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Scientific Setting

In 2021 the Nobel Prize in Physics was given, for the first time,
to complexity science. Klaus Hasselmann, Syukuro Manabe, and
Giorgio Parisi were cited “for groundbreaking contributions to our
understanding of complex physical systems.” Nobel’s will stipulated
that the physics prize should be given to a recipient “who shall have
made the most important discovery or invention within the field,” and
the Nobel Committee further requires that the discovery or invention
should either have had an impact on the evolution of physics asascience,
or shown the usefulness of physics for society and thus have “conferred
the greatest benefit to humankind.” The awardees in 2021 fulfilled these
requirements, with their diverse achievements being linked through
the mathematics and physics of disorder, fluctuations, and variability.
These have also been perennial themes at SFL, as the Foundational Papers
volumes show.

Parisi’s citation went on to recognize his “discovery of the interplay
of disorder and fluctuations in physical systems from atomic to
planetaryscales.” In contrast Hasselmann and Manabe were recognized
for foundational work on the physics of climate change, at the
interface of thermodynamics, fluid mechanics, atmospheric science and
geophysics. They were specifically cited “for the physical modelling
of Earth’s climate, quantifying variability and reliably predicting
global warming.” The importance of Hasselmann’s work has long been

clear to climate scientists, but it does not yet seem as well known to

'See chapter 54 in this volume for a key paper by Parisi.
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a more general complexity audience. This is a pity for many reasons,
and so for this volume I have adopted Hasselmann’s paper, the first
of the series with Claude Frankignoul and Peter Lemke (Frankignoul
and Hasselmann 1977; Lemke 1977) that established stochastic energy-
balance models as a key tool in climate science. Like many key papers
in complexity science, it can be understood on several different levels.
It can simply be seen as a way to add variability into the simple, and
thus tractable and insightful, pioneering energy-balance models (EBM)
of Mikhail Budyko (1969, see Foundational Papers vol. 2, ch. 32) and
William Sellers (1969). On a more abstract level, it used Einstein’s
and Langevin’s mathematical models of a physical phenomenon first
observed by Robert Brown to provide a conceptual superstructure to
link slow climate variability to fast weather fluctuations, and hence
to posit the need for negative feedback in climate models. It thus
exemplifies the different levels of abstraction highlighted for models
in science by Arturo Rosenblueth and Norbert Wiener (1945, sece
Foundational Papers vol. 1, ch. 8). Since the 1970s it has, furthermore,
played akeyrolein developing data assimilation methods to measure the
fingerprint of global warming, and to predict its likely future severity,
and it is still being exploited in new ways, for example by linking it to

models of economic impact (Calel ez /. 2020).

A Foundational Paper

In the mid-1970s, theoretical problems in climate science were already
being attacked simultaneously from a wide variety of directions, using
models at many different levels of detail. The early ambitions of
John von Neumann and colleagues in the 1950s had by then been
tempered after the realization, by Edward Lorenz (see Foundational
Papers vol. 2, ch. 23) and others, of the implications for forecasting
of low-dimensional chaos. Nonetheless, the insights from dynamical
systems theory were developing alongside, and informing, numerical
geophysical fluid dynamics, and as early as 1975 Manabe performed
a pioneering computer simulation (Manabe and Wetherald 1975) of
the response of the Earth’s atmosphere to a doubling of CO> using
a forerunner of today’s general circulation models of weather and

climate. At the other end of the scale, Budyko and Sellers had already
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proposed their simplified toy EBMs, which prioritized insight over detail.
The all-important task of testing developing theories against nature,
meanwhile, was facilitated by data sources as diverse as weather station
records, ice cores,annuallayers of sedimentary rocks (varves), and global
ice volumes. As the data was analyzed, however, it became clear to
Hasselmann that “a characteristic feature of climate records is their
pronounced variability. The spectral analysis of continuous climatic
time series normally reveals a continuous variance distribution, with

higher variance levels at low frequencies.”

Theme of Hasselmann's Paper

The problem that puzzled Hasselmann can be seen in the power
spectrum of many climate variables, such as that from the Ocean
Weather Ship India (fig. s of Frankignoul and Hasselmann 1977).
Rather than the uniform “flat white” form of idealized uncorrelated
random noise, they have a “red” excess of power at low frequencies and
hence show autocorrelation. In this sense each measured value of a time
series shows a kind of memory of at least its immediate predecessor.
At least since the late 1950s it had been realized that climate and
weather variables were indeed typically correlated, and showed such
a low-frequency excess in their power spectra. Intriguingly, though,
it seems that memory and persistence were seen as something to be
modelled using the tools of statistics—such as the famous discrete first-
order autoregressive model AR(1)—as opposed to those of statistical
physics, despite the fact that the continuous version of the AR(1) process
is mathematically equivalent to Langevin’s equation of 1908. J. M.
Mitchell, Jr., of the Environmental Science Services Agency and UC
Berkeley was a striking exception to this, and as early as 1966 proposed
two stochastic models where the autoregressive structure sought to
capture the physics of the air—sea interaction (Mitchell 1966).

In the mid ’7os the dominant candidates to physically explain
the observed red spectra in many climatic variables were based either
on external driving or internal positive feedbacks. Inconveniently,
however, as Hasselmann noted, a clear signal of response to the former

was not obvious in data, while models of the latter type tended to
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produce abrupt “flip-flop” transitions that also did not resemble what
was seen, especially in the Holocene era inhabited by humans.
Hasselmann approached the problem from a different point of
view, informed by his own experience in diverse areas of physics from
turbulence to quantum field theory. He made the imaginative leap of
mapping the slow fluctuations of climate and the fast ones of weather
into those of Langevin-Brownian motion. Decades later he replied to

an oral history interviewer ( 2006), saying:

I think it depends on your background training. If you are
used to working with a high resolution general circulation
model, looking at all the dynamics and interactions and so
forth, you probably never think about Brownian motion or
may not even have heard of the Langevin equation. These are
simply not part of your basic research experience. If you are
accustomed to only one way of thinking, you simply cannot
see problems in another way. People are too specialized in the
particular techniques they have learned. They are not able to
cross their narrow borders and see things from a different—

often simpler and more elegant—perspective.

This cross-disciplinary synthesis, which will resonate with many
scientists at SFI and elsewhere, enabled him to envision a model where
the timescale separation so essential to Langevin’s original formulation

was embodied in that between weather and climate variables.

Hasselmann’s Development of His Idea and Results

Hasselmann’s paper first sets up the problem to be solved, and then in
section 2 compares two paradigms—global circulation models (GCMs)
and statistical dynamical models (SDMs). After explaining that the
computers of that time were not adequate to model climate variability
by GCM, he shows that averaging over rapid fluctuations characteristic
of then current SDMs rendered them deterministic and so “statistical”
was in some sense a misnomer. After a nod to Lorenz’s pioneering low-
dimensional models of chaos he goes on to set up a truly stochastic
paradigm, in which, as he later put it (Frankignoul and Hasselmann
1977): “slow changes of climate were interpreted as the integral

response to continuous random excitation by short time scale ‘weather’
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disturbances.” This is the Wiener random process used since Bachelier
and Einstein in diverse ways in finance and physics, chemistry and
elsewhere; in section 3 he explores how one of'its hallmarks, the growth
of the variance of fluctuations linearly with time, would give rise
to a 1/f% power spectrum in climate variables, and other detectable
signatures. In section 4 he describes another corollary of the Brownian
motion model, the existence of a Fokker—Planck differential equation
for the time evolution of probability densities of temperature or any
other variables to which his climate model could apply. Section 5 then
stresses the role of negative feedbacks in changing a system from a
nonstationary Wiener process into a stationary process modelled by
a Langevin-type equation, turning the low-frequency power spectrum
from red to white noise. Section 6 then concludes the paper with a first

exploration of the importance of these new models for forecasting.

Foreshadowings and Implications

The assumption of a strong separation between weather and climate
time scales initially prompted progress, as it gave the ability to map from
the physics of Brownian motion, or that of climate, to the idealized
random Wiener process. This allowed the importing of a results and
expertise from the discipline of stochastic calculus, allowing a similarly
productive interaction to that which has been seen in the development
of the Kalman filter (see Foundational Papers vol. 1, ch. 15) in control
engineering. In a real sense Hasselmann’s model was itself a kind of
“planetary control theory,” asithaslong been used in a driven version to
examine the effect of different possible future CO2 emission pathways,
and coupled to economic models (e.g., Calel ez 2/. 2020).

More recently though, as elsewhere in physics, the limits of the
assumption have become clearer, and in particular complexity scientists
(see Moon, Agarwal, and Wettlaufer 2018 and references therein, and
Lovejoy 2022) have made links to Benoit Mandelbrot’s pioneering work
on fractals as systems (see Foundational Papers vol. 2, ch. 29) on which
no scale could be seen as typical or dominant, and to even longer-
ranged memory than the Markovian type seen in Hasselmann’s original
models. My own current work (Watkins ez a/. 2024) is motivated by this,

exploiting the generalized Langevin equationslongknown in condensed
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matter with the aim of giving a model where one need noteither assume
Hasselmann’s Markovian case, or a completely fractal long-ranged one,

but can explore the ground in between. &
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