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Abstract: We propose a multiscale approach to time series autoregression, in which

linear regressors for the process in question include features of its own path that live on

multiple timescales. We take these multiscale features to be the recent averages of the

process over multiple timescales, whose number or spans are not known to the analyst

and are estimated from the data via a change-point detection technique. The resulting

construction, termed Adaptive Multiscale AutoRegression (AMAR) enables adaptive

regularisation of linear autoregressions of large orders. The AMAR model is designed to

offer simplicity and interpretability on the one hand, and modelling flexibility on the other.

Our theory permits the longest timescale to increase with the sample size. A simulation

study is presented to show the usefulness of our approach. Some possible extensions

are also discussed, including the Adaptive Multiscale Vector AutoRegressive model

(AMVAR) for multivariate time series, which demonstrates promising performance in the

data example on UK and US unemployment rates. The R package amar (Baranowski

et al., 2022) provides an efficient implementation of the AMAR framework.

Key words and phrases: multiscale modelling, regularised autoregression, piecewise-

constant approximation, time series.
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1. Introduction

1.1 Motivation and main idea

Autoregression in time series modelling is arguably the most frequently used device

to characterise temporal dependence in data. The classical linear autoregressive

model of order p, known as AR(p), for univariate time series Xt assumes that Xt is

a linear but otherwise unconstrained function of its own past values Xt−1,...,Xt−p,

plus white-noise-like innovation εt, that is Xt = β1Xt−1+ ...+βpXt−p+ εt for

t=1,...,T . However, in situations where the application of this model yields a large

or even moderate p, either in absolute terms or relative to T (perhaps in an attempt

to reflect long-range dependence in Xt), it may be tempting to consider instead

an alternative approach, in which Xt is regressed explicitly on some other features

of its own past, rather than directly on the individual variables Xt−1,...,Xt−p.

Motivated by this, we propose what we call a multiscale approach to time

series autoregression, in which we include features of the path X1,...,Xt−1 that live

on multiple timescales as linear regressors for Xt. To fix ideas, here we take these

multiscale features to be the recent averages of Xt over multiple time spans (N.B.

possible extensions will be discussed in Section 5), which are not necessarily known

to the analyst a priori and need to be estimated from the data. This leads to the

following Adaptive Multiscale AutoRegressive model of order q, abbreviated as
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AMAR(q), for Xt:

Xt=α1
Xt−1+...+Xt−τ1

τ1
+...+αq

Xt−1+...+Xt−τq

τq
+εt, t=1,...,T, (1.1)

where the number of timescales q, the timescales 1≤τ1<τ2<...<τq and the scale

coefficients α1,...,αq∈R\{0} are unknown (NB. zero is excluded for model identifi-

ability), and where the innovations {εt} follow a white noise process, which we take

to mean a sequence of random variables that are uncorrelated, having zero-mean

and a finite (but non-zero) variance. The number of scales q can possibly be much

smaller than the largest timescale τq. Here we use the term “adaptive” to reflect

the fact that the timescales in the AMAR model automatically adapt to the data in

the sense of being selected in a data-driven way, rather than being known a priori.

In essence, the AMAR(q) model is a multiscale, sparsely parameterised, version

of the AR(τq) process, which permits the longest timescale τq to be large in practice.

These properties make the AMAR framework particularly suitable for the ex-

ploratory analysis of processes in which a seasonal component may be suspected, or

for the modelling of time series which exhibit low-frequency trends (which may give

them a non-stationary appearance) accompanied by higher-frequency oscillations.

We shall illustrate these claims in Section S1 of the supplementary materials.

1.2 Literature review

We now provide an overview of other related literature. Reinsel (1983) considers

a model in which the current time series variable depends linearly on a small
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number of index variables which are linear combinations of its own past values;

in contrast to our setting, these index variables are assumed to be known a

priori. Reduced-rank time series multivariate autoregression, which provides a

way of reducing the parameterisation for multivariate time series via the use of

automatically chosen index variables, is considered in Velu et al. (1986) and Ahn

and Reinsel (1988), but this approach is not explicitly designed to be multiscale

or to be able to cope with autoregressions of large orders.

Ferreira et al. (2006) introduce a class of bi-scale univariate time series

models that consist of two main building blocks: Yt, t=1,...,mT , the fine-level

process, where the integer m>1 is known, and the coarse-level aggregate process

Xt =m−1
∑m

j=1Ytm−j+εt for t=1,...,T , where the noise term εt ∼N (0,σ2) is

independently and identically distributed (i.i.d.) and independent of Yt. Ferreira

et al. (2006) recommend choosing a simple model for Yt, e.g. AR(1), and show

with this choice, Xt can emulate long-memory behaviour. In contrast to this

framework, AMAR assumes that the timescales are not known a priori, and uses

coarse-level information for fine-level modelling, rather than vice versa.

Ghysels et al. (2004) propose MIxed DAta Sampling (MIDAS) regression, in

which time series observed at finer scales are used to model one observed at a

lower frequency. In the notation of the previous paragraph, the MIDAS model

is defined as Xt=β0+
∑p

i=1bi(Ytm−i;β)+εt, where b1(·;β),...,bp(·;β) are given

functions of the lagged observations recorded at a higher frequency and of a
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low-dimensional vector of unknown parameters β=(β1,...,βq)
T , and where εt is

random noise. For each recorded observation of Xt, m values of Yi are sampled.

We mention one particular form of bi(·;β) from Forsberg and Ghysels (2007):

Xt=β0+
∑q

j=1βj
∑τj

i=1Ytm−i+εt, where 1≤τ1<...<τq are known integers. One

important difference between this and the AMAR framework is that τ1,...,τq in

our model are unknown.

In Heterogeneous AutoRegressive (HAR) modelling (Corsi, 2009), the quantity

of interest is regressed on its past realised averages over given known multiple

timescales. The author shows that the model is able to imitate long-memory

behaviour without, in fact, possessing the long-memory property. Numerous

extensions and applications of the HAR approach have been considered; see Corsi

et al. (2012) for a review of HAR modelling of realised volatility.

Maeng and Fryzlewicz (2019) introduce bi-scale autoregression, in which the

more remote autoregressive coefficients are assumed to be sampled from a smooth

function; this is done to regularise the estimation problem and thus facilitate

estimation of the coefficients if the autoregression order is large. The rough and

smooth regions of the AR coefficient space are identified through a technique akin

to change-point detection. The approach is different from AMAR in that only two

scales are present (while in AMAR the number of scales is unknown a priori and

is chosen adaptively from the data), and the scales are defined by the degree of

coefficient smoothness instead of their spans as in AMAR.



6 1.2 Literature review

The Long Short-Term Memory (LSTM) model of the recurrent neural network

(Hochreiter and Schmidhuber, 1997) uses a bi-scale modelling approach whereby

the new hidden state at each time point combines (in a particular way that has

been learned from the data) long-range “cell state” information with more recent

information originating from the previous hidden state and instantaneous input.

The use of LSTM models in time series forecasting is less well explored and the

theoretical understanding of their behaviour in the context of time series modelling

is limited, but see Petnehazi (2019) for a recent review. The complexity of LSTM

models means that large samples are typically required to train them.

In addition, one could view the AMAR model as a particular instance of a

linear regression model in which the coefficients have been grouped into (unknown)

regions of constancy. The group LASSO approach (Yuan and Lin, 2006) assumes

that the groups are known and it therefore would not be suitable for AMAR. The

fused LASSO (Tibshirani et al., 2005), which uses a total-variation penalty on the

vector of regressors, could in principle be used for the fitting of a piecewise-constant

approximation to the estimated vector of AR coefficients, but consistent detection

of scales in the AMAR model is effectively a multiple change-point detection

problem, and it is known (see e.g. Cho and Fryzlewicz (2011)) that approaches

based on the total variation penalty (e.g. fused LASSO) is not optimal for this task.

Finally, we note that our notion of “multiscale autoregression” is different from

that in, for example, Basseville et al. (1992) or Daoudi et al. (1999), who consider
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statistical modelling on dyadic trees, motivated by the wavelet decomposition

of data. In contrast, we are interested in the explicit multiscale modelling of

the time evolution of the original process {Xt}, i.e. there is no prior multiscale

transformation to speak of.

Against the background of the existing literature, the unique contributions

of this work can be summarised as follows. Unlike the existing multiscale and

index-based approaches to autoregression described above, the scales τ1,...,τq in the

AMAR model are not assumed to be known by the analyst and are estimable from

the data; so is their number q. The AMAR model is able to accommodate autore-

gressions of large order: the largest-scale parameter τq is permitted to increase with

the sample size T at a rate close to T 1/2. The consistent estimation of the number

of scales q and their spans τ1,...,τq is achieved by a change-point detection algorithm,

more precisely, a “narrowest-over-threshold”-type (Baranowski et al., 2019) adapted

to the AMAR context, and this paper both justifies this choice and shows how to

overcome the significant methodological and theoretical challenges that arise in this

adaptation. Being only based on the past averages of the process but enabling data-

driven selection of their number and spans, the AMAR framework is designed to

offer simplicity and interpretability on the one hand, and modelling flexibility on the

other. Besides, the AMAR framework can be extended in different ways to handle

more complicated data structure, including multivariate time series. The promising

performance of this particular extension, named Adaptive Multiscale Vector Au-
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toRegressive model (AMVAR), is also demonstrated in this paper. The R package

amar (Baranowski et al., 2022) provides an efficient implementation of our proposal.

2. Methodology and theory

2.1 Model framework

Recall that AMAR(q) is an instance of a sparsely parametrised AR model. There-

fore, for any p≥τq, (1.1) can be rewritten as

Xt=β1Xt−1+...+βpXt−p+εt, t=1,...,T, (2.2)

βj=
∑
k:τk≥j

αk

τk
, j=1,...,p, (2.3)

where {εt} is a white noise process. Here we refer to (2.2) and (2.3) as an AR(p)

representation of the AMAR(q) process. Also note that βj=0 for j=τq+1,...,p.

Let β̂ = (β̂1, ... , β̂p)
T be the Ordinary Least Squares (OLS) estimator of

β=(β1,...,βp)
T . Then β̂j’s can be trivially decomposed as

β̂j=βj+(β̂j−βj), j=1,...,p. (2.4)

The coefficients β1,...,βp form a piecewise-constant vector with change-points at the

timescales τ1,...,τq, and thus the hope is that the timescales can be estimated con-

sistently using a multiple change-point detection technique. This observation moti-

vates the following estimation procedure for the AMARmodels. First, we choose an

adequate p and find the OLS estimates of the autoregressive coefficients in the AR(p)

representation of the AMAR(q) process. Then, we estimate the timescales by identi-

fying the change-points in the series β1,...,βp, using for this purpose an adaptation of
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the Narrowest-Over-Threshold (NOT) approach of Baranowski et al. (2019). Once

the timescales are estimated, we estimate the scale coefficients via least squares.

Our motivation for using the NOT approach as a change-point detector in

this context is that it enjoys the following change-point isolation property: in each

detection step, the NOT algorithm is guaranteed (with high probability) to be

only selecting for consideration sections of the input data (i.e. the vector (β̂1,...,β̂p)

here) that contain at most a single change-point each. This is a key fact that

makes our version of the NOT method easily amenable to a theoretical analysis

in the AMAR framework.

In a typical application of the AMAR(q) model, we envisage that the number

of timescales q will be small in comparison to the maximum timescale τq. For

the development of our theory, we work in a framework where the number of

timescales q, the timescales τ1,...,τq and the coefficients α1,...,αq possibly depend

on the sample size T under Gaussian innovations, and are fixed under heavy-

tailed innovations. However, for the economy of notation, we shall suppress the

dependence of these quantities on T in the remainder of the paper.

We end this section by emphasising again that the purpose of change-point

detection in our context is not to find change-point in the AMAR(q) process itself;

indeed, this paper studies stationary AMAR processes, which themselves contain

no change-points. The aim of change-point detection in the AMAR context is to

segment the possibly long vector of the estimated autoregressive coefficients into re-
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gions of piecewise constancy, and thereby estimate the unknown timescales τ1,...,τq.

2.2 Stationarity

Recall that the characteristic polynomial of any AR(p) is b(z):=b(z;β1,...,βp)=

1−
∑p

j=1βjz
j for z∈C, where C denotes the complex plane. Also, the unit circle

is denoted by T={z∈C : |z|=1}.

We now discuss the stationarity of the AMAR models with q and α1,...,αq

being fixed. Since AMAR is a special form of AR, {Xt} that follows the AMAR

model has a stationary (and causal) solution if and only if the roots of b(z;β1,...,βτq)

are outside T, where β1,...,βτq are defined in Equation (2.3). Here any z∈C is

outside T if and only if |z|>1. Furthermore, a simplified sufficient condition for

stationarity is given in the following result.

Proposition 2.1 Given {Xt} follows the AMAR(q) model in Equation (1.1) with

α1,...,αq. If
∑q

j=1|αj|<1, then {Xt} has a causal stationary solution. Suppose

all the αj’s are non-negative, then the converse is true.

We remark that when all the αj’s are non-negative, previous observations have

non-negative effects on the current one. In this case,
∑q

j=1αj < 1 would be a

sufficient (but not necessary) condition for stationarity. Furthermore, the above

proposition holds even when q = ∞. When q (or τq) increases with T , the

stationarity property of AMAR would need to be discussed in a setup that involves

triangular arrays. These details are omitted for notational convenience.
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Finally, we offer visual insights into the behaviour of AMAR with a single scale

in Figure 1. Here realisations for different values of α1 (from 0.5 to 0.95, the latter

corresponds to series that are near unit-root) and τ1 (from 1 to 10) with standard

Gaussian noise are plotted. It appears that the longer the scale, the noisier the

appearance; the overall shape (driven by the low frequencies) is preserved, but

the details (driven by the high frequencies) are increasingly obscured by noise. In

addition, even though all the series plotted in Figure 1 are weakly stationary, some

of them exhibit behaviour that mimics non-stationarity, at least visually, when

τ1 if large, even for a moderate α1. This hints at the usefulness of AMAR in the

modelling of near unit-root or certain non-stationary series. Regarding this, see also

additional numerical results in the supplements. Moreover, insights into other more

complex special cases can be found in Section S1 of the supplementary materials.

2.3 Large deviations for the OLS estimator in AR(p)

As a prelude to the study of the behaviour of our proposed AMAR scale and

coefficient estimation procedure, we obtain a tail probability bound on the Eu-

clidean norm of the difference between the OLS estimator β̂ of the autoregressive

parameters β in model (2.2), with all bounds explicitly depending on T , p and

the other parameters of the AR(p) process. For any vector v=(v1,...,vk)
T ∈Rk,

the Euclidean norm is denoted by ∥v∥=
√∑k

j=1v
2
k. The following theorem holds.

Theorem 2.1 Suppose that {Xt}Tt=1 follows the AR(p) model (2.2) with the
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Figure 1: Simulated sample paths, of length T =500, from the single-scale AMAR
model Xt=α1

Xt−1+...+Xt−τ1

τ1
+εt, for t=1,...,T , with α1=0.5,0.9,0.95 (respectively

from top to bottom) and τ1=1,2,5,10 (respectively from left to right). The same
random seed is used to generate path for each row.

innovations ε1,...,εT being i.i.d. N (0,σ2) with σ>0. Also assume that the process

is stationary and causal. Let β̂=(β̂1,...,β̂p)
T be the OLS estimator of the vector of

the autoregressive coefficients β=(β1,...,βp)
T . Then there exist universal constants

κ1, κ2, κ3>0 not depending on T , p or β s.t. if
√
T >κ2plog(T), then we have

P

(∥∥∥β̂−β
∥∥∥≤κ1(b/b)

2∥β∥
plog(T)

√
log(T+p)√

T−κ2plog(T)

)
≥1−κ3

T
, (2.5)

where b=minz∈T|b(z)| and b=maxz∈T|b(z)|.

Theorem 2.1 implies that, with high probability, the differences β̂j−βj in (2.4)

converge to zero with T→∞, provided that
plog(T)

√
log(T+p)

√
T−κ2plog(T)

→0. Also note that
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this result holds for any σ> 0, as the OLS estimate has the “self-normalising”

property in the current setting, i.e. it remains unchanged when we scale the entire

observed series {Xt} (and thus σ) by a constant.

We remark that in a setting where both the order p and the autoregressive

coefficients in model (2.2) do not depend on the sample size T , properties of

the OLS estimators are well-established. Lai and Wei (1983) show that, without

assumptions on the roots of the characteristic polynomial b(z), the OLS estimators

are strongly consistent if {εt} is a martingale difference sequence with bounds

on the conditional second moments. Barabanov (1983) obtains similar results

independently, under slightly stronger assumptions on the noise sequence. Bercu

and Touati (2008) give an exponential inequality for the OLS estimators in the

AR(1) model with i.i.d. Gaussian noise.

2.4 AMAR estimation algorithm

2.4.1 Timescale estimation

To estimate the timescales τ1,...,τq, at which the change-points in model (2.4) are

located, we adapt the Narrowest-Over-Threshold (NOT) approach of Baranowski

et al. (2019), with the cumulative sum (CUSUM) contrast function Cb
s,e(·) suitable

for the piecewise-constant model, defined by

Cb
s,e(v)=

∣∣∣∣∣
√

e−b

(e−s+1)(b−s+1)

b∑
t=s

vt−

√
b−s+1

(e−s+1)(e−b)

e∑
t=b+1

vt

∣∣∣∣∣. (2.6)
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In Baranowski et al. (2019), NOT was shown to recover the number and locations

of change-points (the latter at near-optimal rates) in the “piecewise-constant

signal + i.i.d. Gaussian noise” model. Although it is challenging to establish the

corresponding consistency and near-optimal rates in problem (2.4) due to the

complex dependence structure in β̂j−βj, we show in Section 2.4.2 that here NOT

estimators enjoy properties similar to those established in the i.i.d. Gaussian setting.

Let ζT >0 be a significance threshold with which to identify large CUSUM

values (with its choice to be discussed in Section 3.1). The NOT procedure for the

estimation of the timescales in the AMAR(q) model is described in Algorithm 1,

which serves as a key ingredient of the AMAR estimation algorithm, given in

Section 2.4.2. Core to this approach is a particular blend of global and local

treatment of the data β̂ in the search for the multiple scales that may be present

in the true β0. At the global stage, we look at the behaviour of β̂ over a large

number of subintervals (either drawn randomly or systematically), (β̂s,...,β̂e),

where 1≤s<e≤p. On each subinterval, we assume, possibly erroneously, that

only one feature (i.e. scale) is present and use a contrast function (in this setting,

CUSUM-based) to find the most likely location of the scale. We retain those

subsamples for which the contrast exceeds a certain specified threshold, and discard

the others. Amongst the retained subsamples, we search for the one drawn on

the narrowest interval, i.e. one for which e−s is the smallest. The focus on

the narrowest interval constitutes the local part of the method, which ensures
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that with high probability, at most (and also at least, with appropriate choice

of threshold) one scale is present in the selected interval. Having detected the first

scale, our Algorithm 1 then proceeds recursively to the left and to the right of

it, and stops, on any current subinterval, if no contrasts can be found that exceed

the threshold. More details regarding the intuitions and the construction of the

contrast function under different settings can be found in Baranowski et al. (2019).

Algorithm 1 NOT algorithm for estimation of timescales in AMAR models

Input: Estimates β̂=(β̂1,...,β̂p)
T ; s and e are the start- and end-points of an

interval of interest; FM
T is a set of intervals within [1,p]; and a given threshold

ζT and S=∅ (as an initiation).
Output: Set of estimated timescales S = {τ̂1,...,τ̂q̂}⊂{1,...,p}, where τ̂1,...,τ̂q̂
are in increasing order.
procedure NOT(β̂,s,e,FM

T ,ζT )
if e=s then STOP
else

Ms,e :=
{
m : [sm,em]∈FM

T ,[sm,em]⊂ [s,e]
}

if Ms,e=∅ then STOP
else

Os,e :=
{
m∈Ms,e :maxb∈{sm,...,em−1}Cb

sm,em

(
β̂
)
>ζT

}
if Os,e=∅ then STOP
else

m∗ :∈argminm∈Os,e
|em−sm+1|

b∗ :=argmaxb∈{sm∗ ,...,em∗−1}Cb
sm∗ ,em∗

(
β̂
)

S :=S∪{b∗}
NOT(β̂,s,b∗,ζT )
NOT(β̂,b∗+1,e,ζT )

end if
end if

end if
end procedure
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Algorithm 2 AMAR algorithm

Input: Data X1,...,XT , p; threshold ζT , and M (needed only if p>500).
Output: Estimates of the relevant scales τ̂1,...,τ̂q̂ and the corresponding AMAR

coefficients α̂1,...,α̂q̂.
procedure AMAR({X1,...,XT}, p, ζT )

Step 1 Find β̂ = (β̂1, ... , β̂p)
T , the OLS estimates of the autoregressive

coefficients in the AR(p) representation of AMAR(q).
Step 2 Let FM

T be a set of all M = p(p−1)/2 intervals within [1,p] (i.e.
[1,2],...,[1,p],[2,3],...,[2,p],...,[p−1,p]). If p is large (e.g. >500), we take FM

T

to be a set of M intervals whose start- and end-points have been drawn
independently and uniformly from {1,...,p} with replacement.
Step 3 Call NOT(β̂,1,p,FM

T ,ζT ) from Algorithm 1 to find the estimates
of the timescales; Sort them in increasing order to obtain τ̂1,...,τ̂q̂.
Step 4 With the timescales in (1.1) set to {τ̂1,...,τ̂q̂}, find α̂1,...,α̂q̂, the OLS
estimates of the scale coefficients α1,...,αq.

end procedure

2.4.2 Parameter estimation

We now introduce our proposed estimation procedure for the parameters of the

AMAR model. We refer to it as the AMAR algorithm, and its steps are described

in Algorithm 2. An efficient implementation of the procedure is available in the

R package amar (Baranowski et al., 2022). The choice of all the input parameters

is discussed in Section 3.1. As a remark, we note that in Step 4, finding the

AMAR coefficients via OLS amounts to the same procedure as refitting the OLS

estimates of the AR coefficients (e.g. β̂) subject to equality constraints of having

the coefficients to be the same from the (τk+1)-th to the τk+1-th time-lag for all k .
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2.5 Theoretical properties

2.5.1 Gaussian innovations

The following two quantities will together measure the difficulty of our change-point

problem detection problem (with the convention τ0=0 and τq+1=p):

δT := min
j=1,...,q+1

|τj−τj−1|, (2.7)

αT := min
j=1,...,q

|βτj+1−βτj |= min
j=1,...,q

|αj|τ−1
j . (2.8)

To study the theoretical properties of the timescale estimators τ̂1,...,τ̂q̂, we

make the following assumptions.

(A1) {Xt} is stationary and follows the AMAR(q) model given in (1.1) with the

innovations εt being i.i.d. N (0,σ2) for some σ>0.

(A2) p>τq and there exist constants θ< 1
2
and c1>0 such that p<c1T

θ for all T .

(A3) The roots of the characteristic polynomial b(z) lie outside the unit circle T.

Furthermore, there exists constants c2,̄c2>0 such that c2≤minz∈T|b(z)|≤

maxz∈T|b(z)|≤ c̄2 uniformly in T .

(A4) δ
1/2
T αT ≻T θ−1

2 (log(T))3/2=:λT , where θ is as in (A2), and where δT and

αT are given by (2.7) and (2.8), respectively. Here f(T )≻g(T ) means that

liminfT→∞f(T)/g(T)=∞.

Some comments regarding these assumptions are in order. First, the Gaus-

sianity assumption (A1) is made to simplify the theoretical arguments of the proof
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of Theorem 2.1, which is subsequently used to justify Theorem 2.2 below. As

is shown later, Theorem 2.2 could possibly be extended to cover more general

distributional scenarios for the noise εt.

Second, Assumption (A2) imposes restrictions on both p and the maximum

timescale τq, which are allowed to increase with T→∞, but at rates slower than

T 1/2. A similar condition on p being the order of AR(p) approximations of an

AR(∞) processes can be found in e.g. Ing and Wei (2005). Assumption (A3)

implies that the AMAR(q) process Xt, t=1,...,T , is uniformly stationary for all T :

the requirement that minz∈T|b(z)| is bounded from below implies that the roots

of the characteristic polynomial do not approach the unit circle T when T→∞,

which in turn ensures that the Xt process is, heuristically speaking, sufficiently

far from being unit-root. Besides, the upper bound on maxz∈T|b(z)| implies that

∥β∥ is uniformly bounded from below, in view of the Parseval’s identity (see

Lemma S4.1 in the supplementary materials).

Third, Assumption (A4) controls both the minimum spacing between the

timescales and the size of the jumps in (2.3). The quantity δ
1/2
T αT used here is

well-known in the change-point detection literature and characterises the difficulty

of the multiple change-point detection problem.

Theorem 2.2 Let assumptions (A1) – (A4) hold, and let q̂ and τ̂1,...,τ̂q̂ denote,

respectively, the number and the locations of the timescales estimated with Algo-

rithm 2. There exist constants C1,C2,C3,C4>0 such that if C1λT <ζT <C2δ
1/2
T αT ,
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and M>36Tδ−2
T log(Tδ−1

T ) (only if needed by Algorithm 2), then for all sufficiently

large T we have

P
(
q̂=q, max

j=1,...,q
|τ̂j−τj|≤ϵT

)
≥1−C4T

−1, (2.9)

with ϵT =C3λ
2
Tα

−2
T .

The main conclusion of Theorem 2.2 is that Algorithm 2 estimates the number of

the timescales correctly, while the corresponding locations of the estimates lie close

to the true timescales, both with a high probability. Under certain circumstances,

Algorithm 2 recovers the exact locations of the timescales. Consider, for example,

the case when both the number of scales q and the scale coefficients α1,...,αq in (1.1)

are fixed, while the timescales increase with T such that δT ∼p∼T θ (‘∼’ means that

the quantities in question grow at the same rate with T→∞). This is a challenging

setting, in which αT ∼T−θ and ∥β∥∼T−θ/2, where the coordinates of β are given

by (2.3), so the signal strength decreases to 0 when T→∞. Here δ
1/2
T αT ∼T−θ/2,

thus (A4) can only be met if θ in (A2) satisfies the additional requirement θ≤ 1
3
.

The distance between the true timescales and their estimates is then not larger than

ϵT ∼T 4θ−1(log(T))3, which tends to zero if θ< 1
4
. In this case, (2.9) simplifies to

P(q̂=q,τ̂j=τj∀j=1,...,q)≥1−C4T
−1, when T is sufficiently large. Furthermore,

in the much simpler setting where all the locations of the timescales are fixed, The-

orem 2.2 concludes that with high probability q̂=q and τ̂j=τj for all j=1,...,q. As

a consequence, one could establish further that all the estimated autoregressive and

scale coefficients (i.e. βi’s and αi’s) converging at the rate of T
−1/2. However, in gen-
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eral, we would expect the convergence rate of α̂i’s to αi’s to be slower thanO(T−1/2)

when either q or τq (or both) increases with T . Due to its theoretical nature, we leave

the complete characterisation of the asymptotic behaviours of α̂i’s to future research.

2.5.2 Heavy-tailed innovations

In the settings where the innovations follow more heavy-tailed distributions, con-

sistency of our procedure could still be established. For simplicity, we shall assume

that the number of scales q is fixed, so that the presented results would have much

simpler dependence on the tail behaviour of the innovation distributions. The

assumptions we impose under this setup are given below.

(B1) {Xt} is stationary and follows the AMAR(q) model given in (1.1) with

the innovations εt being i.i.d. following a symmetric distribution Z with

regularly varying tail probabilities of index α, such that P(|Z|>z)=z−αL(z)

for any z>0 with any positive α≠2, and L(·) is a slowly varying function

at ∞, i.e. limz→∞
L(az)
L(z)

=1 for any a>0.

(B2) α1,...,αq, τ1,...,τq and p are fixed, with p>τq.

(B3) The roots of the corresponding characteristic polynomial b(z) lie outside

the unit circle T.

Regarding Assumption (B1), we note that it covers many scenarios of heavy-

tailed distributions, including generalized Pareto and Cauchy. Here a smaller
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α implies heavier tails. For instance, when α> 4, the innovation distribution

has finite fourth-moment, while a distribution with α∈(2,4) has finite variance.

Here the case of α=2 (i.e. the boundary of an infinite variance) is not included

to simplify our analysis further. In the setting of autoregressive models, much

heavier tails (e.g. with α<2) actually tend to make the parameter estimation

(fundamentally via autocorrelation) more accurate, which intuitively is due to the

fact that observations would be more spread-out. See Yohai and Maronna (1977),

Hannan and Kanter (1977), Davis and Resnick (1985, 1986). Consequently, our

Algorithm 2 would still work as intended, as established in the following result.

Theorem 2.3 Let assumptions (B1) – (B3) hold, and let q̂ and τ̂1,...,τ̂q̂ de-

note, respectively, the number and the locations of the timescales estimated

with Algorithm 2 (with FM
T taken as the set of all p(p−1)/2 intervals within

[1,p]). For any sufficiently small ϵ>0, there exist constants C1,C2 such that if

C1T
−max(1/2,1/α)+ϵ<ζT <C2αT , then as T→∞,

P
(
q̂=q, max

j=1,...,q
|τ̂j−τj|=0

)
→1.

3. Practicalities and simulated examples

3.1 Parameter choice

Threshold ζT . This threshold is one of the input parameters required in Algorithm 1

and Algorithm 2. The minimum rate of magnitude permitted by Theorem 2.2,

that is ζT =CT−1/2(log(T))3/2 can be used (say, with C=0.5), though a more
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careful choice would be required for different setups. In practice, we advocate

choosing the threshold using the Schwarz Information Criterion (SIC) as outlined

below.

For any ζT >0 (and a fixed p), denote by X̂t(ζT ) the forecast of Xt obtained

via Algorithm 2 and by q̂(ζT ) the number of the estimated timescales. Specifi-

cally, with the estimated timescales τ̂1(ζT ),...,τ̂q̂(ζT )(ζT ) and corresponding scales

coefficients α̂1(ζT ),...,α̂q̂(ζT )(ζT ),

X̂t(ζT )=α̂1(ζT )
Xt−1+...+Xt−τ̂1(ζT )

τ̂1(ζT )
+...+α̂q̂(ζT )(ζT )

Xt−1+...+Xt−τ̂q̂(ζT )(ζT )

τ̂q̂(ζT )(ζT )
,

where we set the values of the unobserved X0,X−1,... to be the sample mean of

the series.

We then select the threshold that minimises the SIC defined as follows:

SIC(ζT )=T log

(
T∑
t=1

(Xt−X̂t(ζT ))
2

)
+2q̂(ζT )log(T), (3.10)

where (3.10) is minimised over ζT such that q̂(ζT )≤ qmax = 10. Unless stated

otherwise, we take this as our default approach in the remainder of this article

and in Section S2 of the supplementary materials.

Number M of random intervals. As outlined in Algorithm 2, we normally

use all the intervals unless p is extremely large. This would be computationally

feasible for most applications. However, when p is large (say >500), we would

follow the recommendation in Baranowski et al. (2019) by setting M=10000.

The autoregressive order p. We refrain from giving a universal recipe for

the choice of p. In the real data example reported later, we choose the p that
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corresponds to a large “natural” time span. If such choice is not obvious, then in

principle, the SIC criterion (3.10) can be minimised with respect to both ζT and p.

Here to reduce the computational burden, in practice, instead of going through all

possible values of p (and finding the corresponding threshold that minimises that

particular SIC), one possibility would be to search for p only on a grid with its

elements increasing exponentially from 1 up to the order of T 1/2, e.g. {1,2,4,8,...}.

3.2 Computational complexity of the AMAR algorithm

The calculation of the OLS estimates in Steps 1 and 4 of Algorithm 2 takes O(Tp2)

operations. The values of Cb
s,e(·) can be computed for all b in O(e−s) operations,

hence the complexity of Step 3 is O(Mp). This term is typically dominated by

O(Tp2), and therefore the usual computational complexity of the AMAR algorithm

is O(Tp2). We make use of an efficient implementation of OLS estimation available

from the R package RcppEigen (Bates and Eddelbuettel, 2013).

3.3 Simulation study

We illustrate the finite sample behaviour and performance Algorithm 2 in a com-

prehensive simulation study. The data are simulated from (1.1) for the following

four scenarios. In all these scenarios, the noise εt follows i.i.d. N (0,1).

(M1) Two timescales at τ1=1 and τ2=3, with the corresponding coefficients

α1=0.3, α2=0.6 (i.e. β=(0.5,0.2,0.2)T ).
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(M2) Two timescales at τ1=2 and τ2=5, with the corresponding coefficients

α1=1.9, α2=−1 (i.e. β=(0.75,0.75,−0.2,−0.2,−0.2)T ).

(M3) Three timescales at τ1 = 1, τ2 = 5 and τ3 = 14, with the correspond-

ing coefficientsα1=0.4, α2=−1, α3=1.4 (i.e. β=(0.4,−0.1,−0.1,−0.1,−0.1,0.1,...,0.1)T ).

(M4) Seasonal model with four timescales at τ1=1, τ2=6, τ3=7 and τ4=8, with

the corresponding coefficients α1=0.5, α2=−4.8, α3=8.4, α4=−3.2 (i.e.

β=(0.5,0,...,0,0.8,−0.4)T , so εt=(1−0.8B7)(1−0.5B)Xt).

(M5) A single timescale at τ1 =10 with α1 =0.9 (i.e. β=(0.09,...,0.09)T ), as

illustrated in Figure 1.

(M6) Two timescales at τ1 = 1 and τ2 = ⌊T 0.4⌋, (which increases with T),

with the corresponding coefficients α1 = α2 = 0.49 (i.e. β = (0.49 +

0.49/⌊T 0.4⌋,0.49/⌊T 0.4⌋...,0.49/⌊T 0.4⌋)T ), as illustrated in Figure 5 in the

supplementary materials.

These scenarios were designed to cover combinations of timescales of different

lengths. Here β is selected as such that the series are stationary but also strongly

autocorrelated with
∑p

j=1βj≈0.9 (or more in (M6)). We believe that this is the

regime where AMAR models are most useful, and is in the lines with what one

would get from fitting some of the real data in practice, as shown in Section 4.

We consider a few different aspects of the estimators obtained with Algorithm 2

with different numbers of observations T = 400,800,1500,3000. We assess the
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accuracy in terms of the number of the fitted timescales q̂, the Hausdorff distance

DH between the fitted timescale locations {τ̂1,...,τ̂q̂} and the true ones {τ1,...,τq}, as

well as the Euclidean distance between the fitted parameter vector β̂ and the true

one β. We also compare the mean squared prediction errors (MSPE) of the fitted

models with the oracles. For the sake of fair comparison, for each of the simulated

series (with length T ), after model fitting, we further draw T ∗=100 observations

at the end of the series and use these observations solely for the purpose of

out-of-sample mean squared prediction error estimation, given as
∑T∗

i=1(X̂T+i−

XT+i)
2/T ∗, where for every i=1,...,T ∗, the predicted value of XT+i is given as

X̂T+i=α̂1
XT+i−1+...+XT+i−τ̂1

τ̂1
+...+α̂q

XT+i−1+...+XT+i−τ̂q̂

τ̂q̂
.

We then report the ratio between the out-of-sample mean squared prediction error

and
∑T∗

i=1ε
2
T+i/T

∗, which is the mean squared prediction error from the oracle

model.

Here for our proposed AMAR approach, we select both the threshold and p

via the Schwarz Information Criterion as mentioned previously with the maximum

number of timescales qmax=10. With regard to the competitors, we also report

results obtained using the fused LASSO (N.B. details can be recalled from our

literature review in Section 1.2), where β is estimated by minimising
T∑

j=p+1

(Xj−β′
1Xj−1−···−β′

pXj−p)
2+λ

(p−1∑
j=1

|β′
j+1−β′

j|+|β′
p|
)

with respect to β′ = (β′
1,... ,β

′
p)

T ∈ Rp, where λ is picked by cross-validation.

Finally, we also consider the autoregressive model selected via AIC (i.e. among
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AR(1), ..., AR(p)). Note that for the AIC, we do not enforce the parameters

to be constant in between consecutive timescale locations; as such, only the

corresponding ∥β̂−β∥ and the mean squared prediction errors are computed. All

the numerical experiments are repeated 1000 times and the results are summarised

in Table 1 and Table 2.

Model (M1)

E|q̂−q| E(DH) E∥β̂−β∥ MSPE(fitted)
MSPE(oracle)

−1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T=400 0.172 6.07 0.593 16.1 0.0159 0.0206 0.0156 0.0133 0.0226 0.0138

(0.014) (0.088) (0.047) (0.05) (0.0008) (0.00049) (0.0006) (0.00093) (0.0012) (0.00093)

T=800 0.051 8.65 0.181 24.1 0.0035 0.0114 0.00749 0.0046 0.0154 0.00802
(0.0072) (0.12) (0.03) (0.056) (0.00026) (0.00027) (0.00028) (0.00048) (0.00089) (0.00061)

T=1500 0.018 12.5 0.085 34.1 0.00116 0.00613 0.00445 0.00138 0.00764 0.00393
(0.0042) (0.16) (0.03) (0.051) (0.000088) (0.00014) (0.0002) (0.00024) (0.00062) (0.00041)

T=3000 0.012 20.2 0.072 50.2 0.000546 0.0029 0.00207 0.000662 0.00429 0.002
(0.0034) (0.21) (0.035) (0.052) (0.000027) (0.000063) (0.000088) (0.00017) (0.00046) (0.00028)

Model (M2)

E|q̂−q| E(DH) E∥β̂−β∥ MSPE(fitted)
MSPE(oracle)

−1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T=400 0.303 7.32 1.33 14.1 0.02 0.0717 0.124 0.0281 0.0857 0.0763

(0.018) (0.064) (0.072) (0.062) (0.0013) (0.0019) (0.0032) (0.01) (0.0043) (0.0032)

T=800 0.194 9.39 0.764 21.8 0.00635 0.0595 0.061 0.00852 0.0615 0.0331
(0.014) (0.071) (0.06) (0.077) (0.00071) (0.001) (0.0018) (0.0013) (0.0024) (0.0016)

T=1500 0.108 10.9 0.921 31.6 0.00171 0.0535 0.0327 0.00666 0.0532 0.0165
(0.01) (0.069) (0.11) (0.092) (0.00038) (0.0011) (0.0011) (0.0038) (0.0022) (0.001)

T=3000 0.07 12.8 0.646 47.2 0.0000979 0.0504 0.0131 0.000793 0.0444 0.00571
(0.0081) (0.071) (0.099) (0.12) (0.000021) (0.0011) (0.00048) (0.0002) (0.002) (0.00056)

Model (M3)

E|q̂−q| E(DH) E∥β̂−β∥ MSPE(fitted)
MSPE(oracle)

−1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T=400 0.711 5.76 1.37 5.12 0.0211 0.0204 0.0499 0.0296 0.0321 0.0567

(0.035) (0.077) (0.046) (0.038) (0.00076) (0.00041) (0.00073) (0.0016) (0.0017) (0.0022)

T=800 0.344 7.83 0.643 12.6 0.00699 0.012 0.0244 0.00922 0.0158 0.0215
(0.026) (0.11) (0.034) (0.068) (0.00031) (0.00024) (0.00041) (0.00075) (0.00091) (0.00099)

T=1500 0.083 10.1 0.31 22.4 0.00203 0.00704 0.013 0.0034 0.00984 0.0112
(0.011) (0.13) (0.043) (0.08) (0.00011) (0.00013) (0.00022) (0.0004) (0.00066) (0.00072)

T=3000 0.054 13.5 0.219 38.2 0.000673 0.00397 0.00648 0.0015 0.00628 0.00683
(0.0082) (0.16) (0.045) (0.084) (0.000041) (0.000074) (0.00011) (0.00023) (0.00051) (0.00048)

Table 1: Performance of different methods under (M1) – (M3), with estimated errors given
in the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance
between the fitted timescale locations {τ̂1,...,τ̂q̂} and the true ones {τ1,...,τq}, ∥β̂−β∥ is the
Euclidean distance between the fitted parameter vector and the true one, and MPSE is the
mean squared prediction errors of different models.

We see that AMAR approach performs consistently better than the fused
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Model (M4)

E|q̂−q| E(DH) E∥β̂−β∥ MSPE(fitted)
MSPE(oracle)

−1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T=400 0.098 11.1 0.199 11.8 0.00892 0.0483 0.0246 0.0145 0.0492 0.0358

(0.012) (0.073) (0.027) (0.017) (0.00065) (0.00086) (0.00083) (0.0011) (0.0019) (0.0017)

T=800 0.044 16.3 0.092 19.7 0.00397 0.0274 0.0107 0.00657 0.0274 0.0142
(0.0085) (0.1) (0.019) (0.019) (0.0003) (0.00045) (0.00038) (0.0006) (0.0012) (0.00088)

T=1500 0.035 24.2 0.291 29.8 0.00179 0.0182 0.00685 0.00333 0.0182 0.00812
(0.006) (0.14) (0.059) (0.017) (0.00011) (0.00027) (0.00026) (0.0004) (0.00091) (0.00066)

T=3000 0.023 36.3 0.129 45.8 0.000756 0.0106 0.00301 0.0017 0.0116 0.0043
(0.0051) (0.19) (0.033) (0.016) (0.000023) (0.00015) (0.00012) (0.00024) (0.0007) (0.0004)

Model (M5)

E|q̂−q| E(DH) E∥β̂−β∥ MSPE(fitted)
MSPE(oracle)

−1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T=400 0.217 3.11 1.64 6.95 0.0109 0.0106 0.0341 0.0164 0.0151 0.0398

(0.017) (0.085) (0.073) (0.1) (0.00045) (0.00038) (0.00053) (0.0028) (0.00099) (0.0016)

T=800 0.133 4.06 0.858 12.9 0.00414 0.00562 0.0166 0.00517 0.00833 0.0176
(0.013) (0.098) (0.056) (0.17) (0.00022) (0.00019) (0.0003) (0.00055) (0.00069) (0.001)

T=1500 0.099 5.06 0.704 22.1 0.00167 0.00331 0.00877 0.00237 0.00454 0.00908
(0.012) (0.11) (0.076) (0.25) (0.00012) (0.000097) (0.00017) (0.00033) (0.00046) (0.00065)

T=3000 0.052 7.07 0.331 38.9 0.000339 0.00171 0.00427 0.000788 0.00278 0.00452
(0.0086) (0.16) (0.054) (0.27) (0.000043) (0.000055) (0.000087) (0.00017) (0.00035) (0.00044)

Model (M6)

E|q̂−q| E(DH) E∥β̂−β∥ MSPE(fitted)
MSPE(oracle)

−1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T=400 0.407 6.87 2.3 9.26 0.0133 0.0336 0.0372 0.023 0.0435 0.06

(0.024) (0.097) (0.054) (0.05) (0.00046) (0.0018) (0.00062) (0.0016) (0.0027) (0.0027)

T=800 0.886 9.83 3.29 13.1 0.00902 0.0234 0.0252 0.015 0.0311 0.0296
(0.035) (0.13) (0.071) (0.054) (0.00028) (0.0017) (0.00036) (0.00098) (0.0025) (0.0013)

T=1500 0.455 13.8 3.08 19 0.00336 0.0174 0.0174 0.00668 0.0241 0.0193
(0.028) (0.17) (0.1) (0.057) (0.00013) (0.0016) (0.00023) (0.00055) (0.0023) (0.00098)

T=3000 0.642 20.9 3.52 28.8 0.00177 0.0134 0.011 0.00395 0.0187 0.0111
(0.037) (0.21) (0.11) (0.063) (0.000064) (0.0015) (0.00012) (0.00038) (0.0021) (0.00068)

Table 2: Performance of different methods under (M4) – (M6), with estimated errors given
in the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance
between the fitted timescale locations {τ̂1,...,τ̂q̂} and the true ones {τ1,...,τq}, ∥β̂−β∥ is the
Euclidean distance between the fitted parameter vector and the true one, and MPSE is the
mean squared prediction errors of different models.

LASSO for all aspects in all model settings and with all the sample sizes we

consider. In fact, estimates from the fused LASSO do not seem to be consistent

in terms of estimating the number and locations of the scales, indicating that the

fused LASSO approach (with L1 penalisation) is not appropriate for identifying

jumps within the parameter vector. Rather interestingly, the AMAR approach also
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seems to perform better than the approach based on the AIC in terms of the mean

squared prediction errors, illustrating the usefulness and importance of taking into

account additional structures in the parameters when they are available.

In Section S2 of the supplementary materials, we also report results from

our sensitivity analysis where we look into the performance of our proposed

approach with (i) different choices of qmax and (ii) a fixed p. In addition, We

run experiments with series simulated from non-stationary AR models with unit

roots. To summarise the findings here, AMAR is generally not sensitive to the

choice of qmax (as long as the truth is no greater). Besides, a fixed p might lead to

some very moderate improvement over our current approach of selection via SIC

when T is small, but could be problematic when the chosen p is smaller than or

close to τq. Finally, even in the setting of non-stationary observations, AMAR still

performs much better than its competitors in most settings, though the reported

results from all methods are associated with larger standard errors.

4. Real data examples

4.1 Stock returns

In this example, we demonstrate the strength of AMAR models for predicting the

DAX stock index daily return over the traditional AR. We look at ten years of

data from 1 January 2011 to 31 December 2020, with the first seven years of data
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(70%) used for training, and the last three years of data (30%) used for testing.

Here we shall work directly on the series of log-return, which we denote as {Xt}.

The visual appearance of the series is illustrated in Figure 2.
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Figure 2: DAX daily log-return from January 2011 to December 2020. The
series is divided into two parts for training and testing, with the part for testing
highlighted in shade.

First, we fit an AMAR model on {Xt} using AMAR with the thresholds and

p selected automatically via the approach outlined in Section 3.1. A three-scale

AMAR model is selected, with τ1=1,τ2=5 and τ3=27.

However, for the purpose of interpretability, we note that a two-scale AMAR

model might be preferred, with the short scale fixed at τ1=1 for this particular

application. As such, we also fit different AMAR models on only the training data

with τ1=1 and τ2={2,...,251}, and select the corresponding τ2 that minimises

the residual sum of squares. This results in a two-scale AMAR model with τ2=5

(and τ1=1).
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Since our focus is on prediction, we also fit the traditional AR model with

the order selected by the AIC. This results in an AR(6) model.

We then examine the performance of these fitted models on the testing data

and measure their performance by both the rooted mean squared prediction error

(RMSPE) and the hit rate. Here the hit rate is defined as the proportion of time

the model predicts the sign of the daily log-return correctly, which is an important

performance indicator for financial time series modelling. The results are reported

in Table 3. In terms of both criteria, AMAR with two scales performs the best.

Here AMAR with three scales appears slightly worse, while AR with its order

selected by the AIC performs the worst. In addition, we remark that AMAR with

τ1=1 and τ2=5 can be easily interpreted as having the daily log-return depending

on the returns of both the previous trading day and the previous week, a fact that

would potentially be appreciated by the practitioners. In summary, we believe

that AMAR would be a promising alternative to the traditional AR models in

modelling real data of this type.

Methods AMAR AMAR AR
(auto-selection for scales) (with two scales) (order via AIC)

RMSPE 0.014564 0.014521 0.014580
Hit Rate 0.5013 0.5186 0.4775

Table 3: Performance of different methods in terms of their rooted mean squared
prediction error (RMSPE) and hit rate. Results from the better method are
highlighted in bold.
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Finally, we note that in this example, more complicated dependence structure,

such as heteroscedasticity, has not been taken into account. In principle, the

AMAR approach could be extended to the multiscale modelling of both the AR

component and the ARCH-type errors.

4.2 UK and US unemployment data

In this example, we first consider the time series of seasonally adjusted UK monthly

unemployment rate from 1960 to 2020. The data can be found in OECD (2022).

The series is shown in the top plot of Figure 3. As before, here our aim is not to find

models that best fit the data, but to compare AMAR with the AR alternatives nor-

mally used in practice, and to demonstrate the potential superiority and practicality

of AMAR over other AR approaches. For this analysis, we report our findings on

both the original series and the differenced series using AMAR and AR with its or-

der selected via AIC. We also report prediction errors of the different models, where

we use the last 5, 10, 20 or 30 years of data for testing and the remaining for training

(without specifying the scales or orders a priori). We set the maximum AR order to

be 48 (i.e. four years) for both methods. For the original series, AMAR fits a model

with scales at 1,2 and 3, while AIC selects an AR(13). For the differenced series,

AMAR fits a model with scales at 1 and 10, while AIC selects an AR(8). A closer

look reveals that the sum of the fitted AR coefficients on the original series is close

to one (>0.99) for both approaches, reflecting the possibility that the series might
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not be stationary, while the sum on the differenced series is much smaller (at around

0.7). Looking at the quality of prediction in terms of rooted mean squared errors (at

the original series level), we see that AMAR performs better than AR with order se-

lected by AIC in both the original and differenced series in the testing periods of all

lengths, though admittedly the difference between these two methods becomes much

smaller when considering the differenced series. In fact, for the purpose of prediction,

results from Table 4, suggest that it is more appropriate to model the differenced

rather than the original series. However, we would like to point out that no matter

which series (i.e. original or differenced) one prefers to work with in this particular

example, AMAR always offers better predictive performance than the AR with the

order selected using AIC, and possibly also comes with improved interpretability.
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Figure 3: Seasonally adjusted monthly unemployment rates of UK and USA from
January 1960 to December 2020.
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Series Methods 5 years 10 years 20 years 30 years

original
AMAR 1.0267 0.7590 0.5849 0.5683
AR-AIC 1.2436 0.9452 0.7409 0.7636

differenced
AMAR 0.3359 0.2469 0.1861 0.15295
AR-AIC 0.3753 0.2554 0.1874 0.1557

Table 4: Performance of different methods for different testing periods in terms of
rooted mean squared prediction errors at the original series level. Here AMAR is
the adaptive multiscale autoregression, while AR-AIC is the autoregressive model
with order chosen by AIC. Results from the better method are highlighted in bold.

Next, to demonstrate the potential use of AMAR on multivariate time series,

we additionally include the seasonally adjusted US monthly unemployment rate

during the same period. The data can be found in U.S. Bureau of Labor Statistics

(2022), with the series also shown in Figure 3. In view of our previous analysis,

we only consider the differenced time series for the purpose of prediction. Let Xt,1

and Xt,2 represent the respective differenced UK and US unemployment rates at

time t. Then the corresponding Adaptive Multiscale Vector AutoRegressive model

(AMVAR) for bivariate observations can be written as

Xt,1

Xt,2

=α1


Xt−1,1+...+Xt−τ1,1

τ1

Xt−1,2+...+Xt−τ1,2

τ1

+...+αq


Xt−1,1+...+Xt−τq,1

τq

Xt−1,2+...+Xt−τq,2

τq

+

εt,1

εt,2

 (4.11)

where τ1,...,τq are the scales, α1,...,αq are 2×2 matrices, and where εt=(εt,1,εt,2)
T

are noise vectors. The optimal selection of the number of scales and their locations

for AMVAR is beyond the scope this paper. One simple approach would be to
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perform scale selection for each univariate series, and combine all of them to be

then used as the scales for AMVAR. Though there might be limitations in this

approach, we believe it serves as a good starting point for further exploration,

as demonstrated below. Recall that AMAR selects scales of 1 and 10 for the

differenced UK unemployment series. In addition, AMAR selects a single scale

of 11 for the differenced US unemployment series. Consequently, we use scales at

1, 10 and 11 for AMVAR. To facilitate comparison with our previous analysis, we

focus on the differenced UK unemployment series, which we now explicit model as

Xt,1=α1,(1,1)Xt−1,1+α1,(1,2)Xt−1,2+α2,(1,1)
Xt−1,1+...+Xt−10,1

10
+α2,(1,2)

Xt−1,2+...+Xt−10,2

10

+α3,(1,1)
Xt−1,1+...+Xt−11,1

11
+α3,(1,2)

Xt−1,2+...+Xt−11,2

11
+εt,1.

On the other hand, fitting the data by the Vector Autoregressive (VAR)

models and selecting order via AIC leads to a VAR(4). The rooted squared errors

for prediction of different models are reported in Table 5, where we use the last five,

ten, twenty or thirty years of data for testing and the remaining for training. Our

results suggest that for the purpose of prediction, AMVAR performs better than

VAR with order selected using AIC for various testing periods in this example under

the multivariate setting. Importantly, this appears to be the case even without fine

tuning the scale selection procedure. In addition, comparing results in Table 4 and

Table 5, we note that AMVAR performs better than the univariate AMAR for
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Series Methods 5 years 10 years 20 years 30 years

differenced
AMVAR 0.3023 0.2176 0.1682 0.1438
VAR-AIC 0.4383 0.3136 0.2271 0.1912
AMAR 0.3359 0.2469 0.1861 0.15295

Table 5: Performance of different methods for different testing periods in terms of
rooted mean squared prediction errors. Here AMVAR is the adaptive multiscale
vector autoregression, while VAR-AIC is the vector autoregressive model with
order chosen by AIC, both under the bivariate setting. We also include (univariate)
AMAR for comparison. Results from the better method are highlighted in bold.

UK unemployment, indicating that including an extra regressor from a different

time series (i.e. US unemployment rate) does indeed improve the predictive power.

5. Extensions and further discussions

The AMAR estimation algorithm can also be used in large-order autoregressions in

which the AR coefficients may not necessarily be piecewise constant, but possess

a different type of regularity (e.g. be a piecewise polynomial of a higher degree).

As an example, we could consider features that are linearly-weighted averages,

instead of the simple averages in (1.1) for AMAR(q). To give more details, for

some 1≤τ1<...<τq, the model is given as

Xt=α1
τ1Xt−1+(τ1−1)Xt−2+...+Xt−τ1

τ1(1+τ1)/2
+···+αq

τqXt−1+(τq−1)Xt−2+...+Xt−τq

τq(1+τq)/2
+εt

Here the influence of the past observations on any given feature decays as the time

gap between them and the present widens. The linear decaying form is just one
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possible way of modelling that results in a more parsimonious parameter structure

of the AR. The other appealing reason for linear decaying is that τ1,...,τq can also

be estimated using the previous framework, say, by simply changing the contrast

function in the NOT algorithm from piecewise-constant contrast to piecewise-linear

and continuous contrast.

As briefly illustrated in our second real data example, another interesting

venue for applying the AMAR framework is time series data with multivariate, or

even high-dimensional observations. In particular, in the high-dimensional setting,

instead of applying the same averages (or features) across different components of

(Xt,1,...,Xt,p)
T , some group structures (or even factors) within these components

can be introduced to further enhance its interpretability.

Finally, it would also be of interest to investigate how estimation uncertainty

could be quantified in AMAR (e.g. via block bootstrap), and whether the AMAR

philosophy could be extended to multiscale features of some latent or hidden

observations. One such example would be to consider multiscale autoregressive and

moving average (ARMA) models, in which there are different scales on both the

observed time series and the unobserved innovations, i.e. we observe {Xt} following

Xt=α1
Xt−1+...+Xt−τ1

τ1
+...+αqAR

Xt−1+...+Xt−τqAR

τqAR

+εt+β1
εt−1+...+εt−ρ1

ρ1
+...+βqMA

εt−1+...+εt−ρqMA

ρqMA
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where qAR and qMA are, respectively, the numbers of timescales for AR and MA,

with the AR timescales 1≤τ1<...<τqAR
and the MA timescales 1≤ρ1<...<ρqMA

,

and with α1,...,αqAR
, β1,...,βqMA

being the scale coefficients.

Supplementary materials

Contains discussions and illustrations on some special cases of AMAR, further sim-

ulations, an additional real data example, and the proofs of the theoretical results.
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