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Abstract
Theα-quantile Mt,α of a stochastic process has been introduced inMiura (Hitotsubashi
JCommerceManag 27(1):15–28, 1992), and important distributional results have been
derived inAkahori (AnnAppl Probab 5(2):383–388, 1995),Dassios (AnnAppl Probab
5(2):389–398, 1995) and Yor (J Appl Probab 32(2):405–416, 1995), with special
attention given to the problem of pricing α-quantile options. We straightforwardly
extend the classical monodimensional setting to R

d by introducing the hyperplane
α-quantile, and we find an explicit functional continuity set of the α-quantile as a
functional mapping R

d -valued càdlàg functions to R. This specification allows us
to use continuous mapping and assert that if a R

d -valued càdlàg stochastic process
X a.s. belongs to such continuity set, then Xn ⇒ X (i.e., weakly in the Skorokhod
sense) implies Mt,α(Xn) →w Mt,α(X) (i.e., weakly) in the usual sense.We further the
discussion by considering the conditions for convergence of a ‘random time’ functional
of Mt,α , the first time at which the α-quantile has been hit, applied to sequences of
càdlàg functions converging in the Skorokhod topology. The Brownian distribution
of this functional is studied, e.g., in Chaumont (J Lond Math Soc 59(2):729–741,
1999) and Dassios (Bernoulli 11(1):29–36, 2005). We finally prove the fact that if
the limit process of a sequence of càdlàg stochastic processes is a multidimensional
Brownian motion with nontrivial covariance structure, such random time functional
applied to the sequence of processes converges—jointly with the α-quantile—weakly
in the usual sense.
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1 Introduction

The set DRd [0,∞) is the Skorokhod space of Rd -valued càdlàg functions, which
are equivalently denoted with x = (xt )t≥0 = ((x1,t , . . . , xd,t ))t≥0 unless otherwise
specified. This set is equipped with the topology J1 induced by its specification of
convergence of sequences (see e.g., ([8]; VI.1.14. p. 328)); if d = 1 we writeD[0,∞)

for simplicity. We denote with ‖.‖ the Euclidean norm in R
d , d > 1 and with |.| the

absolute value. We denote with x · y = x ′y the dot product in R
d . For clarity or ease

of notation, the Lebesgue measure onRwill be identified with either λ(dt) or dt . The
Skorokhod space is a Polish space, and there is a metric δ such that δ(xn, x) → 0 if
and only if xn → x in the Skorokhod topology. Following the argument of Prokhorov
as in ([8]; VI.§1c p. 329), δ is given as following. First, for each N ∈ N define the
function kN by kN (t) := 1 if t ≤ N , kN (t) := N + 1 − t if N < t < N + 1 and
kN (t) := 0 if t ≥ N + 1. Then, for all λ : [0,∞) → [0,∞) continuous strictly
increasing with λ0 = 0 and λt ↑ ∞ as t ↑ ∞ set |||λ||| := sups<t |Logλt −λs

t−s |.
Finally, for x, x ′ ∈ DRd [0,∞) set

δN (x, x ′) := inf
λ

(|||λ||| + ‖(kN x) ◦ λ − kN x ′‖∞)

δ(x, x ′) :=
∑

N∈N
2−N (1 ∧ δN (x, x ′))

where ‖.‖∞ is the metric of ([8]; VI.1.2 p. 325) and kN x is the product of kN and
x ∈ DRd [0,∞). We denote the jumps of càdlàg functions with �xt := xt − xt− . The
setCRd [0,∞) ⊂ DRd [0,∞) is the space ofRd -valued continuous functions. Given an
abstract probability space (�,F , P), a càdlàg stochastic process is identified with the
measurable function X : (�,F ) → (DRd [0,∞),DRd [0,∞)) where DRd [0,∞) are
the Borel sets. If X ∼ σ W where W is a one-dimensional standard Brownian motion
and σ > 0, then we will say that X is a Brownian motion with volatility parameter σ .
We will also consider sequences of càdlàg stochastic processes {Xn = (Xn

t )t≥0, n ∈
N} each defined on its own stochastic basis (�n,F n, (F n

t )t≥0, Pn)which may not be
the same as that of X . We say that Xn ⇒ X if E Pn [ f (Xn)] → E P [ f (X)] as n → ∞
for all f : DRd [0,∞) → R bounded and continuous in the Skorokhod topology.
Given a time horizon t > 0 and some α ∈ (0, 1), we define the hyperplane α-quantile

Mt,α(X) = inf

{
y : 1

t

∫ t

0
1{z∈Rd :γ ·z≤y}(Xs)ds ≥ α

}
(1)

for some fixed γ ∈ R
d and a càdlàg stochastic process X . We denote with τMt,α (X)

the random time at which X has hit Mt,α(X). We shall give the precise definitions
of these functionals, respectively, in Lemma 2.2 and Theorem 2.7. Our approach is
to consider the α-quantile and its random time as functionals on DRd [0,∞), and we
study their continuity properties in the Skorokhod topology. Quoting ([8], VI p. 337):

“It is important to decide whether a function defined on DRd [0,∞) is continuous
for the Skorokhod topology. As a matter of fact, not very many functions are so, hence
the question becomes: at which points of DRd [0,∞) is a given function continuous?”
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To address this matter, we shall first characterize the (joint) continuity set of x �→
(MT ,α(x), τMT ,α

(x)) in the Skorokhod topology. Ourmain result is then the following;
its corollary is an immediate application to obtain a means convergence result for α-
quantile option payoffs.

Theorem 1.1 Let α ∈ (0, 1), T > 0, γ ∈ R
d . Let X = 
W where W is a stan-

dard R
d-Brownian motion and 
 is such that 

′ is a variance-covariance matrix.

Then, X belongs with probability one to the continuity set of DRd [0,∞) � x �→
(MT ,α(x), τMT ,α

(x)) in the Skorokhod topology. Therefore, suppose Xn ⇒ X, then
(MT ,α(Xn), τMT ,α

(Xn)) →w (MT ,α(X), τMT ,α
(X)) in the usual sense.

Proof Of course X has a.s. continuous paths starting at zero with probability one.With
probability one, the conditions (1), (2), (3) of Corollary 2.8 are satisfied by Lemma
3.5, Propositions 3.2 and 3.6. So we conclude by continuous mapping. ��
In the mathematical finance literature, functional central limit theorems with weak
limit X = 
W emerge when considering the scaling limits of sequences of processes
modeling asset prices. An important example is the scaling limit (of differences) of
point processes with mutually exciting jump intensities of [2]. Another example is the
small-time functional central limit theorem of [7]. Theorem 1.1 establishes continuous
mapping in the case of the hyperplane α-quantile jointly with its random time func-
tional when applied to these sequences of processes. At the same time, the corollary
of Theorem 1.1 which we now are going to present also establishes the convergence
of option prices when the underlying quantities are the α-quantile and its random
time functional, given that some technical conditions on (Xn)n∈N are met. Given a
payoff function g : R2 → R applied to (MT ,α(Y ), τMT ,α

(Y )) of a càdlàg stochastic
process Y , the standard pricing operation would consist in—setting the interest rate to
zero for simplicity—computing the expectation E P [g(MT ,α(Y ), τMT ,α

(Y ))] under the
appropriate probability measure. This pricing problem has been studied in particular
in [6].

Corollary 1.2 Let Xn ⇒ X and Xn are all martingales in their respective filtrations.
Suppose that f : R → R satisfies the growth condition | f (z)|p ≤ D(1 + |z|p) for
some p > 1, D > 0. Let v > 0. Define g(m, u) = f (m)1(v,∞)(u) and its continuity
set C(g). If

(1) supn∈N E Pn [|(γ · Xn)T |p] < ∞;
(2) P((MT ,α(X), τMT ,α

(X)) ∈ C(g)) = 1,

then E Pn [ f (MT ,α(Xn))1(v,∞)(τMT ,α
(Xn))] → E P [ f (MT ,α(X))1(v,∞)(τMT ,α

(X))]
as n → ∞.

Proof The claim follows—straightforwardly with a standard uniform integrability
argument with the de la Vallée Poussin criterion—from Theorem 1.1, Lemma 2.6,
Doob’s L p-inequality of càdlàg submartingales (see e.g., ([9]; 3.8.(iv) p. 13)), Sko-
rokhod’s representation theorem (see e.g., ([3]; Vol. II, 8.5.4. p. 201)) and continuous
mapping. Indeed, since sups≤t |γ · xs | ≥ sups≤t (−γ · xs) = − infs≤t (γ · xs) and
sups≤t (γ · xs) ≤ sups≤t |γ · xs |, by following Lemma 2.6 we have that |Mt,α(x)|p ≤
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sups≤t |γ · xs |p for all x ∈ DRd [0,∞). We have that (γ · Xn)n∈N are all martingales in
the respective filtrations of (Xn)n∈N. Using the growth condition on f , then Lemma
2.6 and Doob’s L p-inequality we obtain

E Pn [| f (MT ,α(Xn))|p1(v,∞)(τMT ,α
(Xn))] ≤ D

(
1 +

(
p

p − 1

)p

E Pn [|(γ · Xn)T |p]
)

so that supn E Pn [| f (MT ,α(Xn))|p1(v,∞)(τMT ,α
(Xn))] < ∞ by our first assumption.

Since (MT ,α(Xn), τMT ,α
(Xn)) →w (MT ,α(X), τMT ,α

(X)), Skorokhod’s represen-
tation allows us to pass to some (ξ1,n, ξ2,n) ∼ (MT ,α(Xn), τMT ,α

(Xn)) and
(ξ1, ξ2) ∼ (MT ,α(X), τMT ,α

(X)) on the probability space ([0, 1],B[0, 1], λ) such
that (ξ1,n, ξ2,n) →λ-a.e. (ξ1, ξ2). Also,

sup
n∈N

E Pn [| f (MT ,α(Xn))|p1(v,∞)(τMT ,α
(Xn))] = sup

n∈N

∫

[0,1]
| f (ξ1,n)|p1(v,∞)(ξ

2,n)dλ

and 1 = P((MT ,α(X), τMT ,α
(X)) ∈ C(g)) = λ((ξ1, ξ2) ∈ C(g)) by our second

assumption, so that by a.e. continuous mapping, uniform integrability and Vitali’s
convergence theorem we obtain the claim. ��

2 Hyperplane˛-Quantiles and Their Random Time Functionals

In this section, we present our results on the continuity sets of the hyperplane α-
quantile and its random time functional defined as functions on DRd [0,∞). We shall
begin by recalling some elementary results about generalized inverse functions, which
we will make use of often.

Proposition 2.1 (see e.g., [10]; A.3. p. 641–642) If x = (xt )t∈R is R-valued nonde-
creasing, not necessarily càdlàg, then the generalized inverse given by x−1(y) :=
inf{t : xt ≥ y} is such that:

(1) x−1 is nondecreasing, left-continuous;
(2) x is continuous if and only if x−1 is strictly increasing;
(3) x is strictly increasing if and only if x−1 is continuous.

If x is also right-continuous, it follows that xt ≥ y ⇐⇒ x−1(y) ≤ t (equivalently
xt < y ⇐⇒ x−1(y) > t). In fact, right-continuity is needed only for the implication
(⇐).

We now introduce the hyperplane α-quantile functional on the Skorokhod space,
which generalizes its special case found in the literature. We thus reformulate the
quantity presented in Eq.1 as a deterministic function acting on the space of Rd -
valued càdlàg functions. To identify a continuity set, we employ a proof technique
idea found in ([8]; 2.10. p. 340, 2.11. p. 341) for the continuity of first exit times; this
argument is based on dense sets inR. The gist of this technique will be present in later
arguments as well.
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Lemma 2.2 Let t > 0, α ∈ (0, 1), γ ∈ R
d . Define the hyperplane α-quantile func-

tional DRd [0,∞) � x �→ Mt,α(x) by

Mt,α(x) = inf

{
y : 1

t

∫ t

0
1{z∈Rd :γ ·z≤y}(xs)ds ≥ α

}
(2)

Then:

(1) Mt,α is a DRd [0,∞)/B(R)-measurable function;
(2) For t > 0, x ∈ DRd [0,∞) fixed, α �→ Mt,α(x) is nondecreasing and left-

continuous;
(3) Let Mt,α+(x) := limβ↓α Mt,β(x). The set U (x, t) = {α ∈ (0, 1) : Mt,α(x) <

Mt,α+(x)} is at most countable.

Proof We first note that 1{z∈Rd :γ ·z≤y}(xs) = 1(−∞,y](γ · xs). (1) Let t > 0, x ∈
DRd [0,∞). Then y �→ 1

t

∫ t
0 1(−∞,y](γ ·xs)ds is nondecreasing, taking values in [0, 1].

Also since 1(−∞,y](γ ·xs) = 1[γ ·xs ,∞)(y) it is also right-continuous in y, and therefore,
α �→ Mt,α(x) is its generalized inverse function. So we have Mt,α(x) > y ⇐⇒
1
t

∫ t
0 1(−∞,y](γ · xs)ds < α, therefore Mt,α(x) is a measurable function—indeed, the

time integral functional is aDRd [0,∞)/B(R)-measurable function. (2) It follows that
α �→ Mt,α(x) is nondecreasing and left-continuous (see Proposition 2.1). (iii) Since
α �→ Mt,α(x) is nondecreasing, it has at most countably many discontinuities and the
claim follows. ��
Lemma 2.3 x ∈ CRd [0,∞) implies {α ∈ (0, 1) : Mt,α(x) < Mt,α+(x)} = ∅, i.e.,
α �→ Mt,α(x) for α ∈ (0, 1) is continuous.

Proof Consider y �→ 1
t

∫ t
0 1(−∞,y](γ · xs)ds. Since s �→ γ · xs is continuous in [0, t],

it attains both its maximum x := sups≤t (γ · xs) and its minimum x := infs≤t (γ ·
xs). Without loss of generality, let x < x (the case x = x is immediate). We note:∫ t
0 1(−∞,y](γ · xs)ds = λ({s ∈ [0, t] : γ · xs ≤ y}). Let ε > 0 and y ∈ [x, x).
Indicate with (γ · x)−1 the inverse image of s �→ γ · xs . We get λ({s ∈ [0, t] : y <

γ · xs ≤ y + ε}) ≥ λ((γ · x)−1((y, y + ε)) ∩ [0, t]). But (γ · x)−1((y, y + ε)) ∩ [0, t]
is non-empty and contains a non-empty open set since γ · x is continuous. So λ({s ∈
[0, t] : y < γ · xs ≤ y + ε}) > 0, and we conclude that y �→ 1

t

∫ t
0 1(−∞,y](γ · xs)ds

is strictly increasing over [x, x), which implies (see Proposition 2.1) our conclusion.
��

Proposition 2.4 Let t > 0, γ ∈ R
d . The hyperplane α-quantile function x �→ Mt,α(x)

is continuous in the Skorokhod topology at all x such that α /∈ U (x, t) = {α ∈ (0, 1) :
Mt,α(x) < Mt,α+(x)}.
Proof Suppose xn → x in the Skorokhod topology and α /∈ U (x, t). Then γ · xn →
γ · x in the Skorokhod topology. Let y ∈ {y : λ({t : γ · xt = y}) = 0}; then
1
t

∫ t
0 1(−∞,y](γ · xn

s )ds → 1
t

∫ t
0 1(−∞,y](γ · xs)ds in the usual sense. If Mt,α(x) > y

then 1
t

∫ t
0 1(−∞,y](γ · xs)ds < α and 1

t

∫ t
0 1(−∞,y](γ · xn

s )ds < α for n large enough,
therefore Mt,α(xn) > y as well. The set {y : λ({t : γ ·xt = y}) = 0} is dense inR. We
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then conclude that lim infn→∞ Mt,α(xn) ≥ Mt,α(x). Since α /∈ U (x, t), we get that
y > Mt,α(x) implies y > Mt,α+(x). Then, for some β > α we have y ≥ Mt,β(x),
which implies 1

t

∫ t
0 1(−∞,y](γ · xs)ds ≥ β > α. If y ∈ {y : λ({t : γ · xt = y}) = 0},

then 1
t

∫ t
0 1(−∞,y](γ · xn

s )ds > α for n large enough and we conclude Mt,α(xn) ≤ y.
We then have lim supn→∞ Mt,α(xn) ≤ Mt,α(x) and we conclude. ��
Theorem 2.5 Let α ∈ (0, 1), t > 0, γ ∈ R

d . Let Xn ⇒ X. Suppose that for all ε > 0
we have, alternatively:

(1) P(Mt,β(X) > Mt,α(X) + ε) → 0 as β ↓ α or,
(2) P(X ∈ CRd [0,∞)) = 1;

Then Mt,α(Xn) →w Mt,α(X) in the usual sense.

Proof We have shown in Proposition 2.4 that x �→ Mt,α(x) is continuous at all x such
that α /∈ U (x, t), i.e., x /∈ {x : Mt,α(x) < Mt,α+(x)}. Recall also that β �→ Mt,β(x) is
nondecreasing left-continuous byLemma2.2. If (2) holds, the claim followsbyLemma
2.3. If (1) holds, without loss of generality let βk ↓ α for a sequence (βk)k∈N ⊆ (0, 1).
Then for ε > 0 we have

{ω : Mt,βk (X(ω))>Mt,α(X(ω))+ε} ⊇ {ω : Mt,α+(X(ω)) > Mt,α(X(ω))+ε}, ∀k ∈ N

which implies P(Mt,α+(X) > Mt,α(X) + ε) = 0,∀ε > 0 and so P(Mt,α+(X) >

Mt,α(X)) = 0. But then, X a.s. belongs to the continuity set we have identified in
Proposition 2.4, and by continuous mapping the claim follows. ��
Lemma 2.6 Let α ∈ (0, 1), t > 0, γ ∈ R

d and x ∈ DRd [0,∞). Then infs≤t (γ · xs) ≤
Mt,α(x) ≤ sups≤t (γ · xs).

Proof Suppose Mt,α(x) < infs≤t (γ · xs). We have 1
t

∫ t
0 1(−∞,Mt,α(x)](γ · xs)ds ≥

α > 0 (see Proposition 2.1). But at the same time 1(−∞,Mt,α(x)](γ · xs) = 0,∀s ≤ t
because Mt,α(x) < infs≤t (γ · xs), which is a contradiction. Now suppose Mt,α(x) >

sups≤t (γ · xs). Then, this implies 1
t

∫ t
0 1(−∞,sups≤t (γ ·xs )](γ · xs)ds < α < 1 (see again

Proposition 2.1), but1(−∞,sups≤t (γ ·xs )](γ ·xs) = 1,∀s ≤ t whichyields a contradiction.
We conclude. ��

We now discuss the following random time functional of the hyperplane α-
quantile—the first time at which this quantity has been hit—and we identify in detail
some conditions at which this functional is continuous in the Skorokhod topology.

Theorem 2.7 Let T > 0, α ∈ (0, 1), γ ∈ R
d . Let xn → x in the Skorokhod topology

and x such that α /∈ U (x, T ). Define:

x �→ τMT ,α
(x) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

inf

{
t > 0 : sups≤t (γ · x)t ≥ MT ,α(x)

}
if MT ,α(x) > γ · x0

0 if MT ,α(x) = γ · x0

inf

{
t > 0 : infs≤t (γ · x)t ≤ MT ,α(x)

}
if MT ,α(x) < γ · x0

(3)
Suppose that MT ,α(x) �= γ · x0. Then:
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(1) lim infn τMT ,α
(xn) ≥ τMT ,α

(x);

(2) If, equivalently, y �→ 1
T

∫ T
0 1{z:γ ·z≤y}(xs)ds is continuous or β �→ MT ,β(x) is

strictly increasing and additionally α ∈ {α : limβ→α τMT ,β
(x) = τMT ,α

(x)}, then
we have τMT ,α

(xn) → τMT ,α
(x).

In fact, if the conditions of (2) are satisfied, then we also have

(MT ,α(xn), τMT ,α
(xn)) → (MT ,α(x), τMT ,α

(x))

in the usual sense.

Proof First note that, since xn → x in the Skorokhod topology, then xn
0 → x0 and so

γ · xn
0 → γ · x0. We exlcude the case MT ,α(x) = γ · x0 by assumption. For the cases

MT ,α(x) > γ · x0 and MT ,α(x) < γ · x0, we prove the first two claims in order:

(1) From the fact that x /∈ {x : MT ,α(x) < MT ,α+(x)} it follows MT ,α(xn) →
MT ,α(x) by Proposition 2.4. Suppose MT ,α(x) < γ · x0. For all n sufficiently
large MT ,α(xn) < γ · xn

0 . Let t /∈ {t : |�(γ · x)t | > 0}; then infs≤t (γ · xn)s →
infs≤t (γ ·x)s . If t < τMT ,α

(x), then infs≤t (γ ·x)s > MT ,α(x) and for n sufficiently
large we have infs≤t (γ · xn)s > MT ,α(xn) so t < τMT ,α

(xn) as well for all n large
enough. Since {t : |�(γ · x)t | > 0} is at most countable due to γ · x being càdlàg,
its complement is dense in R, and we conclude. An analogous argument holds for
MT ,α(x) > γ · x0.

(2) The equivalence of the first conditions can be seen from Proposition 2.1. Consider
x such that α ∈ {α : limβ→α τMT ,β

(x) = τMT ,α
(x)}, in addition to α /∈ U (x, T ).

Suppose again MT ,α(x) < γ · x0. Choose a sequence βk ↑ α. If t > τMT ,α
(x)

then t > limk τMT ,βk
(x) so t ≥ τMT ,βk

(x) for some βk < α. Let t /∈ {t : |�(γ ·
x)t | > 0}, so that infs≤t (γ · xn)s → infs≤t (γ · x)s . We have infs≤t (γ · x)s ≤
MT ,βk (x) < MT ,α(x) (due to strict monotonicity of β �→ MT ,β(x)) and infs≤t (γ ·
xn)s < MT ,α(xn) for all n large enough because MT ,α(xn) → MT ,α(x) since
α /∈ U (x, T ). Therefore, t ≥ τMT ,α

(xn) for all n large enough. Since {t : |�(γ ·
x)t | > 0} is at most countable, we conclude that lim supn τMT ,α

(xn) ≤ τMT ,α
(x).

Now suppose MT ,α(x) > γ · x0. Let again t /∈ {t : |�(γ · x)t | > 0} so that
sups≤t (γ ·xn)s → sups≤t (γ ·x)s . Choose a sequence βk ↓ α. If t > τMT ,α

(x) then
t > limk τMT ,βk

(x) so t ≥ τMT ,βk
(x) for some βk > α. We have sups≤t (γ · x)s ≥

MT ,βk (x) > MT ,α(x) and sups≤t (γ · xn)s > MT ,α(xn) for all n large enough.
So t ≥ τMT ,α

(xn) for all n large enough. Since {t : |�(γ · x)t | > 0} is at most
countable, we conclude that lim supn τMT ,α

(xn) ≤ τMT ,α
(x). We then conclude

that τMT ,α
(xn) → τMT ,α

(x).

The last statement immediately follows from the previous result and the fact that
|MT ,α(xn) − MT ,α(x)| → 0, since α /∈ U (x, T ) by assumption. ��
Corollary 2.8 Let α ∈ (0, 1), T > 0, γ ∈ R

d . Suppose that x ∈ CRd [0,∞); then we
have

τMT ,α
(x) = inf{t : γ · xt = MT ,α(x)} (4)

If xn → x in the Skorokhod topology and:
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(1) MT ,α(x) �= γ · x0;

(2) Equivalently, y �→ 1
T

∫ T
0 1{z:γ ·z≤y}(xs)ds is continuous or β �→ MT ,β(x) is

strictly increasing;
(3) α ∈ {α : limβ→α τMT ,β

(x) = τMT ,α
(x)}

then (MT ,α(xn), τMT ,α
(xn)) → (MT ,α(x), τMT ,α

(x)).

Proof This immediately follows from Theorem 2.7 and the fact that U (x, T ) = ∅ due
to the continuity of x by Lemma 2.3, which then also implies that β �→ MT ,β(x) is
continuous and strictly increasing. ��
Lemma 2.9 Let T > 0, α ∈ (0, 1), γ ∈ R

d , x ∈ DRd [0,∞) and α /∈ U (x, T ) and
MT ,α(x) �= γ · x0. Then

lim
β→α

τMT ,β
(x) = τMT ,α

(x) ⇐⇒
{
limβ↓α τMT ,β

(x) = τMT ,α
(x) MT ,α(x) > γ · x0

limβ↑α τMT ,β
(x) = τMT ,α

(x) MT ,α(x) < γ · x0
(5)

Proof Since α /∈ U (x, T ), then MT ,β(x) → MT ,α(x) as β → α. The claim follows
from the definition of x �→ τMT ,α

(x) as in Theorem 2.7: if MT ,α(x) > γ · x0, then
α �→ τMT ,α

(x) = inf{t > 0 : sups≤t (γ · x)s ≥ MT ,α(x)}. Since ν �→ inf{t > 0 :
sups≤t (γ ·x)s ≥ ν} is nondecreasing left-continuous,we have that limβ→α τMT ,β

(x) =
τMT ,α

(x) if and only if limβ↓α τMT ,β
(x) = τMT ,α

(x). Similarly, if MT ,α(x) < γ · x0,
then α �→ τMT ,α

(x) = inf{t > 0 : infs≤t (γ · x)s ≤ MT ,α(x)}. Since ν �→ inf{t > 0 :
infs≤t (γ · x)s ≤ ν} is nonincreasing càd, we have that limβ→α τMT ,β

(x) = τMT ,α
(x)

if and only if limβ↑α τMT ,β
(x) = τMT ,α

(x). ��

3 Brownian Hyperplane˛-Quantile

In this section, we finally introduce the main propositions regarding the hyperplane
α-quantile applied to Brownian paths which will be needed to prove Theorem 1.1. The
proof of these results rely upon explicit functional forms of the joint density of the
Brownian time functional and the Brownian hyperplane α-quantile which are found in
[6]; we will also mention distributional results of the marginal density of the Brownian
α-quantile which can be found in [5]. We will first show a straightforward application
of the aforementioned results for the expected value of the Brownian hyperplane α-
quantile.

Example 3.1 Let γ ∈ R
d . Suppose X = 
W where W is a standard R

d -Brownian
motion and 
 is such that 

′ is a variance-covariance matrix and let α ∈ (0, 1). By
a.s. continuity of Brownian paths, Theorem 2.5 holds. We also have that

E[Mt,α(X)] = ‖γ ′
‖
√
2αt − √

2(1 − α)t√
π

(6)

and Mt,β(X) →L1
Mt,α(X) as β ↓ α.
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Indeed Note that γ · X is a (scaled) one-dimensional Brownian motion in the fil-
tration of W with constant volatility parameter ‖γ ′
‖; this can be seen, e.g., by
Lévy characterization. Define σ := ‖γ ′
‖. Denote with Y s := supu≤s(γ · X)u and
Y s := infu≤s(γ · X)u. By symmetry and reflection principle we have E[Y s] =
−E[Y s] = σ

√
2 s/π, ∀s ≥ 0. Now, also note again that 1{z:γ ·z≤y}(Xs) =

1(−∞,y](γ · Xs); by ([5]; Th.2. p. 390), we have Mt,β(X) ∼ Y
(1)
βt + Y (2)

(1−β)t where

Y
(1)
s := supu≤s(γ · X (1))u, Y (2)

s := infu≤s(γ · X (2))u and X (1), X (2) are IID copies
of X. The first claim follows. By using the fact that β �→ Mt,β(X) is nondecreasing,
we get

E[|Mt,β(X) − Mt,α(X)|] = E[Mt,β(X)] − E[Mt,α(X)]

= σ

√
2βt − √

2(1 − β)t − √
2αt + √

2(1 − α)t√
π

β↓α→ 0 (7)

and the second claim follows.

For simplicity of exposition, in the following, X = 
W where 
 is such that 

′
is a variance-covariance matrix and W is a standard R

d -Brownian motion.

Proposition 3.2 Let T > 0, γ ∈ R
d . Then y �→ 1

T

∫ T
0 1{z:γ ·z≤y}(Xs)ds is P-a.s.

continuous. Therefore, equivalently, (0, 1) � α �→ MT ,α(X) is strictly increasing
P-a.s.

Proof We know that γ · X is a Brownian motion in the filtration of W with volatility
parameter ‖γ ′
‖. Without loss of generality let ‖γ ′
‖ = 1. The local time y �→
limε→0

1
2ε

∫ T
0 1(y−ε,y+ε](γ · Xs(ω))ds exists and is finite for all y for P-almost always

ω ∈ � (see e.g., ([9]; 6.5. p. 203)), and therefore y �→ 1
T

∫ T
0 1{z:γ ·z≤y}(Xs)ds, since

it is càd, is continuous P-a.s. in y. The final claim follows from Proposition 2.1. ��
The subsequent proposition makes it clear that the previous result, while intuitive,

is not easily proved with standard techniques and our argument necessarily relies on
a deep property of the local times of Brownian motion.

Proposition 3.3 ([12]; 21.2. p. 135) If Y is a Lévy process, then t �→ Yt (ω) is piecewise
constant for P-almost always ω ∈ � if and only if Y is a compound Poisson process
or Y = 0 P-a.s.

Proposition 3.4 Let T > 0, γ ∈ R
d . Let D = {b1, b2, . . .} ⊂ R be a countable dense

subset. Then the condition P(∪k∈N{λ({s ∈ [0, T ] : γ · Ys = bk}) > 0}) = 0 alone
does not imply that y �→ 1

T

∫ T
0 1{z:γ ·z≤y}(Ys)ds is P-a.s. continuous.

Proof If γ · Y is compound Poisson process-distributed with a.s. nonnegative
increments and with Lebesgue absolutely continuous density at all t then it is a coun-
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terexample which shows the claim. Indeed, for any bk ∈ D we have E[λ({s ∈ [0, T ] :
γ · Ys = bk})] = 0 because P(γ · Yt = bk) = 0,∀t > 0,∀k ∈ N so it follows that

P(∪k∈N{λ({s ∈ [0, T ] : γ · Ys = bk}) > 0}) ≤
∑

k∈N
P(λ({s ∈ [0, T ] : γ · Ys = bk}) > 0)

= 0 (8)

But γ ·Y is a.s. piecewise constant, so y �→ 1
T

∫ T
0 1{z:γ ·z≤y}(Ys)ds is a.s. discontinuous

in at least one point in y. Indeed, suppose x ∈ D[0,∞) and x is nondecreasing
piecewise constant, that is there exist 0 < t1 < · · · < tk < · · · such that x is constant
on [tk, tk+1). Without loss of generality suppose x has at least two consecutive jump-
times 0 < u1 < u2 < T . So xu1 = xu−

1
+�xu1 , and then limy↑xu1

∫ T
0 1(−∞,y](xs)ds <

∫ T
0 1(−∞,xu1 ](xs)ds because xs = xu1 for all s ∈ [u1, u2) and so

∫ T
0 1(−∞,y](xs)ds is

constant for all xu− ≤ y < xu1 . We conclude. ��
Lemma 3.5 Let T > 0, γ ∈ R

d , z ∈ R. Then, we have P(MT ,α(X) = z) = 0, ∀α ∈
(0, 1).

Proof Recall γ · X is a one-dimensional (scaled by constant volatility ‖γ ′
‖) Brow-
nian motion in the filtration of W . The claim immediately follows from the fact that
MT ,α(X) has a Lebesgue density for any α ∈ (0, 1), T > 0 (see e.g., ([5]; Th.1. p.
390)). ��
Proposition 3.6 Let α ∈ (0, 1), T > 0, γ ∈ R

d ; then P(limβ→α τMT ,β
(X) =

τMT ,α
(X)) = 1.

Proof Of course X0 = 0 a.s. Since X has a.s. continuous paths, then β �→ MT ,β(X) is
a.s. strictly increasing continuous by Proposition 3.2 and Lemma 2.3. On {MT ,α(X) >

0}, since the function [0,∞) � ν �→ inf{t > 0 : sups≤t (γ · X)t ≥ ν} is nondecreasing
and left-continuous, we have limβ↑α τMT ,β

(X) = τMT ,α
(X). Now note, for β > α,

that:

P({τMT ,β
(X) > τMT ,α

(X) + ε} ∩ {MT ,α(X) > 0})
≤ ε−1(E[1{MT ,α(X)>0}τMT ,β

(X)] − E[1{MT ,α(X)>0}τMT ,α
(X)])

≤ ε−1(E[1{MT ,β (X)>0}τMT ,β
(X)] − E[1{MT ,α(X)>0}τMT ,α

(X)]) (9)

and by ([6]; Remark.1. p. 32) we have by Tonelli-Fubini (without loss of generality
T = 1 and γ · X has unit volatility parameter)

E[1{M1,β (X)>0}τM1,β (X)] =
∫

R+

∫

(0,β]
u

b

π
√

u3(1 − u)
e−b2/(2u)dudb

=
∫

(0,β]
1

π

√
u

1 − u
du

= 1

π
(arcsin(

√
β) − √

(1 − β)β) (10)
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But this function is continuous in β. So E[1{MT ,β (X)>0}τMT ,β
(X)] →

E[1{MT ,α(X)>0}τMT ,α
(X)] and so P({τMT ,β

(X) > τMT ,α
(X)+ε}∩{MT ,α(X) > 0}) →

0, ∀ε > 0. Therefore since ν �→ inf{t > 0 : sups≤t (γ · x)s ≥ ν} is nondecreasing
left-continuous we have

P({lim
β↓α

τMT ,β
(X) > τMT ,α

(X) + ε} ∩ {MT ,α(X) > 0}) = 0,∀ε > 0 (11)

which implies, as ε ↓ 0 that

P({lim
β↓α

τMT ,β
(X) > τMT ,α

(X)} ∩ {MT ,α(X) > 0}) = 0 (12)

and therefore (P({limβ↓α τMT ,β
(X) �= τMT ,α

(X)} ∩ {MT ,α(X) > 0}) = 0. We then
conclude that limβ→α τMT ,β

(X) = τMT ,α
(X) on {MT ,α(X) > 0} with probability

one. A symmetric argument holds on {MT ,α(X) < 0}: indeed for β < α (and so
MT ,α < 0 �⇒ MT ,β < 0) we again have

P({τMT ,β
(X) > τMT ,α

(X) + ε} ∩ {MT ,α(X) < 0})
≤ ε−1(E[1{MT ,β (X)<0}τMT ,β

(X)] − E[1{MT ,α(X)<0}τMT ,α
(X)]) (13)

and we argue similarly as above. Therefore we conclude since P(MT ,α(X) = 0) = 0
by Lemma 3.5. ��

Ideally, we would like to extend the results of this section to processes which
generalize Brownian motion, such as SDEs of the form dYt = b(Yt )dWt where b
is a d × d time-homogeneous volatility matrix. However, the direct extension of, in
particular, Proposition 3.6 does not appear immediate, since explicit distributional
results of (MT ,α(Y ), τMT ,α

(Y )) in such case are not—to the best of our knowledge—
known in the literature. However, we conjecture that the equivalent of Theorem 1.1
for Y is true under standard technical assumptions on b.
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