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S1 Special cases of AMAR

We now consider some special cases of AMAR, and offer visual insights into their be-

haviour.

S1.1 Special case I: a single scale

Let {Xt} be a series following the AMAR model with a single scale, i.e.

Xt = α1
Xt−1 + . . .+Xt−τ1

τ1
+ εt, t = 1, . . . , T. (S1.1)

Recall that realisations for different values of α1 (from 0.5 to 0.95, the latter corre-

sponds to series that are near unit-root) and τ1 (from 1 to 10) with standard Gaussian

noise are plotted in Figure 1 of the main paper. It appears that the longer the scale, the

noisier the appearance; the overall shape (driven by the low frequencies) is preserved, but

the details (driven by the high frequencies) are increasingly obscured by noise. This be-

haviour can also be understood by considering the spectral properties of the single-scale

AMAR model, where the fact that the corresponding AR coefficients in the single-scale

AMAR model (S1.1) are constant provides a useful simplification in the form of the spec-

tral density. With εt being white noise with unit variance, the spectral density of Xt

given by (S1.1) is

SX(f) =

∣∣∣∣1− α1

τ1
e−2πfi1− e−2πfτ1i

1− e−2πfi

∣∣∣∣−2

, |f | < 1

2
. (S1.2)
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Figure 4: Spectral density of a single-scale AMAR process with τ1 = 10 and α1 = 0.7.

In view of the boundedness of e−2πfi 1−e−2πfτ1i

1−e−2πfi as a function of τ1, we have that SX(f) → 1

as τ1 → ∞, for all f ∈ (0, 1/2). However, as the sum of the AR coefficients in the single-

scale AMAR does not depend on τ1, we have SX(0) = |1 − α1|−2. Note that more

generally, given α1, . . . , αq, the spectral density at zero of any AMAR(q) process, i.e. its

long-run variance, is independent of τ1, . . . , τq.

As a visual illustration, Figure 4 shows the spectral density of a single-scale AMAR

process with τ1 = 10 and α1 = 0.7. Due to the limiting behaviour described above, a

single-scale AMAR for a large τ1 can be approximated as the sum of two independent

processes: one band-limited with a sharp peak at zero (and therefore representing a

“slowly-varying” signal), and the other as white noise. This is in agreement with the

appearance of the sample realisations shown in Figure 1, which begin to resemble a

“signal + white noise” model for the larger values of τ1.

Finally, we note that even though all the series plotted in Figure 1 are weakly sta-

tionary, some of them exhibit behaviour that mimics non-stationarity, at least visually,

when τ1 if large, even for a moderate α1. This hints at the usefulness of AMAR in the
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modelling of near unit-root or certain non-stationary series. More details can be found

in a simulation study in Section S2.

S1.2 Special case II: one short plus one long scale

We now study the case of the AMAR model in which two timescales are present: one

short one, and one long one. We have

Xt = α1
Xt−1 + . . .+Xt−τ1

τ1
+ α2

Xt−1 + . . .+Xt−τ2

τ2
+ εt. (S1.3)

First, if we keep α1 + α2 constant, and vary both coefficients from α1 = 0 on one

extreme to α2 = 0 on the other extreme, then we obtain a “smooth transition” from a

single-scale model with scale τ2 to a single-scale model with scale τ1.

To gain further insight into the behaviour of AMAR with two timescales, now we

consider α1 = α2 = α, take τ1 = 1 and vary τ2. Figure 5 illustrates the case in which

α1 = α2 = α = 0.49, τ1 = 1 and τ2 = 2, 10, 50. When τ2 = 50, the longer scale has

visually and practically no impact as the coefficients for the individual components (i.e.

α2/τ2) are small. When τ2 = 2, we have a simple AR(2) model. On the other hand,

when τ2 = 10, the realisation has the visual appearance of “a time-varying trend plus a

low-order AR model”. Here, the longer scale is responsible for the changing “levels” at

low-frequencies, whereas the shorter scale is responsible for instantaneous fluctuations at

high-frequencies. This phenomenon is visually not present if
∑

i αi is small or moderate,

e.g. α = α1 = α2 = 0.3, as demonstrated in Figure 5, but would show up if
∑

i αi gets
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moderately close to 1, e.g. at around 0.8.
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Figure 5: Simulated sample paths, of length 500, from the two-scale AMAR model (S1.3),
with α1 = α2 = α = 0.49 in the first row and α1 = α2 = α = 0.3 in the second. Here
τ1 = 1 and τ2 = 2, 10, 50 (respectively from left to right). The same random seed is used
to generate path for each row.

Besides, models with a large τ2 (for different αi’s) also display the same interesting

feature (i.e. “trend + noise” type, which might visually appear to be non-stationary),

but it seems that the longer the scale τ2, the larger the sample sizes at which we are able

to observe this phenomenon.

From these findings, we would infer that a two-scale AMAR model (with a small τ1)

is perhaps the most useful if (a) the longer scale is not too short or too long (i.e. in the

order of 10s in practice), and (b) when the sum of the coefficients α1 + α2 is moderately
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close to 1 (say > 0.8), with the coefficient α2 of the longer scale not being too small.

In this case the two-scale AMAR can imitate a time-varying trend plus a low order AR

model, i.e. we are in a situation in which we are able to use a stationary AMAR model

to model certain non-stationary-looking phenomena.

S1.3 Special case III: AMAR representation of seasonal models

In the class of seasonal ARIMA(p, 0, q) × (P, 0, Q)S models, we consider models of the

form Φ(BS)ϕ(B)Xt = εt (i.e. q = Q = 0), where

Φ(BS) = 1− Φ1B
S − . . .− ΦPB

PS

ϕ(B) = 1− ϕ1B − . . .− ϕpB
p,

and where B is the lag operator. They belong to the class of AMAR models. As a simple

example, consider ARIMA(1, 0, 0)× (1, 0, 0)12, an autoregressive model for monthly time

series, with a single non-seasonal lag and yearly seasonality, given by

Xt = ϕ1Xt−1 + Φ1Xt−12 − ϕ1Φ1Xt−13 + εt. (S1.4)

A typical characteristic feature of ARIMA(p, 0, q) × (P, 0, Q)S models is its stretches of

consecutive zero AR coefficients. For example, in (S1.4), the AR coefficients correspond-

ing to lags 2 to 11 are zero. This means that AMAR models are also able to provide

a relatively parsimonious representation of ARIMA(p, 0, q) × (P, 0, Q)S models. As an
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example, model (S1.4), represented in the AMAR framework, will need four scale pa-

rameters (at τ1 = 1, τ2 = 11, τ3 = 12 and τ4 = 13) and four corresponding AMAR

coefficients (i.e. α1 = ϕ1, α2 = −11Φ1, α3 = 12Φ1(1 + ϕ1) and α4 = −13ϕ1Φ1), which

is more heavily parameterised than the optimal seasonal representation (S1.4) (with ϕ1

and Φ1) but much less than the full AR representation of (S1.4).

This (relative) parsimony of representation of seasonal models in the AMAR frame-

work, plus the fact that the AMAR estimation framework is able to estimate the number

of timescales and their spans automatically, makes AMAR a viable exploratory tool for

identifying time series seasonality in data. In fact, we have demonstrated in the simu-

lation study in Section 3.3 of the main paper that the AMAR estimation procedure is

capable of identifying the right timescales rather effectively even with relatively small

number of observations, confirming good potential of AMAR for the identification and

exploratory analysis of seasonal models.

S2 Additional numerical experiments

S2.1 Sensitivity analysis

Several tuning parameters are required in the algorithm of our approach. The notable

ones are the maximum number of scales qmax, and the autoregressive order p used in the

initial step. Besides, the choice of number of intervals M would also be required, but it

should be apparent from our algorithm that it only plays a minor role under a large p

(which, in the setup of our current algorithm, would imply T > 250000).
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Based on our experiments, we find that the proposed approach is not too sensitive to

the choice of all the aforementioned tuning parameters. Detailed results are given below.

S2.1.1 Maximum number of timescales – qmax

Here we run the same experiments listed in the main manuscript, but set qmax = 5, 20.

The same evaluation metrics are used. Results are given in Table 6 and Table 7.

By comparing the results with those from Table 1 and Table 2 in the main manuscript

(where by default qmax = 10), it becomes evident that our approach does not appear to

be sensitive to the choice of qmax. In particular, for different choices of qmax, every

corresponding AMAR performs better than the competitors.

S2.1.2 The initial order of AR – p

We run the same experiments listed in the main manuscript, but use a fixed p = 25.

The same evaluation metrics are used. Results are given in Table 8 and Table 9. For

the ease of comparison, here we also recall the performance results of the default AMAR

that uses p selected via SIC, for which details can be founded in Section 3.1 of the main

manuscript.

Here we carefully fixed p at 25, so that it is larger than the timescales among all cases.

Here the largest timescale is equal to ⌊30000.4⌋ = 24, from Model (M6) with T = 3000. It

can be seen that for most cases, both approaches perform similarly. Indeed, AMAR with

a fixed p might lead to some very moderate improvement over our current approach of

selection via SIC in a few settings. Still, not surprisingly, using a fixed p could be quite
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Model (M1)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.164 0.17 0.539 0.589 0.016 0.0162 0.018 0.0134

(0.013) (0.013) (0.043) (0.046) (0.00086) (0.00082) (0.0052) (0.00092)

T = 800 0.051 0.051 0.187 0.206 0.00351 0.00385 0.00446 0.00469
(0.0072) (0.0074) (0.032) (0.034) (0.00026) (0.00036) (0.00049) (0.00054)

T = 1500 0.022 0.021 0.143 0.117 0.00116 0.00117 0.00138 0.00145
(0.0046) (0.0045) (0.045) (0.043) (0.000088) (0.000088) (0.00024) (0.00024)

T = 3000 0.01 0.011 0.021 0.049 0.000546 0.000549 0.000671 0.000685
(0.0031) (0.0033) (0.0083) (0.029) (0.000027) (0.000027) (0.00017) (0.00017)

Model (M2)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.251 0.289 1.07 1.27 0.0207 0.0206 0.0187 0.0243

(0.017) (0.017) (0.064) (0.071) (0.0015) (0.0014) (0.002) (0.0049)

T = 800 0.134 0.149 0.463 0.538 0.00551 0.00574 0.00649 0.00911
(0.011) (0.012) (0.044) (0.049) (0.0006) (0.00059) (0.0011) (0.0013)

T = 1500 0.125 0.136 1.18 1.26 0.00152 0.00142 0.00234 0.0025
(0.011) (0.011) (0.13) (0.13) (0.00029) (0.00026) (0.00036) (0.00039)

T = 3000 0.064 0.069 0.673 0.663 0.000159 0.000181 0.000776 0.00118
(0.008) (0.008) (0.1) (0.1) (0.00011) (0.000074) (0.0002) (0.00034)

Model (M3)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.511 0.706 1.46 1.35 0.0238 0.0209 0.0355 0.0289

(0.023) (0.035) (0.054) (0.046) (0.00094) (0.00075) (0.0021) (0.0016)

T = 800 0.262 0.344 0.631 0.64 0.00756 0.00701 0.0103 0.00918
(0.018) (0.026) (0.034) (0.034) (0.00039) (0.00031) (0.00088) (0.00075)

T = 1500 0.068 0.078 0.285 0.297 0.00197 0.00201 0.00341 0.00343
(0.0089) (0.011) (0.04) (0.042) (0.0001) (0.00011) (0.00039) (0.0004)

T = 3000 0.052 0.054 0.192 0.196 0.000677 0.000671 0.00152 0.00151
(0.0078) (0.0082) (0.04) (0.04) (0.000042) (0.000041) (0.00023) (0.00023)

Table 6: Performance of AMAR using different qmax under (M1) – (M3), with estimated
errors given in the brackets. Here q̂ is the number of the fitted timescales, DH is the
Hausdorff distance between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones

{τ1, . . . , τq}, ∥β̂ − β∥ is the Euclidean distance between the fitted parameter vector and
the true one, and MPSE is the mean squared prediction errors of different models.
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Model (M4)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.065 0.106 0.154 0.252 0.0104 0.00932 0.015 0.0145

(0.0079) (0.013) (0.022) (0.031) (0.00085) (0.00061) (0.0011) (0.001)

T = 800 0.041 0.061 0.129 0.131 0.00399 0.00489 0.00627 0.00722
(0.0063) (0.0098) (0.024) (0.022) (0.0004) (0.00042) (0.00057) (0.00063)

T = 1500 0.041 0.035 0.274 0.202 0.0018 0.00193 0.00313 0.00352
(0.0063) (0.006) (0.053) (0.046) (0.0001) (0.00025) (0.0004) (0.00056)

T = 3000 0.015 0.023 0.112 0.128 0.000753 0.000752 0.0017 0.00173
(0.0038) (0.0049) (0.037) (0.036) (0.000023) (0.000023) (0.00024) (0.00024)

Model (M5)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.211 0.222 1.63 1.66 0.0107 0.011 0.0129 0.0143

(0.017) (0.018) (0.072) (0.073) (0.00043) (0.00045) (0.00092) (0.0016)

T = 800 0.137 0.137 0.86 0.859 0.0042 0.00421 0.00535 0.00533
(0.013) (0.013) (0.055) (0.055) (0.00023) (0.00022) (0.00056) (0.00056)

T = 1500 0.101 0.104 0.729 0.736 0.00167 0.00171 0.0023 0.00223
(0.012) (0.013) (0.078) (0.078) (0.00011) (0.00012) (0.00034) (0.00034)

T = 3000 0.052 0.052 0.327 0.336 0.000343 0.00034 0.000757 0.000761
(0.0086) (0.0086) (0.054) (0.056) (0.000044) (0.000043) (0.00018) (0.00018)

Model (M6)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

qmax 5 20 5 20 5 20 5 20
T = 400 0.378 0.4 2.27 2.29 0.0133 0.013 0.0229 0.0221

(0.022) (0.023) (0.054) (0.053) (0.00048) (0.00045) (0.0016) (0.0013)

T = 800 0.823 0.881 3.31 3.3 0.00909 0.009 0.0158 0.0152
(0.031) (0.035) (0.072) (0.071) (0.00029) (0.00027) (0.00099) (0.00097)

T = 1500 0.428 0.462 3.09 3.1 0.00342 0.00341 0.00676 0.00667
(0.025) (0.028) (0.1) (0.1) (0.00014) (0.00013) (0.00055) (0.00055)

T = 3000 0.533 0.644 3.57 3.52 0.00192 0.00178 0.00444 0.00394
(0.029) (0.038) (0.12) (0.11) (0.000084) (0.000064) (0.00045) (0.00038)

Table 7: Performance of AMAR using different qmax under (M4) – (M6), with estimated
errors given in the brackets. Here q̂ is the number of the fitted timescales, DH is the
Hausdorff distance between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones

{τ1, . . . , τq}, ∥β̂ − β∥ is the Euclidean distance between the fitted parameter vector and
the true one, and MPSE is the mean squared prediction errors of different models.
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problematic when the chosen p is close to or bigger than τqmax , as is evident in the setting

of Model (M6) with T = 3000, where its performance is more than 100% worse in every

evaluation metric.

S2.2 (More conventional) higher-order AR

In this part, we compare AMAR and conventional AR models (selected both by AIC and

BIC) over the data that are generated from more conventional high-order stationary AR

models. In particular, we consider the following settings, with τq = 16 and q = 16, 12, 8.

(M7) q = 16 and τi = i for i = 1, . . . , 16, with the corresponding AR coefficients

β = (0.2,−0.2, 0.2,−0.2, . . . , 0.2,−0.2)T .

(M8) q = 12 and {τ1, . . . , τ12} = {1, . . . , 16}\{2, 6, 10, 14}, with the corresponding AR

coefficients

β = (0.2, 0, 0,−0.2, 0.2, 0, 0,−0.2, . . . , 0.2, 0, 0,−0.2)T .

(M9) q = 8 and τi = 2i for i = 1, . . . , 8, with the corresponding AR coefficients

β = (0.2, 0.2,−0.2,−0.2, . . . , 0.2, 0.2,−0.2,−0.2)T .

Here Model (M7) is a conventional high-order AR. Models (M8) and (M9) are also high-
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Model (M1)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.172 0.196 0.593 0.738 0.0159 0.0178 0.0133 0.0147

(0.014) (0.016) (0.047) (0.07) (0.0008) (0.00091) (0.00093) (0.001)

T = 800 0.051 0.047 0.181 0.252 0.0035 0.00401 0.0046 0.00483
(0.0072) (0.0071) (0.03) (0.046) (0.00026) (0.00032) (0.00048) (0.00052)

T = 1500 0.018 0.02 0.085 0.073 0.00116 0.00115 0.00138 0.0014
(0.0042) (0.0046) (0.03) (0.027) (0.000088) (0.000084) (0.00024) (0.00025)

T = 3000 0.012 0.009 0.072 0.016 0.000546 0.000546 0.000662 0.000681
(0.0034) (0.003) (0.035) (0.0063) (0.000027) (0.000027) (0.00017) (0.00017)

Model (M2)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.303 0.235 1.33 1.67 0.02 0.0233 0.0281 0.0259

(0.018) (0.017) (0.072) (0.11) (0.0013) (0.0018) (0.01) (0.007)

T = 800 0.194 0.154 0.764 1.13 0.00635 0.00638 0.00852 0.00815
(0.014) (0.012) (0.06) (0.1) (0.00071) (0.00065) (0.0013) (0.0011)

T = 1500 0.108 0.122 0.921 0.821 0.00171 0.000986 0.00666 0.00386
(0.01) (0.011) (0.11) (0.092) (0.00038) (0.00019) (0.0038) (0.0019)

T = 3000 0.07 0.056 0.646 0.446 0.0000979 0.0000896 0.000793 0.000687
(0.0081) (0.0073) (0.099) (0.072) (0.000021) (0.000021) (0.0002) (0.00017)

Model (M3)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.711 0.314 1.37 1.17 0.0211 0.0187 0.0296 0.0297

(0.035) (0.024) (0.046) (0.057) (0.00076) (0.00072) (0.0016) (0.0017)

T = 800 0.344 0.146 0.643 0.481 0.00699 0.00571 0.00922 0.00825
(0.026) (0.015) (0.034) (0.036) (0.00031) (0.00029) (0.00075) (0.00069)

T = 1500 0.083 0.087 0.31 0.254 0.00203 0.0022 0.0034 0.00359
(0.011) (0.011) (0.043) (0.03) (0.00011) (0.00018) (0.0004) (0.00044)

T = 3000 0.054 0.055 0.219 0.126 0.000673 0.000685 0.0015 0.00147
(0.0082) (0.0091) (0.045) (0.023) (0.000041) (0.000041) (0.00023) (0.00023)

Table 8: Performance of AMAR under (M1) – (M3) with the initial AR order p either
selected via SIC, or fixed at p = 25. The estimated errors given in the brackets. Here q̂
is the number of the fitted timescales, DH is the Hausdorff distance between the fitted
timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the Euclidean
distance between the fitted parameter vector and the true one, and MPSE is the mean
squared prediction errors of different models.
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Model (M4)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.098 0.078 0.2 0.27 0.00892 0.0105 0.0145 0.0157

(0.012) (0.012) (0.027) (0.041) (0.00065) (0.00074) (0.0011) (0.0012)

T = 800 0.044 0.039 0.092 0.172 0.00397 0.00446 0.00657 0.00653
(0.0085) (0.008) (0.019) (0.035) (0.0003) (0.0004) (0.0006) (0.00057)

T = 1500 0.035 0.039 0.291 0.158 0.00179 0.00194 0.00333 0.00324
(0.006) (0.0063) (0.059) (0.03) (0.00011) (0.00011) (0.0004) (0.00039)

T = 3000 0.023 0.024 0.129 0.077 0.000756 0.000753 0.0017 0.00162
(0.0051) (0.005) (0.033) (0.019) (0.000023) (0.000023) (0.00024) (0.00024)

Model (M5)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.217 0.265 1.64 2.29 0.0109 0.0123 0.0164 0.0159

(0.017) (0.02) (0.073) (0.1) (0.00045) (0.00051) (0.0028) (0.0014)

T = 800 0.133 0.144 0.858 1.05 0.00414 0.00447 0.00517 0.00588
(0.013) (0.014) (0.056) (0.073) (0.00022) (0.00026) (0.00055) (0.00065)

T = 1500 0.099 0.092 0.704 0.574 0.00167 0.00168 0.00237 0.0023
(0.012) (0.011) (0.076) (0.058) (0.00012) (0.00011) (0.00033) (0.00034)

T = 3000 0.052 0.049 0.331 0.271 0.000339 0.000346 0.000788 0.000746
(0.0086) (0.0082) (0.054) (0.042) (0.000043) (0.000043) (0.00017) (0.00017)

Model (M6)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

p SIC fixed SIC fixed SIC fixed SIC fixed
T = 400 0.407 0.43 2.3 3.9 0.0133 0.015 0.023 0.0279

(0.024) (0.024) (0.054) (0.12) (0.00046) (0.00058) (0.0016) (0.0016)

T = 800 0.886 0.486 3.29 3.18 0.00902 0.00718 0.015 0.0129
(0.035) (0.026) (0.071) (0.083) (0.00028) (0.00023) (0.00098) (0.00086)

T = 1500 0.455 0.639 3.08 3.04 0.00336 0.0038 0.00668 0.00712
(0.028) (0.035) (0.1) (0.085) (0.00013) (0.00014) (0.00055) (0.00056)

T = 3000 0.642 2.04 3.52 6.8 0.00177 0.00392 0.00395 0.0071
(0.037) (0.063) (0.11) (0.12) (0.000064) (0.000096) (0.00038) (0.00055)

Table 9: Performance of AMAR under (M4) – (M6), with the initial AR order p either
selected via SIC, or fixed at p = 25. Here q̂ is the number of the fitted timescales, DH

is the Hausdorff distance between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true

ones {τ1, . . . , τq}, ∥β̂−β∥ is the Euclidean distance between the fitted parameter vector
and the true one, and MPSE is the mean squared prediction errors of different models.
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order, but their AR coefficients are more structured (though τq = 16 and q are still at

the same order). In particular, all three models are stationary.

For these models, we run the experiments using the same settings as listed in the

main manuscript, but set qmax = 20 (as here q can be as high as 16). For the evaluation

metrics, we look at the accuracy of the estimated order of AR, denoted by |τ̂q̂ − τq|, the

Euclidean distance between the fitted parameter vector and the true one, denoted by

∥β̂ − β∥, and the mean squared prediction errors (MSPE) of different models. Results

are given in Table 10.

We see that with in Model (M7), unsurprisingly AR with order selected via BIC

performs the best among all the evaluation measures. However, the performance of

AMAR is only slightly worse (and better than AR with order selected via AIC). In

particular, it tends to estimates the number of scales (which is the same as the AR

order) correctly when T is reasonably large, implying little efficiency loss for using AMAR

even when there is no meaningful AMAR-type structure in the parameter vector of AR

coefficients. On the other hand, as we move to Model (M8) and Model (M9) where the

AR parameter vectors have more structures embedded (though here τq and q are still at

the same order), AMAR tends to perform better than its competitors in terms of both

the parameter estimation and prediction accuracy. The improvement is more visible in

the setting of Model (M9), as it has less scales than Model (M8), so is intuitively more

favourable to AMAR.
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Model (M7)

E|τ̂q̂ − τq| E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR AIC BIC AMAR AIC BIC AMAR AIC BIC
T = 400 6.73 0.877 12.6 0.577 0.051 0.543 0.204 0.0534 0.177

(0.14) (0.042) (0.17) (0.0038) (0.00084) (0.0068) (0.0031) (0.0018) (0.003)

T = 800 2.05 1.68 0.23 0.139 0.027 0.0293 0.0826 0.0274 0.0265
(0.1) (0.09) (0.055) (0.0053) (0.00053) (0.0023) (0.0026) (0.0012) (0.0016)

T = 1500 0.916 2 0.014 0.012 0.0148 0.0105 0.0124 0.0141 0.0114
(0.09) (0.11) (0.0037) (0.00026) (0.0004) (0.00014) (0.00074) (0.00079) (0.00071)

T = 3000 0.662 2.14 0.015 0.00582 0.00733 0.00532 0.00597 0.00701 0.00555
(0.077) (0.13) (0.0038) (0.00015) (0.00017) (0.000074) (0.00052) (0.00057) (0.00049)

Model (M8)

E|τ̂q̂ − τq| E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR AIC BIC AMAR AIC BIC AMAR AIC BIC
T = 400 2.93 0.895 7.45 0.151 0.0503 0.175 0.132 0.051 0.14

(0.085) (0.04) (0.21) (0.0019) (0.00075) (0.0038) (0.003) (0.0017) (0.0039)

T = 800 1.62 1.69 0.307 0.08 0.0263 0.025 0.0767 0.0281 0.0273
(0.034) (0.091) (0.041) (0.001) (0.00042) (0.00077) (0.002) (0.0011) (0.0014)

T = 1500 0.669 2.02 0.019 0.00969 0.014 0.0109 0.00957 0.0122 0.0102
(0.077) (0.12) (0.0052) (0.00029) (0.00025) (0.00015) (0.0007) (0.00075) (0.00068)

T = 3000 0.597 1.95 0.014 0.00401 0.00687 0.00533 0.00452 0.0062 0.00516
(0.077) (0.14) (0.004) (0.00011) (0.00013) (0.000068) (0.00041) (0.0005) (0.00045)

Model (M9)

E|τ̂q̂ − τq| E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR AIC BIC AMAR AIC BIC AMAR AIC BIC
T = 400 1.37 0.849 0.161 0.104 0.0499 0.0485 0.117 0.0493 0.0487

(0.015) (0.039) (0.022) (0.0011) (0.00082) (0.0012) (0.003) (0.0017) (0.0017)

T = 800 1.04 1.77 0.021 0.0738 0.0269 0.0199 0.0695 0.0253 0.0212
(0.0061) (0.093) (0.0048) (0.00069) (0.00051) (0.00029) (0.002) (0.0011) (0.001)

T = 1500 0.214 1.93 0.017 0.00469 0.0147 0.0107 0.00691 0.0131 0.011
(0.042) (0.12) (0.0041) (0.00039) (0.0003) (0.00016) (0.00067) (0.0008) (0.00073)

T = 3000 0.174 1.75 0.018 0.00215 0.00703 0.00528 0.00384 0.00646 0.00551
(0.041) (0.12) (0.0047) (0.00022) (0.00015) (0.000079) (0.00044) (0.00051) (0.00047)

Table 10: Performance of different methods under (M7) – (M9), with estimated errors
given in the brackets. Here |τ̂q̂ − τq| is the difference between the estimated and true

order of AR, ∥β̂−β∥ is the Euclidean distance between the fitted parameter vector and
the true one, and MPSE is the mean squared prediction errors of different models.
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S2.3 Non-stationary AR

Here we report the results from experiments with series simulated from non-stationary

AR models with unit roots. The scenarios we consider are similar to (M1) – (M6) listed

in the main manuscript, with their details outlined below.

(M1’) Same as (M1) but with α1 = 0.4, α2 = 0.6 (i.e. β = (0.6, 0.2, 0.2)T ).

(M2’) Same as (M2) but with α1 = 1.5, α2 = −0.5 (i.e. β = (0.65, 0.65,−0.1,−0.1,−0.1)T ).

(M3’) Same as (M3) but with α1 = 0.5, α2 = −1, α3 = 1.4

(i.e. β = (0.5,−0.1,−0.1,−0.1,−0.1, 0.1, . . . , 0.1)T ).

(M4’) Same as (M4) but with α1 = 1, α2 = −4.8, α3 = 10.2, α4 = −6.4 (i.e. β =

(1, 0, . . . , 0, 0.8,−0.8)T , so εt = (1− 0.8B7)(1−B)Xt).

(M5’) Same as (M5) but with α1 = 1 (i.e. β = (0.1, . . . , 0.1)T ).

(M6’) Same as (M6) but with α1 = α2 = 0.5 (i.e. β = (0.5+0.5/⌊T 0.4⌋, 0.5/⌊T 0.4⌋ . . . , 0.5/⌊T 0.4⌋)T ).

Here we use AMAR with default choice of its tuning parameters outlined in Sec-

tion 3.1. The corresponding results are summarised in Table 11 and Table 12, where

as before, we report the estimates for |q − q̂|, with q̂ being the number of the fitted

timescales, the Hausdorff distance DH between the fitted timescale locations {τ̂1, . . . , τ̂q̂}

and the true ones {τ1, . . . , τq}, the Euclidean distance between the fitted parameter vector

and the true one, denoted by ∥β̂−β∥, and the ratio between the mean squared prediction

error (MPSE) using the fitted model and that with the oracle over the next T ∗ = 100

unseen observations.
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Model (M1’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.469 1.21 2.31 18.6 0.0449 0.381 0.0268 38.6 28.7 32.5

(0.019) (0.049) (0.11) (0.042) (0.0022) (0.0014) (0.0008) (23) (1.2) (3.1)

T = 800 0.33 1.43 1.97 26.4 0.0347 0.398 0.0201 1.45 29 7.79
(0.016) (0.081) (0.11) (0.063) (0.0022) (0.001) (0.00068) (1.4) (1.3) (0.6)

T = 1500 0.367 2.13 4.47 36.1 0.0302 0.409 0.017 0.0231 26.9 1.95
(0.016) (0.14) (0.25) (0.088) (0.0022) (0.00073) (0.00059) (0.0018) (1.1) (0.16)

T = 3000 0.249 2.61 3.44 51.8 0.0192 0.42 0.0161 0.0148 29.8 0.536
(0.014) (0.18) (0.23) (0.094) (0.0019) (0.00026) (0.00063) (0.0016) (1.3) (0.043)

Model (M2’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.399 3.85 2.09 13.5 0.0254 0.609 0.116 0.0374 4.41 0.226

(0.019) (0.1) (0.075) (0.12) (0.00093) (0.0092) (0.0031) (0.0024) (0.14) (0.014)

T = 800 0.269 6.75 1.52 18.5 0.0134 0.69 0.0892 0.0175 6 0.0971
(0.017) (0.16) (0.073) (0.21) (0.00061) (0.0073) (0.0025) (0.0015) (0.2) (0.0055)

T = 1500 0.187 10 2.11 24.5 0.00572 0.733 0.0681 0.00601 7.33 0.0506
(0.013) (0.22) (0.16) (0.33) (0.00036) (0.0059) (0.0021) (0.00074) (0.25) (0.0024)

T = 3000 0.086 14.2 0.985 35.3 0.0018 0.774 0.0399 0.0023 8.7 0.0246
(0.009) (0.31) (0.12) (0.5) (0.0002) (0.0039) (0.0014) (0.00051) (0.25) (0.0013)

Model (M3’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.747 2.47 1.37 17.4 0.0246 0.297 0.0606 0.0351 0.766 17.4

(0.034) (0.058) (0.043) (0.13) (0.0011) (0.003) (0.00089) (0.0021) (0.022) (2.1)

T = 800 0.499 1.72 0.897 24.7 0.0201 0.318 0.0342 0.0365 0.767 3.76
(0.029) (0.089) (0.039) (0.11) (0.0015) (0.0027) (0.00059) (0.0036) (0.018) (0.34)

T = 1500 0.177 2.4 0.744 34.1 0.0047 0.323 0.0216 0.0104 0.788 0.954
(0.015) (0.16) (0.073) (0.13) (0.00076) (0.0031) (0.00043) (0.0019) (0.019) (0.09)

T = 3000 0.104 1.93 0.506 49.2 0.00336 0.339 0.0141 0.00609 0.854 0.288
(0.011) (0.16) (0.069) (0.15) (0.00073) (0.0027) (0.00035) (0.0015) (0.02) (0.028)

Table 11: Performance of different methods under (M1’) – (M3’), with estimated errors
given in the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff
distance between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq},
∥β̂−β∥ is the Euclidean distance between the fitted parameter vector and the true one,
and MPSE is the mean squared prediction errors of different models.
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Model (M4’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.527 2.64 1.45 18.1 0.161 2.22 0.888 0.254 216 28.1

(0.021) (0.024) (0.07) (0.074) (0.013) (0.0019) (0.013) (0.021) (9.3) (2)

T = 800 0.27 2.55 0.702 25.4 0.21 2.24 0.84 0.295 227 7.28
(0.017) (0.026) (0.052) (0.11) (0.014) (0.00068) (0.012) (0.022) (10) (0.5)

T = 1500 0.225 2.4 2.02 34.2 0.124 2.25 0.847 0.189 267 2.79
(0.014) (0.041) (0.15) (0.17) (0.011) (0.00035) (0.011) (0.018) (13) (0.13)

T = 3000 0.175 2.97 1.69 48.2 0.0678 2.26 0.841 0.0921 293 1.4
(0.012) (0.092) (0.14) (0.22) (0.0085) (0.00026) (0.0096) (0.012) (14) (0.052)

Model (M5’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.354 0.575 1.94 9.74 0.0134 0.0461 0.0464 5.81 0.439 10

(0.022) (0.037) (0.077) (0.039) (0.00061) (0.00035) (0.00082) (4.5) (0.032) (0.89)

T = 800 0.322 1.33 1.44 17.5 0.00602 0.0591 0.0276 0.254 0.467 2.47
(0.02) (0.065) (0.074) (0.07) (0.00052) (0.00046) (0.00062) (0.19) (0.027) (0.19)

T = 1500 0.154 2.3 1.2 27.6 0.00212 0.069 0.0203 2.32 0.569 0.692
(0.013) (0.12) (0.11) (0.062) (0.0003) (0.00044) (0.0006) (2.2) (0.034) (0.064)

T = 3000 0.114 4.19 0.818 43.4 0.000744 0.0776 0.014 0.72 0.622 0.197
(0.01) (0.19) (0.088) (0.1) (0.00024) (0.00036) (0.00048) (0.54) (0.03) (0.022)

Model (M6’)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.889 1.32 3.67 17.5 0.0177 0.234 0.0441 0.0251 0.762 10.4

(0.034) (0.064) (0.076) (0.11) (0.0007) (0.002) (0.00068) (0.0013) (0.038) (0.87)

T = 800 1.54 1.52 7.63 24.2 0.0184 0.228 0.0329 0.0336 0.631 3.37
(0.049) (0.11) (0.072) (0.17) (0.00073) (0.0022) (0.00041) (0.0015) (0.031) (0.3)

T = 1500 0.931 2.01 5.6 33.4 0.00501 0.23 0.0229 0.01 0.499 1.07
(0.04) (0.15) (0.13) (0.22) (0.00025) (0.0022) (0.00025) (0.00075) (0.018) (0.094)

T = 3000 2.09 2.95 12.4 47.9 0.00515 0.236 0.0159 0.0122 0.427 0.328
(0.066) (0.18) (0.13) (0.28) (0.00011) (0.0019) (0.00015) (0.00076) (0.012) (0.036)

Table 12: Performance of different methods under (M4’) – (M6’), with estimated errors
given in the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff
distance between the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq},
∥β̂−β∥ is the Euclidean distance between the fitted parameter vector and the true one,
and MPSE is the mean squared prediction errors of different models.
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We see that even in the setting of non-stationary observations, AMAR still performs

much better than its competitors in most settings, even though all methods seem to

perform worse as compared to the stationary settings. Unsurprisingly, here the reported

results are associated with larger estimation errors.

In addition, we note that the fused LASSO approach performs much worse than its

competitors in terms of MSPE, especially in (M1’) and (M4’). This is because the fused

LASSO approach tends to over-estimate the number of scales, resulting in less accurate

β̂, which could greatly affect the corresponding MSPE when the series is non-stationary.

S3 Additional real data example: well-log

We consider the well-log data from O Ruanaidh and Fitzgerald (1996). Prior to use, the

data is cleaned by removing outliers, taken here to be the observations that differ from

the median-fliter fit to the data (with span 25) by at least 7500. This retains 97.7% of the

data points. The cleaned data, denoted as {Xt}3956t=1 , is shown in the left plot of Figure 6.

As summarised in Fearnhead and Clifford (2003), the data represents measurements

of the nuclear magnetic response of underground rocks. The underlying (unobserved)

signal is assumed to be piecewise constant, with each constant segment representing a

stratum of rock. The jumps occur when a new rock stratum is met. The problem of

detecting these change-points in the underlying signal is of practical importance in oil

drilling.

It is known (for instance, see Cho and Fryzlewicz (2021) and the references therein)
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Figure 6: Left: the well-log data from O Ruanaidh and Fitzgerald (1996), cleaned as
described in the text. Right: the end part of the data, from time location 2730.

that the problem of multiple change-point detection in a piecewise-constant signal ob-

served in noise is much more challenging if the noise displays autocorrelation, as the

natural fluctuations of the autocorrelated process can be mistaken for change-points, and

vice versa. This appears to be the case in the well-log data: the right-hand plot of Figure

6 shows the end portion of the data, from the observation after the last visually obvious

change-point (at location 2729) to the end. As discussed earlier, the visual appearance

of the data fluctuations in this region of the dataset suggests that the AMAR model

may be appropriate. Our aim is therefore to: (a) estimate the appropriate AMAR model

on {X2730, . . . , X3956}, (b) fit the estimated model from the previous step on the entire

dataset (i.e. {X1, . . . , X3956}) to remove the autocorrelations in the data, and (c) esti-

mate change-point locations in the thus-decorrelated dataset using a method suitable for

multiple change-point detection in uncorrelated (Gaussian) noise.
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We start with a preliminary time series analysis of {X2730, . . . , X3956}. The uncon-

strained AR fit to this subset of the data, with the AR order chosen via AIC yields order

17, and the estimated coefficients are shown in the left panel of Figure 7. The appearance

of the vector of the estimated coefficients suggests that a piecewise-constant model (as

dictated by AMAR) may be suitable here. The fitted AMAR model returns estimated

scales 1, 9, 13, 16, 17 (see Figure 7).

Prior to fitting the estimated AMAR model to the entire dataset, however, we shrink

the estimated AMAR coefficients by a factor of ρ ∈ (0, 1), i.e. we replace each estimated

AMAR coefficient α̂r by ρα̂r. This is done because the original estimated AMAR co-

efficients sum up to practically 1 (0.9998), and therefore fitting such a “near-unit-root”

AMAR model has a strong differencing effect, which as well as successfully removing the

autocorrelations, could also potentially remove too much of the structure of the signal

for successful detection of change-points in the levels.

We choose ρ as follows. Starting with ρ = 0, we increase ρ in steps of 0.01 until

our selected procedure(s) for change-point detection under lack of serial correlation do

not indicate any change-points after time t = 2730 (since we initially fitted an AMAR

model on this portion of the data under the assumption of stationarity there). This is

first achieved for ρ = 0.78, for both Wild Binary Segmentation (Fryzlewicz, 2014) and

Narrowest-Over-Threshold (Baranowski et al., 2019), both with model selection via the

strengthened Schwarz Information Criterion, and using the implementation from the R

package breakfast (Anastasiou et al., 2021) with otherwise default parameters. These

two procedures indicate, respectively, 12 and 10 change-points in the signal. The change-
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Figure 7: Top left: the unconstrained estimated AR coefficients for X2730:3956 (circles);
extents of estimated AMAR scales (dashed lines). Top right: unshrunk AMAR residuals.
Bottom left: AMAR residuals with ρ = 0.8. Bottom right: AMAR residuals with ρ = 0.6.
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Figure 8: The well-log data with the change-point locations estimated via the shrunk
AMAR fit with ρ = 0.78 and using WBS+sSIC on the residuals.

point locations estimated via Wild Binary Segmentation are shown in Figure 8. With

the exception of the possible double detection at times t = 1043, 1056, the estimated

change-point locations visually align with the signal very well.

S4 Proofs of the theoretical results

S4.1 Proof of Proposition 2.1

For AR(p) processes, it has a stationary and causal solution if and only if all the roots

of b(z) = 0 lie outside T.

For any AMAR(q) with α1, . . . , αq (and the corresponding AR parameters β1, . . . , βp),



24 S4.2 Proof of Theorem 2.1∑q
j=1 |αj| < 1 under the AMAR framework is equivalent to

p∑
j=1

|βj| =
p∑

j=1

( ∑
k:τk≥j

|αk|
τk

)
=

|α1|
τ1

τ1 + · · ·+ |αq|
τq

τq < 1

in view of Equations (1.1) and (2.2) and (2.3). Now since
∑p

j=1 |βj| < 1, b(z) := 1 −

β1z−· · ·−βpz
p ≥ 1−|β1|∥z∥−· · ·−|βp|∥z∥p ≥ 1−

∑p
j=1 |βj| > 0 for any z ∈ T. As such,

all the roots of b(z) = 0 lie outside T, which implies the existence of a causal stationary

solution.

Next, given α1, . . . , αq ≥ 0, we have that β1, . . . , βp ≥ 0. The existence of a causal

stationary solution implies that all the roots of b(z) = 0 lie outside T. Since b(0) = 1 and

b(·) is continuous, one would necessarily require b(1) > 0. i.e. β1 + · · · + βp < 1. This

condition under the AMAR framework is equivalent to

p∑
j=1

( ∑
k:τk≥j

αk

τk

)
=

α1

τ1
τ1 + · · ·+ αq

τq
τq < 1,

which is the same as
∑q

j=1 |αj| < 1 under non-negativity. □

S4.2 Proof of Theorem 2.1

We write the AR(p) model as

Yt = BYt−1 + εtu, t = 1, . . . , T, (S4.5)
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where Yt = (Xt, Xt−1, ..., Xt−p+1)
′, the matrix of the coefficients

B =

β1 β2 · · · βp

Ip−1 0

 (S4.6)

and u = (1, 0, . . . , 0)′ ∈ Rp. We start with a few auxiliary results.

Lemma S4.1 (Parseval’s identity, Theorem 1.9 in Duoandikoetxea (2001)) For

any complex-valued sequence {fk}k∈Z such that
∑

k∈Z |fk|2 < ∞, the following identity

holds

∑
k∈Z

|fk|2 =
∫
T
|f(z)|2dm(z), (S4.7)

where f(z) =
∑

k∈Z fkz
k, T = {z ∈ C : |z| = 1}, dm(z) = d|z|

2π
.

Lemma S4.2 (Cauchy’s integral formula) Let M ∈ Rp×p be a real- or complex- val-

ued matrix. Then for any curve Γ enclosing all eigenvalues of M and any j ∈ N the

following holds

Mj =
1

2πi

∫
Γ

zj(zIp −M)−1dz =
1

2πi

∫
Γ

zj−1(Ip − z−1M)−1dz. (S4.8)

Lemma S4.3 Let B given by (S4.6) be the matrix of coefficients of a stationary AR(p)

process and let v = (v1, . . . , vp)
′ ∈ Rp. For all z ∈ C such that

∑∞
i=0 | ⟨v,Biu⟩ ||zi| < ∞,
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we have

b(z)
∞∑
i=0

〈
v,Biu

〉
zi = b(z)

〈
v, (Ip − zB)−1u

〉
= v(z), (S4.9)

where v(z) = v1 + v2z + . . .+ vpz
p−1, and where b(z) is the AR polynomial.

Proof. As
∑∞

i=0 | ⟨v,Biu⟩ ||zi| < 0, we can change the order of summation in the left-

hand side of (S4.9)

(1− β1z − . . .− βpz
p)

∞∑
i=0

〈
v,Biu

〉
zi =

〈
v,

(
∞∑
i=0

(1− β1z − . . .− βpz
p)ziBi

)
u

〉
.

Define β0 = −1, βk = 0 for k > p. By direct algebraic manipulation,

∞∑
i=0

(1− β1z − . . .− βpz
p)ziBi = −

∞∑
i=0

(
i∑

k=0

βkB
i−k

)
zi := −

∞∑
i=0

Diz
i.

The characteristic polynomial of B is given by ϕ(z) =
∑p

k=0 βkz
p−k. From the Cayley–

Hamilton theorem, B is a root of ϕ, and, consequently for i ≥ p,

Di = Bi−p

i∑
k=0

βkB
p−k = Bi−p

p∑
k=0

βkB
p−k = 0.

It remains to demonstrate that ⟨v,Diu⟩ = −vi+1 for i = 0, . . . , p − 1, which we show

by induction. For i = 0, ⟨v,Diu⟩ = β0 ⟨v,u⟩ = −v1. When i ≥ 1, matrices Di satisfy
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Di = BDi−1 + βiIp, therefore

⟨v,Diu⟩ = ⟨v,BDi−1u⟩+ βi ⟨v,u⟩ = ⟨B′v,Di−1u⟩+ βi ⟨v,u⟩

= ⟨v1(β1, . . . , βp)
′ + (0, v2, . . . , vp)

′,Di−1u⟩+ βi ⟨v,u⟩ = −v1βi − vi+1 + v1βi

= −vi+1,

which completes the proof. □

Lemma S4.4 Let Z1, Z2, . . . be a sequence of i.i.d. N (0, 1) random variables. Then for

any integers l ̸= 0 and k > 0, the following exponential probability bound holds for any

x > 0:

P

(∣∣∣∣∣
k∑

t=1

ZtZt+l

∣∣∣∣∣ > kx

)
≤ 2 exp

(
−1

8

kx2

4 + x

)
. (S4.10)

Proof. We will show that P
(∑k

t=1 ZtZt+l > kx
)

≤ exp
(
−1

8
kx2

4+x

)
, which would then

imply (S4.10) by symmetry. By Markov’s inequality, for any x > 0 and λ > 0, it holds

that

P

(
k∑

t=1

ZtZt+l > kx

)
≤ exp (−kxλ) E exp

(
λ

k∑
t=1

ZtZt+l

)
.

By the convexity of y 7→ exp (λy) for any λ > 0, Theorem 1 in Vershynin (2011) implies

E exp

(
λ

k∑
t=1

ZtZt+l

)
≤ E exp

(
4λ

k∑
t=1

ZtZ̃t

)
,
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where Z̃1, . . . , Z̃k are independent copies of Z1, . . . , Zk. Using the independence and by

direct computation (see also Craig (1936)), we get

E exp

(
4λ

k∑
t=1

ZtZ̃t

)
=
(
E exp

(
4λZ1Z̃1

))k
=
(
E exp

(
8λ2Z̃2

1

))k
=
(
1− 16λ2

)− 1
2
k

provided that 0 < λ < 1
4
, therefore P

(∑k
t=1 ZtZt+l > kx

)
≤ exp

(
−kxλ− k

2
log (1− 16λ2)

)
.

Taking λ = −2+
√
4+x2

4x
minimises the right-hand side of this inequality. With this value of

λ and using log(x) ≤ x− 1, we have

P

(
k∑

t=1

ZtZt+l > kx

)
≤ exp

(
k

4

(
2−

√
x2 + 4 + 2 log

(
1

4

(√
x2 + 4 + 2

))))
≤ exp

(
k

4

(
2−

√
x2 + 4 +

1

2

(√
x2 + 4 + 2

)
− 2

))
= exp

(
k

8

(
2−

√
x2 + 4

))
= exp

(
−1

8

kx2

2 +
√
x2 + 4

)
≤ exp

(
−1

8

kx2

4 + x

)
,

which completes the proof. □

Lemma S4.5 (Lemma 1 in Laurent and Massart (2000)) Let Z1, Z2, . . . be a se-

quence of i.i.d. N (0, 1) random variables. For any integer k > 0 and x > 0, the following
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exponential probability bounds hold

P

(
k∑

t=1

Z2
t ≥ k + 2

√
kx+ 2x

)
≤ exp (−x) , (S4.11)

P

(
k∑

t=1

Z2
t ≤ k − 2

√
kx

)
≤ exp (−x) . (S4.12)

Proof of Theorem 2.1. For CT =
∑T−1

t=1 YtY
′
t and AT =

∑T−1
t=1 εt+1Yt, we have

β̂ − β = C−1
T AT . Here the distribution of β̂ − β is invariant to the value of σ. As such,

in the following, we assume σ = 1 for notational convenience. Consequently,

∥∥∥β̂ − β
∥∥∥ ≤ λmax(C

−1
T ) ∥AT∥ = λ−1

min(CT ) ∥AT∥ , (S4.13)

where λmin(M) and λmax(M) denote, respectively, the smallest and the largest eigen-

values of a symmetric matrix M. To provide an upper bound on
∥∥∥β̂ − β

∥∥∥ given in

Theorem 2.1, we will bound λmin(CT ) from below and ∥AT∥ from above, working on a

set whose probability is large.

In the calculations below, we will repeatedly use the following representation of Yt,

which follows from applying (S4.5) recursively:

Yt = BtY0 +
t∑

j=1

εt−j+1B
j−1u, t = 1, . . . , T. (S4.14)

In addition, to improve the presentational aspect of the proof, here we shall take Y0 = 0.

All the results would go through (with minor modifications to handle the extra terms) if
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one instead assumes that Y0 is a realization from a stationary solution.

In the arguments below, we will show result more specific than (2.5), i.e.

∥AT∥ ≤
(
32b−2

√
1 + ∥β∥2

)
p log(T )

√
(1 + log(T + p))T , (S4.15)

λmin(CT ) ≥ b
−2
(
T − p(1 + 32 log(T )

√
T )
)
, (S4.16)

on the event

ET = E (1)
T ∩ E (2)

T ∩ E (3)
T , (S4.17)

where

E (1)
T =

⋂
1≤i<j≤p


∣∣∣∣∣∣
T−max(i,j)∑

t=1

εtεt+|i−j|

∣∣∣∣∣∣ < 32 log(T )
√
T −max(i, j)

 ,

E (2)
T =

T⋂
j=1

{∣∣∣∣∣
T−j∑
t=1

εtεt+j

∣∣∣∣∣ < 32 log(T )
√

T − j

}
,

E (3)
T =

{
T−p∑
t=1

ε2t > T − p− 2
√

log(T )(T − p)

}
.

Finally, we will demonstrate that ET satisfies

P (ET ) ≥ 1− 5

T
. (S4.18)

Thus, (S4.13), (S4.15), (S4.16) and (S4.18) combined together imply the statement of
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Theorem 2.1. The remaining part of the proof is split into three parts, in which we show

(S4.15), (S4.16) and (S4.18) in turn.

Upper bound for ∥AT∥. The Euclidean norm satisfies ∥AT∥ = supv:∈Rp,∥v∥=1 | ⟨v,AT ⟩ |,

therefore we consider inner products ⟨v,AT ⟩ where v ∈ Rp is any unit vector. By (S4.14),

⟨v,AT ⟩ =
T−1∑
t=1

⟨v,Yt⟩ εt+1 =
T−1∑
t=1

t∑
j=1

〈
v,Bj−1u

〉
εt−j+1εt+1

=
T−1∑
j=1

〈
v,Bj−1u

〉
aj,

where aj =
∑T−1

t=j εt−j+1εt+1 =
∑T−j

t=1 εtεt+j.

Lemma S4.2 and Lemma S4.3 applied to the right-hand side of the above equation

yield

T−1∑
j=1

〈
v,Bj−1u

〉
aj =

1

2πi

∫
T

(
T−1∑
j=1

zj−1aj

)〈
v, (zIp −B)−1u

〉
dz

=
1

2πi

∫
T

(
T−1∑
j=1

zj−1aj

)(
p∑

j=1

zp−jvj

)
q(z)dz

=
1

2πi

∫
T

(
T+p−1∑
j=0

zjcj

)
q(z)dz,

where q(z) = (zpb(z−1))−1 and cj =
∑j

i=0 ai+1vp−j+i. Integrating by parts, we get

1

2πi

∫
T

(
T+p−1∑
j=0

zjcj

)
q(z)dz = − 1

2πi

∫
T

(
T+p−1∑
j=0

zj+1 cj
j + 1

)
q′(z)dz,

where q′(·) is the derivative of q(·). Combining the calculations above and using the fact
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that T = {z ∈ C : |z| = 1}, Cauchy’s inequality and Lemma S4.1, we obtain

∣∣∣∣∣
T−1∑
j=1

〈
v,Bj−1u

〉
aj

∣∣∣∣∣ ≤
√√√√T+p−1∑

j=0

(
cj

j + 1

)2
√∫

T
|q′(z)|2dm(z), (S4.19)

where we recall that dm(z) = d|z|
2π

. To further bound the first term on the right-hand side

of (S4.19), we recall that on the event ET coefficients |aj| ≤ 32 log(T )
√
T , hence

√√√√T+p−1∑
j=0

(
cj

j + 1

)2

=

√√√√T+p−1∑
j=0

1

(j + 1)2

(
j∑

i=0

ai+1vp−j+i

)2

≤ max
j=0,...,T+p−1

|aj|

√√√√T+p−1∑
j=0

1

(j + 1)2

(
j∑

i=0

|vp−j+i|

)2

≤ 32 log(T )
√
T

√√√√T+p−1∑
j=0

j + 1

(j + 1)2

≤ 32 log(T )
√
(1 + log(T + p))T .

For the second term in (S4.19), we calculate the derivative

q′(z) = −
pzp−1 −

∑p
j=1(p− j)βjz

p−j−1

(zpb(z−p))2
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and use Lemma S4.1 to bound

√∫
T
|q′(z)|2dm(z) =

√√√√∫
T

∣∣∣∣∣pzp−1 −
∑p

j=1(p− j)βjzp−j

(zpb(z−p))2

∣∣∣∣∣
2

dm(z)

≤

√∫
T

∣∣∣pzp−1 −
∑p

j=1(p− j)βjzp−j

∣∣∣2 dm(z)

min|z|=1 |(zpb(z−p))|2

= b−2

√√√√(p2 + p∑
j=1

(p− j)2β2
j

)
≤ b−2p

√
1 + ∥β∥2.

Combining the bounds on the two terms, we obtain

T−1∑
j=1

〈
v,Bj−1u

〉
aj ≤

(
32b−2

√
1 + ∥β∥2

)
p log(T )

√
(1 + log(T + p))T .

Taking supremum over v ∈ Rp such that ∥v∥ = 1 proves (S4.15).

Lower bound for λmin(CT ). Let v = (v1, . . . , vp)
′ be a unit vector in Rp. We begin

the proof by establishing the following inequality

⟨v,CTv⟩ ≥ b
−2

p∑
i,j=1

vivj

T−1∑
t=1

εt−j+1εt−i+1, (S4.20)

where εt = 0 for t ≤ 0 and b = maxz∈T |b(z)|. By Lemma S4.1 and (S4.14), we rewrite
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the quadratic form on the left-hand side of (S4.20) to

⟨v,CTv⟩ =
T−1∑
t=1

⟨v,Yt⟩2 (S4.21)

=

∫
T

∣∣∣∣∣
T−1∑
t=1

〈
v,

t∑
j=1

εjB
t−ju

〉
zt

∣∣∣∣∣
2

dm(z) (S4.22)

=

∫
T

∣∣∣∣∣
T−1∑
t=1

T−1∑
j=1

εjωt−jz
t

∣∣∣∣∣
2

dm(z) (S4.23)

where ωj = ⟨v,Bju⟩ for j ≥ 0, ωj = 0 for j < 0. Changing the order of summation and

by a simple substitution we get

T−1∑
t=1

T−1∑
j=1

εjωt−jz
t =

T−1∑
j=1

εjz
j

T−1∑
t=1

ωt−jz
t−j =

T−1∑
j=1

εjz
j

T−j−1∑
t=0

ωtz
t. (S4.24)

Using the definition of ωj, the fact that all eigenvalues of B have modulus strictly lower

than one and Lemma S4.3, (S4.24) simplifies to

T−1∑
j=1

εjz
j

T−j−1∑
t=0

ωtz
t =

T−1∑
j=1

εjz
j
〈
v, (Ip − (Bz)T−j)(Ip −Bz)−1u

〉
=

T−1∑
j=1

εj
(
zj
〈
v, (Ip −Bz)−1u

〉
− zT

〈
BT−jv, (Ip −Bz)−1u

〉)
= b(z)−1

T−1∑
j=1

εj
(
zjv(z)− zTwj(z)

)
,

where v(z) =
∑p

k=1 vkzk−1 and wj(z) =
∑p

k=1(B
T−jv)kz

k−1 for j = 0, . . . , T − 1. The
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equation above, (S4.21) and (S4.24) combined together imply the following inequality

⟨v,CTv⟩ =
∫
T

∣∣∣∣∣b(z)−1

T−1∑
j=1

εj
(
zjv(z)− zTwj(z)

)∣∣∣∣∣
2

dm(z)

≥ b
−2
∫
T

∣∣∣∣∣
T−1∑
j=1

εj
(
zjv(z)− zTwj(z)

)∣∣∣∣∣
2

dm(z).

Observe that
∑T−1

j=1 εj
(
zjv(z)− zTwj(z)

)
=
∑T−1

j=1 εj
(
zjv(z)− zTwj(z)

)
=
∑T+p−1

t=1 ctz
t

is a trigonometric polynomial, therefore by Lemma S4.1 and simple algebra

∫
T

∣∣∣∣∣
T−1∑
j=1

εj
(
zjv(z)− zTwj(z)

)∣∣∣∣∣ dm(z) =

T+p−1∑
t=1

|ct|2 ≥
T−1∑
t=1

|ct|2 =
T−1∑
t=1

(
p∑

j=1

vjεt−j+1

)2

=

=

p∑
i,j=1

vjvi

T−1∑
t=1

εt−j+1εt−i+1,

which proves (S4.20).

We are now in a position to bound ⟨v,CTv⟩ from below. Rearranging terms in

(S4.20) yields

⟨v,CTv⟩ ≥ b
−2

 p∑
i=1

v2i

n−i∑
t=1

ε2t +
∑

1≤i<j≤p

vivj

T−max(i,j)∑
t=1

εtεt+|j−i|


≥ b

−2

T−p∑
t=1

ε2t

p∑
i=1

v2i − max
1≤i<j≤p

∣∣∣∣∣∣
T−max(i,j)∑

t=1

εtεt+|j−i|

∣∣∣∣∣∣
( p∑

i=1

|vi|

)2

−
p∑

i=1

v2i


≥ b

−2

T−p∑
t=1

ε2t − (p− 1) max
1≤i<j≤p

∣∣∣∣∣∣
T−max(i,j)∑

t=1

εtεt+|j−i|

∣∣∣∣∣∣
 .
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Recalling the definition of ET , we conclude that on this event

⟨v,CTv⟩ ≥ b
−2
(
T − p− 2

√
log(T )(T − p)− (p− 1)32 log(T )

√
T
)

≥ b
−2
(
T − p(1 + 32 log(T )

√
T )
)
.

Taking infimum over v ∈ Rp such that ∥v∥ = 1 in the inequality above proves (S4.16).

Lower bound for P (ET ). Recalling (S4.17) and using a simple Bonferroni bound,

we get

P (Ec
T ) ≤ p2 max

1≤i<j≤p
P

∣∣∣∣∣∣
T−max(i,j)∑

t=1

εtεt+|i−j|

∣∣∣∣∣∣ ≥ 32 log(T )
√

T −max(i, j)


+ T max

1≤j≤T
P

(∣∣∣∣∣
T−j∑
t=1

εtεt+j

∣∣∣∣∣ < 32 log(T )
√

T − j

)

+ P

(
T−p∑
t=1

ε2t > T − p− 2
√

log(T )(T − p)

)

:= p2 max
1≤i<j≤p

P
(1)
i,j + T max

1≤j≤T
P

(2)
j + P (3).

Lemma S4.4 implies that

P
(1)
i,j ≤ 2 exp

(
−1

8

(32 log(T ))2

4 + (
√
T −max(i, j))−132 log(T )

)
≤ 2 exp (−2 log(T )) =

2

T 2
,

P
(2)
j ≤ 2 exp

(
−1

8

(32 log(T ))2

4 + (
√
T − j)−132 log(T )

)
≤ 2 exp (−2 log(T )) =

2

T 2
.

Moreover, by Lemma S4.5, P (3) ≤ exp (− log(T )) = 1
T
, hence, given that p2 < T , we have
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P (Ec
T ) ≤ 5

T
, which completes the proof. □

S4.3 Proof of Theorem 2.2

In the proof below, we shall focus on the case where FM
T consists of randomly drawn

intervals (which is what Algorithm 2 does when p is large). For the case where all sub-

intervals of [1, p] are used, the same arguments would go through, because Algorithm 2

then produces a larger set FM
T compared to the approach of random drawing.

We now split the proof into four steps.

Step 1. Consider the event

{∥∥∥β̂ − β
∥∥∥ ≤ κ1(b/b)

2 ∥β∥ p log(T )
√

log(T+p)
√
T−κ2p log(T )

}
where κ1, κ2

are as in Theorem 2.1. Assumption (A3) implies that b/b and ∥β∥ are bounded from

above by constants. Furthermore, by Assumption (A2), p ≤ c1T
θ, which implies that

κ1(b/b)
2 ∥β∥

p log(T )
√

log(T + p)√
T − κ2p log(T )

≤ c3T
θ−1/2(log(T ))3/2 = c3λT =: λT (S4.25)

for some constant c3 > 0 and a sufficiently large T . Define now

AT =
{∥∥∥β̂ − β

∥∥∥ ≤ λT

}
(S4.26)

By Theorem 2.1,

P (AT ) ≥ P

(∥∥∥β̂ − β
∥∥∥ ≤ κ1(b/b)

2 ∥β∥
p log(T )

√
log(T + p)√

T − κ2p log(T )

)
≥ 1− κ3T

−1, (S4.27)
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for some constant κ3 > 0.

Step 2. For j = 1, . . . , q, define the intervals

IL
j = (τj − δT/3, τj − δT/6) (S4.28)

IR
j = (τj + δT/6, τj + δT/3) (S4.29)

Recall that FM
T is the set of M randomly drawn intervals with endpoints in {1, . . . , p}.

Denote by [s1, e1], . . . , [sM , eM ] the elements of FM
T and let

DM
T =

{
∀j = 1, . . . , q, ∃k ∈ {1, . . . ,M}, s.t. sk × ek ∈ IL

j × IR
j

}
. (S4.30)

We have that

P
(
(DM

T )c
)
≤

q∑
j=1

ΠM
m=1

(
1− P

(
sm × em ∈ IL

j × IR
j

) )
≤ q

(
1− δ2T

62p2

)M

≤ p

δT

(
1− δ2T

36p2

)M

.

Therefore, P
(
AT ∩DM

T

)
≥ 1− κ3T

−1 − pδ−1
T (1− δ2Tp

−2/36)M → 1. Note that the same

conclusion still holds if FM
T contains all the intervals with endpoints in {1, . . . , p}. In the

remainder of the proof, assume that AT and DM
T all hold.

Note that Assumption (A4) implies that there exists c > 0 such that δ
1/2
T αT > cλT

for all sufficiently large T . We are now in the position to specify the constants explicitly
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as

C1 = 2
√

C3 + c3, C2 =
1√
6
− 1

c
, C3 = (4

√
2 + 6)c23,

where c3 is in Equation (S4.25).

Step 3. We focus on a generic interval [s, e] such that

∃j ∈ {1, . . . , q}, ∃k ∈ {1, . . . ,M}, s.t. [sk, ek] ⊂ [s, e] and sk × ek ∈ IL
j × IR

j . (S4.31)

Fix such an interval [s, e] and let j ∈ {1, . . . , q} and k ∈ {1, . . . ,M} be such that

(S4.31) is satisfied. Let b∗k = argmaxsk≤b≤ek
Cb
sk,ek

(
β̂
)
. By construction, [sk, ek] satisfies

τj − sk + 1 ≥ δT/6 and ek − τj > δT/6. Let

Ms,e =
{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}
,

Os,e = {m ∈ Ms,e : max
sm≤b<em

Cb
sm,em

(
β̂
)
> ζT}.

Our first aim is to show that Os,e is non-empty. This follows from Lemma 2 in Baranowski

et al. (2019), the Cauchy–Schwarz inequality, and the calculation below, as

Cb∗k
sk,ek

(
β̂
)
≥ Cτj

sk,ek

(
β̂
)

≥ Cb∗k
sk,ek (β)− λT ≥

(
δT
6

)1/2

|αjτ
−1
j | − λT ≥

(
δT
6

)1/2

αT − λT

=

(
1√
6
− λT

δ
1/2
T αT

)
δ
1/2
T αT ≥

(
1√
6
− 1

c

)
δ
1/2
T αT = C2δ

1/2
T αT > ζT .
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Letm∗ = argminm∈Os,e
(em−sm+1) and b∗ = argmaxsm∗≤b<em∗ Cb

sm∗ ,em∗

(
β̂
)
. Observe

that [sm∗ , em∗) must contain at least one change in β̂. Indeed, if this were not the case,

we would have Cb
sm∗ ,em∗ (β) = 0 and

Cb∗

sm∗ ,em∗

(
β̂
)
= |Cb∗

sm∗ ,em∗

(
β̂
)
− Cb∗

sm∗ ,em∗ (β) | ≤ λT <
C1

c3
λT = C1λT ≤ ζT ,

which contradicted Cb∗
sm∗ ,em∗

(
β̂
)

> ζT . On the other hand, [sm∗ , em∗) cannot contain

more than one change-points, because em∗ − sm∗ + 1 ≤ ek − sk + 1 ≤ δT .

Without loss of generality, assume τj ∈ [sm∗ , em∗). Let ηL = τj−sm∗+1, ηR = em∗−τj

and ηT = (C1/c3 − 1)2α2
jτ

−2
j λ2

T . We claim that min(ηL, ηR) > ηT , because otherwise

min(ηL, ηR) ≤ ηT and Lemma 2 in Baranowski et al. (2019) would have implied

Cb∗

sm∗ ,em∗

(
β̂
)
≤ Cb∗

sm∗ ,em∗ (β) + λT ≤ Cτj
sm∗ ,em∗ (β) + λT ≤ η

1/2
T |αjτ

−1
j |+ λT

= (C1/c3 − 1 + 1)λT = C1λT < ζT ,

which contradicted Cb∗
sm∗ ,em∗

(
β̂
)
> ζT .

We are now in the position to prove |b∗ − τj| ≤ C3λTα
−2
T . Our aim is to find ϵT such

that for any b ∈ {sm∗ , sm∗ + 1, . . . , em∗ − 1} with |b− τj| > ϵT , we always have

{
Cτj
sm∗ ,em∗

(
β̂
)}2

−
{
Cb
sm∗ ,em∗

(
β̂
)}2

> 0. (S4.32)

This would then imply that |b∗ − τj| ≤ ϵT . By expansion and rearranging the terms, we
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see that (S4.32) is equivalent to

⟨β,ψτj
sm∗ ,em∗ ⟩2 − ⟨β,ψb

sm∗ ,em∗ ⟩2 > ⟨β̂ − β,ψb
sm∗ ,em∗ ⟩2 − ⟨β̂ − β,ψτj

sm∗ ,em∗ ⟩2

+ 2
〈
β̂ − β,ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩

〉
. (S4.33)

Here ψb
s,e (with 1 ≤ s < b < e ≤ p) is a p-dimensional vector, with its s-th to b-th

component being
√

e−b
(e−s+1)()b−s+1

, its b+1-th to e-th component being
√

b−s+1
(e−s+1)(e−b)

, and

the remaining elements being 0. In the following, we assume that b ≥ τj. The case that

b < τj can be handled in a similar fashion. By Lemma 4 in Baranowski et al. (2019), we

have

⟨β,ψτj
sm∗ ,em∗ ⟩2 − ⟨β,ψb

sm∗ ,em∗ ⟩2 = (Cτj
s∗,e∗ (β))

2 − (Cb
sm∗ ,em∗ (β))

2

=
|b− τj|ηL

|b− τj|+ ηL
(αjτ

−1
j )2 =: κ.

In addition, since we assume event AT ,

⟨β̂ − β,ψb
sm∗ ,em∗ ⟩2 − ⟨β̂ − β,ψτj

sm∗ ,em∗ ⟩2 ≤ λ2
T ,

2
〈
β̂ − β,ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩

〉
≤ 2∥ψb

sm∗ ,em∗ ⟨β,ψb
sm∗ ,em∗ ⟩ −ψτj

sm∗ ,em∗ ⟨β,ψτj
sm∗ ,em∗ ⟩∥2λT = 2κ1/2λT ,

where the final equality is also implied by Lemma 4 in Baranowski et al. (2019). Con-

sequently, (S4.33) can be deducted from the stronger inequality κ − 2λTκ
1/2 − λ2

T > 0.
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This quadratic inequality is implied by κ > (
√
2 + 1)2λ2

T , and could be restricted further

to

2|b− τj|ηL
|b− τj|+ ηL

≥ min(|b− τj|, ηL) > (4
√
2 + 6)(αjτ

−1
j )−2λ2

T = C3(αjτ
−1
j )−2λ2

T . (S4.34)

But since

ηL ≥ ηT = (C1/c3 − 1)2(αjτ
−1
j )−2λ2

T = (2
√

C3/c3)
2(αjτ

−1
j )−2λ2

T > C3(αjτ
−1
j )−2λ2

T ,

we see that (S4.34) is implied by |b − τj| > C3(αjτ
−1
j )−2λ2

T . To sum up, |b∗ − τj| >

C3(αjτ
−1
j )−2λ2

T would result in (S4.32), a contradiction. So we have proved that |b∗−τj| ≤

C3(αjτ
−1
j )−2λ2

T .

Step 4. With the arguments above valid on the event AT ∩ BT ∩DM
T , we can now

proceed with the proof of the theorem. At the start of Algorithm 1, we have s = 1 and

e = p and, provided that q ≥ 1, condition (S4.31) is satisfied. Therefore the algorithm

detects a change-point b∗ in that interval such that |b∗ − τj| ≤ C3(αjτ
−1
j )−2λ2

T . By

construction, we also have that |b∗ − τj| < 2/3δT . This in turn implies that for all

l = 1, . . . , q such that τl ∈ [s, e] and l ̸= j we have either IL
l , IR

l ⊂ [s, b∗] or IL
l , IR

l ⊂

[b∗ + 1, e]. Therefore (S4.31) is satisfied within each segment containing at least one

change-point. Note that before all q change points are detected, each change point will

not be detected twice. To see this, we suppose that τj has already been detected by b,

then for all intervals [sk, ek] ⊂ [τj −C3(αjτ
−1
j )−2λ2

T +1, τj −C3(αjτ
−1
j )−2λ2

T +2/3δT +1]∪
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[τj +C3(αjτ
−1
j )−2λ2

T − 2/3δT , τj +C3(αjτ
−1
j )−2λ2

T ], Lemma 2 in Baranowski et al. (2019),

together with the definition of AT , guarantee that

max
sk≤b<e

Cb
sk,ek

(
β̂
)
≤ max

s≤b<e
Cb
sk,ek

(β) + λT

≤
√
C3(αjτ

−1
j )−2λ2

Tαjτ
−1
j +

√
C3(αj+1τ

−1
j+1)

−2λ2
Tαj+1τ

−1
j+1 + λT

< (2
√
C3/c3 + 1)λT = C1λT < ζT .

Once all the change-points have been detected, we then only need to consider [sk, ek] such

that

[sk, ek] ⊂ [τj − C3(αjτ
−1
j )−2λ2

T + 1, τj+1 + C3(αj+1τ
−1
j+1)

−2λ2
T ]

for j = 1, . . . , q. For such intervals, we have, by Lemmas 2 and 3 of Baranowski et al.

(2019)

max
sk≤b<ek

Cb
sk,ek

(
β̂
)
≤ max

s≤b<e
Cb
sk,ek

(β) + λT

≤
√
C3(αjτ

−1
j )−2λ2

Tαjτ
−1
j +

√
C3(αj+1τ

−1
j+1)

−2λ2
Tαj+1τ

−1
j+1 + λT ≤ C1λT < ζT .

Hence no further scales is detected and the algorithm terminates. □

S4.4 Proof of Theorem 2.3

The proof of Theorem 2.3 is similar to that of Theorem 2.2. In the following, we shall

still divide the proof into four steps as before, but focus on the main differences.
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Step 1. Let {ρh : h ∈ Z} the true auto-correlation function of {Xt} and ρ̂h be

its sample version (without de-meaning). Let ρ = (ρ0, . . . , ρp)
′. First, we note that for

α > 2, the distribution of the innovations has finite second moment. It then follows from

Anderson and Walker (1964) that ρ̂ − ρ = Op(T
−1/2). The least-square estimator for

AR(p) can be written as

β̂ =


∑T−1

i=p X2
i . . .

∑T−1
i=p XiXi−p+1

. . .∑T−p
i=1 XiXi+p−1 . . .

∑T−p
i=1 X2

i



−1

p×p


∑T−1

i=p XiXi+1

...∑T−p
i=1 XiXi+p

 .

This is asymptotically equivalent to


ρ̂0 . . . ρ̂p−1

. . .

ρ̂p−1 . . . ρ̂0



−1 
ρ̂p

...

ρ̂1

 ,

which converges to β at Op(T
−1/2) in view of the Yule–Walker equations. Now for

0 < α ≤ 2, despite infinite second moment in the innovations thus the time series, the

auto-correlation function is still well-defined, in the sense of Davis and Resnick (1986). It

follows from Hannan and Kanter (1977) that for any sufficiently small ϵ > 0, T 1/α−ϵ∥β̂−

β∥ → 0 in probability. See also Yohai and Maronna (1977) and Davis and Resnick (1986).

In conclusion, we have that Tmax(1/2,1/α)−ϵ∥β̂ − β∥ → 0 in probability.
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Steps 2 and 3. The following arguments are simpler, due to the fact that p is fixed.

Because we go through all the intervals [s, e] over {1, . . . , p}, we could see that under

the event that Tmax(1/2,1/α)−ϵ∥β̂−β∥∞ < 1 (N.B. here the norm does not matter, as p is

fixed), for any j = 1, . . . , q, and taking C1 =
√
p and C2 = 1/2,

max
τj≤b<τj+1

Cb
τj ,τj+1(β) ≥ αT/

√
2− 2∥β̂ − β∥∞ > C2αT .

On the other hand, for all the intervals [s, e] that do not include any of the change-points

{τ1, . . . , τq},

max
s≤b<e

Cb
s,e(β) ≤

√
p∥β̂ − β∥∞ < C1T

−max(1/2,1/α)+ϵ.

Step 4. We shall now proceed with the proof under the event that Tmax(1/2,1/α)−ϵ∥β̂−

β∥∞ < 1, which happens with probability one as T → ∞. At the start of Algorithm 1, we

have s = 1 and e = p. Since we pick the threshold ζT < C2αT , and we consider only the

narrowest intervals with the corresponding contrasts (i.e. CUSUM-type statistic) over

the threshold, we would end up considering all [τj, τj + 1] for j ∈ {1, . . . , q}. Notice that

before all the q change-points are detected, we would not consider other longer intervals,

because of the nature of Algorithm 1. In addition, we will not consider intervals without

any change because their corresponding contrast values would be below the threshold,

as proved in the previous step. Once all the changes are detected, we then only need

to consider the intervals located in between consecutive change-points, which all have

corresponding contrast values smaller than C1T
ϵ−max(1/2,1/α), thus the threshold ζT . Hence

the algorithm would terminate with no further scales detected.
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