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Estimating the cost to society from a ton of CO2—termed the social cost of carbon
(SCC)—requires connecting a model of the climate system with a representation of
the economic and social effects of changes in climate, and the aggregation of diverse,
uncertain impacts across both time and space. A growing literature has examined the
effect of fundamental structural elements of the models supporting SCC calculations.
This work has accumulated in a piecemeal fashion, leaving their relative importance
unclear. Here, we perform a comprehensive synthesis of the evidence on the SCC,
combining 1,823 estimates of the SCC from 147 studies with a survey of authors of
these studies. The distribution of published 2020 SCC values is wide and substantially
right-skewed, showing evidence of a heavy right tail (truncated mean of $132). ANOVA
reveals important roles for the inclusion of persistent damages, the representation
of the Earth system, and distributional weighting. However, our survey reveals that
experts believe the literature underestimates the SCC due to an undersampling of model
structures, incomplete characterization of damages, and high discount rates. To address
this imbalance, we train a random forest model on variation in the literature and use it
to generate a synthetic SCC distribution that more closely matches expert assessments
of appropriate model structure and discounting. This synthetic distribution has a mean
of $283 per ton CO2 for a 2020 pulse year (5% to 95% range: $32 to $874), higher
than most official government estimates, including a 2023 update from the U.S. EPA.

climate change | social cost of carbon | meta-analysis | environmental economics

Anthropogenic climate change affects the welfare of people around the world and
will continue to do so for centuries into the future. Because these costs are largely
not incorporated into energy, land-use, and other economic decisions, climate change
has been termed “the greatest and widest-ranging market failure ever seen” (1, p. i).
Incorporating climate costs into the prices of economic activities that emit greenhouse
gases, either directly through carbon pricing or indirectly through emission regulation
or subsidies of cleaner alternatives, is essential for averting the worst climate outcomes.
Quantifying these costs is extremely challenging as it involves projecting and valuing the
effects of climate change in all countries and sectors far into the future, an exercise that
is rife with uncertainties and contestation.

The external costs of carbon dioxide (CO2) emissions are summarized by the “social
cost of carbon” (SCC): the present value of all future impacts from an additional metric
ton of CO2 emissions. The SCC is key for understanding the benefits of emissions-
reduction policies and is used for climate and energy policy analysis in the United States,
Europe, and numerous other countries and subnational jurisdictions around the world
as well as by companies and other institutions (2, 3). Integrated assessment models
(IAMs) commonly used to calculate the SCC have been criticized on various grounds,
including inaccurate climate and carbon-cycle modeling, ignoring irreversibilities and
tipping points in the climate system, failing to adequately model uncertainty or the
potential for catastrophic outcomes, and relying on dated science in the representation
of climate impacts (4–8).

The continuing importance of the SCC as a tool for climate policy analysis (2) and
recognition of failings in IAMs currently used to calculate it has led to a surge of research
seeking to improve, expand, and update the estimates. Major strands of this literature
include: improving modeling of Earth system dynamics (9–12); disentangling preferences
over risk and time using more complex utility functions (13–15); representing tipping
points in the climate system (thresholds where reinforcing feedbacks can amplify initial
small perturbations to Earth system components to produce much large changes in
climate) and associated uncertainties in damages (16–19); addressing model uncertainty,
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ambiguity, and learning of new information (20–24); allowing
climate damages to affect the growth rate rather than just the level
of economic output (11, 25–27); calibrating aggregate climate
damages on recent economic and scientific evidence (20, 28, 29);
modeling the distribution of climate damages and incorporating
inequality aversion or distributional weighting (30–32); and
explicitly representing climate damages to nonmarket goods, such
as natural systems or cultural heritage, which are imperfectly
substitutable with market-traded goods (33–36). (SI Appendix,
section S3 contains more detailed discussion of the different
model structures discussed in this paper and examples of papers
integrating them into SCC estimates.)

Although this literature is now substantial, it has accumulated
piecemeal. The vast majority of papers make one or two structural
adjustments to a simpler IAM and report how these alter
SCC values, often with an exploration of associated parametric
uncertainty. The collective implications of the full suite of issues
addressed by this literature have not been assessed. Previous
syntheses have quantified the distribution of SCC estimates and
explored a limited set of covariates, such as publication year and
discounting (37, 38), as well as the possible role of publication
bias (39). Previous modeling studies have made multiple simul-
taneous changes to individual IAMs (12, 40), or have undertaken
systematic IAM intercomparisons and evaluations (41, 42), albeit
focusing on a limited number of IAMs with comparable model
structures. Previous expert surveys have either imposed very
specific structure or none at all (43–45), or have focused on
carbon prices (46). Thus, prior studies only illuminate the role
of a subset of mechanisms and structural models.

This paper provides the most comprehensive assessment to
date of SCC estimates, including how elements of model
structure shape the SCC. It builds on two complementary
approaches. First, we perform an analysis of SCC values published
in the peer-reviewed literature between 2000 and 2020. After
reviewing over 2,800 abstracts, we identified 1,823 estimates
(or distributions of estimates) published in 147 studies. We
recorded SCC estimates and, where reported, the distribution
of parametric uncertainty, along with 31 covariates capturing
details of the estimate itself (e.g., SCC year, discounting scheme,
and socioeconomic and emissions scenarios), important elements
of model structure (e.g., growth-rate damages, distributional
weighting, and representation of the utility function), and sources
of parametric variation (e.g., distributions over productivity
growth, climate sensitivity, discount rates, and damage-function
parameters). Second, to help place the literature distribution
in a broader context, we conduct an expert survey of the
authors of the SCC papers in our analysis. We elicit expert
estimates of both the distribution of published SCC values
in the peer-reviewed literature and their best estimate of the
SCC distribution, all things considered. We also ask experts
to break down the wedge between these two SCC estimates
into component parts, generating information on what experts
perceive as potentially missing from or underrepresented in the
literature. Furthermore, we elicit experts’ views on the degree to
which various model structures that have been explored in the lit-
erature improve SCC estimates relative to estimates that exclude
them, using this quality assessment to inform our final synthetic
SCC estimate.

Our study therefore contains two complementary data-
generating processes: a meta-analysis, which collects much richer
data on published SCC estimates and their determinants than
previous studies, and an expert survey. We combine these lines of
evidence to produce a synthetic SCC distribution using a random
forest model (a form of machine learning) trained on variation

in the literature but sampled to more closely match experts’
assessment of model structures and discounting parameters. The
resulting SCC distribution essentially amounts to a structured
reweighting of published SCC estimates to better match expert-
elicited model structure and discounting. Additional details
on the literature review, coding of values, data cleaning and
processing, expert survey, and construction of the synthetic SCC
are provided in SI Appendix, section S2.

1. The SCC Distribution

The systematic review of the literature yields 1,823 SCC estimates
(or distributions) from 147 studies (full references given in
SI Appendix, section S4). Many studies report multiple SCC
estimates. For each of the 1,823 estimates, we collect information
on the central SCC estimate, emission pulse year, discounting,
damage function, economic and emissions scenario, model
structure, and distribution resulting from parametric uncertainty
(where reported, specifically 832 of the 1,823 estimates). SI
Appendix, section S1 provides descriptive statistics and summary
information on these estimates.

To characterize the distribution of SCC values appearing in
the published literature, we sample from the dataset using a
hierarchical sampling scheme. We draw 10 million SCC values
sampling uniformly from the 147 studies in the dataset, then
sample uniformly from the set of estimates within each paper
(i.e., unique SCC year-discounting-scenario-model structure
combinations), and finally from the parametric uncertainty
of each estimate, if applicable. Alternate sampling schemes
that account for nonindependence between papers with shared
authors, or for different quality of studies using a normalized
citation-based weighting, give quantitatively similar distributions
(SI Appendix, Table S4).

Fig. 1 shows the distribution of SCC values reported in
the literature, both across all estimates (Top row) and split
based on characteristics of the estimates and studies, under the
uniform weighting of all papers and estimates. The figure gives
the distribution of SCCs for pulse years between 2010 and
2030, which we use as the 2020-equivalent SCC sample from
the literature. The variation in SCC values is substantial and
asymmetric, exhibiting a long right tail, and a mean value ($132
per tCO2 after truncating the upper and lower 0.1% of values)
that is several times higher than the median ($39). Statistical
tests show evidence for a heavy tail in the SCC distribution
with finite mean but infinite variance, echoing (47) (see SI
Appendix, Table S5 for relevant statistical tests). SCC estimates
in the right tail (upper 10% of values) are more likely to include
persistent or growth damages (odds ratio of 8.2), improved earth
system modeling (2.3), or climate tipping points (2.1), as well
as parametric uncertainties in adaptation rates (3.0), the damage
function (2.9), equilibrium climate sensitivity (1.7), and the pure
rate of time preference (1.4).

Fig. 1 also shows how the 2020 SCC distribution differs
based on particular characteristics of the estimate. The second
panel shows variation across nine different model structures,
compared to a distribution of estimates that exclude all nine
changes (the “Reference” distribution), a model structure similar
to the original DICE model (up to the 2016 version) (48). These
suggest important roles for the representation of the Earth system,
the persistence of damages to the economy via impacts on the
growth rate, and limited substitutability between market and
nonmarket goods in the utility function. The third panel shows
the well-documented sensitivity to discounting assumptions,
with estimates using less than a 2.5% discount rate producing
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Fig. 1. Distribution of the 2020 SCC from the published literature (2020 $ per ton CO2). Distribution and top boxplot show the distribution of all 2010 to 2030
SCC values (which we treat as the 2020-equivalent sample) from the published literature (equal weighting of all 147 papers). Other boxplots show subsets
of the 2010 to 2030 distribution split by characteristics of published estimates, specifically model structure (see SI Appendix, section S3 for model structure
descriptions and examples), discount rate, publication year, damage function, and paper type. The reference distribution refers to SCC estimates coded as not
having structural changes, similar to the DICE model (versions up to 2016). Boxplots show the median (line), interquartile range (box), 5 to 95% range (solid
line), and 2.5 to 97.5% range (dashed lines). Dots show the mean after trimming the upper and lower 0.1% of each distribution. Numbers for each plot show
the number of papers and, in parentheses, the number of estimates included in each boxplot.

an SCC distribution with median and mean values twice those
obtained using higher discount rates ($231 per ton CO2 vs. $107
for the truncated mean, $78 vs. $37 for the median). The fourth
panel documents a shift toward higher SCC values in papers
published in the later part of our sample period, a finding similar
to that reported previously (38). The limited set of early estimates
(published prior to 2008) have a mean SCC ($25 per ton CO2)
five times lower than that of more recent estimates ($124 per
ton for the 2008 to 2015 period and $168 for the post 2016
period). Note these univariate splits of the data are suggestive
and should be interpreted with caution: other aspects of model
structure or parameterization may vary systematically across these
different subsets of the distribution and could be responsible for
differences with the reference distribution, an issue addressed
through a multivariate analysis below in Section 1.1.

The final panel in Fig. 1 shows estimates disaggregated by
whether the primary goal of the paper was one of empirical
improvement (e.g., more accurately representing Earth system
dynamics or improving damage function estimation), integration
of new elements into SCC models (e.g., integrating model ambi-
guity, inequality aversion, or Epstein–Zin utility), or sensitivity
analysis (e.g., SCC variation with alternate damage functions or
discount rates). It shows fairly similar distributions across the
three paper types, but with slightly higher SCC values in papers
introducing empirical improvements.

1.1. DriversofVariance inSCCEstimates. Fig. 1 documents wide
variation in published SCC estimates. The large set of covariates
we record allows us to investigate how many different features of
SCC modeling—including structural model features, parametric
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Fig. 2. Drivers of variance in published SCC estimates. (A) Effects of structural model characteristics on log SCC, controlling for other aspects of model structure,
SCC year, emissions and socioeconomic scenarios, and discount rate (see SI Appendix, section S3 for model structure descriptions and examples). (B) ANOVA
decomposition of the variance of logged SCC estimates in the literature, based on a regression of the full distribution of logged SCC estimates on the full set of
covariates describing discounting, model structure, and inclusion of parametric uncertainty, as well as paper fixed-effects.

uncertainty, and other model covariates—affect SCC values.
While Fig. 1 shows distributions under different univariate splits
of the data, multivariate analysis can better identify the effects of
particular model structures and parameter values. Fig. 2A shows
estimated effects of structural model characteristics on SCC
values after controlling for other aspects of model structure, SCC
year, emissions and socioeconomic scenarios, and discount rate.
We plot relative changes in the SCC attributable to individual
elements of model structure. Fig. 2A uses as identifying variation
differences in results with and without model changes, which are
reported in many individual studies. These are recorded explicitly
in our data collection process. Additional regression models using
other types of variation in the data are reported in SI Appendix,
section S.2.1.9 and Fig. S9.

Fig. 2A shows large increases in the SCC (on the order
of 50%) due to a number of structural model elements,
specifically improvements to the representation of the Earth
system, and elements of damages such as tipping points, limited
substitutability between consumption goods, and persistent
effects on economic output. Inclusion of distributional weights
(typically used to represent aversion to inequality) has the largest
effect on relative SCC values, on average more than doubling
estimates, reflecting the regressive nature of climate-change
impacts (49, 50). Allowing for learning over time (typically about
equilibrium climate sensitivity or the damage function) tends to
decrease the SCC. This is consistent with theoretical models
showing that the additional emissions allowed by laxer climate
policy can provide a more informative signal about uncertain
parameters and lead to better future climate policy (24).

Fig. 2B shows results of an ANOVA decomposition of the
SCC variance in the full distribution, after controlling for

individual papers’ mean values through the inclusion of paper
fixed effects. Fig. 2B shows that the single largest driver of variance
is discounting, followed by model and model uncertainty (i.e.,
this groups together the identity of the IAM, e.g., DICE, FUND,
or PAGE, with the model uncertainty/ambiguity structural
model effects), persistent/growth damages, and the Earth system
representation (i.e., transient climate response, carbon cycle
parameterization, equilibrium climate sensitivity, and structure
of the Earth system model component). Note that the overall
share of the variance explained by discounting and damage-
function parameters (i.e., damage function, adaptation rates, and
the income elasticity of damages) is only 35%, with most of
the remainder relating to structural model choices and model
uncertainty.

2. Placing the SCC Literature in Context
Through Expert Surveys

Fig. 1 shows the distribution of 2020 SCC values published in
the scientific literature between 2000 and 2020 (under a uniform
weighting of papers and estimates). Although it provides a useful
reference point to characterize SCC values across the full set of
published studies, this distribution lacks a clear interpretation.
The literature distribution may be influenced by factors such as
researcher interest, model availability and tractability, and path
dependency in choices of certain model parameters such as those
in the discount rate and damage function, issues discussed in more
detail in SI Appendix, section S.2.2.3. Therefore, we complement
the literature survey described in Section 1 with a survey of expert
views on the SCC literature, placing this distribution and the set
of model structures and parameters that determine it into a larger
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context. We distributed a survey to the population of 176 authors
of SCC estimates in our literature review in May 2022, from
which we received 68 responses of which 48 were complete. SI
Appendix, section S.2.2 provides further details on survey design,
distribution, and analysis.

Fig. 3A provides evidence that survey respondents perceive a
substantial downward bias in the published literature. More than
four fifths of experts (82.8%) report best-estimate SCC values
(considering all drivers of the SCC and relevant uncertainties)
that are higher than their estimates of the existing literature
distribution (9.1% believe the two values are roughly equal,
and the same number believe the literature is overestimating
the SCC). On average across complete responses, experts’ best-
estimate 2020 SCC ($142 per ton CO2) is more than double
their literature estimate of $60.

Experts’ mean literature estimate is substantially below the
mean from our literature analysis of $132, and about 50%
larger than our literature median of $39 (Fig. 1). A number of
reasons could account for why experts underestimate the mean
SCC in the literature compared to our analysis, including the
exclusion of papers published prior to 2000 from our literature
survey [which may report lower values (38)], the prominence
of focal SCC estimates around $50 for instance from official
US government guidance at the time of the survey (52), from
experts being unfamiliar with some of the papers contributing to
the long right tail of the SCC distribution that have a substantial
effect on the mean value (see SI Appendix, section S.2.1.6 for
further discussion), or experts applying a different weighting
across papers and estimates than the uniform weighting we use
to construct our literature distribution.
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Fig. 3. Expert survey on SCC values, model structure, and discounting. (A) Expert assessment of the mean SCC value in the literature and best estimate of the
mean of the SCC distribution, accounting for any systematic biases or over- or underrepresentation of different model elements in the published literature.
Gray lines connect estimates from the same respondent. Data shown for 48 experts providing a quantitative breakdown of the wedge between literature and
best-estimate SCCs. Mean values for all 68 experts are $66 for the literature and $160 for the best-estimate. (B) Experts’ attribution of the difference between
their estimated mean literature SCC value and the full or comprehensive SCC. Results shown averaging over all 48 expert responses, decomposing the average
wedge between $60 per ton CO2 and $142. Values in parentheses show the dollar value attributed to each element. PRTP = pure rate of time preference;
EMUC = elasticity of marginal utility of consumption. (C) Expert evaluation of 9 elements of model structure (blue solid line) with frequency in the published
literature shown for comparison (red dashed line). Expert responses to the question “To what extent do you agree with the statement: ‘Papers that include X
produce better SCC estimates than those that exclude it’?” (SI Appendix, Fig. S20) are converted into model inclusion probabilities using Bayesian hierarchical
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solid line) compared to the distribution in the published literature for 2020 SCC values (red dashed line).
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Fig. 3B shows how experts decompose the perceived under-
estimate in the literature into constituent elements (individual
responses documenting significant heterogeneity in both the
wedge magnitude and decomposition are shown in SI Appendix,
Fig. S19). Around two thirds of the $82 wedge between
the experts’ estimates is driven by structural model choices,
particularly limited substitutability of nonmarket goods (13%),
persistent/growth damages (9%), tipping points in the climate
system (8%) and in damages (8%), and distributional weights
(6%). Damage-function and discounting parameters make up
around a third of the SCC wedge. Experts also estimate
that underrepresentation of technical progress, adaptation, and
learning leads to a small overestimate of the SCC in the literature.

Fig. 3C andD compare expert assessment of key determinants
of the SCC (specifically model structure and discounting)
with their representation in the published literature. Overall,
experts are positive on the nine variations in model structure
investigated. Over 50% of experts agree or strongly agree that
models including these elements are preferred (over a baseline
model approximating the DICE-2016 IAM (53) with a 2020
SCC of around $40 per tCO2) for all elements except aversion
to model uncertainty or ambiguity (SI Appendix, Fig. S20).
The strongest agreement is on improvements to Earth system
modeling, including the integration of climate-system tipping
points, and the incorporation of limited substitutability between
market and nonmarket goods in the utility function, with some
polarization over the issue of whether distributional weighting, as
applied in the literature, improves SCC estimates. Note that there
may be a number of reasons why experts do not believe particular
modeling changes improve the SCC estimate. Experts may not
agree with the premise of the modeling change (for instance, they
may disagree that damages are best represented with the inclusion
of tipping points), they may agree with the premise but believe
implementation in the literature is inaccurate (for instance, they
may agree climate change could affect growth rates but believe
existing estimates of this effect are poorly parameterized), or they
may disagree with the normative elements related to some changes
(for instance, the reasoning behind the use of distributional
weighting in SCC calculations). Our survey does not distinguish
between these lines of reasoning.

Fig. 3C shows these responses converted into a joint prob-
ability distribution over model structure (i.e., inclusion or
exclusion of the different structural model elements) using a
hierarchical Bayesian model (described further in SI Appendix,
section S.2.2.6). Because of general agreement among experts on
the value of these structural model elements, average probabilities
are high, ranging from a mean of 0.58 for ambiguity or model
uncertainty to 0.69 for Earth system improvements. Variance is
highest for distributional weighting which had the largest fraction
of respondents (19%) disagreeing or strongly disagreeing that this
addition improved the SCC estimate. For all elements of model
structure, however, representation in the published literature is
far lower than expert assessment, with values ranging from 0.23
(Earth system modeling) to 0.02 for climate tipping points and
model ambiguity.

Fig. 3D depicts a similar gap between expert assessment of
discount rates [based on a prior expert survey reported by Drupp
et al. (51)] and the distribution in the literature, with economic
experts giving a mean of 2.3% [similar to recommendations by
expert philosophers found in a related survey (54)], more than a
percentage point lower than the literature mean of 3.4%. Figs. 1
and 2 both suggest that these discrepancies in model structure
and discounting between the published literature and expert
assessment would push published SCCs downward, validating

experts’ concerns over there being an underestimate in the
literature (Fig. 3A), and its attribution (Fig. 3B).

3. The Synthetic SCC Distribution

3.1. Motivation and Approach. In order to address the potential
omissions from the published literature documented in Fig. 3 C
and D, we combine information from both the literature analysis
and expert survey to generate a synthetic SCC distribution that
more closely matches experts’ assessment of discounting and
model structure choices. This process involves first using the
variance across the 1,823 published SCC distributions with
31 explanatory variables to train a random forest model, then
generating predictions from this model using distributions over
input variables based on expert survey results shown in Fig. 3
C and D. This amounts to a reweighting of the literature to
produce an SCC distribution with structure and discounting
characteristics closer to expert assessments (and with other
desirable characteristics, such as recent publication year, inclusion
of parametric uncertainty, and inclusion of nonmarket damages).
The random forest model identifies which set of variables are
most important in driving variance across SCC distributions and
should therefore be targeted for reweighting.

The random forest model estimates a set of 500 regression
trees, each based on the 31 explanatory variables and a random
bootstrap of the 1,823 SCC estimates. At each branch in the tree,
the algorithm chooses the variable from a random sample of 10 of
the 31 possible variables that divides the sample into two groups
with the largest variance between them. Our data structure is
unusual in that each of the 1,823 observations is a distribution (of
which 54% are single-estimate point distributions). We therefore
use an adapted splitting algorithm based on the Anderson–
Darling k-sample test to maximize distance between the two
distributions at each split. Trees with fewer than seven nodes or
very large leaves are pruned, leaving a final 403 regression trees.

SI Appendix, Fig. S21 shows the importance of different
variables from the fitted random forest. The model appropriately
identifies the SCC pulse year and discount rate as the two most
important variables. Elements of the damage function and the
inclusion of persistent growth damages appear as important, as
does the publication year [echoing previous findings from Tol
(38)] and parametric uncertainty in total factor productivity
growth [also identified as important by Gillingham et al. (41)
and Rennert et al. (3)]. Additional information on the random
forest model is detailed in SI Appendix, section S.2.3.

We query the random forest model with just over 1,800 draws
from the space of model structures and discount rates obtained
from expert surveys (Fig. 3 C and D), also including other
desirable SCC characteristics such as inclusion of parametric
uncertainty, accounting for nonmarket damages, and recent
publication year (detailed in SI Appendix, section S.2.3). Fig. 4
illustrates the process for generating a prediction for a single
sample from the input variable space. Each tree identifies the set
of published SCC estimates with characteristics corresponding
to the sample’s, for the set of variables chosen as splits along the
path for that regression tree. The subset of published estimates
for each of the 403 retained regression trees (the “leaves” in Fig.
4) then forms the random forest’s prediction for the sample.

The set of published estimates contributing to this prediction
will not perfectly match all characteristics of the input. For
instance, some variables may not appear as splits on a given
tree’s path, meaning the leaf does not condition on that variable
at all. An example of this can be seen in Fig. 4, where the draw
from the input space includes growth rate damages, but the path
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A B C

D

E
F

Fig. 4. Illustration of process for generating synthetic SCC distribution. The random forest is estimated using published SCC estimates (A) then queried using
draws from model structure and discount rate distributions based on expert assessments (B). Each draw (C) has a single path through each regression tree to
a terminal “leaf,” which contains the set of published distributions constituting that tree’s prediction for that set of inputs (D). Distributions from all regression
trees are aggregated to generate the random forest model’s prediction for that input (E). The synthetic SCC comes from aggregating the predictions over 1,800
draws from the input distribution space (F ). Boxplots show the median (line), interquartile range (box), 5 to 95% range (solid line), and 2.5 to 97.5% range
(dashed lines). Dots show the mean after trimming upper and lower 0.1%.
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for Tree 350 does not condition on growth damages, meaning
the observations contributing to that tree’s estimate will likely
include SCC estimates with and without growth damages. Some
model structures combining multiple elements are either very
sparse in the literature or are not represented at all (SI Appendix,
Fig. S4). In these cases, random forest estimates will average
over available relevant model structures, but cannot extrapolate
interaction effects between combinations of model structures not
currently represented in the published literature. However, the
set of published estimates contributing to the random forest
prediction will match more closely with the input sample than the
literature as a whole and will match most closely on the variables
with the largest effect on the SCC, since these variables will appear
as splits in the regression trees more frequently (i.e., those with
high variable importance, shown in SI Appendix, Fig. S21).

3.2. The 2020 Synthetic SCC Distribution. Fig. 5A gives the 2020
synthetic SCC. The distribution has a median value of $185
per ton CO2, an interquartile range of $97 to 369, and a
mean of $283, after truncating the upper and lower 0.1%
of the distribution. For comparison, Fig. 5A also shows two
distributions of SCC estimates from the US government—
values from the interim 2021 Interagency Working Group
on the Social Cost of Greenhouse Gases (IWG) (52) and a
2023 analysis by the Environmental Protection Agency (EPA)
(55) as well as official SCC estimates used by three US states,
Germany, and Canada. The near-complete separation between
the interim IWG distribution and our synthetic SCC is striking:
The 75th percentile of the IWG distribution ($52 per ton CO2)
corresponds to the 10th percentile of the synthetic distribution.
This estimate is based on three older models (specifically DICE
2010, FUND 3.8, and PAGE 2009) using a methodology largely
unchanged since the original 2010 IWG report (56).

The EPA distribution has a much closer overlap with the
synthetic SCC distribution, with a median value of $157 per
ton CO2 reasonably similar to the synthetic median of $185.
Compared to the IWG values, the EPA analysis includes substan-
tial modeling improvements based on recommendations from a
2017 report from the National Academies of Sciences (57). Many
of these, such as improved representation of the Earth system,
discount rates closer to the expert assessment by Drupp et al. (51),
and a fuller inclusion of parametric uncertainties in economic
growth, climate damages, and Earth system dynamics, make the
EPA estimate more similar to the set of inputs into the synthetic
SCC. However, the two distributions still differ substantially at
higher SCC values: the synthetic distribution places 27% proba-
bility on SCC values over $350 per ton CO2, compared with only
17% for the EPA distribution. This could be attributable to the
integration of a wider set of model structures into the synthetic
SCC, particularly allowing for persistent climate damages, the
inclusion of tipping points, distributional weights, and limited
substitutability between market and nonmarket goods (Fig. 1).
The German Umweltbundesamt (Environmental Agency; EA)
(58) applies distributional weighting in the FUND model and
reports two SCC estimates: a lower estimate of $223, located
between our median and mean synthetic SCC, which serves as the
main political benchmark, using a pure rate of time preference of
1%, and a higher estimate of $777 using a pure rate of time prefer-
ence of 0%, to be used in sensitivity analyses. In general, the mean
of our synthetic SCC distribution is higher than the large majority
of SCC values used by governments in policy analysis, with the
exception of those using very low discount rates (i.e., 1% in New
York State or a 0% pure rate of time preference in Germany).

One of the advantages of the random forest model trained
on the literature is that it can provide SCC estimates under
a range of alternate specifications. Fig. 5B uses this capability
to show predicted SCC distributions under alternate input
specifications, decomposing the difference between the synthetic
SCC distribution and random forest predictions designed to
match the DICE model (53). Reassuringly, the random forest
estimates using inputs designed to match the DICE model
correspond well to published values from DICE (e.g., $43 per
ton CO2 in 2020 US dollars from Nordhaus (53) compared to
an interquartile range of $25 to $71 in Fig. 5B). As expected,
the decomposition shows large effects of the discount rate, as
well as important roles for certain elements of model structure
and parametric uncertainty, particularly the representation of
the Earth system, inclusion of persistent damages via impacts to
economic growth, and allowing for uncertainty in damages, TFP
growth, and discount rate parameters.

SI Appendix, Fig. S22 shows additional distributions generated
from the random forest model showing sensitivity of the synthetic
SCC to structural assumptions, discount rate, publication year,
pulse year, and damage function. Of note is the importance
of model structure seen in SI Appendix, Fig. S22B: keeping all
else equal, moving from an SCC with no differences in model
structure from the standard DICE model to one with all 9
elements described in this paper included increases the median
SCC from $124 to $245 per ton CO2 and the mean from $186
to $367. SI Appendix, section S.2.3.4 also presents an alternate,
regression-based synthetic SCC distribution, constructed using
weights based on the expert survey combined with coefficients
on structural model elements given in Fig. 2A. This approach is
limited in its ability to capture the contribution of parametric
uncertainties to the SCC distribution and interaction effects. It
produces a substantially higher 2020 SCC distribution than the
random-forest approach, with a truncated mean of $633 per ton
CO2 and a median of $463 (SI Appendix, Table S10).

4. Discussion and Conclusion

We present the most comprehensive synthesis to date of SCC
estimates, as well as their parametric and structural drivers. Based
on 1,823 SCC distributions from 147 studies, we document a
distribution over published 2020 SCC values that is both wide
(with a 90% confidence range spanning 2 orders of magnitude)
and substantially right-tailed (with a mean value of $132 per ton
CO2 more than 4 times the median value of $39). ANOVA in
published SCC estimates recovers the well-known importance of
discounting and damage-function parameters (explaining about
one third of the variance in published SCC estimates) but also
shows a critical role for key elements of model structure, including
the representation of the Earth system, inclusion of persistent
climate impacts to the economy, and specification of the utility
function.

Published SCC values are placed in a broader context using
a survey of authors of original SCC estimates in the literature.
Experts on average believe the distribution of published SCC
values to be too low due to an underrepresentation of different
model structures, as well as discounting and damage parameter
settings. Comparison of experts’ views with the published
literature validates this assessment; published SCC estimates
both use higher discount rates and undersample alternate model
structures compared to expert responses.

Our synthetic SCC distribution partially addresses this con-
cern by effectively reweighting published SCC estimates to more
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Fig. 5. Synthetic 2020 SCC distribution and decomposition. (A) Synthetic SCC distribution generated from the random forest model forced by input distributions
over model structure and discounting shown in Fig. 3 C and D. 2020 SCC distributions from two US government SCC assessments, a 2023 EPA analysis (55)
and the 2021 update from the Interagency Working Group (52). Boxplots show the median (line), interquartile range (box), 5 to 95% range (solid line), and 2.5
to 97.5% range (dashed lines). Dots show the mean after trimming the upper and lower 0.1% of each distribution. Other panels show the SCCs adopted by
New York, Minnesota, California, and Canada (59), The German EA (58) is shown under two pure rates of time preference, 0% and 1%, shown at discount rates
of 1.5% and 2.5% following near-term discounting assumptions (60). (B) Decomposition of the difference in the synthetic SCC distribution and the random
forest predictions given inputs (over model structure, discounting, damages, and treatment of uncertainty) corresponding to the DICE model (53). Because of
interactions, the decomposition depends on the order in which elements are added. Figure shows values averaging over interaction effects using 30 randomly
selected different orderings. Error bars shows the interquartile range.

closely match expert assessments of model structure and discount
rates (as well as integrating other desirable qualities such as more
recent publication years and inclusion of nonmarket damages
and parametric uncertainties). This procedure is necessarily
constrained by the published literature: some combinations of
model structure and parameters simply do not exist in the
literature and therefore will not appear in the synthetic SCC
distribution. While more modeling and empirical studies can help
to fill those gaps, some fundamental uncertainties surrounding
climate change and humankind’s response to it will remain,
and are additional to the structural uncertainties we quantify
here. Nonetheless, our synthetic SCC analysis does produce a
distribution that is more similar to expert assessments than the
published distribution and is most similar for those variables
identified in the random forest model as most important in
driving SCC variance.

The resulting synthetic SCC is substantially larger than values
in the published literature (median value more than 4.5 times

larger, mean more than double). This relative increase (from
literature to synthetic) matches how experts’ average estimates
more than double from their literature to best-estimate mean
SCCs. The absolute value of the synthetic SCC (mean of
$283) is still substantially higher than experts’ best-estimate
SCC. This is not surprising, given that experts substantially
underestimate the mean SCC in the literature. The synthetic and
expert best-estimate SCC values can be rationalized if experts
underestimate the absolute value of the mean literature SCC
(for reasons discussed in Section 2), while providing reasonable
estimates of the proportional effects of correcting biases in the
published literature. Interpreted this way, concordance between
the synthetic and expert best-estimate SCCs is striking given
they are generated from very different processes: both suggest
that correcting omissions in published SCC estimates increases
mean values by just over a factor of two.

Our synthetic SCC is higher than most official government
estimates, including an extensive recent update by U.S. EPA
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(55). Current guidance to agencies from the IWG requires them
to “use their professional judgment to determine which estimates
of the SC-GHG reflect the best available evidence, are most
appropriate for particular analytical contexts, and best facilitate
sound decision-making” (61). Our findings strongly suggest that
the 2021 interim IWG estimates are unlikely to provide a sound
basis for analyses requiring a valuation of climate change damages.
They are inconsistent with available evidence from both the
published scientific literature, expert views, and our synthetic
SCC that combines key elements of both.

5. Materials and Methods

5.1. Literature Review and Data Processing. Potentially relevant papers
were identified through a keyword search of EconLit, Web of Science, and
Scopus databases, returning 2,839 abstracts. Abstracts were reviewed by a team
of research assistants for papers likely to report an original global SCC estimate.
The 295 papers retained at this stage were reviewed by members of the author
team, producing 147 papers reporting original SCC values (SI Appendix, section
S.2.1.1). Coding rules for standardized data collection were developed in an
iterative process with all papers recoded consistently once the code book was
finalized (code book for data collection given in SI Appendix).

Data were standardized by converting monetary values to 2020 US dollars.
Equivalent constant discount rates for papers using the Ramsey formula were
calculated by merging in consumption growth rates from relevant socioeconomic
scenarios (SI Appendix, section S.2.1.3).

5.2. Expert Survey. Expert population was the set of 176 authors in the papers
included in the meta-analysis with working email addresses. All were invited
to respond to an online survey, from which we received 68 responses of
which 48 were complete. Complete survey instrument and data cleaning steps
are described in SI Appendix, sections S.2.2.1 and S.2.2.2. While the survey
could be answered anonymously, 48 respondents provided their identities,
allowing the characteristics of nonanonymous respondents to be compared to
nonrespondents plus anonymous respondents. This analysis shows no evidence
of nonresponse or strategic response bias (SI Appendix, section S.2.2.4).

Expert survey data is available in an anonymized format; this allows
reproduction of all main figures and results with the sole exception of supporting
analyses that draw on data merged with expert characteristics in SI Appendix,
sections S.2.2.4 and S.2.2.5.

Data, Materials, and Software Availability. All data and code to reproduce
the analysis in this paper are available at zenodo.org (62).
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