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Abstract. The study of complex functions is based around the study of
holomorphic functions, satisfying the Cauchy-Riemann equations. The
relatively recent field of Clifford Analysis lets us extend many results
from Complex Analysis to higher dimensions. In this paper, I decompose
the Cauchy-Riemann equations for a general Clifford algebra into grades
using the Geometric Algebra formalism, and show that for the Spacetime
Algebra Cl(3, 1) these equations are the equations for a self-dual source
free Maxwell field, and for a massless uncharged Spinor. This shows a
deep link between fundamental physics and the Clifford geometry of
Spacetime.

1. Introduction and Background

This paper is about the application of Clifford (or Geometric) algebras to
physics. In particular, it combines two recent approaches to Clifford algebras.
The first is Geometric Algebra [8,12,16], which is an approach to Clifford
algebras using a geometrical representation described below. The second is
Clifford Analysis [20,34] which extends the results of Complex Analysis first
to the Quaternions, and then to a general Clifford algebra. I shall discuss both
of these below. I am aware of one other work combining these approaches,
the PhD Thesis [31].

In general, the Clifford approach to geometry is based upon the ideas of
W. K. Clifford and H. G. Grassmann [25], and involves giving a direct geo-
metric representation of the n-dimensional subspaces of a Clifford algebra in
terms of the n-dimensional linear subspaces of a geometric space, for example
lines, planes, volumes, and so on. The Clifford algebra on a surface is also
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isomorphic as vector spaces to the Differential Forms on the same surface.
This is what allows us to use techniques from the cohomology theory of forms
in the Clifford Algebra context [31]. In this paper I adopt the viewpoint that,
just as the complex plane C

2 can be seen as the real plane R
2 equipped with

a multiplication, and hence promoted from a vector space to an algebra. The
Clifford Algebra Cl(pq, ) is likewise the algebra generated from the vector
space R

p,q equipped with a suitable product.
A more technical distinction between Clifford geometry and the stan-

dard approach is given by Dieudonne as follows [7]. In standard approaches,
we consider both a vector space V, and its dual V�. We cannot identify these
two spaces, but we can associate elements in V to elements in V� if we define
an inner product between these spaces. Then a p-dimensional subspace Vp ∈ V
will be dual to an (n − p)-dimensional subspace Wn−p ∈ V� iff (v, w) = 0 for
all v ∈ Vp and w ∈ Wn−p, where n is the total dimension of V and V�, and
( ) denotes the inner product.

Conversely, in the Clifford approach to Geometry, we only have one
space, V, which is equipped with a product to turn it into an algebra; in
exact analogy to the transition between R

2 and C. More details are given
below, but the essential point is that the dual of a p-dimensional subspace Vp

is given by its (n−p) dimensional complement in V itself. This has advantages
for physics; first of all by cutting down on the mathematical entities required,
and secondly because most objects in physics can be given a direct geometric
interpretation in this construction (See [8] for examples).

1.1. Geometric Algebras

I begin the paper with some definitions and notation. First, I will review
the Geometric Algebra formalism for Clifford algebras. Then, I will discuss
Clifford Analysis as a generalisation of Complex analysis. This section is
mainly based on [1] and [8]. Other excellent references are [5] and [9].

An (orthogonal) Clifford Algebra Cl(p, q) with a non-degenerate metric
is described by n = p + q generators ei, satisfying

eiej − ejei = ηij (1.1)

Where ηii is 1 for i from 1 to p+1, ηii = −1 for i from p+1 to n, and ηij = 0
otherwise.

Clifford algebras are a graded algebra, with the grading given by the
number of generators that are multipled togther. For example, ei is grade 1,
eiejek is grade 3, and so on.

Returning to the general case, we can extract the grade i elements of
a Clifford algebra element X, and we denote this 〈X〉i. An element which
contains only objects of the same grade is called a blade.

A Clifford algebra can be split into even and odd parts, corresponding
to collecting the blades with even and odd grade. The even part is called the
Spin algebra, denoted Spin(p, q) [24].

In the Geometric Algebra (GA) representation of Clifford Algebras, we
take each grade to describe an k- dimensional subspace of Rn. The highest
grade object is denoted I, and describes a n-volume. So in 3 dimensions, the
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scalar describes a point, ei describes a line, eiej describes a plane, and the
pseudoscalar I = e1e2e3 describes a 3-volume.

In this paper, we will be especially interested in the Clifford Algebra
Cl(3, 1), which is generated by Minkowski Spacetime. It consists of 1 scalar,
4 vectors ea, six bivectors eaeb, 4 trivectors eaebec, and 1 pseudoscalar I =
e0e1e2e3.

We use the index 0 to refer to the timelike direction, for which e2
0 = −1,

and i, j, k = {1, 2, 3} for spacelike directions, for which e2
i = 1.

These correspond to the gamma matrices γa in the usual Dirac theory,
and the pseudoscalar I corresponds to γ5 ≡ γ0γ1γ2γ3 [12].

It is also worth noting that the bivector part of the algebra corresponds
to Lorentz rotations [8]. The timelike rotations correspond to terms of the
form e0ei, and spacelike rotations correspond to eiej .

When we multiply two blades 〈A〉i and 〈B〉j , the lowest grade object we
can form has grade |i − j|, and is called the dot product, denoted by A ·B or
〈A·B〉|i−j|. The highest grade element has grade i+j, and is called the wedge
product, denoted A ∧ B or 〈A ∧ B〉i+j . Note that these may be identically
zero (for example if i + j > n), and that in general one or both will be. For
vectors a, b these definitions become

a · b = ab − ba

a ∧ b = ab − ba (1.2)

Duality relations exist between blades of grades k and n − k. These are
defined in various ways in the literature, which differ up to a sign. I shall use
the convention

A� = AI−1 (1.3)

where A� is the dual of A. If A has grade k, then A� has grade n − k. The
following property of the dual will be important later

A ∧ BI−1 =
(
A ∧ B

)
I−1

A · BI−1 =
(
A · B

)
I−1 (1.4)

In comparison to the usual vector calculus, a · b is the usual dot product, and
in 3d we have

a ∧ b = (a × b)I−1 (1.5)

where a × b is the cross product. This formula just means that (in 3 dimen-
sions) a ∧ b is the area between a and b, and a × b is the length orthogonal
to that area. Note, however, that we can define a ∧ b in any dimension, not
just in 3d.

We call an element made up of different grades a Multivector. Then the
most general function we can write from Cl(p, q) → Cl(p, q) is

z = f0 + fiei + fijeiej + ... + f1...de1...ed (1.6)

where the f are scalar functions. In this paper I shall only consider functions
of x, where x = xiei is the usual position vector.
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Next, we define a vector derivative

∂ =
∂

∂x
≡ ei

∂

∂x
(1.7)

Once we have this, we can define the wave/laplacian operator as ∂2. Applying
the vector derivative to a blade will either raise or lower the grades of the
components of multivector by 1. In general it will do both. We therefore write

∂z = ∂ · z + ∂ ∧ z (1.8)

where ∂·z and ∂∧z are the grade lowering and grade raising parts respectively.

1.2. Clifford Analysis

The introduction of the vector derivative brings us back to Clifford Analysis.
Clifford Analysis is focused around finding and understanding solutions of
the Dirac eqation ∂φ = 0.. This means that Clifford Analysis intersects with
other areas of mathematics, for example Spin Geometry, in particular index
theory [24].

To show the link between Clifford Algebras and Complex Analysis, con-
sider the algebra Cl(2). This consists of a scalar, two vectors e1 and e2, and
a bivector pseudoscalar, I = e1e2. The even subalgebra, Spin(2), is spanned
by {1, I}, with I2 = −1. Therefore Spin(2) ∼= C. A generic Spin(2)-valued
function is given by u(z) + Iv(z), where z = x + Iy. Equivalently, we can
consider the variable z̃ = e1z = xe1 + ye2. Then

∂
(
u(z̃)) + Iv(z̃)

)
= e1

∂u

∂x
+ e2

∂u

∂y
+ e1I

∂v

∂x
+ e2I

∂v

∂y

= e1

(∂u

∂x
− ∂v

∂y

)
+ e2

(∂u

∂y
+

∂v

∂x

)
(1.9)

Therefore the condition ∂(u + Iv) = 0 is equivalent to the pair of equations

ux = vy; uy = vx (1.10)

We can recognise these as the Cauchy- Riemann equations, and a complex
function satisfying ∂f = 0 is known as a holomorphic function. In Clifford
Analysis, solutions to the equation ∂f = 0 are usually called Monogenic func-
tions, though they are occasionally known as Clifford Holomorphic functions.
or Regular functions in older literature. I shall refer to them as Monogenic
functions in this paper.

An important property of the Cauchy-Riemann equations is that any
solution to them is also a harmonic function, i.e. ∂2z = 0. This also applies
to Clifford analysis, where we have [6].

Theorem 1.1. Monp(M), the vector space of monogenic functions of degree
p over a space M, is identical to Harp(M), the vector space of harmonic
forms of degree p.

Clifford Analysis has its beginnings in the work of Moisil, Théodoresco
and Riesz [27,30] in the 1930 s, which successfully extended the key results of
Complex Analysis to the quaternionic case. R. Fueter then extended this to
higher dimensions via Clifford Algebras [10,11]. In the late 20th century, this



Self-Dual Maxwell Fields... Page 5 of 13     7 

was developed by figures like Hestenes, Sobcyck and Delenghe [6,16] with re-
sults like the Cauchy Integral theorem and the Cauchy- Kowalseka extension
being extended from the complex numbers to general Clifford Algebras. For
a good overview, see the paper [20].

1.3. Maxwell’s Equations and Clifford Algebras

This paper will ultimately show a link between Maxwell’s equations and
the Dirac equation for multivector functions defined on the Clifford Algebra
Cl(3, 1). I will therefore briefly review the formulation of Maxwell’s equations
in the Clifford Algebra context, summarising the account in [8].

In natural units, the source– free Maxwell equations in Minkowski space
can be written as

∇ · E = 0

∇ × E = − ∂

∂t
B

∇ · B = 0

∇ × B =
∂

∂t
E (1.11)

where × is the usual cross product in R
3 and the E and the B are three

dimensional vectors (in the spacelike directions {1, 2, 3}) and ∇ is the 3d
vector derivative in the spacelike directions. When we go from Minkowski
space to the Clifford Algebra Cl(3, 1), these equations become

∇ · E = 0

∇ ∧ E = − ∂

∂t
(IB)

∇ · B = 0

∇ × B =
∂

∂t
(IE) (1.12)

These are mathematically identical to the standard vector calculus equations,
merely expressed in a different formalism. We can take advantage of the
freedom to add elements of different grades to write

∇ �E = ∇ · E + ∇ ∧ E = −∂t

(
IB

)
(1.13)

and similarly

∇(
IB

)
= −∂tE (1.14)

We combine these to get

∇(E + IB) + ∂t(E + IB) = 0 (1.15)

Here E is a vector, and IB is a dual trivector. It is more natural in the Clifford
Algebra setting to write them both as bivectors. To do this, we multiply them
by γ0 (and drop the boldface type) so E = Eiγ0γi and B = Biγ0γi. Therefore
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IB = Biεijkγjγk
1. Now we can define the electromagnetic field strength as

F = E + IB (1.16)

Then equation (1.15) becomes

∂F = 0 (1.17)

As in the vector calculus case, the fact that ∂ ∧ F = 0 means we can write

F = ∂ ∧ A (1.18)

for some vector potential A. We have a gauge freedom here, since F is in-
variant under the transformation A → A + ∂λ for some scalar function λ,
since

∂ ∧ (A + ∂λ) = ∂ ∧ A + ∂ ∧ (∂λ) (1.19)

since ∂ ∧ (∂λ) ≡ 0

1.4. Outline of the Paper

Now I have introduced the main concepts, I begin the paper by decomposing
the equation ∂z = 0 grade by grade in order give to give a closed system of
equations defining a monogenic function. I call these the, ‘Clifford-Cauchy-
Reimann’ equations, or CCR equations for short.

I then show that the CCR equations applied to a general multivector in
the Spacetime Algebra Cl(3, 1) give the Dirac and Maxwell equations. This is
not totally surprising– solutions to the Dirac equation ∂φ = 0 are monogenic
functions by definition, and it has long been realised that Maxwell’s equa-
tions can be written as Cauchy- Reimann equations in quaternion analysis
(called regularity conditions) [35] and also via complexified quaternions (or
biquaternions) [19], and in complexified Clifford algebras [32].

The link between Dirac and Maxwell equations has been studied in other
settings too. In the geometric algebra formalism, we can write the Maxwell
equations as the Dirac equation ∂F = J [8]. It has been shown by Kravchenko
and Shapiro that the time-harmonic Maxwell and Dirac equations are linked
as quaternion - valued operators [22,23] and Picard, Trostorff and Waurick
have shown links between the Maxwell equations as the Dirac operator as
matrix operators [28]. These papers also include sources in the Maxwell and
the Dirac systems.

The difference between those earlier results and this paper is that this
paper works with the real Clifford algebra Cl(3, 1)– which has a direct Geo-
metrical meaning as a algebra generated by Minkowski space. Additionally,
this paper begins with a general multivector in Cl(3, 1) and shows that if we
wish it to be monogenic, it must satisfy the (source-free) Maxwell and Dirac
equations. This is a new result which implies that the Maxwell and Dirac
equations are mathematically fundamental in a way linked to the geometry
of Minkowski space. I end the paper with a short discussion of future work.

1There is nothing stopping us with working directly with B̃ ≡ IB directly. It is a matter

of notational preference. Here I am following the derivation in [8] and so I shall use their
conventions.
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2. Clifford-Cauchy-Riemann equations

I am not aware of an explicit grade-by-grade decomposition of the Cauchy-
Reimann equations for a Clifford algebra in the literature, though they must
have been derived before in the course of calculations. I present here such a
decomposition, which I will use for the main results in this paper. We write
a general x-valued multivector function in Cl(p, q) as

z(x) =
∑

i

fi = f0(x) + f1i(x)ei + f2ij(x)eiej + ... + fne1...en (2.1)

where fi is a blade of grade i, f(x) is a scalar function of x and i runs from
1 to n = p + q. We are interested in monogenic functions, for which ∂z = 0.
This implies that

∑

i

∂fi =
∑

i

(
∂ · fi+1 + ∂ ∧ fi−1

)
= 0 (2.2)

equating all terms with the same grades, we find that

∂ · fi+1 = −∂ ∧ fi−1, i 	= {1, n − 1} (2.3)
∂ · f1 = 0 (2.4)
∂ ∧ fn−1 = 0 (2.5)

with ∂ · f0 ≡ 0 and ∂ ∧ fn ≡ 0 (you can’t take the exterior derivative of a
top form, or the divergence of a scalar function). These are the generalisation
of the Cauchy-Riemann equations to general Clifford Algebras for the Dirac
operator ∂. I shall refer to them as the Clifford-Cauchy-Riemann, or CCR,
equations. Note also that the condition ∂ · fi+1 = −∂ ∧ fi−1 becomes δfi−1 =
dfi+1 in the language of differential forms.

2.1. Properties of the CCR Equations

The first thing to note about these equations is that the equations for the odd
and even parts seperate. Equation (2.3) links fn−1 and fn+1, whose grades are
always both odd, or both even. Then, Eq. (2.4) always involves only f1, which
is odd; and (2.5) only involves fd−1, which is either odd or even depending
upon d. Therefore the CCR equations split into parts involving only the odd
or even components. This simplifies the analysis of these equations, and we
shall make use of this below in Sect. 3 when analysing the spacetime algebra.

We can rewrite the CCR equations using various dualities. If we define
gi = fiI

−1, then they become

∂ ∧ gn−(i+1)I
−1 = −∂ · gn−(i−1)I

−1, i 	= {1, d − 1} (2.6)

∂ ∧ gn−1I
−1 = 0 (2.7)

∂ · g1I
−1 = 0 (2.8)

Alternatively, we can only take the dual of one side of Eq. (2.3) to get

∂ ∧ fi−1 = ∂ ∧ gn−(i+1)I
−1 (2.9)
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Note that whilst in general fi−1 and gn−(i+1) have different grades, when n
is even, fn/2−1 and gn/2−1 both have the same grade in the equation, giving

∂ ∧ fn/2−1 = ∂ ∧ gn/2−1I
−1 (2.10)

This suggests that mathematically it could be interesting to investigate func-
tions satisfying z = ±zI−1, which could be another avenue to explore to
better understand the properties of solutions to these equations.

3. CCR and the Spacetime Algebra

We now examine the CCR equations for the Spacetime Algebra. Now, a
general multivector in the spacetime algebra can be written in the form

f0 + f1 + f2 + f3 + f4 = f0(x) + f1a(x)ea + f2ab(x)eaeb

+f3abc(x)eiejek + f4(x)e0e1e2e3 (3.1)

This leads to the CCR equations

∂ · f1 = 0
∂f0 = −∂ · f2

∂ ∧ f1 = −∂ · f3

∂ ∧ f3 = 0
∂ · f4 = −∂ ∧ f2 (3.2)

As discussed in Sect. 2.1, these split into odd and even graded sectors.

3.1. The Odd Sector

We start with the odd sector

∂ · f1 = 0 (3.3)
∂ ∧ f1 = −∂ · f3 (3.4)
∂ ∧ f3 = 0 (3.5)

Since n=4 is even, we can use duality as in Eq. (2.10) to write the second of
these equations as

∂ ∧ f1 = −∂ ∧ g1I
−1 (3.6)

where g3 = f1I
−1. To solve this equation, we note that in we first of all note

that we can write the electromagnetic field strength in Clifford Algebra form
as ∂ ∧ A = Fab = E0i + (IB)jk, where E,B are the electric and magnetic
fields respectively [8]. The electric field E0i is a timelike bivector, and the
magnetic field (IB)jk is a spacelike one.

This shows that any vector function A such that ∂∧A is an anti-selfdual
field strength F = −FI−1 will satisfy Eq. (3.6). Hence f1 = g1 = A is always
a solution to Eq. (3.4) since ∂ ∧ A = −(

∂ ∧ A
)
I−1.

We now have a single solution. What are the other possibilities? Suppose
that ∂ ∧A = −(

∂ ∧ C
)
I−1 for C 	= A. Then −(

∂ ∧ C
)
I−1 − (

∂ ∧A
)
I−1 = 0,

which implies that ∂ ∧ (C − A) = 0, and therefore C and A differ by the
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gradient of a scalar function, since ∂ ∧ ∂λ = 0 automatically. Then the most
general solution we can write is

f1 = A + ∂λ1, (3.7)
f3 = g1I

−1 =
(
A + ∂λ2

)
I−1 (3.8)

for scalar functions λ1 and λ2. If we set λ1 = λ2 ≡ λ, and write Ã=A + ∂λ
then Eq. (3.6) becomes the equation for a single anti-selfdual Field Strength.

∂ ∧ Ã =
(
∂ ∧ Ã

)
I−1 (3.9)

To confirm that F really is an electromagnetic field strength tensor, note that
if we write F = ∂ ∧ Ã then

∂F = ∂ · ∂ ∧ Ã + ∂ ∧ ∂ ∧ Ã

= ∂ · ∂ ∧ Ã = −∂ · (∂ · (AI−1)
)

= 0

which is simply the equation for a source-free Maxwell field written in Geo-
metric Algebra notation [8]. I have used the fact that ∂ · ∂ · f = ∂ ∧ ∂ ∧ f = 0
for any f in the second and fourth inequalities, and Eq. (3.9) in the second.

We can now look at the equation ∂ · f1 = 0. This is Gauss’ law

∂ · Ã = 0 (3.10)

Note that if we extract the gauge function λ we get

∂ · A + ∂2λ = 0 (3.11)

which allows us to use λ to set a gauge exactly as in standard presentations
of electromagnetism [26].

What about the remaining equation ∂ ∧ f3 = 0? By the solution in Eq.
(3.9) this is equivalent to ∂ ∧ (ÃI−1) = 0 which implies that (∂ · Ã)I−1 = 0,
which implies that ∂ · A + ∂2λ = 0, just the same as Eq. (3.3).

Putting it all together, we see that the odd sector of the CCR equations
is

∂ ∧ Ã =
(
∂ ∧ Ã

)
I−1 (3.12)

∂ · Ã = 0 (3.13)

This describes an anti-selfdual field arising from a vector potential Ã (Eq.
(3.12), which obeys Gauss’ Law (Eq. (3.13). We also have a gauge freedom
to rescale Ã by a scalar function λ, via Ã → Ã + ∂λ.

One mystery remains. In the above derivation, I assumed that λ1 =
λ2 = λ. What about when λ1 	= λ2? In this case we have

f1 = A + ∂λ1, f3 =
(
A + ∂λ2

)
I−1 (3.14)

Putting this into Eqs. (3.3) and (3.5) we get that

∂ · A = −∂2λ1, ∂ · A = −∂2λ2 (3.15)

This implies that ∂2
(
λ1 − λ2

)
= 0, and therefore that λ1 − λ2 is a harmonic

function. I am unsure of the physical significance of this, however I hope to
explore this in future work.
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3.2. The Even Sector

The CCR equations for the even subalgebra are given by

∂f0 = −∂ · f2 (3.16)
∂ ∧ f2 = −∂ · f4 (3.17)

Given that the even subalgebra is Spin(3, 1), we should expect that these
equations are linked to that of a massless spinor. Written in the Geometric
Algebra representation, this is

∂φ = 0 (3.18)

where φ = ρ1/2eIBeθ/2. Here, φ(x) is a multivector function, ρ(x) and B(x)
are scalar functions, and θ(x) is a bivector function. This form of the solution
to Dirac’s equation is due to David Hestenes [14]. Mathematically this corre-
sponds to a polar decomposition of φ. There are eight degrees of freedom, just
as we would expect – one each for ρ and B, and six contained in θ, which gen-
erates a Lorentz rotation. Physically, following Hestenes, we can interpret the
multivector function φ as a physical wave in Minkowski space, with ρ1/2 as
the amplitude, and eθ/2 being the spinor generator of a rotation into the rest
frame of the particle. The physical interpretation of B is more ambiguous,
but Hestenes has suggested that for the full Dirac equation it corresponds to
a hypothetical rapid oscillation of the electron called Zitterbewegung [15]. I
will not address these interpretational issues here.

Returning to Eq. (3.18), we can evaluate

∂φ =
(∂ρ

ρ
+ ∂(IB) + ∂θ

)
ρ1/2eIBeθ/2 = 0 (3.19)

Where as above, φ(x) is a multivector function, ρ(x) and B(x) are scalar
functions, and θ(x) is a bivector function. This implies

∂ρ

ρ
+ ∂(IB) + ∂θ/2 = 0 (3.20)

collecting terms of the same grade, we find

∂ln(ρ) = −∂ · θ/2 (3.21)

for grade 1, and

∂ ∧ θ/2 = −∂ · (IB) (3.22)

for grade 3, with ∂ ∧ (IB) ≡ 0 identically. But these are just the CCR Eqs.
(3.16) and (3.17), with f0 = lnρ, f2 = θ/2 and f4 = IB. Therefore, f0, f2, f4
satisfying the CCR equations automatically define a free Dirac field via (3.18).

A final note: We could have written the scalar part of φ as ea(x)/2 for
some scalar function a(x), rather than using ρ1/2. This would have given us
f0 = a/2, rather than ln(ρ). I chose the notation ρ1/2 partly to fit with the
notation of Hestenes [14], and partly because of the similarity of the term ∂ρ

ρ

to the quantum potential of Bohm [4], which is derived from a similar polar
decomposition of the wavefunction.
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4. Conclusion and Further Work

Putting it all together, we find that a multivector

z = ln(ρ) + Ã + θ/2 + ÃI−1 + IB (4.1)

satisfying the CCR equations in the Spacetime Algebra Cl(3, 1) defines both
a free Dirac field φ = ρ1/2eIBeθ/2, and an electromagnetic field strength
F = ∂ ∧ Ã, where Ã satisfies Gauss’ law, and is defined up to the addition
of a gauge ∂λ. This shows that the Dirac and Maxwell equations are not
separate or arbitrary, but are the four dimensional analogue of the Cauchy-
Riemann equations in Complex Analysis, and hence deeply linked to the
Clifford Geometry of Spacetime. It also implies that Clifford Analysis will be
a powerful tool for theoretical physics as it is developed further.

The obvious next question is how to derive the equations for a massive
or charged Dirac field, or for an electromagnetic field with a source J = ∂F?
I suspect that this would involve considering Dirac operators of the form
∂ + A, where A is a gauge potential. It would be useful here to engage with
the works mentioned in the introduction, by Kravchenko et.al, and Picard
et.al. [22,23,28].

It is also worth noting here that Hiley and Callaghan [17,18] have shown
that a general multivector in Clifford Algebra can be used to define a quantum
wavefunction. This is another angle to explore.

A second direction for research is given by the observation that, since
solutions to the Dirac equation are in one-to-one correspondence with Har-
monic functions, the spaces of monogenic functions are (at least for compact
manifolds) determine the cohomology of the underlying manifold. (This is
due to Hodge Theory [33], which states that the spaces of harmonic forms
on a manifold are isomorphic to the de Rham cohomology groups ). This im-
plies a strong link between topology and solutions to the Maxwell and Dirac
equations.

Of course we are interested in Lorentzian manifolds; and the cohomology
of Lorentzian spaces is notoriously difficult [2,3,21]. I suspect, however, that
the approach in this paper may yield new results. One strategy, once we have
extended the theory to general Dirac operators, might be to look at the BRST
or BV cohomologies [13,29], making use of the fact that Geometric Algebra
allows us to give a direct geometric interpretation of all our expressions to
determine the physical meaning of the resulting cohomology groups.
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applicable.
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