terms with a tilde character (“~”) to ensure that terms with more
than one spelling were found. The extraction used TheFuzz and RapidFuzz libraries and
the packages numpy and panda, release 23.3.1, Python, Visual Studio September 2023,
version 1.83.

The contrast media application was derived from the CDWH, defined as the combina-
tion of the WHOCC ATC code V08 “contrast media” and case-specific individually docu-
mented diagnostic or therapeutic imaging service items [34]. The hospitalisation-related
application of the nephrotoxic substances per case was derived from the CDWH, including
antibiotics, NSAR, chemotherapeutics and other agents by the WHO ATC code [15]. The
treatment groups were applied according to the Swiss national method for the hospital
planning groups [35]. The Elixhauser van Walraven unweighted and weighted indices
were derived based on the selection of the coded ICD-10 diagnoses [36].

Generalised linear modelling methods and the Cox model were used for inference
and for the assessment of the effects of covariates of interest and possible confounders
on survival according to KD status and KDIGO staging. P-values less than 0.05 were
considered statistically significant.

The analysis and reporting follow the STROBE and economic modelling recommen-
dations [37,38]. The study-specific data are stored in a separate SQL data mart embedded
in the Clinical Data Warehouse, Insel Group. Data analysis was performed using R, ver-
sion 4.3.2 (The R Foundation for Statistical Computing, Vienna, Austria), and Stata 16.0
(StataCorp LLC, College Station, TX, USA).

3. Results
3.1. Descriptive Statistics of the Hospital’s Cohort

Three groups were built to classify the patients’ status of KD: acute kidney injury
without a known history of chronic kidney disease (AKI_noCKD), chronic kidney disease
(noAKI_CKD) without superimposed episodes of acute kidney injury and acute-on-chronic
kidney disease (AKI_CKD). The distribution of the patient’s status of KD, including the
KDIGO stages for AKI and CKD and KD staging status (exact AKI, exact CKD, imprecise
and no staging) in the hospital’s cohort, are summarised in Table 1.

Most cases (61.5%) were classified as CKD without AKI episodes. The patients in the
AKI group were 8–9 years younger, received more potentially nephrotoxic medication and
contrast imaging, and were more often admitted to the ICU compared to patients with CKD.
In all the KD groups, men were more frequently affected than women; 60% were affected
on average. The patients in the acute-on-chronic groups had the highest comorbidity score.
Out of all patients, 29% were staged with an exact AKI stage and 7% with exact CKD; no
staging was identified in 12% (AKI) and 11% (CKD) of cases, indicating that any keywords
related to KD diagnosis were missing in the discharge letter. The KDIGO staging was
imprecise for most cases (59% for AKI and 81% for CKD). Table 2 shows the distribution
of the most relevant treatment groups. Most cases (38%) were allocated to the general
medicine treatment group, followed by cardiology (13%) and the musculoskeletal system
(6%), showing consistent patterns across KD groups.
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Table 1. Descriptive statistics of the studied kidney disease patient cohort, 2016–2023.

Variable Total AKI_noCKD noAKI_CKD AKI_CKD

Total cases N (%) 63,105 10,911 (17.2) 38,740 (61.5) 13,454 (21.3)
Age, mean (SD 1) 74.06 (13.39) 67.68 (15.42) 75.11 (12.75) 76.23 (11.79)
Sex (w/m) N (%) 26,326/36,779 (42/58) 4223/6688 16,530/22210 5573/7881

Elixhauser van Walraven weighted mean (SD) 5.00 (2.18) 4.19 (2.11) 4.86 (2.03) 6.03 (2.27)
Tox. medication 2 yes/no, N (%) 6235/56,870 (10/90) 1682/9229 (15/85) 3169/35,571 (8/92) 1384/12,070 (10/90)
Contrast imaging yes/no, N (%) 2284/60,821 (4/96) 1032/9879 (9/91) 638/38,102 (2/98) 614/12,840 (5/95)

ICU admission yes/no, N (%) 7782/55,323 (12.3/87.7) 3193/7718 (29/71) 2440/36,300 (6/94) 2149/11,305 (16/84)
Total costs (SD) 26,112.03 (41,643) 45,193.40 (67204) 18,973.28 (23,801) 31,153.46 (48652)

Total costs/day (SD) 3615.88 (3862) 4043.03 (4770) 3706.63 (3800) 3008.70 (3067)
AKI Staging exact/imprec/no N 18,279/37,488/7338 6147/2960/1804 2973/30,581/5186 9159/3947/348

AKI Staging exact/imprec/no (%) 29/59/12 56/27/17 8/79/13 68/29/3
CKD Staging exact/imprec/no N 4564/51,396/7145 33/9074/1804 3290/30,453/4997 1241/11,869/344

CKD Staging exact/imprec/no (%) 7/81/11 0/83/17 8/79/13 9/88/3
All-cause mortality 13,742 3223 6902 3617

In-hospital mortality 3608 1426 953 1229

1 SD Standard Deviation, 2 toxic medication.

Table 2. Distribution of KD groups (AKI_CKD, AKI_noCKD, noAKI_CKD) in the most relevant
treatment groups.

Treatment Group AKI_CKD n (%) AKI_noCKD n (%) noAKI_CKD n (%) Total n (%)

General Medicine 6121 (45) 3997 (37) 13,876 (36) 23,994 (38)
Cardiology 1205 (9) 854 (7.8) 5975 (15) 8034 (13)

Musculoskeletal 790 (6) 625 (5.7) 2403 (6) 3818 (6)
Pneumology 735 (5.5) 607 (5.6) 1079 (2.8) 2421 (3.8)
Haematology 654 (4.8) 607 (5.6) 1266 (3) 2527 (4)

Gastroenterology 580 (4.3) 467 (4) 1152 (3) 2199 (3.5)
Heart surgery 449 (3.3) 622 (6) 893 (2) 1964 (3)

Urology 417 (3) 545 (5) 1370 (4) 2332 (3.7)
Endocrinology 362 (2.7) 200 (2) 647 (1.7) 1209 (2)

Neurology 355 (2.6) 336 (3) 2075 (5.4) 2766 (4.4)
Nephrology 336 (2.5) 318 (3) 1273 (3) 1927 (3)

Vascular 312 (2.3) 328 (3) 1215 (3) 1855 (3)
Visceral Surgery 256 (2) 472 (4.3) 397 (1) 1125 (2)

Total 63,105 (100) 10,911 (100) 38,740 (100) 13,454 (100)

3.2. Survival Analysis of KD Stages

Survival analysis of KD status by stage (AKI 1–3, CKD 1–5) for all-cause and in-hospital
mortality was conducted to analyse the difference in outcomes between the clinically
defined patient groups. The Kaplan–Meier estimates are represented in Figures 2 and 3
and Tables 3 and 4. The analysis confirms (1) the expected increase in mortality risk
associated with Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD) as the
disease progresses through its stages and (2) the external validation of the DDD rule
engine’s output, as well as the general accuracy of the coding.

These results are interpreted as follows: Patients with AKI2 have a higher all-cause
mortality risk of 28% (±12%), and patients with AKI3 have a higher all-cause mortality
risk of 86% (±16%) relative to the AKI1 stage. Patients with AKI2 have higher in-hospital
mortality risks of 53% (±26%) and 161% (±36%) relative to the AKI1 stage.

These results are interpreted as follows: Patients with CKD3 and CKD4 have a higher
all-cause mortality risk relative to CKD2. Patients with CKD5 have a lower all-cause
mortality risk relative to CKD2. Patients with CKD3, CKD4 and CKD5 have a higher
in-hospital mortality risk relative to CKD2.
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AKI2 1.54 0.13 5.22 <0.001 1.31 to 1.81
AKI3 2.61 0.18 14.12 <0.001 2.29 to 2.99

Table 4. Kaplan–Meier estimates for CKD patients by stage all-cause mortality (a) and in-hospital
mortality (b), analysis referring to Figure 3.

Variable Hazard Ratio Standard Error z P > |z| 95% Confidence Interval

CKD stage, all-cause mortality (a)
CKD2 (reference)

CKD3 1.05 0.03 1.7 0.089 0.99 to 1.12
CKD4 1.11 0.05 2.2 0.028 1.01 to 1.21
CKD5 0.68 0.04 −7.17 <0.001 0.61 to 0.75

CKD stage, in-hospital mortality (b)
CKD2 (reference)

CKD3 1.38 0.12 0.65 <0.001 1.16 to 1.65
CKD4 1.76 0.23 4.38 <0.001 1.37 to 2.27
CKD5 2.47 0.29 7.68 <0.001 1.96 to 3.11
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3.3. Survival Analysis of KD Staging Status

Survival analysis of KD staging status (exact AKI, exact CKD, imprecise and no
staging) by KD status (AKI_noCKD, noAKI_CKD, AKI_CKD) for in-hospital and all-cause
mortality was conducted to analyse whether there was a difference in outcomes between
the clinically equivalent patient groups by staging status. The Kaplan–Meier estimates are
represented in Figure 4 and Tables 5 and 6.
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(d) in-hospital, AKI staging.

These results are interpreted as follows:

Imprecise and no staging for CKD have higher all-cause mortality risks of 85% (±16%)
and 84% (±18%) relative to exact CKD staging for any given disease status. Compared to
acute-on-chronic KD (AKI_CKD), AKI (AKI_noCKD) has a higher all-cause mortality risk
(27%, ±6%). The all-cause mortality risk for CKD without superimposed episodes of AKI
(noAKI_CKD) is reduced by 39% (±26%).
Imprecise and no staging for AKI have higher all-cause mortality risks of 16% (±6%)
and 10% (±8%) relative to exact AKI staging for any given disease status. Compared
to acute-on-chronic KD (AKI_CKD), AKI (AKI_noCKD) has a higher all-cause mortality
risk (32%, ±6%). The all-cause mortality risk for CKD without superimposed episodes of
AKI (noAKI_CKD) is reduced by 43% (±2%).

These results are interpreted as follows:

Imprecise staging for CKD has a higher in-hospital mortality risk of 23% (±2%) relative to
exact CKD staging for any given disease status. The difference in no staging is statistically
non-significant. Compared to acute-on-chronic KD (AKI_CKD), AKI (AKI_noCKD) has



Diagnostics 2024, 14, 2476 9 of 16

a higher in-hospital mortality risk (30%, ±10%). The in-hospital mortality risk for CKD
without superimposed episodes of AKI (noAKI_CKD) is reduced by 59% (±4%).
Imprecise and no staging for AKI have a higher in-hospital mortality risk of 48%
(±2 × 0.06) relative to exact AKI staging for any given disease status. The difference in no
AKI staging is statistically non-significant. Compared to acute-on-chronic KD (AKI_CKD),
AKI (AKI_noCKD) has a higher all-cause mortality risk (30%, ±2 × 0.05). The all-cause
mortality risk for CKD without superimposed episodes of AKI (noAKI_CKD) is reduced
by 66%, ±2 × 0.02.

In the following subsections and in Supplementary File S3, the analyses accounting
for baseline and confounder effects are reported.

Table 5. Kaplan–Meier estimates for all-cause mortality of CKD and AKI staging status, analysis
referring to Figure 4a,b.

Variable Hazard Ratio Standard Error z P > |z| 95% Confidence Interval

CKD staging status, all-cause
mortality

Exact CKD (reference)
Imprecise CKD 1.85 0.08 14.31 <0.001 1.7 to 2.01

No CKD 1.84 0.09 11.97 <0.001 1.66 to 2.03
KD status

AKI_CKD (reference)
AKI_noCKD 1.27 0.031 9.63 <0.001 1.21 to 1.33
noAKI_CKD 0.61 0.013 −23.47 <0.001 0.59 to 0.64

AKI staging status, all-cause
mortality

Exact AKI (reference)
Imprecise AKI 1.16 0.03 6.57 <0.001 1.11 to 1.21

No AKI 1.1 0.04 3.01 0.003 1.04 no 1.18
KD status

AKI_CKD (reference)
AKI_noCKD 1.32 0.03 11.14 <0.001 1.25 to 1.38
noAKI_CKD 0.57 0.01 −23.35 <0.001 0.54 to 0.59

Table 6. Kaplan–Meier estimates for in-hospital mortality of CKD and AKI staging status, analysis
referring to Figure 4c,d.

Variable Haz. Ratio Standard Error z P > |z| 95% Confidence Interval

CKD staging status, in-hospital
mortality

Exact CKD (reference)
Imprecise CKD 1.23 0.1 2.48 0.013 1.20 to 1.41

No CKD 0.97 0.1 −0.28 0.78 0.80 to 1.18
KD status

AKI_CKD (reference)
AKI_nonoCKD 1.3 0.05 6.46 <0.001 1.21 to 1.33

noAKI_CKD 0.41 0.02 −19.92 <0.001 0.38 to 0.45
AKI staging status, in-hospital

mortality
Exact AKI (reference)

Imprecise AKI 1.48 0.06 9.78 <0.001 1.37 to 1.60
No AKI 0.97 0.06 −0.56 0.57 0.86 to 1.09

KD status
AKI_CKD (reference)

AKI_noCKD 1.3 0.05 6.5 <0.001 1.20 to 1.41
noAKI_CKD 0.34 0.02 −22.33 <0.001 0.30 to 0.37
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3.4. Survival Analysis Taking into Account Baseline Factors

Survival analysis, i.e., the Cox regression model with the Breslow method for ties,
was conducted to investigate the impact of underlying foundational factors (age, sex,
comorbidities) and the type of treatment on different groups (KD status staging, KD status).
All of the results are available in Supplementary File S3, Tables S1–S8.

The Cox regression model for all-cause mortality shows a hazard ratio (HR) of 1.14
(95% CI: 1.09 to 1.20) for AKI staging imprecise and HR of 1.24 for AKI staging no (95%
CI 1.16 to 1.33) compared with the exact KDIGO staging. Patients with AKI have a higher
HR of 1.96 (95% CI: 1.86 to 2.06), and patients with CKD without an acute component
(noAKI_CKD) have a lower HR (0.72, 95% CI 0.69 to 0.76) compared with the KD status
acute-on-chronic (AKI_CKD). Sex is non-significant, and age is minimally significant with
HR 1.05 (95% CI 1.05–1.05). Patients receiving nephrotoxic medication and contrast-media
imaging have increased in-hospital mortality (HR 1.7, 95% CI 1.53, 1.9; HR 1.26, CI 1.1,
1.43) compared with patients who did not receive this type of treatment. The conditions
such as admission to ICU and the treatment groups oncology, neurosurgery, thoracic
surgery, pneumology and trauma have a higher in-hospital mortality risk and, therefore, a
considerable prognostic effect on mortality while incorporating a leading medical problem
and the provided treatment. The results for the treatment groups are similar for all KD
stages and KD staging groups. The results for the patients with AKI only are similar to
those for all patients. The imprecise and no AKI staging statuses have a larger effect on
in-hospital mortality in this patient’s population: imprecise, HR 1.24, 95% CI 1.17 to 1.31,
and no staging, HR 1.46, 95% CI 1.33 to 1.60, compared with exact AKI staging.

The results of CKD staging for CKD patients show that the imprecise (HR 1.31, 95%
CI 1.20 to 1.43) and no (HR 1.47, 95% CI 1.31 to 1.65) CKD staging have a significant effect
on in-hospital mortality compared with exact CKD staging.

The most significant effect of AKI staging can be shown for the group of patients with
AKI only: imprecise staging, HR 1.56, 95% CI 1.43 to 1.70, and no staging, HR 1.57, 95% CI
1.37 to 1.81.

3.5. Chi-Squared Tests for the Selection Bias Based on Sex and Age

The KDIGO staging findings for the different disease groups were analysed to detect
statistically significant differences between sex (m, w) and age and their combination
(selection bias study). The distribution of cases is shown in Table 7.

Table 7. KD stage groups and CKD staging, distribution of cases.

KD Group Exact Imprecise no Total

CKD staging 1

AKI_CKD 1241 11,869 344 13,454
AKI_noCKD 33 9074 1804 10,911
noAKI_CKD 3290 30,453 4997 38,740

Total 4564 51,396 7145 63,105
AKI staging 2

AKI_CKD 9159 3947 348 13,454
AKI_noCKD 6147 2960 1804 10,911
noAKI_CKD 2973 30,581 5186 38,740

Total 18,279 37,488 7338 63,105
1 Pearson χ2 = 2300, df = 4, p < 0.001; 2 Pearson χ2 = 24,000, df = 4, p < 0.001.

3.5.1. CKD Staging by Sex

There is a statistically significant association between the variables men (m) and
women (w), where men have a higher proportion of exact staging but a lower proportion
of imprecise and no staging compared to f than expected: AKI_CKD: Pearson χ2 = 24.68,
degrees of freedom (df) = 2, p < 0.001; noAKI_CKD: Pearson χ2 = 110.2, df = 2, p < 0.001.
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3.5.2. AKI Staging by Sex

There is a statistically significant association between the variables men (m) and
women (w), where men have a higher proportion of exact staging but a lower proportion
of imprecise and no staging compared to women than expected: AKI_noCKD: Pearson
χ2 = 9.45, df = 2, N = 10,911, p = 0.009.

3.5.3. CKD Staging by Age

There is a statistically significant association between the age at admission, where the
exact staging group is the youngest and imprecise the oldest: AKI_CKD: Bartlett’s equal-
variances test χ2 = 45.21, degrees of freedom (df) = 2, p < 0.001; noAKI_CKD: Bartlett’s
equal-variances test χ2 = 110.2, df = 2, N = 38,740, p < 0.001.

3.5.4. AKI Staging by Age

There is a statistically significant association between the age at admission, where
the no staging group is the youngest and imprecise the oldest: AKI_noCKD: Bartlett’s
equal-variances test χ2 = 26.5, df = 2, p < 0.001.

3.5.5. CKD Staging by Sex and Age

There are statistically significant age differences for all pairwise comparisons for
the groups AKI_CKD and noAKI_CKD, holding for both m and w patients: exact are the
youngest, and imprecise are the oldest. For the stage-specific KDIGO staging (CKD2, CKD3,
CKD4), men have a higher proportion of exact and a lower proportion of no compared
with women, as expected (CKD2 Pearson χ2 = 23.8, df = 2, p < 0.001; CKD3 Pearson
χ2 = 113.7, df = 2, p < 0.001; CKD4 Pearson χ2 = 59.43, df = 2, p < 0.001). For CKD5, men
have lower exact and no than expected and women higher exact and no (Pearson χ2 = 17.8,
df = 2, p < 0.001).

3.5.6. AKI Staging by Sex and Age

There is a statistically non-significant association between the age at admission, where
the no staging group is the youngest and the exact and the imprecise are the oldest:
AKI_noCKD: Bartlett’s equal-variances test χ2 = 4.8, degrees of freedom (df) = 2, p = 0.089.
For the stage-specific KDIGO staging (AKI1, AKI2, AKI3), men have a statistically signifi-
cant lower proportion of no compared with women, as expected (AKI1 Pearson χ2 = 8.35,
df = 2, p = 0.015. For the AKI2 and AKI2, the differences are non-significant. For all AKI
staging groups, no is the youngest. The exact and imprecise are always older, and the age
difference is statistically non-significant.

3.6. Distribution of the Hospitalisations’ Costs

A one-way ANOVA test was conducted to analyse the total cost of hospitalisation
distribution. The overall ANOVA test revealed a significant difference in cost distribu-
tion among the groups exact, imprecise and diagnosis missing, F value 179.4, df = 2,
p-value < 0.001, where the highest cost is assigned for imprecise and the lowest to
exact staging.

4. Discussion

These results support the hypothesis that exact KD staging is associated with lower
in-hospital and all-cause mortality and lower hospitalisation costs. Patients with AKI
experience a more significant benefit from improved staging than those without AKI.
Major decisions require timely action, as the implications of making or neglecting the
right course of action can be substantial and influence the outcome. The mechanism of
how precise staging leads to better outcomes still needs to be fully understood. The effect
might be explained through diligence and professionalism, which led to fewer iatrogenic
events, as the patients in the exact KDIGO staging group experienced less application
of nephrotoxic medication and contrast agents. This might indicate that considering KD
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through treatment and diagnostics leads to a chain of events that protects kidney function.
While a documented diagnosis is available in the EHR and accessible to each involved
health care professional, the professionalism of the treatment team can contribute to more
accurate staging, which is often a byproduct of higher-quality treatment.

Assessment of selection bias indicates that men experience exact staging more often
than the women, suggesting a potential gender disparity. Interestingly, sex is not a sig-
nificant covariate in survival predictions, even if women have a higher life expectancy,
considering a sex-specific KD staging [2,38–40]. The higher proportion of imprecise KD
staging among women leads to a deviation from the expected outcome according to life
expectancy. We also found selection bias concerning age, where older patients more often
receive an imprecise staging compared to younger ones. These results help us to understand
which patient groups might be the most vulnerable and where action is needed.

Considering the potential impact of the current staging and treatment practice of
KD, we identified studies on longitudinal follow-up and outcomes among a population
with chronic kidney disease in large, managed care organisations. The distribution of
characteristics and results show similar outcomes, so there might be a general problem with
the appropriate recognition, staging and treatment of KD in a hospital setting [17,41,42].
The update of the KDIGO Clinical Practice Guideline for the Evaluation and Management
of Chronic Kidney Disease (CKD), published in 2024, emphasises the importance of early
recognition and staging of CKD, providing evidence for the associations of all complications
of CKD are incrementally increased with worsened categories of eGFR and albuminuria [43].
The authors describe “the necessity of having both eGFR and ACR parameters” as a crucial
precondition for an individual risk assessment. In 2013, Tomonaga et al. estimated a
CKD prevalence of 700,000 or 11.4% of the subjects older than 15 years in the Swiss
population [44]. The post-COVID life expectancy in Switzerland for men is 81.0 years and
85.1 for women. Hence, an estimated 2.2 Years of Life Lost (YLL) for men and women in
the KD cohort can be projected on the 10% of the Swiss population with CKD, affecting ca
800,000 people (prevalence of 10%) [45–47].

The strength of our study is the rich, validated data set, with high consistency in coding
policy, data quality and system settings. It is based on a unique, validated, data-driven
diagnostic approach to identifying and coding diagnoses. Supported by the rule-based
data-driven approach, our study helps to determine the true prevalence of KD in a hospital
setting. To our knowledge, our study is the first acute-on-chronic model that reflects
the simultaneous effects of AKI and CKD. According to the recent KDIGO 2024 Clinical
Practice Guidelines, we still need more evidence to determine “whether an intervention to
detect, risk-stratify, and treat CKD would improve the health outcomes for the targeted
population” [48]. Our study also has limitations. As a single-centre observational study
from a tertiary university hospital, this study might not reflect the broader context or
societal perspective, so the generalisability needs to be questioned. The context of inpatient
hospitalisation and treatment is a central element of the study; therefore, the outpatient
setting and home care are not reflected in the data—the lack of clinical parameters and
simplification of the clinical path are among the foremost to mention. Further, we plan to
analyse time-to-event variables concerning diagnostics, RRT start and end, admission to
ICU and chronification, while considering the absolute laboratory and medication values
and the disease trajectory.

Future research might focus on economic modelling to gain a more granular and
precise simulation of the staging effects and account for uncertainties. Sugrue identified 101
economic models of CKD, pointing out the difficulty of reflecting the heterogeneity of the
patients’ trajectories and the need to “improve economic modelling accuracy in CKD” while
using a “classical” approach such as a Markov model utilising CKD stages and a linear
GFR decline [49]. Using microsimulation, it might be possible to attain more precision for
specific medical conditions and treatment paths, including chronification and acute-on-
chronic conditions, considering the multidimensionality of comorbidities to develop clinical
decision support systems and predictive models based on this knowledge [26,42,50–61].
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5. Conclusions

Our study provides valuable insight into potential quality and outcome improvements.
Considering elderly patients, women and patients with acute-on-chronic KD as the most
vulnerable, improving staging might play an essential role in better treatment, amenable
mortality and lower costs. To enhance precise staging in clinical practice, focusing on
generating high-quality evidence and guidelines, supporting the implementation through
leadership and clinical education is needed. Clinician and patient involvement, along with
advanced tools for pattern recognition and non-intrusive alert systems, can streamline
integration and foster continuous improvement in outcomes.
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