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ABSTRACT
The convergence rate of an estimator can vary when applied to datasets from
different populations. As the population is unknown in practice, so is the corre-
sponding convergence rate. In this article, we introduce a method to conduct
inference on estimators whose convergence rates are unknown. Specifically,
we extend the subsampling approach of Bertail, Politis, and Romano (1999) to
situations where the convergence rate may include logarithmic components.
This extension proves to be particularly relevant in certain statistical inference
problems. To illustrate the practical relevance and implementation of our
results, we discuss two main examples: (i) non parametric regression with mea-
surement error; and (ii) intercept estimation in binary choice models. In each
case, our approach provides robust inference in settings where convergence
rates are unknown; simulation results validate our findings.
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1. Introduction

To conduct valid statistical inference on an estimator of a population, object requires quantifying the
estimator’s uncertainty. Conventionally, the asymptotic variance of the estimator is used to approximate
its finite sample variance. Unfortunately, oftentimes, the asymptotic variance is unknown, difficult to
estimate, or inaccurate in finite samples. In such cases, bootstrap methods are employed instead. And
when the bootstrap fails, all eyes turn to subsampling (Politis and Romano, 1994).

Subsampling is a robust solution that is valid under minimal assumptions. However, it requires
knowledge of the convergence rate of the estimator if one is unwilling — or unable — to standardize
the estimator using an estimate of the variance. Bertail, Politis, and Romano (1999) proposed a method
to estimate the convergence rate when the rate is polynomial in the sample size n. More concretely, let
{Xl}n

l=1 be a random sample of X ∼ Pθ , and Tn be a consistent estimator of a parameter θ based on the
sample with

nβ1(log n)β2(Tn − θ)
d→ L,

where β1 and β2 depend on Pθ . Suppose that the limit law L has cumulative distribution function
K(x,Pθ ). If β1 and β2 are known, K(x,Pθ ) can be approximated by subsampling as in Politis and
Romano (1994).

If β1 is unknown and β2 = 0, Bertail, Politis, and Romano (1999) proposed a method to estimate
β1 by comparing distributions from varying subsample sizes. The distribution K(x,Pθ ) can then be
approximated via subsampling based on the estimate of β1. In this article, we extend their method to the
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2 H. DONG ET AL.

general case where β1 and β2 are both unknown, show the consistency of our estimators of β1 and β2,
and establish the asymptotic validity of subsampling inference using these estimated convergence rates.

Before presenting our main result in Section 2, we close this section with some motivating examples
of our inference method. We provide full details of the examples to be used in our numerical illustrations
in Section 3, as well as some briefer comments on further examples. Note that this list of examples is far
from exhaustive; additional examples that we do not discuss include Chernozhukov and Fernndez-Val
(2011), Armstrong (2013), Sasaki and Ura (2021), Sasaki and Wang (2022), and Dobronyi, Ouyang, and
Yang (2024).

1.1. Non parametric regression with errors-in-variables

Consider the non parametric regression model with error-in-variables
E[Y|X∗] = g(X∗), X = X∗ + ε, W = X∗ + ν,

where (Y , X, W) ∈ R
3 are observable and (X∗, ε, ν) ∈ R

3 are unobservable. X and W are noisy mea-
surements of the unobserved X∗ with measurement errors ε and ν, respectively; ε and ν are classical
measurement errors in the sense that they are independent of X∗. In this case, to estimate the regression
function g(·) using a random sample {Yj, Xj, Wj}n

j=1 of (Y , X, W), it is common to use

ĝ(x) =
∑n

j=1 K̂
( x−Wj

bn

)
Yj∑n

j=1 K̂
( x−Wj

bn

) ,

where K̂(u) = 1
2π

∫
eitu Kft(t)

f̂ ft
ε (t/bn)

dt is known as a deconvolution kernel, K is a conventional kernel

function, bn is a bandwidth parameter, and f̂ε is an estimate of the characteristic function f ft
ε of ε,

based on {Xj, Wj}n
j=1. For example, based on 1967’s (1967) identity, under mean independence between

measurement errors, Schennach (2004) suggested

f̂ ft
ε (t) =

∑n
j=1 eitXj

n exp
(∫ t

0

∑n
j=1 Xje

isWj∑n
j=1 eisWj ds

) .

It is known that the convergence rate of ĝ depends on the smoothness of the density fε of ε, the density f
of X∗, and the regression function g. In particular, following Schennach (2004), suppose |{gf }ft(t)| ≤
d1(1 + |t|)−γ for t ∈ R and positive constant γ , if d0(1 + |t|)−γx,0 ≤ |f ft(t)| ≤ d1(1 + |t|)−γx,0 and
d0(1 + |t|)−γε ≤ |f ft

ε (t)| ≤ d1(1 + |t|)−γε for t ∈ R and some positive constants d0, d1, γε and γx,0, using

a bandwidth of order O
(

n
1

−2γx,0−γε+γ

)
, we have

nβ1{ĝ(x) − g(x)} d→ N(b1(x), v1(x)),

where β1 = γ+1
−2γx,0−γε+γ

. If d0 exp(a|t|γx,1) ≤ |f ft(t)| ≤ d1 exp(a|t|γx,1) and d0(1 + |t|)−γε ≤ |f ft
ε (t)| ≤

d1(1 + |t|)−γε for t ∈ R and some positive constants a, d0, d1, γε , and γx,1, using a bandwidth of order
O

({log n}1/γx,1
)
, we have

(log n)β2{ĝ(x) − g(x)} d→ N(b2(x), v2(x)),

where β2 = γ+1
γx,1

. These results can be summarized as

nβ1(log n)β2{ĝ(x) − g(x)} d→ L,
where L is a normally distributed random variable with potentially non zero mean and non unit variance.
Note that these derivations require knowledge of the optimal bandwidth, in which case, we would also
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know the values of β1 and β2, so estimating them using our method would be unnecessary. However,
in practical cases, the optimal bandwidth is typically unknown because fε , f , and g are unknown. Thus,
the convergence rate will differ from the above expression and, more importantly, will be unknown.

Self-normalizing ĝ prior to subsampling could be an option to allow inference; however, since ĝ is
a non linear function of multiple analog estimators, it must be linearized, resulting in an influence
function that depends on unknown densities and conditional expectations in a complex manner; see
equations (24)–(27) of Schennach (2004). Estimating such a complex function is challenging, making
self-normalization of ĝ infeasible in practice. Furthermore, as Kato and Sasaki (2019) discussed, no valid
bootstrap procedure has been found for this setting.

1.2. Estimating the intercept of a binary choice model

Consider the binary choice model
Y = I{α + Z − U ≥ 0},

where (Y , Z) ∈ R
2 are observable, and U ∈ R is unobservable. U has zero mean, a strictly increasing

cumulative distribution function, and is independent of Z. To estimate the intercept α, following Lewbel
(1997), we can use

α̂ = 1
n

n∑
j=1

Yj − I{Zj > 0}
ĥ(Zj)

I{|Zj| ≤ τn},

where ĥ is an estimator of the density of Z (e.g., the kernel density estimator) and τn is a trimming
sequence. Khan and Tamer (2010) showed that

nβ1(log n)β2(α̂ − α)
d→ L,

where L is a normally distributed random variable with potentially non zero mean and non unit variance,
and values of β1 and β2 depend on the tail behavior of the densities of Z and U. In particular, when both
Z and U have a standard logistic distribution, β1 = 0.5 and β2 = −0.5; when Z has a standard normal
distribution and U has a standard logistic distribution, β1 = 0.25 and β2 = −0.25; and when Z has a
Cauchy distribution and U has a standard logistic distribution, β1 = 0.5 and β2 = 0, i.e., the regular
parametric rate. In practice, we do not know the values of β1 and β2 because the distributions of Z
and U are unknown so conventional subsampling is infeasible. While the asymptotic variance of this
estimator is simple to compute, as show in Lewbel (1997) is can be inaccurate in finite samples and its
validity requires strong conditions on the tail index of the error distribution, casting doubt on using a
self-normalized statistic. Furthermore, as shown in Khan and Nekipelov (2022) and Heiler and Kazak
(2021), estimators of irregularly identified objects (such as the intercept in this model), do not admit
valid bootstrap inference.

1.3. Other examples

1.3.1. Inverse probability weighting
Sasaki and Ura (2022) considered estimation of moments of the form E[B/A]. A common example is
the mean potential outcome given by E[Y(1)] = E[DY/p(X)], where D is a binary treatment, Y(1) is
a potential outcome for D = 1, Y is an observable outcome, X is a vector of covariates, and p(X) =
P(D = 1|X) is the propensity score. When dividing by a probability, care must be taken to deal with
cases where the probability is close to zero; typically, this is achieved by trimming away observations
where the denominator is below some threshold. Unlike Khan and Tamer (2010), the trimming
bias is explicitly corrected by Sasaki and Ura (2022). They then derive the asymptotic normality for
the standardized/self-normalized bias-corrected trimmed estimator, and use the normal asymptotic
approximation for inference.
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Ma and Wang (2020) also considered a trimmed version of the inverse probability weighting (IPW)
estimator, and derive the asymptotic distribution when the propensity score is known. Unlike Sasaki
and Ura (2022), inference is conducted using subsampling for the standardized estimator (i.e., the
variance has been estimated before subsampling). Heiler and Kazak (2021) also derived the asymptotic
distribution of the IPW estimator, but do not trim and allow the propensity score to be estimated. They
showed that the convergence rate is [nα−1/l(n)] 1

α , where l(·) is a slowly varying function (e.g., log(·))
and α is the — unknown — tail index of the asymptotic distribution of the estimator. For inference, they
used the m out of n bootstrap (with replacement) for the self-normalized estimator. According to Bickel,
GÖtze, and van Zwet (2012), it is possible to obtain a similar result under weaker assumptions using our
subsampling procedures.

1.3.2. Sample selection model
Khan and Nekipelov (2022) proposed a closed-form estimator for the intercept of the outcome equation
in a sample selection model; see, e.g., Heckman (1990) and Andrews and Schafgans (1998) for the
practical importance of the intercept in such models. While this estimator is consistent over large
classes of error distributions, it will have a rate of convergence that depends on the tail behavior of the
instrument and the joint distribution of the error terms — something that is inherently unobservable.
The convergence rate ranges from

√
n to log nκ for some κ > 0. Khan and Nekipelov (2022) went on to

show that any intercept estimator for this model that is uniformly consistent over such a class of error
distributions is not compatible with inference using pivotal statistics or the bootstrap. In answer to this,
they developed a novel form of inference termed locally uniform inference based on drifting parameter
asymptotics. We note, however, that the subsampling approach of this article is applicable under weaker
assumptions than they impose.

1.3.3. Conditional moment inequality models
Armstrong (2015) proposed a Kolmogorov–Smirnov-style test for conditional moment inequality mod-
els when the parameters may be on the boundary of the parameter space. To determine critical values for
his test, he noted that the convergence rate of the statistic depends on unknown quantities; thus, he first
estimates the convergence rate. However, in Theorem 5.1, he showed that if the moment function is not
smooth enough, the rate is at least as slow as n(1+p)/(1+2p), where p is the number of bounded derivatives
of the moment function, so that logarithmic rates cannot be ruled out. Consequently, he adjusted the
approach of Bertail, Politis, and Romano (1999) by truncating the convergence rate from above whenever
the polynomial rate requirement of the approach appears to be violated. Consequently, although the tests
proposed by Armstrong (2015) are exact when the convergence rate is polynomial, when truncation is
applied (i.e., when the rate is logarithmic), the test is conservative. By using our approach, it is likely that
his test could be exact in all cases with no unnecessary loss in power for logarithmic settings.

2. Main result

We first present our estimation method for the convergence rates, considering the general case when θ

belongs to a normed linear space with norm ‖ · ‖. Let {Xl}n
l=1 be a random sample of X ∼ Pθ , and Tn be

a consistent estimator of θ based on {Xl}n
l=1 at rate τ(n) = nβ1(log n)β2 with

P (τ (n)‖Tn − θ‖ ≤ x) → K(x,Pθ )

for some K(x,Pθ ) continuous in x, where β1 and β2 are unknown parameters depending on Pθ . As in
Bertail, Politis, and Romano (1999), our rate estimator is constructed using the empirical distribution
function of subsampled statistics of Tn, that is

Kbn(x; τ) = 1
q

q∑
s=1

I{τ(bn)‖Tbn,s − Tn‖ ≤ x},
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where {Tbn,s}q
s=1 are values of the statistic Tn applied to subsamples with a subsample size bn. Note that

‘subsampling’ here refers to the random draw of bn observations from the full sample. Let Kbn(x) =
Kbn(x; 1), and K−1(t,Pθ ) and K−1

bn
(t) be the t-th quantiles of K(x,Pθ ) and Kbn(x), respectively. Under

mild conditions presented below, an application of Bertail, Politis, and Romano (1999, Lemma 1) implies
the following relationship for these quantiles:

log K−1
bn

(t) = log K−1(t,Pθ ) − β1 log bn − β2 log log bn + op(1).

Taking sequences of quantile points {tj}J
j=1 and subsample sizes {bin}I

i=1 and averaging over j, this relation
becomes

1
J

J∑
j=1

log K−1
bin

(tj)

︸ ︷︷ ︸
yi

= 1
J

J∑
j=1

log K−1(tj,Pθ )

︸ ︷︷ ︸
β0

−β1 log bin︸ ︷︷ ︸
xi

−β2 log log bin︸ ︷︷ ︸
zi

+op(1), (1)

for i = 1, . . . , I. Based on this, we propose to estimate β1 and β2 by the OLS estimator for the regression
of yi on (1, xi, zi), denoted by β̂1({bin}I

i=1) and β̂2({bin}I
i=1), respectively. Compared to Bertail, Politis,

and Romano (1999), we introduce an additional regressor zi = log log bin to estimate the logarithmic
convergence rate β2.

To derive the convergence rates of these estimators, we impose the following assumptions.

Assumption.

(i): {Xl}n
l=1 is a random sample of X ∼ Pθ .

(ii): P(nβ1(log n)β2‖Tn − θ‖ ≤ x) → K(x,Pθ ) for constants (β1, β2) such that nβ1(log n)β2 → ∞.
(iii): K(x,Pθ ) is continuous in x and strictly increasing on (k0, k1) as a function of x, where k0 = sup{x :

K(x,Pθ ) = 0} and k1 = inf{x : K(x,Pθ ) = 1}.
(iv): bn → ∞ and bn/n → 0 as n → ∞.

Assumptions (i) and (iii) are taken from Politis and Romano (1994). Assumption (i) may be relaxed to
allow weakly dependent data by constructing subsamples for consecutive observations. Assumption (iii)
is a standard condition to establish the validity of subsampling approximations. Assumption (ii) is new in
that both β1 and β2 are considered unknown, a crucial characteristic shared by the examples discussed in
Section 1. Assumption (iv) also originates from Politis and Romano (1994), but its interpretation differs
slightly in our setting. In particular, to estimate β1 and β2 accurately, we need bin → ∞ and bin/n → 0
for Eq. (1) to hold for all i = 1, . . . , I. Theorem 1 below demonstrates that, based on our choice of bin,
Assumption (iv) remains sufficient. This indicates that we do not require additional assumptions on the
subsample size bn compared to those given in Politis and Romano (1994), even though the convergence
rate is estimated. A similar observation was made by Bertail, Politis, and Romano (1999) in a simpler
scenario where β2 is known to be 0.

Under these assumptions, the consistency and convergence rates of our rate estimators are obtained
as follows.

Theorem 1. Under Assumptions (i)–(iv), it holds that for 0 < γ1 < · · · < γI < 1,

β̂1({nγi}I
i=1) − β1 = op((log n)−1),

β̂2({exp((log n)γi)}I
i=1) − β2 = op((log log n)−1).

The proof of this theorem is presented in Appendix A.1. This theorem is a generalization of Bertail,
Politis, and Romano (1999, Theorem 1) to the case where β2 may be non zero. In accordance with Bertail,
Politis, and Romano (1999), we employ a series of subsamples of varying size to estimate the convergence
rate of Tn. Unlike Bertail, Politis, and Romano (1999), however, here we require different sets of
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subsamples to estimate β1 and β2. In particular, we use {nγi}I
i=1 to estimate β1 and {exp((log n)γi)}I

i=1 for
β2. These different choices are necessary to ensure the fastest convergence rate for each of the estimators
of β1 and β2. Consequently, separate regressions are required for β1 and β2. We first run a regression of
yi on (1, xi, zi) as defined in Eq. (1) using {nγi}I

i=1, where the coefficient on xi gives the estimate β̂1; the
regression is repeated using {exp((log n)γi)}I

i=1 and the coefficient on zi gives the estimate β̂2. Although
the estimate of β2 from the first regression is consistent, the convergence rate for the estimate of β2 is
faster in the second regression; the same is true for β1 in the first regression versus the second.

For the remainder of the article, we suppress the dependence on the subsample sizes and let
β̂1 = β̂1({nγi}I

i=1), β̂2 = β̂2({exp((log n)γi)}I
i=1), and τ̂ (n) = nβ̂1(log n)β̂2 to economize on notation. By

plugging in these rate estimators, our subsampling estimator for the distribution function K(x,Pθ ) of L
is defined as

Kbn(x|τ̂ ) = 1
q

q∑
s=1

I{τ̂ (bn)‖Tbn,s − Tn‖ ≤ x}.

The following theorem establishes the asymptotic validity of the proposed subsampling procedures.

Theorem 2. Under Assumptions (i)–(iv), it holds that for 0 < γ1 < · · · < γI < 1,

sup
x

|Kbn(x|τ̂ ) − K(x,Pθ )| p→ 0.

The proof of this theorem is presented in Appendix A.2. This theorem implies that the t-th quantile
K−1

bn
(t|τ̂ ) of Kbn(x|τ̂ ) is also consistent for the t-th quantile K−1(t,Pθ ) of K(x,Pθ ). Thus, the asymptotic

coverage probability of the interval [Tn − n−β̂1(log n)−β̂2 K−1
bn

(t|τ̂ ), Tn + n−β̂1(log n)−β̂2 K−1
bn

(t|τ̂ )] is
the nominal level t. This indicates that Theorems 1 and 2 together provide a method to construct valid
confidence intervals based on subsampling in the case where the convergence rate is unknown. Given
that we do not assume a particular model, this method is widely applicable.

3. Simulation

We evaluate the finite sample performance of our procedure in two canonical settings: (i) non parametric
regression with a mismeasured regressor, and (ii) estimation of the intercept in a binary choice model.

As discussed in the previous section, we must choose a sequence of subsample sizes, {bin}I
i=1, to

estimate β1 and β2. In that section, we show that different sequences for β1 and β2 are required, and
must take the form {nγi}I

i=1 and {exp((log n)γi)}I
i=1, for β1 and β2, respectively. Here, we propose a

method to determine a suitable choice for (γ1, . . . , γI). First, we choose an overly wide range from
which we can then search for a more appropriate range in a data-driven way. The overly wide range
is chosen as a grid from 0.5 to 0.9 with increments of 0.025, with a lower bound for the grid such
that min1≤i≤I bin > log(n)2, as in Heiler and Kazak (2021). Next, we estimate the OLS regression to
determine (β1, β2) using this initial (γ1, . . . , γI), and save the R-squared from this regression. We then
re-estimate the OLS regression but now use (γ2, . . . , γI), and again save the R-squared. Following this,
we estimate the OLS regression using (γ1, . . . , γ(I−1)) and save the R-squared. Now estimate the OLS
regression with (γ2, . . . , γ(I−1)); save the R-squared. Continue this process alternating between removing
the smallest and largest γ . The regression that produces the largest R-squared is used as the sequence
of choice, giving the estimated (β1, β2). Intuitively, this procedure finds the ‘correct’ range of subsample
sizes that can most accurately estimate the convergence rate.1

To avoid excessive computational cost, we can use the same subsamples to determine the optimal
subsample size for estimating the distribution of the deconvolution estimator. We do this using the

1Simulation results (not presented) suggest that the results are insensitive to the initial choice of (γ1, ..., γI) due to the second
data-driven search step.
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method of Bickel and Sakov (2008). This constitutes choosing the optimal subsample size as the one
whose distribution is closest to the distribution of the next consecutive candidate subsample distribution;
we use the Kolmogorov distance to measure this. In other words, the optimal subsample size b∗

n, is chosen
as b∗

n = argminbin supx |Lbin(x) − Lb(i+1)n(x)|, where Lbin denotes the distribution using subsamples of
size bin. Bickel and Sakov (2008, Section 5.1) extensively study the patterns for the choice of the
subsample size using this Kolmogorov distance. Throughout, we use 2000 subsamples to approximate
the distribution of each subsample distribution.

For setting (a), we use the deconvolution estimator of Schennach (2004), as detailed above in Section
1.1, and follow the simulation setting of that article. In particular, we use the regression function

E[Y|X∗] =
⎧⎨
⎩

−1 if X∗ < 1,
X∗ if X∗ ∈ [−1, 1],
1 if X∗ > 1,

with X = X∗ + ε and W = X∗ + ν, where only (Y , X, W) are observable; so (X, W) are repeated noisy
measurements of the unobserved true regressor X∗. The regression error term is independent of
(X∗, ε, v) and drawn from N(0, 1/4), and X∗ is independent of (ε, v). As in Schennach (2004), our object
of interest is E[Y|X = 1].

To showcase the ability of our subsampling method to adapt to varying convergence rates, we consider
two cases based on the smoothness of the distributions of X∗, ε, and v. First, we take X∗, ε, and v to
be normally distributed. Schennach (2004) showed that in this case, and when the regression function
is ordinary smooth of order 2 (as in this simulation), the deconvolution estimator converges at rate
Op((ln n)−1/2) to a Gaussian distribution. In the second case, we take X∗, ε, and v to follow a Laplace
distribution. In this case, Schennach (2004) showed convergence to a Gaussian distribution at rate
Op(n−1/4).

We keep the signal-to-noise ratio fixed for both designs: X∗ has unit variance, and both measurement
errors have a variance of 1/4 (this again follows the simulation design in Schennach, 2004). We use the
infinite-order flat-top kernel proposed by McMurry and Politis (2004), which is defined by its Fourier
transform

Kft(t) =

⎧⎪⎨
⎪⎩

1 if |t| ≤ 0.05,
exp

{− exp(−(|t|−0.05)2)
(|t|−1)2

}
if 0.05 < |t| < 1,

0 if |t| ≥ 1.

and the bandwidth is selected using the leave-one-out method of Dong, Otsu, and Taylor (2023), which
exhibits good finite sample performance for this deconvolution estimator (as evidenced in the original
paper). As noted in Section 1.1, we only know the convergence rate of the estimator if we know — and
use — the optimal bandwidth. In this case, we assume we do not know the data-generating process,
hence do not know the optimal bandwidth nor the convergence rate.

Table 1 reports coverage probabilities (deviations from the nominal level) for a range of sample sizes
n = {500, 1000, 2000} based on 1000 Monte Carlo replications. We report results for our method and
the existing subsampling method of Bertail, Politis, and Romano (1999) using an estimated polynomial
rate. Overall, the coverage of our subsampling confidence intervals are accurate for moderate sample
sizes (n ≥ 1000). They perform favorably compared to the approach of Bertail, Politis, and Romano
(1999) when the data is normally distributed, i.e., when the convergence rate is logarithmic. This result
is expected since Bertail, Politis, and Romano (1999) does not consider logarithmic rates. For data from
a Laplace distribution, the rate is polynomial, so the approach of Bertail, Politis, and Romano (1999) is
valid; it is encouraging to see that the two methods produce very similar results.

Table 2 reports the (size-adjusted) power of a two-sided t-test with 5% nominal level for a test of the
null hypothesis E[Y|X = 1] = 0.5, where the true value is 1. As expected based on the convergence rates,
the test shows greater power in the logistic setting than the normal. It is encouraging to see the power
increases with the sample size, and our method shows slightly greater power than the existing method.
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Table 1. Coverage probabilities for setting (a).

Distribution Normal Laplace

Sample size 500 1000 2000 500 1000 2000

Nominal prob. 90 95 90 95 90 95 90 95 90 95 90 95
New method -2.3 -2.0 -2.3 -0.6 -0.6 0.3 3.3 1.3 2.4 1.1 -0.7 0.6
Existing method -5.2 -2.2 -2.6 -0.9 -1.7 -0.8 3.3 1.1 2.2 1.2 0.7 0.5

Table 2. Power for setting (a).

Distributions Normal Laplace

Sample size 500 1000 2000 500 1000 2000

New method 19.8 39.1 98.8 37.4 53.3 81.7
Existing method 19.4 35.6 98.5 34.5 49.3 78.4

Table 3. Coverage probabilities for setting (b).

Distribution Logistic Normal Cauchy

Sample size 250 500 1000 250 500 1000 250 500 1000

Nominal prob. 90 95 90 95 90 95 90 95 90 95 90 95 90 95 90 95 90 95

New method 1.1 0.5 0.8 0.6 0.0 -0.1 1.3 0.7 1.1 1.6 0.1 0.9 1.0 1.1 -0.9 -1.0 -0.3 -0.1
Existing method 1.9 0.7 1.8 1.5 0.7 0.5 1.9 1.5 1.2 0.5 -0.4 -0.4 2.3 1.4 -1.2 -1.0 0.1 -0.1

Table 4. Power for setting (b).

Distributions Logistic Normal Cauchy

Sample size 250 500 1000 250 500 1000 250 500 1000

New method 66.1 89.4 99.1 54.9 75.5 95.5 78.9 91.4 98.8
Existing method 65.7 89.6 98.9 51.7 72.3 93.6 77.8 89.1 98.8

For setting (b), we use the estimator of Lewbel (1997), as detailed above in Section 1.2. The trimming
parameter τn is fixed at 0.001 (as in Lewbel, 1997), but results for τn = 0.01 and τn = 0.0001 are
almost identical. We use a kernel density estimator with a Gaussian kernel and bandwidth chosen using
likelihood cross-validation (Silverman, 1986).

We use the data generating process

Y = I{α + δZ + U ≥ 0},

with α = 0 as the parameter of interest, δ = 1, and Z independent of U, where U follows a logistic
distribution with unit variance. We consider three cases based on the distribution of Z. As shown by
Khan and Tamer (2010), when Z has a logistic distribution, the estimator converges to a Gaussian
distribution at rate Op(n1/2(log n)−1/2); when Z has a normal distribution, convergence to the Gaussian
distributions occurs at rate Op(n1/4(log n)−1/4); and when Z has a Cauchy distribution, the convergence
rate to a Gaussian distribution is Op(n1/2). In each case, we set Z to have unit variance.

Table 3 reports coverage probabilities (deviations from the nominal level) for a range of sample sizes
n = {250, 500, 1000} based on 1000 Monte Carlo replications. Again, with moderate sample sizes, the
proposed subsampling procedure with estimated convergence rates exhibits accurate coverage properties
across all cases. In the Cauchy setting, the existing method of Bertail, Politis, and Romano (1999) is valid,
so it is encouraging to see that our method performs equally well here.

Table 4 reports the (size-adjusted) power of a two-sided t-test with 5% nominal level for a test of
the null hypothesis α = 0.5, where the true value is 0. Again, as the theoretical convergence rates would
suggest, the Cauchy setting exhibits the greatest power and the normal setting has the lowest power. The
power of our approach is comparable to that of Bertail, Politis, and Romano (1999), and all settings see
an increase in power with the sample size.



ECONOMETRIC REVIEWS 9

4. Conclusion

In this article, we introduce a robust inference method to handle situations where the convergence rate
of estimators is unknown. In particular, we provide a practical solution to this challenge by extending
the subsampling techniques to account for both polynomial and logarithmic convergence components.
The method is validated through simulation experiments designed for two settings: non parametric
regression with measurement errors and binary choice models. These results demonstrate that our
method can deliver accurate inference across different data-generating processes, while also highlighting
its flexibility and potentially broad applicability across different statistical problems.

Appendix A

A.1. Proof of Theorem 1

Recall the definitions of yi, xi, zi, and β0 in (1), and let ui = yi − β0 − β1xi − β2zi. Define Sab = ∑I
i=1(ai −

ā)(bi − b̄) for ā = I−1 ∑I
i=1 ai and b̄ = I−1 ∑I

i=1 bi. Note that the rate estimators are explicitly written as

β̂1({bin}I
i=1) = SzzSxy − SxzSzy

SxxSzz − (Sxz)2 ,

β̂2({bin}I
i=1) = −SxzSxy + SxxSzy

SxxSzz − (Sxz)2 .

For β̂1({nγi}I
i=1), we have

β̂1({nγi}I
i=1) − β1 = SzzSxu − SxzSzu

SxxSzz − (Sxz)2

= 1
1 − ρ̂2

x,z

(
Sxu
Sxx

− ρ̂x,z
Szu√
SxxSzz

)
.

where ρ̂x,z denotes the sample correlation coefficient between {xi}I
i=1 and {zi}I

i=1. Since |ρ̂x,z| ≤ 1, Suu = op(1),
and

max
{∣∣∣∣Sxu

Sxx

∣∣∣∣ ,
∣∣∣∣ Szu√

SxxSzz

∣∣∣∣
}

≤
√

Suu
Sxx

,

it is sufficient to check the magnitude of Sxx. Since xi = −γi log n, we have x̄ = −γ̄ log n with γ̄ = I−1 ∑I
i=1 γi

and the first statement of the theorem follows from

Sxx =
I∑

i=1
(γ̄ log n − γi log n)2 = A(log n)2,

for a positive constant A = ∑I
i=1(γ̄ − γi)2.

By a similar argument, for β̂2({exp((log n)γi)}I
i=1), we have

β̂2({exp((log n)γi)}I
i=1) − β2 = SxxSzu − SxzSxu

SxxSzz − (Sxz)2

= 1
1 − ρ̂2

x,z

(
Szu
Szz

− ρ̂x,z
Sxu√
SxxSzz

)
.

Since |ρ̂x,z| ≤ 1, Suu = op(1), and

max
{∣∣∣∣Szu

Szz

∣∣∣∣ ,
∣∣∣∣ Sxu√

SxxSzz

∣∣∣∣
}

≤
√

Suu
Szz

,



10 H. DONG ET AL.

it is sufficient to check the magnitude of Szz . Since zi = −γi log log n, the second statement of the theorem
follows from

Szz =
I∑

i=1
(−γi log log n + γ̄ log log n)2 = A(log log n)2.

A.2. Proof of Theorem 2

First, note that

Kbn(x|τ̂ ) = 1
q

q∑
s=1

I{bβ̂1
n (log bn)

β̂2‖(Tbn ,s − θ) − (Tn − θ)‖ ≤ x},

and the triangular inequality implies

Kbn(x|τ̂ ) ≤ 1
q

q∑
s=1

I{bβ̂1
n (log bn)

β̂2‖Tbn ,s − θ‖ ≤ x + bβ̂1
n (log bn)

β̂2‖Tn − θ‖},

Kbn(x|τ̂ ) ≥ 1
q

q∑
s=1

I{bβ̂1
n (log bn)

β̂2‖Tbn ,s − θ‖ ≤ x − bβ̂1
n (log bn)

β̂2‖Tn − θ‖}.

Also note that for any ε > 0, we have

P
(

bβ̂1
n (log bn)

β̂2‖Tn − θ‖ < ε
)

(A.1)

= P

(
nβ1(log n)β2‖Tn − θ‖ < εbβ1−β̂1

n (log bn)
β2−β̂2 nβ1(log n)β2

bβ1
n (log bn)β2

)
→ 1,

where the convergence follows from Theorem 1 and Assumptions (ii) and (iv). Define

Ubn(x|τ̂ ) = 1
q

q∑
s=1

I{bβ̂1
n (log bn)

β̂2‖Tbn ,s − θ‖ ≤ x}.

Then Eq. (A.1) implies

Ubn(x − ε|τ̂ ) ≤ Kbn(x|τ̂ ) ≤ Ubn(x + ε|τ̂ ),

with probability approaching one. The conclusion follows from

Ubn(x|τ̂ ) = Un(xbβ1−β̂1
n (log bn)

β2−β̂2 |β)
p→ K(x,Pθ )

for each x, where the convergence follows from Theorem 1 and the validity of standard subsampling as in
Politis and Romano (1994).
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