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Abstract

We consider a system of particles undergoing correlated diffusion with elastic
boundary conditions on the half-line in the limit as the number of particles goes to
infinity. We establish existence and uniqueness for the limiting empirical measure
valued process for the surviving particles, which is a weak form for an SPDE with
a noisy Robin boundary condition satisfied by the particle density. We show that
this density process has good L2-regularity properties in the interior of the domain
but may exhibit singularities on the boundary at a dense set of times. We make
connections to the corresponding absorbing and reflecting SPDEs as the elastic
parameter varies.

Keywords— Particle System, Common Noise, Mean-field type SPDE, Elastic killing,
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1 Introduction

Consider a conditionally independent and identically distributed system of N Itô diffu-
sions {Xi}1⩽i⩽N living on the positive half-line [0,∞) with reflection at the origin over
a given finite time horizon T . The initial values {Xi

0}1⩽i⩽N are chosen independently
from a common distribution ν0 on (0,∞), and each Xi has diffusive dynamics

Xi
t = Xi

0 +

∫ t

0
µ(s,Xi

s)ds+

∫ t

0
σ(s,Xi

s)ρ(s)dW
0
s

+

∫ t

0
σ(s,Xi

s)(1− ρ(s)2)
1
2dW i

s + Lit, i = 1, . . . , N,

(1.1)

where Li is the local time of Xi at the origin which ensures that the particles remain
in the positive half-line and W 0,W 1, . . . ,WN are independent Brownian motions. The
precise assumptions on the coefficients are left for Section 2.
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We shall also refer to each Xi as the i’th particle. On top of the dynamics (1.1), we
wish to consider the ‘killing’ of each particle after a suitable (random) amount of time
has been spent at the boundary. To this end, we fix a parameter κ > 0 and define

τ i := inf{t > 0 : Lit > χi}, i = 1, . . . , n, (1.2)

for a family (χi)1⩽i⩽N of i.i.d. exponential random variables with rate κ > 0. This
captures the idea of each particle being killed elastically at the origin with parameter
κ > 0, and we say τ i is the elastic killing time of Xi. Note that the measure dLit,
induced by the local time, is supported on the set {t : Xi

t = 0}, so we know that
Xi
τ i

= 0, meaning that each particle can only be killed when it is at the boundary.
The main object of study in this paper is the family of empirical measures for the

surviving particles, for every time t and any number of particles N , given by

νNt (dx) :=
1

N

N∑
i=1

δXi
t
(dx)1t<τ i , t ∈ [0, T ], N ⩾ 1. (1.3)

Note that the dynamics of each particle Xi,N for t > τ i are irrelevant to the empirical
measures defined by (1.3). A similar particle system with elastic killing, but without
a common noise, has been studied in [15] to model an epidemic advancing through a
susceptible population. The classical work of [38] gave one of the first treatments of a
closely related system of reflected particles in the case without common noise. In this
regard, we also mention the recent work [12] on particle systems with a particular form
of interaction due to reflection at the boundary.

In financial applications, τ i could represent the default time of an entity whose
financial health is modelled by Xi. We then say that an entity is in distress when Xi

t

is zero. In practice, an entity could for example be an asset such as a credit instrument
forming part of a larger credit default obligation or a defaultable loan in a mortgage
backed security. It could also represent a company or financial institution that is part of
a larger system. Either way, if enough time is spent in this distressed state, as captured
by the local time, the inevitable will happen: the clock τ i rings and the i’th entity is
declared to be in default. Due to the structure of (1.2), where the underlying exponential
random variables are not observed, we obtain the desirable properties that the default
times are not predictable and, given τ i > t, the event τ i ∈ (t, t + ∆t] only depends on
the local time on (0,∆t] for Xi restarted from its time t value.

In order to manage the risk of investments or monitor a financial system, it becomes
important to understand, respectively, the pricing of credit derivatives on portfolios of
a large number of defaultable entities or the computation of risk measures related to
the overall health of a large number of financial institutions. Both cases will typically
involve the computation of expected values E[F (νN )] for some functional F of the paths
t 7→ νNt up until a terminal time T . Viewing νN := (νNt )t⩾0 as a measure-valued càdlàg
stochastic process, it is then natural to look for a functional limit theorem as N → ∞
and thereby seek to identify a good approximation E[F (ν)], where the limit ν = (νt)t⩾0

satisfies an evolution equation driven only by the common factorW 0. One could also take
an intensity based approach, studying rates of defaults with some specified dynamics,
which can lead to SPDEs in the large N limit [16].
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Closely related to our setting, [9] provides a functional limit result motivated by the
pricing of credit default swap indices, which involves computing the expected value of
suitable functionals of the loss process t 7→ LNt := 1 − νNt (0,∞), giving the proportion
of defaults. However, [9] does not work with elastic default times for reflected dynamics
as we do here. Instead, they consider a constant coefficient version of the system (1.1)
without reflection, where defaults are declared to happen immediately at the first time
the financial health Xi hits zero. The paper [26] studies precise regularity properties of
solutions to the resulting SPDE with absorbing boundary satisfied by ν (in the limit as
N → ∞). Moreover, [17, 33] have proposed and analysed efficient numerical schemes
for simulating this SPDE, based on finite difference schemes in combination with multi-
level or multi-index Monte Carlo methods, which can yield substantial gains over the
simulation of the finite system for reasonable sizes of N . Finally, [18, 19] have considered
the well-posedness of broader classes of such parabolic SPDEs with absorbing boundary
and [1] considers an SPDE with an absorbing boundary on a compact interval which is
applied to the pricing of mortgage backed securities.

In a class of sufficiently regular solutions, uniqueness of the SPDE with absorbing
boundary in [9] can be deduced from the general Sobolev theory on Dirichlet problems
for SPDEs developed in [23, 24]. As far as we are aware, no such theory exists for the
type of SPDEs with reflecting or elastic boundaries that we consider in the present paper.
For details on the specific type, see (1.4)-(1.5) below with κ = 0 or κ > 0, respectively.

In [9], adapting the approach of [22, 25] for the whole space to a half-line with
absorbing boundary, uniqueness of a priori measure-valued solutions is proved by means
of uniform L2 energy estimates for suitable mollifications of the solutions. This method
only works because the authors can quantify the second moment of the mass near the
boundary as having decay of at least order E[

∫ T
0 |νt(0, ε)|2dt] = O(ε3+γ), as ε ↓ 0, for

some γ > 0. Even with constant coefficients except for a time dependent correlation
t 7→ ρ(t), it becomes unclear how to obtain such a strong order of decay. In [18], it
was instead realised that, by working in the dual, H−1, of the first Sobolev space, H1,
uniqueness in the case of an absorbing boundary can be obtained from energy estimates
in H−1 as soon as we know that the first moment of the mass near the boundary satisfies
E[
∫ T
0 |νt(0, ε)|dt] = O(ε1+γ), as ε ↓ 0, for some γ > 0, which is very easy to verify for

the limit points of the empirical measures in the absorbing case.
The aforementioned first moment control, however, is much too strong a requirement

for elastic and reflecting boundaries. Indeed, the absolute best one could hope for is that
E[
∫ T
0 |νt(0, ε)|dt] is of order O(ε) as ε ↓ 0. Fortunately, returning instead to work with

the second moment, we are able to implement the H−1 approach from [18] by showing
that limit points of (1.3) must satisfy E[

∫ T
0 |νt(0, ε)|2dt] = O(ε1+γ), as ε ↓ 0, for some

γ > 0. This is enough for us to succeed in establishing uniqueness within a broad class
of measure-valued solutions that includes the limit points of the empirical measures.

1.1 Summary of main results

By analogy with the connection between an elastically killed Brownian motion and the
heat equation with a convective Robin boundary, one heuristically expects limit points
of (1.3) to take the form of a stochastic process (Vt)t⩾0, where each Vt is a random
sub-probability density on [0,∞) for the limit empirical measure νt, which is governed,
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in a suitable sense, by the evolution equation

dVt =
(
∂xx
(σ2t
2
Vt
)
− ∂x(µtVt)

)
dt− ρt∂x (σtVt) dW

0
t , (1.4)

in the interior, together with the noisy Robin-type boundary condition

∂x
(σ2(t, ·)

2
Vt
)
(0) = κ

σ2(t, 0)

2
Vt(0) + µ(t, 0)Vt(0) + ρ(t)σ(t, 0)Vt(0)Ẇ

0
t , (1.5)

(where we write Ẇ 0
t for the derivative of the common Brownian motion, a white noise

in time). Note that, to simplify notation, we will often suppress the spatial dependence
and simply write µt = (x 7→ µ(t, x)) and σt = (x 7→ σ(t, x)) as well as ρt = ρ(t).

Our main contributions in this paper are as follows. Firstly, we identify a suitable
weak formulation of the SPDE (1.4)-(1.5), which is shown to uniquely characterize a
functional limit theorem for the empirical measures (1.3) as N → ∞ (Theorems 2.4
and 2.5). Secondly, we show that the unique solution ν of our weak formulation has
a density Vt at all times, that this density is square-integrable for almost all times,
and that it is square-integrable away from the boundary at all times (Theorem 2.6 and
Proposition 2.7). Thirdly, we connect the study of absorbing, reflecting, and elastic
boundaries within the class of linear parabolic SPDEs on a half-line analysed here. We
do this by showing that well-posedness with a reflecting boundary is also captured by
our arguments (Theorem 2.8) and that the cases of a reflecting or an absorbing boundary
emerge as limiting cases when sending the parameter of elastic killing κ to 0 or +∞,
respectively (Theorem 2.9). Finally, towards the end of the paper, we show that our
arguments for identifying a limiting SPDE extend to drifts depending continuously on
the empirical measures (Theorem 7.2), and we show that the resulting limiting solutions
have McKean–Vlasov type probabilistic representations (Theorem 7.3). However, it does
not seem straightforward for our H−1 approach to yield uniqueness in that setting.

1.2 Making sense of the elastic boundary at the origin

In this section, we present some heuristic arguments that motivate our notion of solution
in Section 2.1 and highlight the reasons for working with a relaxed interpretation of the
boundary condition (1.5).

If we had a smooth noise W 0 and (1.4)-(1.5) hold in the classical sense, then they
imply a loss of mass at the rate

d

dt
νt([0,∞)) = −κσ

2(t, 0)

2
Vt(0), for all t > 0, (1.6)

almost surely, after integration by parts. This reveals a natural and slightly weaker way
of imposing the elastic boundary condition without asking for spatial differentiability.

Nonetheless, we will have to drop the differentiability in time implied by (1.6), and,
moreover, we will have to avoid evaluating the solution at the boundary, for reasons we
discuss below. Thus, rather than taking (1.6) as a definition we derive a relaxed version
for the case where the noise W 0 is a Brownian motion. Consider the sub-probability
density GE,κε (x, y), at time ε > 0, of a reflected Brownian motion on [0,∞) started at
y ⩾ 0 and killed elastically at 0 with rate κ > 0 (see (A.3)). Then, from the form of
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the reflected Gaussian heat kernel it is easy to see that y 7→ GE,κε (0, y) approximates a
Dirac mass at 0 from the right, tending to infinity at y = 0, and hence the function

ϕE,κε (x) :=

∫ ∞

0
GE,κε (x, y)1[0,∞)(y)dy =

∫ ∞

0
GE,κε (x, y)dy (1.7)

defines a smooth approximation of 1[0,∞) which is close to 1 at x = 0. In Theorem 2.1,
we introduce a succinct weak formulation of (1.4)-(1.5) that will hold for the limit points
of our particle system. As we will see in Section 5.1, a key step in our uniqueness proof
is that these weak solutions can be shown to satisfy

d⟨νt, ϕE,κε ⟩ = −κ⟨νt,
σ2t
2
GE,κε (0, ·)⟩dt+ ⟨νt, µtḡE,κε ⟩dt+ ⟨νt, ρtσtḡE,κε ⟩dW 0

t (1.8)

for any ε > 0, for a suitable correction function ḡE,κε := gE,κε (0, ·) defined in (A.3).
Remark. Throughout the paper we use the notation ⟨ξ, ϕ⟩ for the application of a dis-
tribution ξ to the test function ϕ. In the case where ξ is a measure this represents the
integration of the test function against the measure.

Equation (1.8) may be viewed as a relaxed version of (1.6), where we have shifted
attention from the boundary to arbitrarily small neighbourhoods of the boundary, at
the cost of introducing two correction terms: an absolutely continuous term due to the
drift µ and a local martingale term due to the driving noise W 0. As per the arguments
in Section 5.1, we can take an expectation and send ε to zero, to obtain

E[νt([0,∞))] = 1− lim
ε↓0

∫ t

0
κE
[
⟨νs,

σ2s
2
GE,κε (0, ·)⟩

]
ds. (1.9)

Therefore, we may instructively think of (1.8) as enforcing (1.6) in a generalized sense
in time and space, subject to taking expectations, when we assume nothing about the
existence or regularity of a density or the noise being smooth.

While this is a much weaker formulation of the boundary condition (1.5) than (1.6),
it will be enough for us to carry through our uniqueness proof, as we see in Section 5.2.
Besides allowing for uniqueness, the relaxed formulation (1.8) is crucial for two reasons.
Firstly, we need a sufficiently relaxed formulation so that it can be guaranteed to be
satisfied by weak limit points of the particle system, for which it would seem intractable
to ask for much more than the above. Secondly, even if we had more precise knowledge
of the density for the limiting solutions, it would not be possible to have (1.6) holding
for all t ∈ [0, T ] with probability 1. As it turns out, for each realisation, the density can
blow up as we approach the boundary for certain times (albeit a set of times of measure
zero). We discuss this further in Section 2.1 together with our main results.

Intuitively, suppose dW 0
t is badly behaved at some time t, pushing a non-negligible

amount of mass towards the boundary in an infinitesimal amount of time while not
pushing any mass the other way (due to a Brownian path for which Bs − Bt < 0 for
all s in some small right-neighbourhood of t). Since only a fraction of this mass leaves
the domain, the rest must be instantaneously accommodated for near the boundary,
which may then force lim supε↓0⟨νt, G

E,κ
ε (0, ·)⟩ = +∞. In particular, this will also imply

non-differentiability of the loss of mass at that time. As the paths t 7→ νt([0,∞)) are
decreasing, they are automatically differentiable at almost every time, but, for any given
realisation, there can still be a dense set of times of measure zero where this fails for the
aforementioned reasons.
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1.3 Literature on SPDEs with noisy boundary conditions

Our focus in this paper is on identifying the limit of the empirical measures (1.3) as
the unique solution of a suitable weak formulation of the SPDE (1.4)-(1.5). Working
with the relaxed condition (1.8), we will make no attempt at understanding (1.5) in a
stronger sense. Nevertheless, it is worth emphasising that there are several results in
the literature on SPDEs with irregular noise terms in the boundary condition.

Alòs and Bonaccorsi [2] study SPDEs with a white noise Dirichlet boundary condition
on the half-line, using the theory of fundamental solutions for linear stochastic evolu-
tion equations from [30] and techniques from Malliavin calculus. They prove existence
of solutions in a weighted Lp space and determine the blow-up rate at the boundary.
Da Prato and Zabczyk [13] study nonlinear stochastic evolution equations with white
noise boundary conditions. They employ a stochastic version of the semigroup approach
developed in [3] to show global existence and uniqueness of mild solutions. Moreover,
DaPrato and Zabczyk establish that the solution in the Neumann case exhibits a higher
regularity near the boundary. Maslowski [29] uses similar techniques based on the semi-
group approach to analyse SPDEs on a bounded domain driven by space-dependent
Gaussian noise and Robin-type boundary condition with bounded operators and inde-
pendent noise at the boundary and shows existence and uniqueness of mild solutions.
Sowers [37] studies stochastic reaction diffusion equations on an n-dimensional manifold
with additive noise in the boundary conditions showing existence and uniqueness of so-
lutions. In work on stochastic dynamical boundary conditions, Chueshow and Schmalfus
[10], [11] show well-posedness of a system of quasi-linear parabolic SPDEs on bounded
domains with noisy boundary dynamics, and verify that solutions give rise to a random
dynamical system. In more recent work, Shirikyan [36] studies 2d Navier–Stokes systems
on a bounded domain driven by boundary noise with a piecewise independent structure.

The SPDE (1.4)-(1.5) differs from these problems in a number of ways. The equation
involves a stochastic transport term where the derivative of the solution appears in front
of the Brownian motion. Moreover, the boundary noise is the same as the noise driving
the equation in the interior while most of the literature is focused on the case of an
independent noise at the boundary.

2 Convergence to an SPDE with elastic boundary

To have a unique strong solution of the finite particle system and establish the de-
sired results on convergence and well-posedness of the limit, we impose the following
assumptions on the initial condition and the coefficients of the system.

Assumption 2.1 (Initial Condition). The initial condition ν0 is supported on (0,∞),
and satisfies

ν0(λ,∞) = o(exp(−αλ)) as λ→ +∞,

for every α > 0. Furthermore, we assume that ν0 has an L2-density V0.

Assumption 2.2 (Regularity in Space and Time). The coefficients µ, σ and ρ have the
following regularity in the space and time variables.
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(i) The maps x 7→ µ(t, x) and x 7→ σ(t, x) are in C2([0,∞)) and we write Cσ,µ for the
positive constant such that

|∂nxµ(t, x)|, |∂nxσ(t, x)| ⩽ Cσ,µ

for all t ∈ [0, T ], x ∈ [0,∞) and n = 0, 1, 2.

(ii) For all t ∈ [0, T ], x ∈ [0,∞), σ(t, x) ⩾ C−1
σ,µ > 0 and 0 ⩽ ρ(t) < 1.

(iii) The map t 7→ σ(t, x) is in C1([0, T ]) and sups∈[0,T ]
∫∞
0 |∂tσ(s, y)|dy <∞.

Given these assumptions, strong existence and uniqueness for the system (1.1) follows
by classical results (e.g. [31, Theorem 1.2.1] ). Next, we define a class of processes with
certain regularity conditions that we will need for our uniqueness result. As we will
see, when the particle system satisfies Assumptions 2.1 and 2.2, the limit points of the
empirical measures belong to this class. Thus, we are able to obtain weak convergence
to a unique limit.

Definition 2.3 (The class Λ). We say that a distribution-valued càdlàg process (νt)t∈[0,T ]
is of class Λ if ν takes values in the space of sub-probability measures M⩽1(R) and the
following conditions are satisfied:

(i) (Support on positive half-line) For every t ∈ [0, T ], the sub-probability measure νt
is supported on the positive half-line [0,∞),

(ii) (Exponential tails) For every α > 0, we have

E
[∫ T

0
νt(λ,+∞)dt

]
= o(e−αλ), as λ→ ∞,

(iii) (Boundary decay) There exists γ > 0 such that

E
[∫ T

0
(νt(0, ε))

2dt

]
= O(ε1+γ), as ε→ 0,

(iv) (Spatial concentration) There exist constants C > 0 and δ ∈ (0, 1) such that

E
[∫ T

0
νt(a, b)dt

]
⩽ C|b− a|δ, for all pairs 0 < a < b.

2.1 Functional convergence and well-posedness of the SPDE

As discussed in the introduction, we are interested in a functional limit theorem for the
empirical measures νN = (νNt )t∈[0,T ] seen as càdlàg stochastic processes. To this end,
we proceed as in [18, 19, 27] and establish weak convergence on the Skorokhod space of
S ′-valued càdlàg paths, denoted DS′ = DS′ [0, T ]. As usual, S ′ is the space of tempered
distributions, forming the dual of S, the space of Schwarz functions on R. As in [27],
we endow DS′ with Skorokhod’s M1 topology and the corresponding Borel σ-field.

7



Theorem 2.4 (Functional limit theorem). Let νN = (νNt )t∈[0,T ] be given by (1.3) with
Assumptions 2.1-2.2 in place. Every subsequence of (νN ,W 0) has a further subsequence
converging in law on (DS′ ,M1)× (CR, ∥∥∞). Moreover, for any limit point (ν,W 0), the
marginal ν is in the class Λ and there is a filtration Fν,W 0, for which the marginal W 0

is a Brownian motion and ν is adapted, so that the pair (ν,W 0) satisfies the SPDE

⟨νt, ϕ⟩ = ⟨ν0, ϕ⟩+
∫ t

0
⟨νs, µ(s, ·)ϕ′⟩ds+

1

2

∫ t

0
⟨νs, σ2(s, ·)ϕ′′⟩ds

+

∫ t

0
⟨νs, ρ(s)σ(s, ·)ϕ′⟩dW 0

s

(2.1)

for all times t ∈ [0, T ] and all test functions ϕ ∈ CE,κ0 (R), with probability 1, where

CE,κ0 (R) = {ϕ ∈ S : ∂xϕ(0) = κϕ(0)}.

The proof of Theorem 2.4 is given in Propositions 4.6 and 4.7. In Proposition 5.3,
we show that any solution to the SPDE satisfies (1.8). Sending ε→ 0 in (1.8), using also
Proposition 2.7 and Lemma A.3, one obtains that the loss of mass Lt := 1− νt([0,∞))
accumulates as

Lt = κ lim
ε→0

∫ t

0

∫ ∞

0

σ2(s, x)

2
Vs(x)ϕε(x)dx ds,

for ϕε ∈ CE,κ0 (R) with
∫∞
0 ϕε(x)dx = 1 and converging in distribution to the Dirac mass

at zero. Nevertheless, we do not have absolutely continuous dynamics for Lt, i.e., the
limit in ε cannot be passed inside the integral.

Our next result establishes uniqueness for measure-valued solutions to the SPDE
(2.1) in the regularity class Λ. In particular, in Section 5.2, we obtain the full convergence
in law of the empirical measure processes to the unique solution of (2.1) in this class.

Theorem 2.5 (Uniqueness). Let (ν,W 0) and (ν̃, W̃ 0) be solutions to the SPDE (2.1)
such that ν and ν̃ are in the class Λ, for Brownian motions W 0 and W̃ 0. Then, we have

(i) pathwise uniqueness if W 0 = W̃ 0, that is,

νt(S) = ν̃t(S) for every t ∈ [0, T ] and every Borel sets S ⊆ R. a.s (2.2)

(ii) uniqueness in law, that is, Law((ν,W 0)) = Law((ν̃, W̃ 0)).

So far, our existence and uniqueness statements have been phrased solely in terms
of properties of measure-valued solutions. Our third result concerns the extent to which
we can guarantee L2-regularity of the unique solution to the SPDE in the class Λ.

Theorem 2.6 (L2-regularity). Let (ν,W 0) be the unique solution to the SPDE (2.1) in
the class Λ. With probability 1, it holds for all t ∈ [0, T ] that the measure νt restricted
to (0,∞) has a density Vt, which is square integrable on (δ,∞) for every δ > 0. Fur-
thermore, it holds for almost every t ∈ [0, T ] that Vt is the density of νt on all of [0,∞),
and we have

E
[∫ T

0
∥Vt∥L2(0,∞)dt

]
<∞.
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For the proof of Theorem 2.6, see Propositions 6.2 and 6.7. This theorem highlights
two interesting potential issues. Firstly, for a set of times of measure zero, there could
fail to be a density of νt(ω) on [0,∞). Secondly, even if we have a density for all times,
it could fail to be in L2 up to the boundary. The former turns out to not be an issue,
as results of [6] on Brownian motion reflected off of a path of another Brownian motion
will guarantee that there cannot be a point mass at zero. Moreover, based on the results
of [8], we should expect to have lim supx↓0 Vt(x) = +∞ for a dense set of times. In line
with this, we believe it is unlikely that L2 integrability of the density can be guaranteed
all the way up to the boundary for those times.

Proposition 2.7 (Density on all of [0,∞)). With probability 1, there is no atom of νt
at the origin, for any t ∈ [0, T ]. Consequently, each Vt from Theorem 2.6 is in L1(0,∞)
and gives the density of νt on [0,∞) for all t ∈ [0, T ], with probability 1.

While all our other results are proved in a self-contained manner, using mollification
and energy estimates, we were not able to exploit this technique to rule out atoms at
the origin, and hence a result of [6] is needed for the proof of the above proposition in
Section 6.1. We do not use this proposition for any of our other results, but we believe
it is important to emphasise that there is indeed a density on all of [0,∞). In particular,
we note that our proof of Theorem 2.4 deals explicitly with the a priori possibility of
having atoms at zero.

2.2 Reflecting and absorbing boundaries as limiting cases

The elastic boundary condition in the SPDE (2.1) is encoded in the space of test func-
tions. Changing the space of test functions, we obtain an evolution equation with dif-
ferent boundary behaviour. Specifically, the space of test functions

CA0 (R) := {ϕ ∈ S(R) : ϕ(0) = 0}, (2.3)

corresponds to what we will call here an absorbing boundary, while

CR0 (R) := {ϕ ∈ S(R) : ϕ′(0) = 0} (2.4)

captures a reflecting boundary. As we will see, our methods for the elastic case also
yield the following result for a reflecting boundary.

Theorem 2.8. The SPDE (2.1) with a reflecting boundary at zero, captured by the test
function space CR0 (R), has a unique solution in the class Λ, as in Theorem 2.5.

Existence and uniqueness in the case of an absorbing boundary has been studied in
[9, 26, 18, 19] with various additional features. Note that the term absorbing boundary
at 0 is used in these (and other) papers for what is technically a boundary with killing
at 0, where the killed particles are removed from the system, and the cemetery state is
labelled as 0. Our final result shows that the elastic boundary gives rise to the absorbing
and reflecting boundaries as limiting cases.

Theorem 2.9. Let (νκ,W 0) denote the unique weak solution with ν in the class Λ to
the SPDE (2.1) with elastic boundary for a given κ > 0. Then we have that
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(i) as κ→ ∞, (νκ,W 0) converges in law to (ν∞,W 0) which is a solution to the SPDE
(2.1) with test function space CA0 (R),

(ii) as κ→ 0, (νκ,W 0) converges in law to (ν0,W 0) which is a solution to the SPDE
(2.1) with test function space CR0 (R).

3 Probabilistic estimates for the particle system

In this section we show a series of probabilistic estimates that will be used in Section
4.3 to prove the regularity of limit points. As a first step, we note that all particles in
the system {(Xi

t1t<τ i)t∈[0,T ]}1⩽i⩽N are identically distributed. As a result, we obtain
for an arbitrary measurable set S ⊆ R, N ⩾ 1 and t ∈ [0, T ]

E
[
νNt (S)

]
=

1

N

N∑
i=1

E
[
1{Xi

t∈S}1t<τ1
]
= P(Xi

t ∈ S, t < τ1). (3.1)

We show how we can use a scale transformation and a change of measure to estimate
(3.1) in terms of the distribution of a reflected Brownian motion |W |.

Lemma 3.1 (Scale transformation). Let X1
t be a particle from the particle system.

Define the transformation function ζ : [0, T ]× R → R as

ζ(t, x) :=

∫ x

0

dy

σ(t, y)

then the process Zt := ζ(t,X1
t ) is a semimartingale and its dynamics are given by dZt =

µ̃tdt+ dBt + dLt(Z). The stochastic process B is a Brownian motion

Bt =

∫ t

0
ρ(s)dW 0

s +

∫ t

0
(1− ρ2(s))

1
2dW 1

s ,

Lt(Z) is the local time of Z at zero and µ̃ is a drift coefficient given by

µ̃t = (
µ

σ
− ∂xσ)(t,X

1
t )−

∫ X1
t

0

∂tσ

σ2
(t, y)dy.

The coefficient µ̃t is uniformly bounded in N and t.

Proof. We apply Itô’s formula to obtain the dynamics of Z

dZt = ∂tζ(t,X
1
t )dt+ ∂xζ(t,X

1
t )dX

1
t + ∂xxζ(t,X

1
t )d[X

1]t

= µ̃(t,X1
t )dt+ dBt +

1

σ(t,X1
t )
dLt

with µ̃ as defined above. By [15, Proposition 4.2 and Proposition 4.4] we can identify
the last term as ∫ t

0

1

σ(s,X1
s )
dLs = L(Zt)

establishing the equation for Z. The uniform boundedness for the drift parameter µ̃
follows from the conditions on the coefficients in Assumption 2.2.
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Remark. The boundedness assumptions on σ give that, for all t ∈ [0, T ],

|ζ(t, y)− ζ(t, x)| ⩽ Cµ,σ|y − x|, x, y ⩾ 0 (3.2)

with the constant Cµ,σ > 0 from Assumption 2.2. Moreover, note that the transforma-
tion ζ(t, ·) is invertible for all t ∈ [0, T ]. We will write ζ(t, S) = {ζ(t, x) : x ∈ S} for
measurable subsets S of R.
Remark. Note that the process Zt obtained from the scale transformation is a reflected
Brownian motion with drift. Thus, Z solves the Skorokhod problem for dYt = µ̃dt+dBt
with Y0 = Z0 = ζ(0, X1

0 ), and, in particular, stays non-negative (see [34]).
After removing the volatility factor σ through the scale transformation, we remove

the drift using Girsanov’s theorem and obtain a reflected Brownian motion.

Lemma 3.2 (Removing the drift). For all δ ∈ (0, 1) there is a constant cδ > 0 so that

P(X1
t ∈ S) ⩽ cδFt(ζ(t, S))

δ, for every measurable S ⊆ R,

where Ft is the marginal law of a reflected Brownian motion at time t.

Proof. We know that Z is the solution to the Skorokhod problem for the process Y with
dZt = µ̃tdt+dBt+dLt(Z) and Z0 = ζ(0, X1

0 ). As µ̃ is bounded, we can apply Girsanov’s
Theorem with the change of measure

dQ
dP

∣∣∣∣
Ft

= exp

(
−
∫ t

0
µ̃sdBs −

1

2

∫ t

0
(µ̃s)

2ds

)
to see that there is a measure Q with a Brownian motion BQ under which the dynamics
of Z are those of a reflected Brownian motion

dZt = dBQ
t + dLt(B

Q), Z0 = ζ(0, X1
0 ),

where Lt(BQ) denotes the local time term from the Skorokhod problem under the change
of measure. The result then follows by proceeding as in the proof of [18, Lemma 4.2].

As an easy corollary we obtain good spatial concentration of the empirical measures.

Lemma 3.3. There exist constants c > 0 and δ ∈ (0, 1) such that property (iv) of
Definition 2.3 is satisfied by (νNt )t∈[0,T ] uniformly in N ⩾ 1.

Proof. By Lemma 3.2 we have

E
[
νNt (a, b)

]
⩽ cδFt(ζ(t, (a, b)))

δ.

We note that ζ(t, (a, b)) ⊆ [ζ(t, a), ζ(t, b)]. Using the reflecting heat kernel GRε given in
(A.2) we estimate

Ft(ζ(t, (a, b))) ⩽
∫ ∞

0

∫ ζ(t,b)

ζ(t,a)

1√
2tπ

[
exp

(
−(x− ζ(0, x0))

2

2t

)

+ exp

(
−(x+ ζ(0, x0))

2

2t

)]
dxν0(dx0)

⩽ 2(2πt)−1/2(ζ(t, b)− ζ(t, a)) ⩽ 2Cµ,σ(2πt)
−1/2(b− a)

where the last inequality follows from (3.2). Since the map t 7→ t−δ/2 is integrable, the
result then follows.
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Next we prove the boundary estimate that is a crucial part of the proof of uniqueness
for the SPDE. First, we establish an estimate in the simple case where the particles follow
a reflected Brownian motion with zero drift and σ ≡ 1.

Lemma 3.4. Assume that we have two particles X and Y following a reflected Brownian
motion with correlation ρ with |ρ| < 1 and initial values X0 and Y0, i.e. X = |X0+W

1|
and Y = |Y0 +W 2|. Then we have the following estimate

P(0 < |X0 +W 1
t | < ε, 0 < |Y0 +W 2

t | < ε) ⩽
2

π
√

1− ρ2t
ε2. (3.3)

Proof. Using the explicit form of the folded bivariate Gaussian density (see [32]),

P(0 < |X0 +W 1
t | < ε, 0 < |Y0 +W 2

t | < ε)

=

∫ ε

0

∫ ε

0

∫ ∞

0

∫ ∞

0

1

2π
√
1− ρ2t

×[
exp

(
− 1

2(1− ρ2)

(
(x− x0)

2

t
− 2ρ

(x− x0)(y − y0)

t
+

(y − y0)
2

t

))
+ exp

(
− 1

2(1− ρ2)

(
(x+ x0)

2

t
− 2ρ

(x+ x0)(y + y0)

t
+

(y + y0)
2

t

))
+ exp

(
− 1

2(1− ρ2)

(
(x+ x0)

2

t
+ 2ρ

(x+ x0)(y − y0)

t
+

(y − y0)
2

t

))
+ exp

(
− 1

2(1− ρ2)

(
(x− x0)

2

t
+ 2ρ

(x− x0)(y + y0)

t
+

(y + y0)
2

t

))]
ν0(dx0)ν0(dy0)dxdy.

Simple bounds on the Gaussian density then give the result

Proposition 3.5 (Boundary estimate). For any q > 1 and t ∈ [0, T ] we have as ε→ 0
that for i, j = 1, . . . , N with i ̸= j

P(0 < Xi
t < ε, t < τ i, 0 < Xj

t < ε, t < τ j) = t
− 1

qO(ε
2
q ).

Proof. It is clear that we can estimate the probability from above by dropping the
stopping time conditions

P(0 < Xi
t < ε, t < τ i, 0 < Xj

t < ε, t < τ j) ⩽ P(0 < Xi
t < ε, 0 < Xj

t < ε).

We apply the scale transformation ζ and then use the multidimensional version of Gir-
sanov’s theorem (see [20, §1.7.4]) that preserves the correlation structure between the
Brownian motions. Note furthermore that ζ(t, 0) = 0 and by (3.2) we have ζ(t, ε) ⩽
Cµ,σε. As a result, we have

P(0 < Xi
t < ε, 0 < Xj

t < ε) ⩽ EQ

( dQ
dP

∣∣∣∣
Ft

)−1

1{0<|Xi
0+W

i
t |<Cµ,σε}1{0<|Xj

0+W
j
t |<Cµ,σε}


Applying Hölder’s inequality yields

P(0 < Xi
t < ε, 0 < Xj

t < ε) ⩽ C̃Q(0 < |Xi
0 +W i

t | < Cµ,σε, 0 < |Xj
0 +W j

t | < Cµ,σε)
1/q

for q > 1 and a constant C̃ > 0. Then, by Lemma 3.4 we get the desired estimate.
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Note that t 7→ t
− 1

q is integrable because q > 1. A decay result can also be found for
the mass escaping to infinity.

Proposition 3.6 (Tail estimate). For every α > 0, as λ→ +∞

E
[
νNt (λ,+∞)

]
= o(exp(−αλ)), uniformly in N ⩾ 1 and t ∈ [0, T ].

Proof. The proof follows as in [18, Proposition 4.5].

4 Convergence of the particle system

In this section we show that limit points of the particle system satisfy the SPDE (2.1).
Furthermore, we verify that all limit points satisfy the regularity conditions of the class
Λ and thus complete the proof of Theorem 2.4.

4.1 Evolution equation for the empirical measures

We begin by finding an evolution equation for the empirical-measure process νN of the
particle system.

Proposition 4.1 (Evolution equation for νN ). For all N ⩾ 1 and all ϕ ∈ CE,κ0 (R), the
empirical measure process νN satisfies the evolution equation

⟨νNt , ϕ⟩ =⟨νN0 , ϕ⟩+
∫ t

0
⟨νNs , µ(s, ·)ϕ′⟩ds+

1

2

∫ t

0
⟨νNs , σ2(s, ·)ϕ′′⟩ds

+

∫ t

0
⟨νNs , ρsσ(s, ·)ϕ′⟩dW 0

s + INt (ϕ) + JNt (ϕ),

(4.1)

with

INt (ϕ) =
1

N

N∑
i=1

∫ t∧τ i

0
(1− ρ2s)

1
2σ(s,Xi

s)ϕ
′(Xi

s)dW
i
s

and

JNt (ϕ) = ϕ(0)

(
κ

N

N∑
i=1

Lit∧τ i −
1

N

N∑
i=1

1τ i⩽t

)
,

where E
[
supt∈[0,T ]|INt (ϕ)|2

]
→ 0 and E

[
supt∈[0,T ]|JNt (ϕ)|2

]
→ 0 as N → ∞.

Proof. Apply Itô’s formula to ϕ(Xi
t∧τ i) to get

ϕ(Xi
t∧τ i) = ϕ(Xi

0) +

∫ t∧τ i

0
ϕ′(Xi

s)µ(s,X
i
s)ds+

∫ t∧τ i

0
ϕ′(Xi

s)(1− ρ2s)
1
2σ(s,Xi

s)dW
i
s

+

∫ t∧τ i

0
ϕ′(Xi

s)ρsσ(s,X
i
s)dW

0
s +

1

2

∫ t∧τ i

0
ϕ′′(Xi

s)σ
2(s,Xi

s)ds+

∫ t∧τ i

0
ϕ′(Xi

s)dL
i
s.

Recall that

⟨νNt , ϕ⟩ =
1

N

N∑
i=1

ϕ(Xi
t)1t<τ i .

13



Using ϕ(Xt∧τ i) = ϕ(Xt)1t<τ i + ϕ(Xτ i)1τ i⩽t together with the fact that ϕ ∈ CE,κ0 (R) we
obtain

ϕ(Xi
t∧τ i)1t<τ i = ϕ(Xi

0) +

∫ t∧τ i

0
ϕ′(Xi

s)µ(s,X
i
s)ds+

∫ t∧τ i

0
ϕ′(Xi

s)(1− ρ2s)
1
2σ(s,Xi

s)dW
i
s

+

∫ t∧τ i

0
ϕ′(Xi

s)ρsσ(s,X
i
s)dW

0
s +

1

2

∫ t∧τ i

0
ϕ′′(Xi

s)σ
2(s,Xi

s)ds+ ϕ(0)
(
κLit∧τ i − 1τ i⩽t

)
.

Averaging over the N particles yields (4.1). It remains to prove that IN (ϕ) and JN (ϕ)
vanish in a suitable way as N → ∞. We start by computing the quadratic variation of
IN (ϕ). By independence of the idiosyncratic Brownian motions W i we obtain

[IN· (ϕ)]t =
1

N2

N∑
i=1

∫ t∧τ i

0
(1− ρ2s)σ

2(s,Xi
s)(ϕ

′(Xi
s))

2ds.

The boundedness of σ2 and ϕ′ yields for all t ∈ [0, T ]

[IN· (ϕ)]t =
∥∥ϕ′∥∥2∞O(N−1), as N → ∞.

By Doob’s martingale inequality it follows that

E

[
sup
t∈[0,T ]

|INt (ϕ)|2
]
⩽ 4E

[
INT (ϕ)2

]
= 4E

[
[IN· (ϕ)]T

]
→ 0 as N → ∞.

From [15, Theorem 2.5] we also obtain E
[
supt∈[0,T ]|JNt (ϕ)|2

]
→ 0 as N → ∞.

4.2 Convergence to the Limit SPDE

The next step is now to show that limit points of the empirical measure processes νN

indeed solve our SPDE. First, we need to verify tightness and conclude that there exist
limit points. To do this we follow the approach in [18], showing tightness in DS′ , the
space of càdlàg paths with values in the space of tempered distributions, equipped with
the M1 topology and then verifying that the limit points are sub-probability measure-
valued processes.

Proposition 4.2. For every t ∈ [0, T ] and η > 0, the empirical loss process, LN , obeys

lim
δ→0

lim
N→∞

P
(
LNt+δ − LNt ⩾ η

)
= 0, LNt :=

1

N

N∑
i=1

1τ i⩽t. (4.2)

Proof. Using the triangle inequality we can estimate

P
(
LNt+δ − LNt ⩾ η

)
⩽P

(∣∣∣∣∣LNt+δ − LNt − κ

N

N∑
i=1

(
Li(t+δ)∧τ i − Lit∧τ i

)∣∣∣∣∣ ⩾ η

2

)

+ P

(
κ

N

N∑
i=1

(
Li(t+δ)∧τ i − Lit∧τ i

)
⩾
η

2

)
.
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Applying the convergence result for JNt (ϕ) as N → ∞ in Proposition 4.1, which holds
for all ϕ ∈ CE,κ0 (R), at the two time points t and t + δ we see that the first probability
on the right-hand side vanishes as N → ∞. Markov’s inequality can be applied to the
second term to obtain

P

(
κ

N

N∑
i=1

(
Li(t+δ)∧τ i − Lit∧τ i

)
⩾
η

2

)
⩽

2κ

η
E
[
Lit+δ − Lit

]
.

Since the particles Xi are continuous, the local time processes Li are also continuous.
Thus, we get convergence to 0 as δ → 0 uniform in N ⩾ 1.

Proposition 4.3 (Tightness). The sequence of empirical-measure processes (νN ) is tight
on the space (DS′ ,M1) and the sequence (νN ,W 0) is tight on (DS′ ,M1)× (CR, ∥·∥∞).

Proof. Using [27, Theorem 3.2] it suffices to show that, for arbitrary ϕ ∈ S, the process
⟨νN , ϕ⟩ is tight on DR in the M1 topology. For all t ∈ [0, T ], we decompose ⟨νNt , ϕ⟩ as

⟨νNt , ϕ⟩ = ⟨ν̂Nt , ϕ⟩ − ϕ(0)LNt , ν̂Nt :=
1

N

N∑
i=1

δXi
t∧τi

, (4.3)

with LNt as defined in (4.2). Tightness can then be obtained by controlling the M1-
modulus of continuity. Using [27, Propositions 4.1 and 4.2] it is sufficient to establish
that we have

E
[
|⟨ν̂Nt , ϕ⟩ − ⟨ν̂Ns , ϕ⟩|4

]
= O(|t− s|2) as |t− s| → 0, (4.4)

and that, for any ε > 0,

lim
δ→0

lim
N→∞

P

(
sup
t⩽δ

|⟨νNt − νN0 , ϕ⟩|+ sup
t∈(T−δ,T )

|⟨νNT − νNt , ϕ⟩| > ε

)
= 0. (4.5)

We note that the results of [27] rely on the fact that the term ϕ(0)LNt is monotone and
hence does not contribute to the M1-modulus of continuity. For any s, t ∈ [0, T ],

E
[
|⟨ν̂Nt , ϕ⟩ − ⟨ν̂Ns , ϕ⟩|4

]
⩽

1

N

N∑
i=1

E
[
|ϕ(Xi

t∧τ i)− ϕ(Xi
s∧τ i)|

4
]
⩽ ∥ϕ∥4Lip E

[
|Xi

t∧τ i −Xi
s∧τ i |

4
]

where ∥ϕ∥Lip denotes the Lipschitz constant of the function ϕ. It remains to deal with the
expectation on the right-hand side. By using the inequality (a+b+c)4 ⩽ 27(a4+b4+c4),
and recalling Bi

t = ρtW
0
t + (1− ρ2t )

1/2W i
t , we have

E
[
|Xi

t∧τ i −Xi
s∧τ i |

4
]
⩽ 27

(
E

[∣∣∣∣∫ t

s
1u<τ iµ(u,X

i
u)du

∣∣∣∣4
]
+ E

[∣∣∣∣∫ t

s
1u<τ iσ(u,X

i
u)dB

i
u

∣∣∣∣4
]

+ E
[∣∣Lit∧τ i − Lis∧τ i

∣∣4] ).
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Since the coefficient σ is bounded, the stochastic integral is a martingale and we can
apply the Burkholder–Davis–Gundy inequality [35, Theorem IV.42.1] to find that

E

[∣∣∣∣∫ t

s
1u<τ iσ(u,X

i
u)dB

i
u

∣∣∣∣4
]
= O(|t− s|2), as |t− s| → 0.

The boundedness assumption in Assumption 2.2 (i) for the drift term µ yields

E

[∣∣∣∣∫ t

s
1u<τ iµ(u,X

i
u)du

∣∣∣∣4
]
= O(|t− s|4), as |t− s| → 0.

The estimate E
[∣∣Li

t∧τ i − Li
s∧τ i

∣∣4] = O(|t − s|2), as |t − s| → 0, follows using the local

time representation from the Skorokhod problem. Hence, we have E[|Xi
t∧τ i −X

i
s∧τ i |

4] =
O(|t− s|2) as |t− s| → 0, and so we obtain (4.4).

To establish (4.5) it is enough to consider the small time interval (0, δ) as the result
for the interval (T − δ, T ) follows similarly. We can apply (4.3) to (4.5) to get

P
(
sup
t⩽δ

|⟨νNt − νN0 , ϕ⟩| > ε

)
⩽ P

(
sup
t⩽δ

|⟨ν̂Nt − ν̂N0 , ϕ⟩| ⩾
ε

2

)
+ P

(
|ϕ(0)|LNδ ⩾

ε

2

)
.

We can then again use the estimates in the poof of [18, Proposition 5.1] combined
with the arguments for (4.4) and obtain that the first term converges to 0 as δ → 0,
uniformly in N ⩾ 1. Proposition 4.2 provides the same result for the second term and
the tightness follows.

At this stage we have only established that there exists a subsequence such that
(νNk ,W 0) → (ν∗,W 0) weakly in the space of S ′-valued càdlàg processes equipped with
the M1 topology. However, we can deduce that the limiting processes actually take values
in the space of sub-probability measures supported on [0,∞) by the same arguments as
[18, Proposition 5.3].

Proposition 4.4. Let (ν∗,W 0) realise the limiting law of (νNk ,W 0). Then each ν∗t is
a sub-probability measure supported on [0,∞) for all t ∈ [0, T ], with probability 1.

Next, we confirm that there is a suitable filtration for the limit points.

Lemma 4.5. Let (ν∗,W 0) be the limit of a subsequence (νNk ,W 0). Then there is a
filtration Fν∗,W 0 so that ν∗ is adapted and W 0 is an Fν∗,W 0-Brownian motion.

Proof. On the sample space Ω = DS′ × CR we define the filtration

Fν∗,W 0

t := σ
(
{(ν∗,W 0) 7→ (⟨ν∗s , ϕ⟩,W 0

s ) : s < t, ϕ ∈ S}
)
, (4.6)

as the projections πϕ
1,·,ϕn
t1,·,tn , given by

πϕ
1,·,ϕn
t1,·,tn : DS′ → Rn, πϕ

1,·,ϕn
t1,·,tn (ξ) = (ξt1(ϕ1), . . . , ξtn(ϕn)),

generate the Borel sets on DS′ as shown in [27]. It is clear that ν∗ is adapted to Fν∗,W 0 .
It remains to show that W 0 is a Brownian motion in this filtration. This follows with
the same arguments as in [28, Section 4.1].
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We finally argue that the limit points of the empirical measure processes νN give
rise to the desired SPDE. We rely on the methods of [18, Section 5] which we note also
cover the higher level of generality needed for an extension in Section 7.

Proposition 4.6 (Evolution equation). Let (Nk) be a subsequence such that the weak
convergence (νNk ,W 0) → (ν∗,W 0) holds. Then, for every ϕ ∈ CE,κ0 (R) the processes
Mϕ(ν∗), Sϕ(ν∗) and Cϕ(ν∗,W ) are martingales. As a consequence, the pair (ν∗,W 0)
satisfies the limit SPDE from Theorem 2.4.

Proof. Analogously to [18, Definition 5.8], we define

Mϕ(ξ)(t) :=⟨ξt, ϕ⟩ − ⟨ξ0, ϕ⟩ −
∫ t

0
⟨ξs, µ(s, ·)ϕ′⟩ds−

1

2

∫ t

0
⟨ξs, σ2(s, ·)ϕ′′⟩ds,

Sϕ(ξ)(t) :=Mϕ(ξ)(t)2 −
∫ t

0
⟨ξs, σ(s, ·)ρ(s)ϕ′⟩2ds,

Cϕ(ξ, w)(t) :=Mϕ(ξ)(t) · w(t)−
∫ t

0
⟨ξs, σ(s, ·)ρ(s)ϕ′⟩ds

(4.7)

for ξ ∈ DS′ , w ∈ CR and ϕ ∈ CE,κ0 (R). Using Proposition 4.3, as in [18, Section 5], it
follows that, for all ϕ ∈ CE,κ0 (R), we have the following weak convergence in R:

Mϕ(νNk)(t) →Mϕ(ν∗)(t), Sϕ(νNk)(t) → Sϕ(ν∗)(t),

and Cϕ(νNk ,W 0)(t) → Cϕ(ν∗,W 0)(t), in R, (4.8)

for t in a deterministic co-countable subset of [0, T ]. Now, using the control on the
remainder terms In and Jn from Proposition 4.1, it follows as in [18, Proposition 5.11]
that the limits in (4.8) are martingales, so the claim follows as in [18, Lemma 5.9].

4.3 Regularity of Limiting Solutions

We now show that the solutions we constructed as limits from the particle system satisfy
the regularity conditions of Definition 2.3 using the estimates from Section 3.

Proposition 4.7. Let (ν∗,W 0) be a limit point of the sequence of empirical-measure
processes. Then the process (ν∗t )t∈[0,T ] is in the class Λ.

Proof. In Proposition 4.4 we already showed that ν∗ takes values in the space of sub-
probability measures supported on [0,∞). It remains to prove the regularity conditions
on the sub-probability measures.

Consider a finite open interval I = (a, b) ⊆ R. Take η > 0 and any ϕη ∈ S such
that ϕη = 1 on I, ϕη = 0 on (−∞, a− η) ∪ (b+ η,∞) and ϕη ∈ (0, 1) otherwise. From
(νNk ,W 0) → (ν∗,W 0) weakly we get that

∫ t
0 ⟨ν

Nk
s , ϕη⟩ds →

∫ t
0 ⟨ν

∗
s , ϕη⟩ds weakly by [39,

Theorem 11.5.1]. We have

E
[∫ T

0
ν∗t (I)dt

]
⩽ E

[∫ T

0
⟨ν∗t , ϕη⟩dt

]
= lim

k→∞
E
[∫ T

0
⟨νNk
t , ϕη⟩dt

]
.

17



Using the result of Lemma 3.3 and taking the limit η → 0 yields (iv) in the definition
of the class Λ. Similarly, for ε > 0,

E
[
ν∗t (0, ε)

2
]
⩽ E

[
⟨ν∗t , ϕη⟩2

]
⩽ lim

k→∞
E
[
νNk
t (0, ε+ η)2

]
⩽ lim inf

k→∞

1

N2
k

Nk∑
i=1

Nk∑
j ̸=i,j=1

P(0 < Xi
t < ε+ η, 0 < Xj

t < ε+ η),

where we have used [26, Proposition 2.2] in the last step, which still holds in the elastic
case. By employing the estimate in Proposition 3.5 and taking η to zero we obtain (iii)
because q > 1 ensures the necessary integrability.

For the exponential-tails condition consider I = (λ, η) for η > 0, λ < η. The
approach for (iv) yields

E
[∫ T

0
ν∗t (λ, η)dt

]
⩽ lim inf

k→∞
E
[∫ T

0
νNk
t (λ− δ, η + δ)dt

]
⩽ lim inf

k→∞
E
[∫ T

0
νNk
t (λ− δ,∞)dt

]
= o(e−α(λ−δ)),

by using Proposition 3.6. Taking the limit δ → 0 and then η → ∞ yields (ii).

Combining the results from Proposition 4.6 and Proposition 4.7 we can conclude our
first main result Theorem 2.4.

5 Uniqueness of the SPDE

In this section we prove uniqueness of solutions to the SPDE in the class Λ. Before
presenting the uniqueness proof we show how we can derive an alternative weak boundary
formulation for the SPDE (2.1) that is helpful in dealing with boundary terms appearing
in the uniqueness proof.

To overcome the difficulties of working with solutions of low regularity, we regularize
the weak solutions to our SPDE through convolution with a nice mollifier. The elastic
heat kernel GE,κε (x, y), defined in (A.3), is a natural candidate for this, since it is an
element of the space of test functions CE,κ0 (R) and since its explicit form makes it easy to
perform manipulations. This leads us to consider the convolution operator TE,κε given
by (TE,κε ζ)(x) = ⟨ζ,GE,κε (x, ·)⟩. While we use a different operator, we take the same
approach as in [18, 19] and work in the space H−1, the dual of the first Sobolev space.
This approach now rests on the following crucial inequality, connecting L2 estimates for
the regularized process with an H−1 estimate for the non-regularized process:

∥ζ∥−1 ⩽ C lim inf
ε→0

(∥∥∂−1
x TE,κε ζ

∥∥
L2(0,∞)

+

∣∣∣∣∫ ∞

0
TE,κε ζ(y)dy

∣∣∣∣) , (5.1)

for any ζ ∈ H−1, where ∂−1
x denotes the anti-derivative as defined in (B.2). The proof

of this can be found in Lemma B.3 and further details are reserved for Appendix B.
In contrast to [18, 19], here we work with H−1 as the dual of H1(0,∞) = {f :

∥f∥H1(0,∞) :=
(
∥f∥2L2(0,∞) + ∥∂xf∥2L2(0,∞)

)1/2
<∞} rather than H1

0 (0,∞), the closure
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of C∞
0 (0,∞) under the norm ∥ · ∥H1(0,∞). See Appendix B for details. From now on we

will write ∥f∥2 for the L2(0,∞)-norm. In our proof of uniqueness, we will show that
two different solutions to the SPDE, say ν and ν̃, must satisfy E[∥νt − ν̃t∥−1] = 0 for all
t ∈ [0, T ]. In doing so, the first term on the right-hand side of (5.1) is only concerned
with the difference ζ = νt− ν̃t restricted to (0,∞), while forcing the second term to zero
ensures that potential point masses of νt and ν̃t at the origin must be of the same value
(recall the solutions are sub-probability measures, which a priori need not have the same
mass at any given time). As per Section 2, the unique solution will turn out to have a
density, but we do not place any such assumption on our class of solutions at this point.

Before proceeding to show uniqueness, we first give two auxiliary results that will
help us deal with the behaviour of our estimates near the boundary.

Lemma 5.1. Let ν be a process in the class Λ and pε the Gaussian heat kernel defined
in (A.1). Then we have

E

[∫ T

0

∫ ∞

0

(∫ ∞

0
pε(x+ y)νt(dy)

)2

dxdt

]
→ 0, as ε→ 0.

Proof. Arguing as in [18, Lemma 7.6] we have

|⟨νt, pε(x+ ·)⟩| ⩽ e−x
2/ε

∫ ∞

0
pε(y)νt(dy) ⩽ c1e

−x2/εε−1/2[νt(0, ε
η) + exp(−ε2η−1/2)],

for some η ∈ (0, 12) and c1 > 0. Squaring and integrating over x > 0 gives∫ ∞

0
|⟨νt, pε(x+ ·)⟩|2dx ⩽ c2ε

−1/2[νt(0, ε
η)2 + exp(−ε2η−1)],

for some c2 > 0. Since ν is in the class Λ, the boundary decay yields a γ > 0 so that

E

[∫ T

0

∫ ∞

0
|⟨νt, pε(x+ ·)⟩|2dxdt

]
= O(εη(1+γ)−

1
2 ) +O(ε−

1
2 exp(−ε2η−1)).

Therefore, we get the desired estimate by choosing η such that (1 + γ)−1 < 2η < 1.

Lemma 5.2. Let ν be a process in the class Λ and let gE,κε denote the correction term
in the definition of the elastic heat kernel (A.3). Then we have that

E

[∫ T

0

∫ ∞

0

(∫ ∞

0
gE,κε (x, y)νt(dy)

)2

dxdt

]
→ 0, for ε→ 0.

Proof. We start by looking at the inner integral. Using Lemma A.3 we get∫ ∞

0
gE,κε (x, y)νt(dy) ⩽ κe−

x2

2ε νt(0,∞) ⩽ κe−
x2

2ε .

Now, considering the integral in x we have∫ ∞

0

(∫ ∞

0
gE,κε (x, y)νt(dy)

)2

dx ⩽ κ2
∫ ∞

0
e−

x2

ε dx =
1

2
κ2

√
πε1/2.

We then obtain

E

[∫ T

0

∫ ∞

0

(∫ ∞

0
gE,κε (x, y)νt(dy)

)2

dxdt

]
= O(ε1/2) (5.2)

and the result follows.
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5.1 Weak Boundary Condition and Elastic Boundary Terms

As discussed in Section 1.2, we need a particular weak formulation of the elastic boundary
condition. This plays a critical role in dealing with the boundary terms appearing in
(5.15) in the final uniqueness proof, presented in the next subsection. With ϕE,κε as in
(1.7), we note that this gives a smooth function approximating 1 on [0,∞) and satisfying

κϕE,κε (0) = ∂xϕ
E,κ
ε (0), (5.3)

which it inherits from the elastic kernel GE,κε . We then obtain the following.

Proposition 5.3 (Weak boundary condition). Let (ν,W 0) be a solution to (2.1) with ν
in the class Λ and let ϕE,κε be as in (1.7). Then (1.8) holds for all ε > 0.

Proof. By (5.3), we see that the convolution ϕE,κε (x) =
∫∞
0 GE,κε (x, y)dy results in a valid

test function in CE,κ0 (R). Using also Fubini’s theorem to change the order of integration
between dν and dx, the assumption that ν is a solution to (2.1) therefore gives

⟨νt, ϕE,κε ⟩ − ⟨ν0, ϕE,κε ⟩ =
∫ ∞

0
⟨νt, GE,κε (x, ·)⟩ − ⟨ν0, GE,κε (x, ·)⟩dx

=

∫ ∞

0

(∫ t

0
⟨νs, µs∂yGE,κε (x, ·)⟩ds

+

∫ t

0
⟨νs,

σ2s
2
∂yyG

E,κ
ε (x, ·)⟩ds+

∫ t

0
ρs⟨νs, σs∂yGE,κε (x, ·)⟩dW 0

s

)
dx.

Next, we employ Lemma A.2 to switch the derivatives from y to x. This yields

⟨νt,ϕE,κε ⟩ − ⟨ν0, ϕE,κε ⟩

=

∫ ∞

0

(∫ t

0
−∂x⟨νs, µsGEε (x, ·)⟩ds+

∫ t

0
∂xx⟨νs,

σ2s
2
GEε (x, ·)⟩ds

−
∫ t

0
ρs∂x⟨νs, σsGEε (x, ·)⟩dW 0

s

)
dx

+

∫ ∞

0

(
2

∫ t

0
∂x⟨νs, µspε(x+ ·)⟩ds+ 2

∫ t

0
ρs∂x⟨νs, σspε(x+ ·)⟩dW 0

s

)
dx

−
∫ ∞

0

(
2

∫ t

0
∂x⟨νs, µsgE,κε (x, ·)⟩ds− 2

∫ t

0
ρs∂x⟨νs, σsgE,κε (x, ·)⟩dW 0

s

)
dx,

with gE,κε as defined in (A.3) and pε the Gaussian heat kernel given in (A.1). We can now
interchange the order of integration. This is possible by using [18, Lemma 8.3] which is
still valid in the elastic case because of the regularity of the class Λ. We compute the
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integrals in x to obtain

⟨νt, ϕE,κε ⟩ − ⟨ν0, ϕE,κε ⟩ =
∫ t

0
⟨νs, µsGE,κε (0, ·)⟩ds−

∫ t

0
∂x⟨νs,

σ2

2
GE,κε (0, ·)⟩ds

+

∫ t

0
ρs⟨νs, σsGE,κε (0, ·)⟩dW 0

s

− 2

∫ t

0
⟨νs, µspε(·)⟩ds− 2

∫ t

0
ρs⟨νs, σspε(·)⟩dW 0

s

+ 2

∫ t

0
⟨νs, µsgE,κε (0, ·)⟩ds+ 2

∫ t

0
ρs⟨νs, σsgE,κε (0, ·)⟩dW 0

s .

Using the specific form of the elastic heat kernel we have that∫ t

0
⟨νs, µsGE,κε (0, ·)⟩ds =2

∫ t

0
⟨νs, µspε(·)⟩ds−

∫ t

0
⟨νs, gE,κε (0, ·)⟩ds∫ t

0
ρs⟨νs, σsGE,κε (0, ·)⟩dW 0

s =2

∫ t

0
ρs⟨νs, σspε(·)⟩dW 0

s −
∫ t

0
ρs⟨νs, σsgE,κε (0, ·)⟩dW 0

s .

By using these relations the equation above simplifies to

⟨νt, ϕE,κε ⟩ − ⟨ν0, ϕE,κε ⟩ =−
∫ t

0
∂x⟨νs,

σ2s
2
GE,κε (0, ·)⟩ds

+

∫ t

0
⟨νs, µsgE,κε (0, ·)⟩ds+

∫ t

0
ρ⟨νs, σsgE,κε (0, ·)⟩dW 0

s .

Finally, we can then use the boundary condition of the elastic heat kernel to obtain the
relaxed boundary condition (1.8).

We will take the coefficients µ, σ and σ2 outside of the integration against the measure
νt by introducing error terms Eht,ε defined by

Eht,ε(x) := ⟨νt, ht(·)GE,κε (x, ·)⟩ − ht(x)T
E,κ
ε νt(x), x ∈ [0,∞), (5.4)

for ht(x) = h(t, x) representing µ, σ or σ2.

Lemma 5.4 (Elastic Boundary Term). Let ν and ν̃ be two solutions to the SPDE (2.1)
in the class Λ and denote their difference by ∆, i.e. ∆ := ν − ν̃. Then we have

E

[∫ t

0
−∂−1

x TE,κε ∆s(0)σ
2
s(0)T

E,κ
ε ∆s(0)− ∂−1

x TE,κε ∆s(0)
(
Eσ2

s,ε − Ẽσ2

s,ε

)
(0)ds

]
= −1

κ
E
[
(∂−1
x TE,κε ∆t(0))

2
]
+ o(1).

with Eσ2

s,ε, Ẽσ
2

s,ε error terms as defined in (5.4) for measures νs and ν̃s, respectively.

Proof. We apply the definitions of the operator TE,κε and the anti-derivative ∂−1
x to

the corresponding terms in equation (1.8). Rearranging the resulting equation and
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introducing the error terms defined in (5.4), we obtain∫ s

0
σ2u(0)T

E,κ
ε ∆u(0)du =

2

κ
∂−1
x TE,κε ∆s(0)−

∫ s

0
(Eσ2

u,ε − Ẽσ2

u,ε)(0)du

+
2

κ

∫ s

0
⟨∆u, µug

E,κ
ε (0, ·)⟩du+

2

κ

∫ s

0
ρu⟨∆u, σug

E,κ
ε (0, ·)⟩dW 0

u .

(5.5)

With this relation we obtain

−E

[∫ t

0
σ2s(0)∂

−1
x TE,κε ∆s(0)T

E,κ
ε ∆s(0)ds

]

=− E
[∫ t

0
∂−1
x TE,κε ∆s(0)d(

∫ s

0
σ2u(0)T

E,κ
ε ∆u(0)du)

]
=− 1

κ
E
[
2

∫ t

0
∂−1
x TE,κε ∆s(0)d(∂

−1
x TE,κε ∆s(0))

]
+ E

[∫ t

0
∂−1
x TE,κε ∆s(0)(Eσ

2

s,ε − Ẽσ2

s,ε)(0)ds

]
− 2

κ
E
[∫ t

0
∂−1
x TE,κε ∆s(0)⟨∆s, µsg

E,κ
ε (0, ·)⟩ds

]
− 2

κ
E
[∫ t

0
∂−1
x TE,κε ∆s(0)ρs⟨∆s, σsg

E,κ
ε (0, ·)⟩dW 0

s

]
.

The coefficients µ, σ, ρ are bounded by assumption and

|∂−1
x TE,κε ∆s(0)| ⩽ |∆s(0,∞)| ⩽ 2.

From Lemma A.3 we have the estimate

gE,κε (0, y) ⩽ κe−
y2

2ε . (5.6)

Using these facts the stochastic integral in the last line is a martingale and thus the
term vanishes. For the first term, using the fact that ∂−1

x TE,κε ∆·(0) is a continuous
semimartingale, we have

(∂−1
x TE,κε ∆t(0))

2 = 2

∫ t

0
∂−1
x TE,κε ∆s(0)d(∂

−1
x TE,κε ∆s(0)) + [∂−1

x TE,κε ∆·(0)]t.

Using equation (5.5) we obtain that

[∂−1
x TE,κε ∆·(0)]t =

∫ t

0
ρ2s(⟨∆s, σsg

E,κ
ε (0, ·)⟩)2ds.

This yields

− E

[∫ t

0
σ2s(0)∂

−1
x TE,κε ∆s(0)T

E,κ
ε ∆s(0)ds

]
(5.7)

= −1

κ
E
[
(∂−1
x TE,κε ∆t(0))

2
]
+ E

[∫ t

0
∂−1
x TE,κε ∆s(0)(Eσ

2

s,ε − Ẽσ2

s,ε)(0)ds

]
+ J1 + J2 (5.8)
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with the two terms J1 and J2 defined as

J1 :=
1

κ
E
[∫ t

0
ρ2s(⟨∆s, σsg

E,κ
ε (0, ·)⟩)2ds

]
J2 := −2

κ
E
[∫ t

0
∂−1
x TE,κε ∆s(0)⟨∆s, µsg

E,κ
ε (0, ·)⟩ds

]
.

For a process ξ in the class Λ, using (5.6), we get∫ ∞

0
gE,κε (0, y)ξs(dy) ⩽ κ

∫ ε1/4

0
e−

y2

2ε ξs(dy) + κ

∫ ∞

ε1/4
e−

y2

2ε ξs(dy)

⩽ κξs(0, ε
1/4) + κe−

ε−1/2

2 .

(5.9)

Thus, using (5.9), there is a constant C such that

J1 ⩽ C

(∫ t

0
E
[
νs(0, ε

1/4)2
]
ds+

∫ t

0
E
[
ν̃s(0, ε

1/4)2
]
ds

)
+O(e−ε

−1/2
) → 0, (5.10)

as ε→ 0, because ν and ν̃ are in the class Λ. For J2 we similarly get

|J2| ⩽ CE
[∫ t

0
⟨νs, gE,κε (0, ·)⟩+ ⟨ν̃s, gE,κε (0, ·)⟩ds

]
⩽
∫ t

0
E
[
νs(0, ε

1/4)
]
+ E

[
ν̃s(0, ε

1/4)
]
ds+O(e−ε

−1/2/2) → 0, as ε→ 0,

(5.11)

again, by the properties of the class Λ. Combining (5.7), (5.10) and (5.11) we obtain

− E

[∫ t

0
σ2s(0)∂

−1
x TE,κε ∆s(0)T

E,κ
ε ∆s(0)ds

]

= −1

κ
E
[
(∂−1
x TE,κε ∆t(0))

2
]
+ E

[∫ t

0
∂−1
x TE,κε ∆s(0)(Eσ

2

s,ε − Ẽσ2

s,ε)(0)ds

]
+ o(1)

as ε→ 0, and so the result follows.

5.2 Proof of uniqueness for solutions to the SPDE

We can now give the proof of Theorem 2.5. Lemma 5.4 from the previous section plays
an important role in our arguments. It is used in (5.15) to deal with the boundary terms
that arise when integrating by parts.

Proof of Theorem 2.5. Let (ν,W 0) be a solution to the SPDE (2.1) in the class Λ. Take
the elastic heat kernel function y 7→ GE,κε (x, y) as a test function in the SPDE and
apply the switching of derivatives from y to x using Lemma A.2 to obtain the following
dynamics for the smoothed measure TE,κε νt

dTE,κε νt(x) =− ∂x⟨νt, µtGE,κε (x, ·)⟩dt+ 1

2
∂xx⟨νt, σ2tGE,κε (x, ·)⟩dt

− ρt∂x⟨νt, σtGE,κε (x, ·)⟩dW 0
t

+ 2∂x⟨νt, µtpε(x+ ·)⟩dt+ 2ρt∂x⟨νt, σtpε(x+ ·)⟩dW 0
t

− 2∂x⟨νt, µtgE,κε (x, ·)⟩dt− 2ρt∂x⟨νt, σtgE,κε (x, ·)⟩dW 0
t .
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Next, we integrate to introduce the anti-derivative defined in (B.2) and again use [18,
Lemma 8.3] to change the order of integration

d∂−1
x TE,κε νt(x) =− ⟨νt, µtGE,κε (x, ·)⟩dt+ 1

2
∂x⟨νt, σ2tGE,κε (x, ·)⟩dt

− ρt⟨νt, σtGE,κε (x, ·)⟩dW 0
t

+ 2⟨νt, µtpε(x+ ·)⟩dt+ 2ρt⟨νt, σtpε(x+ ·)⟩dW 0
t

− 2⟨νt, µtgE,κε (x, ·)⟩dt− 2ρt⟨νt, σtgE,κε (x, ·)⟩dW 0
t .

Using the error terms introduced in (5.4) the equation then becomes

d∂−1
x TE,κε νt(x) =− (µtT

E,κ
ε νt(x) + Eµt,ε(x))dt+

1

2
∂x(σ

2
t T

E,κ
ε νt(x) + Eσ2

t,ε (x))dt

− ρt(σtT
E,κ
ε νt(x) + Eσt,ε(x))dW 0

t

+ 2⟨νt, µtpε(x+ ·)⟩dt+ 2ρt⟨νt, σtpε(x+ ·)⟩dW 0
t

− 2⟨νt, µtgE,κε (x+ ·)⟩dt− 2ρt⟨νt, σtgE,κε (x+ ·)⟩dW 0
t .

To simplify the notation, we denote by osq(1) any family of functions {(ft,ε)t∈[0,T ]}ε>0

such that

E
∫ T

0
∥ft,ε∥22 dt→ 0, as ε→ 0. (5.12)

By using the limit behavior from Lemma 5.1 and Lemma 5.2, as well as the results for
Eht,ε from [18, Lemma 8.1], which also hold in the elastic case because of the regularity
of the class Λ, we have

d∂−1
x TE,κε νt =− µtT

E,κ
ε νtdt+

1

2
∂x(σ

2
t T

E,κ
ε νt + Eσ2

t,ε )dt

− ρtσtT
E,κ
ε νtdW

0
t + osq(1)dt+ osq(1)dW

0
t .

(5.13)

Let (ν̃,W 0) be another solution to the linear SPDE with the same Brownian motion W 0

and define the difference of the two solutions as ∆ := ν − ν̃. The dynamics of this are

d∂−1
x TE,κε ∆t =− µtT

E,κ
ε ∆tdt+

1

2
∂x(σ

2
t T

E,κ
ε ∆t + Eσ2

t,ε − Ẽσ2

t,ε )dt

− ρtσtT
E,κ
ε ∆tdW

0
t + osq(1)dt+ osq(1)dW

0
t .

Next we use Itô’s formula to find an equation for the square of the anti-derivative

d(∂−1
x TE,κε ∆t)

2 =− 2µt(∂
−1
x TE,κε ∆t)T

E,κ
ε ∆tdt

+ (∂−1
x TE,κε ∆t)∂x(σ

2
t T

E,κ
ε ∆t + Eσ2

t,ε − Ẽσ2

t,ε )dt

+ σ2t ρ
2
t (T

E,κ
ε ∆t)

2dt

− 2(∂−1
x TE,κε ∆t)σtρtT

E,κ
ε ∆tdW

0
t

+ ρtσtT
E,κ
ε ∆tosq(1)dt

+ (∂−1
x TE,κε ∆t)osq(1)dt

+ (∂−1
x TE,κε ∆t)osq(1)dWt + osq(1)

2dt.
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We are interested in estimates for E[∥∂−1
x TE,κε ∆t∥22] to use the H−1-estimate (B.3). We

obtain these by writing in integrated form, integrating over x > 0 and taking expec-
tations. We deal with the terms on the right-hand side individually. Combining the
subexponential-tails property of νt and ν̃t with [18, Lemma 8.3 and Lemma 8.7], which
are easily adapted to the elastic heat kernel, it is straightforward to show that the
stochastic integral terms (the fourth and seventh terms) are true martingales and thus
vanish when we take expectation. For the first term we use the generalized Young’s
inequality with free parameter η > 0 to obtain

E

[
− 2

∫ t

0

∫ ∞

0
µs(∂

−1
x TE,κε ∆s)T

E,κ
ε ∆sdxds

]

⩽ cη

∫ t

0
E
[∥∥∂−1

x TE,κε ∆s

∥∥2
2

]
ds+ ηE

[∫ t

0

∫ ∞

0
(µs)

2|TE,κε ∆s|2dxds
]
.

(5.14)

We employ integration by parts followed by the generalized Young’s inequality for the
second term. Lemma 5.4 allows us to handle the boundary term that appears when
integrating by parts. Thus, we have

E

[∫ t

0

∫ ∞

0
(∂−1
x TE,κε ∆s)∂x(σ

2
sT

E,κ
ε ∆s + Eσ2

s,ε − Ẽσ2

s,ε)dxds

]

⩽ −1

κ
E
[
(∂−1
x TE,κε ∆s(0))

2
]
− E

[∫ t

0

∫ ∞

0
σ2s |TE,κε ∆s|2dxds

]
+ ηE

[∫ t

0

∫ ∞

0
|TE,κε ∆s|2dxds

]
+ o(1).

(5.15)

We leave the third term as it is. For the fifth and sixth terms we proceed to use the
generalized Young’s inequality as in (5.14). Putting everything back together we obtain

E

[∥∥∂−1
x TE,κε ∆t

∥∥2
2

]
+

1

κ
E
[
(∂−1
x TE,κε ∆t(0))

2
]
⩽ cηE

[∫ t

0

∥∥∂−1
x TE,κε ∆

∥∥2
2
ds

]
− E

[∫ t

0

∫ ∞

0
(σ2s − σ2sρ

2
s(1 + η)− µ2sη − η)|TE,κε ∆s|2dxds

]
+ o(1).

Since ρ2s < 1 we can choose the free parameter η small enough such that

σ2s − σ2sρ
2
s(1 + η)− µ2sη − η ⩾ c0 (5.16)

for all x and s and for some constant c0 > 0. This yields

E
[∥∥∂−1

x TE,κε ∆
∥∥2
2

]
+

1

κ
E
[
(∂−1
x TE,κε ∆t(0))

2
]

⩽ cη

∫ t

0
E
[∥∥∂−1

x TE,κε ∆s

∥∥2
2

]
ds− c0E

[∫ t

0

∥∥TE,κε ∆s

∥∥2
2
ds

]
+ o(1).

(5.17)

Since c0 > 0 we can drop the second term and add a non-negative term to the right-hand
side to get the estimate

E
[∥∥∂−1

x TE,κε ∆
∥∥2
2

]
+

1

κ
E
[
(∂−1
x TE,κε ∆t(0))

2
]

⩽ cη

∫ t

0
E
[∥∥∂−1

x TE,κε ∆s

∥∥2
2

]
ds+ cη

∫ t

0

1

κ
E
[
(∂−1
x TE,κε ∆s(0))

2
]
ds+ o(1).
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This expression is of the form to apply Gronwall’s lemma and it follows that

lim
ε→0

(
E
[∥∥∂−1

x TE,κε ∆t

∥∥2
2

]
+

1

κ
E
[
(∂−1
x TE,κε ∆t(0))

2
])

= 0. (5.18)

Now, recall the H−1-estimate (B.3). We can find another constant C1 such that

∥∆t∥−1 ⩽ C1 lim inf
ε→0

(∥∥∂−1
x TE,κε ∆t

∥∥
2
+

1√
κ

∣∣∣∣∫ ∞

0
TE,κε ∆t(y)dy

∣∣∣∣) . (5.19)

Using (a+ b)2 ⩽ 2(a2 + b2) and Fatou’s lemma, we obtain from (5.18) that

E

[
lim inf
ε→0

(∥∥∂−1
x TEε ∆t

∥∥
2
+

1√
κ

∣∣∣∣∫ ∞

0
TEε ∆t(y)dy

∣∣∣∣)2
]
= 0

and so, as a consequence of (5.19), E
[
∥∆t∥−1

]
= 0. In turn, we can deduce the equality

νt = ν̃t for all t ∈ [0, T ], with probability 1, which concludes the proof.

6 Existence of a density and its integrability

In this section we establish the existence and regularity results for the densities of the
sub-probability measures νt, t ∈ [0, T ], for a solution to the SPDE (2.1). We use an
approach based on energy estimates in L2, similar to the arguments of Section 5, to
establish existence of a density of νt restricted (0,∞). Unfortunately, these arguments
do not allow us to rule out the presence of an atom at the boundary. However, as we
show in Section 6.1, this can be achieved by a result of [6] for reflected Brownian motion.

Lemma 6.1. Let (ν,W 0) be the unique solution to the SPDE (2.1) with ν in the class
Λ. Then we have

lim
ε→0

E
[∫ t

0

∥∥TE,κε νs
∥∥2
2
ds

]
<∞ for all t ∈ [0, T ].

Proof. The proof follows by performing the same estimates as in the proof of Theorem
2.5 but for ν instead of the difference of two solutions. Instead of disregarding the
negative term on the right-hand side involving c0 as in (5.17), we move it over to the
left-hand side and suitably adjust the application of Gronwall’s lemma.

Using this result we deduce that there is an L2-density for a.e. (ω, t) ∈ Ω× [0, T ].

Proposition 6.2. Let (ν,W 0) be the unique solution to the SPDE (2.1) with ν in the
class Λ. Then for almost every (ω, t) ∈ Ω× [0, T ] the measure νt(ω) has a density Vt(ω)
on [0,∞) and we have the integrated estimate

E
[∫ t

0
∥Vs∥22 ds

]
<∞, for all t ∈ [0, T ]. (6.1)

Proof. Fatou’s lemma applied to Lemma 6.1 yields a bounded sequence {TE,κεn νt}n⩾1 in
L2 for almost every (ω, t) ∈ Ω× [0, T ] with εn → 0. Fix (ω, t). By the Banach–Alaoglu
theorem, we get a subsequence converging weakly to some v ∈ L2 as εn → 0. But then∫
R ϕ(x)v(x)dx =

∫
R ϕ(x)dνt(x), for all ϕ ∈ S, since

∫
R T

E,κ
εn νt(x)ϕ(x)dx→

∫
R ϕ(x)dνt(x)

as εn → 0. By the density of S in L2, the result follows.
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Note that the proof only gives existence of the density for almost every (ω, t). In
particular, for a given ω (in a set of probability 1), the sample path t 7→ νt(ω) is only
guaranteed to have an L2-density on [0,∞) for almost all times. This, however, is only
an issue at the origin: if we restrict νt(ω) to (0,∞), then Proposition 6.7 below provides
an L2 density for all times. One could worry, then, if νt(ω) could fail to have a density
on [0,∞) for a non-empty set of times of Lebesgue measure zero, due to an atom at the
origin, but this is not the case, as confirmed in Section 6.1.

We now turn to the existence of an L2-density of νt for all times, when restricted to
(0,∞). Take intervals U ⋐W ⋐ (0,∞), where ⋐ denotes compact containment, and let
ψ be a smooth cut-off function such that ψ = 1 on U , ψ ∈ (0, 1) on W \ U and ψ = 0
otherwise. We have |∂xψ|+ |∂xxψ| ⩽ C1W\U , where the constant C only depends on U
and W . Moreover, we define the error term for each x ∈ [0,∞) by

Ēht,ε(x) = ∂xνt(htG
E,κ
ε (x, ·))− ht(x)∂xT

E,κ
ε νt(x) + ∂xht(x)Ht,ε(x), (6.2)

where
Ht,ε(x) = νt((x− ·)∂xGE,κε (x, ·)), (6.3)

for a function h representing µ, σ2 or σ.

Lemma 6.3. Let (ν,W 0) be the unique solution to the SPDE (2.1) with ν in the class
Λ. Then we have the convergence

E

[∫ t

0

∫ ∞

0
ψ2(x)

(∫ ∞

0
∂xpε(x+ y)νs(dy)

)2

dxds

]
→ 0, as ε→ 0

with the cut-off function ψ specified above and pε the Gaussian heat kernel given in (A.1).

Proof. Splitting the derivative of the Gaussian heat kernel into two parts we get∫ ∞

0
ψ2(x)

(∫ ∞

0

1√
2πε

x+ y

ε
e−

(x+y)2

2ε νs(dy)

)2

dx

⩽ 2

∫ ∞

0
ψ2(x)e−x

2/ε

(∫ ∞

0

1√
2πε

y

ε
e−y

2/2ενs(dy)

)2

dx

+ 2

∫ ∞

0
ψ2(x)e−x

2/εx
2

ε2

(∫ ∞

0

1√
2πε

e−y
2/2ενs(dy)

)2

dx.

For the first term on the right-hand side we have∫ ∞

0
ψ2(x)e−x

2/ε 1

2πε3

(∫ ∞

0
ye−y

2/2ενs(dy)

)2

dx

⩽
∫ ∞

0
ψ2(x)e−x

2/ε 1

2πε3

(
νs(0,∞) max

y∈(0,∞)
(ye−y

2/2ε)

)2

dx

⩽
∫ ∞

0
ψ2(x)e−x

2/ε 1

2πε2
dx ⩽ e−w

2/2ε

∫ ∞

0

1

2πε2
e−x

2/2εdx = O(ε−3/2e−w
2/2ε)

where w = infW > 0. Then we obtain

E

[∫ t

0

∫ ∞

0
ψ2(x)e−x

2/ε

(∫ ∞

0

1√
2πε

y

ε
e−y

2/2ενs(dy)

)2

dxds

]
= O(ε−3/2e−w

2/2ε).

We can argue similarly for the second term and hence obtain the desired convergence.

27



A similar estimate holds for the elastic correction term gE,κε defined in (A.3).

Lemma 6.4. Let (ν,W 0) be the unique solution to the SPDE (2.1) with ν in the class
Λ. Then we have the convergence

E

[∫ t

0

∫ ∞

0
ψ2(x)

(∫ ∞

0
∂xgε(x, y)νs(dy)

)2

dxds

]
→ 0, as ε→ 0

with the cut-off function ψ specified above.

Proof. The derivative of the elastic correction term gE,κε is given by

∂xgε(x, y) =∂x

(
κeκ(x+y)e

κ2ε
2

(
1− Erf

(
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2ε

)))
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0
exp

(
−(z + x+ y + κε)2

2ε

)
dz
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2

1√
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2ε

)
.

We can then estimate
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0
exp
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2ε

)
dz ⩽ κ2e−
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2ε

by Lemma A.3. For the other term we get
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κ2ε
2
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2πε
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2ε

)
⩽

2κ√
2πε
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2ε .

Thus, we get

E
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0
ψ2(x)

(∫ ∞

0
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)2

dxds

⩽ E
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+ E
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0
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0
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0
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2πε
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⩽ E
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0
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ε dxds+ E
∫ t

0
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0
ψ2(x)

e−x
2/ε

2πε
dxds = O(ε−1/2e−w

2/2ε)

with w = infW>0.

The necessary controls on the error term Ēht,ε are proved in the following lemmas.

Lemma 6.5. Let Ēhs,ε be the error term defined in (6.2) and ψ the cut-off function
specified above. Then we have the convergence

E
[∫ t

0

∥∥∥ψĒhs,ε∥∥∥2
2
ds

]
→ 0 as ε→ 0.

28



Proof. We can combine the estimates in [18, Lemma 8.2] with the definition of the elastic
heat kernel to get

|Ēhs,ε| ⩽ C ∥∂xxh∥∞
∫ ∞

0
|x− y|2|∂xGE,κε |νs(dy)

⩽ C ∥∂xxh∥∞
∫ ∞

0
|x− y|3ε−1pε(x− y)νs(dy)

+ C ∥∂xxh∥∞
∫ ∞

0
|x− y|2

(
|∂xpε(x+ y)|+ |∂xgE,κε (x, y)|

)
νs(dy)

The result for the first term follows by [18, Lemma 8.2]. Next, we get

E

[∫ t

0

∫ ∞

0
ψ2(x)

(∫ ∞

0
|x− y|2|∂xgε(x, y)E,κ|νs(dy)

)2

dxds

]
= O(ε−1/2e−w

2/2ε),

E

[∫ t

0

∫ ∞

0
ψ2(x)

(∫ ∞

0
|x− y|2|∂xpε(x+ y)|νs(dy)

)2

dxds

]
= O(ε−5/2e−w

2/2ε),

by calculations similar to Lemmas 6.3 and 6.4.

To simplify the notation, we denote by oψsq(1) any family of functions {(ft,ε)t∈[0,T ]}ε>0

such that

E
[∫ T

0
∥ψft,ε∥22 dt

]
→ 0, as ε→ 0.

The final auxiliary result is a control on the other error term Ht,ε.

Lemma 6.6. Let Ht,ε be the error term defined in (6.3). Then there is a constant cH
such that for all t ∈ [0, T ],

|Ht,ε| ⩽ cH|TE,κ2ε νt|+ oψsq(1)

for ε > 0 small enough.

Proof. We can use the definition of the elastic heat kernel GE,κε to estimate

|Ht,ε| ⩽ |νt((x− y)∂xpε(x− y))|+ |νt((x− y)∂xpε(x+ y))|+ |νt((x− y)∂xg
E,κ
ε (x, y))|.

For the first term there is a constant c such that

|νt((x− y)∂xpε(x− y))| ⩽ cνt(p2ε(x− y))

by [18, Lemma 8.2]. Moreover, we have the estimate

gE,κε (x, y) ⩽ κe−
(x+y)2

2ε ⩽ pε(x+ y),

for ε small enough. Thus there is a constant C such that

|νt((x− y)∂xpε(x− y))| ⩽ CTE,κ2ε νt.

The estimates for the other two terms follows as in Lemma 6.3 and Lemma 6.4.
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Now we have all the tools to prove the existence of a density in the interior.

Proposition 6.7. Let (ν,W 0) be the unique solution to the SPDE (2.1) with ν in the
class Λ. The measure νt restricted to (0,∞) has a density Vt for all t ∈ [0, T ] with
probability 1. The density is square integrable on (δ,∞) for every δ > 0.

Proof. We proceed similarly to the uniqueness proof in Section 5. We use the test
function y 7→ GE,κε (x, y) in the SPDE (2.1), switch derivatives from y to x and take the
coefficients outside the integration against the measure. This creates the error terms
defined in (6.2) and (6.3). Applying Itô’s formula we can then derive the dynamics

d(TE,κε νt)
2 =− 2TE,κε νt

(
µt∂xT

E,κ
ε νt − ∂xµtHt,ε + Ēµt,ε

)
dt

+ TE,κε νt∂x

(
σ2t ∂xT

E,κ
ε νt − ∂xσ

2
tHt,ε + Ēσ2

t,ε

)
dt

− 2TE,κε νtρt
(
σt∂xT

E,κ
ε νt − ∂xσtHt,ε + Ēσt,ε

)
dW 0

t

+ 4TE,κε ∂xνt(µtpε(x+ ·))dt+ 4TE,κε νt∂xνt(ρtσtpε(x+ ·))dW 0
t

− 4TE,κε νt∂xνt(µtg
E,κ
ε (x, ·))dt− 4TE,κε νt∂xνt(ρtσtg

E,κ
ε (x, ·))dW 0

t

+
(
ρt
(
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ε νt − ∂xσtHt,ε + Ēσt,ε

)
+ 2∂xνt(ρtσtpε(x+ ·))− 2∂xνt(ρtσtgε(x, ·))

)2
dt.

(6.4)

Next, we multiply the equation by ψ2 and integrate over x and t. We will now estimate
all the terms on the right-hand side individually, in a similar approach to the uniqueness
proof in Section 5, using the results of Lemma 6.3, Lemma 6.4, Lemma 6.5 and Lemma
6.6 together with the generalized Young’s inequality. For the first term we have
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For the term in the second line of (6.4) we apply integration by parts and obtain∫ t
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For now, we leave the terms involving stochastic integrals unchanged. The remaining
terms in the fourth and fifth line of (6.4) can be estimated via

4

∫ t

0
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We can write the last term as∫ t
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Putting everything back together and choosing η > 0 small enough such that

σ2s − ρ2s(1 + 2η + η2)σ2s − ηµ2s − η ⩾ c0

for some c0 > 0 yields
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Next, we take supremum over t and then expectation. Using [18, Lemma 8.5] to estimate
the stochastic integrals, which can easily be adapted to this case, we get

E

[
sup
s∈[0,t]

∥∥ψTE,κε νs
∥∥2
2

]
⩽c′E

[∥∥TE,κε ν0
∥∥2
2

]
+ c′E
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0

∥∥TE,κε νs
∥∥2
2
ds

]
+ c′E

[∫ t

0

∥∥∥TE,κ2ε νs

∥∥∥2
2
ds

]
+ o(1)

with a constant c′ > 0. Taking the limit ε → 0 and using Proposition 6.1, Assumption
2.1 and Lemma B.1 we obtain

lim
ε→0

E

[
sup
s∈[0,t]

∥∥TE,κε νs
∥∥2
L2(U)

]
⩽ lim

ε→0
E

[
sup
s∈[0,t]

∥∥ψTE,κε νs
∥∥2
2

]
<∞. (6.5)

Fatou’s lemma yields a sequence {TE,κεn νt}n⩾1 that is bounded in L2(U) for all t ∈ [0, T ]
with probability 1. Replicating the proof of Proposition 6.2 gives that, with probability
1, νt restricted to U has a density in L2 for all t ∈ [0, T ]. Since this holds for any U ⋐
W ⋐ (0,∞), the result follows (take a countable union of sets U covering (0,∞)).

6.1 Ruling out a Dirac mass at the origin

As a special case of Theorem 7.3 in the next section, we can characterize the unique
solution (ν,W 0) to the SPDE (2.1) as the conditional law

νt(dx) = P (Xt ∈ dx, t < τ | FW 0

t ) (6.6)

of a given reflected diffusion

dXt = µ(t,Xt)dt+ σ(t,Xt)ρ(t)W
0
t + σ(t,Xt)(1− ρ(t)2)

1
2dWt + dLt, (6.7)

where W is a Brownian motion independent of W 0, l is the local time at 0 of X and τ is
the elastic killing time defined by a standard exponential random variable independent
of X. This point of view makes it easy to deduce from [6] that there cannot be an atom
at the origin.

Proof of Proposition 2.7. Express the unique solution ν as (6.6). We can then apply the
scale transformation ζ defined in Lemma 3.1 to (6.7) in order to obtain

νt(A) ⩽ P
(
Z0 + ρ(t)W 0

t +
√

1− ρ2(t)W 1
t +

∫ t

0
µ̃sds+ Lt ∈ ζ(t, A)

∣∣FW 0

t

)
,

for any Borel set A in [0,∞), where µ̃ is defined as in Lemma 3.1. By our assumptions
on µ and σ, there is a constant C > 0 such that |µ̃s| ⩽ C for all s ∈ [0, T ]. Therefore,

Z0 + ρ(t)W 0
t +

√
1− ρ2(t)W 1

t +

∫ t

0
µ̃sds ⩾ Z0 + ρW 0

t +
√
1− ρ2W 1

t − Ct (6.8)
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for all t ∈ [0, T ] almost surely. Note that the processes in (6.8) only differ by the drift
term. Moreover, the drift −Ct is always decreasing by more than the drift

∫ t
0 µ̃sds. We

write
Zt := Z0 + ρ(t)W 0

t +
√
1− ρ2(t)W 1

t .

and define the local time processes L1 and L2 as the processes such that

Zt +

∫ t

0
µsds+ L1

t ⩾ 0 and Zt − Ct+ L2
t ⩾ 0,

for t ⩾ 0. We can now estimate

sup
s∈[0,t]

∣∣L1
t − L2

t

∣∣ ⩽ sup
s∈[0,t]

∣∣∣∣∫ s

0
µudu+ Cs

∣∣∣∣ = ∫ t

0
µsds+ Ct

where the last equality follows from |µs| ⩽ C for all s ∈ [0, t]. Using this we obtain

Zt +

∫ t

0
µsds+ L1

t =Zt +

∫ t

0
µsds+ L2

t + L1
t − L2

t

⩾ Zt +

∫ t

0
µsds+ L2

t − sup
s∈[0,t]

|L1
s − L2

s| ⩾ Zt − Ct+ L2
t .

Thus, combining this with the definiton of the local time proceses we have{
(t, ω) : Zt(ω) +

∫ t

0
µ̃s(ω)ds+ L1

t (ω) = 0

}
⊆
{
(t, ω) : Zt(ω)− Ct+ L2

t (ω) = 0
}
,

and, as a result, we get

0 ⩽ νt({0}) ⩽ P
(
Z0 + ρ(t)W 0

t +
√
1− ρ2(t)W 1

t − Ct+ L2
t = 0

∣∣∣FW 0

t

)
,

for all t ∈ [0, T ] almost surely. With f(t) := Ct, we obviously have that f(t)/
√
t is

non-decreasing, so f is not in the upper class of Brownian motion by [21, p.144]. Thus,
[6, Theorem 2.2 and Theorem 2.5] gives that the probability on the right-hand side is
zero for all t ∈ [0, T ] almost surely, and hence νt cannot have an atom at zero for any t.
Combining this with Proposition 6.7 we can conclude that we have a density everywhere
on the positive half-line.

While the previous theorem establishes existence of a density for the entire positive
half-line, we do not get the square integrability all the way up to the boundary, beyond
a set of times of full measure as guaranteed by Theorem 2.6. It is unclear to us how to
extend this result to include all t ∈ [0, T ] and we actually conjecture it to be false for
all t ∈ [0, T ]. To see where the problem lies, we consider the simpler case of a reflecting
boundary, along with a constant correlation coefficient ρ ∈ (0, 1), zero drift µ ≡ 0, and
unit volatility σ ≡ 1. As in (6.6), the solution to the SPDE then takes the form

νt(dx) = P
(
ρW 0

t +
√

1− ρ2W 1
t + Lt ∈ dx | FW 0

t

)
.

We can interpret this conditional distribution as the distribution of the scaled Brownian
motion

√
1− ρ2W 1 reflected on a given (fixed) scaled Brownian path −ρW 0. This is a
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particular instance of a Brownian motion reflected in a time-dependent domain, which,
together with the related heat equation, have been studied in a series of papers [5, 6,
7, 8]. In [6] the authors show that, at the boundary of such domains, both singularities
of the density as well as atoms are possible. While they establish that there are no
atoms when the boundary is a path of a Brownian motion, in [8] it is shown that in this
case the density exhibits blow-up at the boundary on a dense subset of times t. These
effects arise when the boundary sharply moves into the domain and the diffusion cannot
transport the heat away fast enough. The authors show that, for any boundary that
locally moves in sharper than Brownian motion (i.e., is in the upper class of Brownian
motion), an atom occurs. This leads us to suspect that the blow-up is too strong to
allow for square integrability of the density at the origin.

7 Extension to nonlinear interactions in the drift

In this section we discuss some of the results we can obtain and some of the difficulties
associated to a natural extension of the particle system which allows for interaction
through a dependence on the empirical measure νNt in the drift coefficient µ. The
particle system then becomes

Xi,N
t = Xi

0 +

∫ t

0
µ(s,Xi,N

s , νNs )ds+

∫ t

0
σ(s,Xi,N

s )ρ(s)dW 0
s

+

∫ t

0
σ(s,Xi,N

s )(1− ρ(s)2)
1
2dW i

s + Li,Nt ,

(7.1)

together with the elastic stopping times τ i,N . In this case we need additional assumptions
on the regularity of µ with respect to the measure variable.

Assumption 7.1 (Regularity in the Measure Variable). The drift coefficient µ is Lip-
schitz continuous in the measure variable ν on the space of sub-probability measures
M⩽1(R) with respect to the bounded Lipschitz distance d0 which is given by

d0(ν, ν̃) := sup{|⟨ψ, ν − ν̃⟩| : ∥ψ∥Lip ⩽ 1, ∥ψ∥∞ ⩽ 1}, (7.2)

i.e., there exists a fixed constant c > 0 such that |µ(t, x, ν)− µ(t, x, ν̃)| ⩽ cd0(ν, ν̃).

Through the empirical measure in the drift coefficient the elastic stopping times τ i,N

become part of the equations for the particles. Thus, well-posedness of the particle
system needs additional arguments compared to the system (1.1). The existence of such
a particle system can be established by adjusting the arguments in [15, Theorem 2.3] to
this case. We need to add a common noise in the filtrations defined therein. Another
difference is that in our case the interactions are through the empirical measure not the
loss function. An important step in the construction in [15, Section 3] is, for a given
particle i, to consider the system without particle i given that t < τ i,N . In our case
such a system will, in contrast to the system in [15], not be independent of the particle
i because of the empirical-measure interaction. However, given the condition t < τ i,N

we can consider this system with the empirical measure

νN,−it (dx) =
1

N

 N∑
j=1,j ̸=i

δ
Xj,N

t
(dx)1t<τ j + δ

Xi,N
t

(dx)

 .
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Thus, the system without particle i depends on W i and Xi
0 but not χi. In this way, the

same recursive construction as in [15] gives existence of a solution to the particle system
(7.1) with elastic stopping times (the presence of a common noise W 0 does not change
the construction). Due to Assumption 7.1 (in addition to Assumptions 2.1 and 2.2),
the coefficients in (7.1) are Lipschitz continuous with respect to the vector of solutions
(X1,N , . . . , XN,N ), so a standard Gronwall argument gives uniqueness of solutions.

Next, we can observe that one obtains convergence to the desired SPDE as in the
proof of Proposition 4.6, by allowing µ to also depend on ξ in (4.7). Indeed, the methods
we used in the proofs in Section 4 still apply, due to the above mentioned assumptions.
Consequently, we obtain the following result.

Theorem 7.2. Let (νN ,W 0) be a sequence with νN being empirical-measure processes
corresponding to the particle system (7.1) that satisfy Assumptions 2.1, 2.2 and 7.1.
Then (νN ,W 0) possesses converging subsequences in (DS′ ,M1)× (CR, ∥∥∞). Moreover,
for any limit point (ν,W 0) the process ν is in the class Λ and (ν,W 0) satisfies the SPDE

⟨νt, ϕ⟩ = ⟨ν0, ϕ⟩+
∫ t

0
⟨νs, µ(s, ·, νs)ϕ′⟩ds+

1

2

∫ t

0
⟨νs, σ2(s, ·)ϕ′′⟩ds

+

∫ t

0
⟨νs, ρ(s)σ(s, ·)ϕ′⟩dW 0

s

(7.3)

for all times t ∈ [0, T ] and all test functions ϕ ∈ CE,κ0 (R), where

CE,κ0 (R) = {ϕ ∈ S : ∂xϕ(0) = κϕ(0)}.

Note that in this case the limit equation becomes a nonlinear SPDE with a nonlin-
earity in the drift term µ. A convenient way of obtaining regularity for solutions to this
nonlinear SPDE is to use the following probabilistic representation.

Theorem 7.3. Let (ν,W 0) be a solution to the SPDE (7.3) with ν in the class Λ. Then,
for all t ∈ [0, T ] we have the following representation of νt

νt = P (Xt ∈ ·, t < τ | Fν,W 0

t ), (7.4)

where X is a reflecting particle with dynamics given by

dXt = µ(t,Xt, νt)dt+ σ(t,Xt)ρtW
0
t + σ(t,Xt)(1− ρ2t )

1
2dWt + dLt,

with W 0,W independent Brownian motions and X0 being distributed according to ν0.
The stopping time τ is the elastic stopping time associated with X and (Fν,W 0

t ) the
filtration generated by ν and W 0.

Proof. The proof is based on a decoupling argument and the linear uniqueness result.
Let ν be a weak solution to the nonlinear SPDE which exists by Theorem 7.2. We then
define a stochastic process X as the solution to the SDE

dXt = µνt dt+ σ(t,Xt)(ρtdW
0
t + (1− ρ2t )

1/2dW 1
t ) + dLt, (7.5)

where the drift term µν is given by µνt := µ(t,Xt, νt) and W 0,W 1 are independent
Brownian motions. The associated elastic stopping time is τ lin := inf{t > 0 : Lt > ξ}
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for an independent exponential random variable ξ ∼ Exp(κ). Define a process (νlint )
taking values in the space of sub-probability measures as

⟨νlint , ϕ⟩ := E
[
ϕ(Xt)1t<τ lin |F

ν,W 0

t

]
(7.6)

for ϕ ∈ S. Take a test function ϕ ∈ CE,κ0 (R), apply Itô’s formula, rearrange and take
conditional expectation. An application of [18, Lemma 8.9] then yields that νlint solves
the linear SPDE

d⟨νlint , ϕ⟩ =⟨νlint , µνt ϕ
′⟩dt+ 1

2
⟨νlint , σ2t ϕ

′′⟩dt+ ⟨νlint , ρtσtϕ
′⟩dW 0

t (7.7)

for all ϕ ∈ CE,κ0 (R). By the same arguments as for the particle system in Section 3, one
easily checks that the solution is in the class Λ. Since ν is a solution to the nonlinear
SPDE, it also solves the SPDE (7.7). By Therorem 2.5 solutions to (7.7) are unique in
the class Λ, so we have νt = νlint . This yields the desired result.

Based on this representation the same regularity results as in Theorem 2.6 and
Proposition 2.7 can be shown using the methods in Section 6. The question of uniqueness
of solutions to the nonlinear SPDE is more subtle. In the case of an absorbing boundary,
uniform L2 regularity is used to deal with the nonlinearity by employing an argument
involving a sequence of stopping times (see [18, 19]). As discussed in Section 6 we do
not expect such regularity to hold in the elastic case. This makes the extension to
the nonlinear case appear significantly more difficult than in the absorbing case and an
entirely different approach may be needed.

8 Absorption and Reflection as Limiting Cases

Intuitively, an elastic boundary condition acts as a mixture of an absorbing boundary
and a reflecting boundary – with the positive parameter κ controlling the balance of the
two. This can be seen from the elastic condition

∂xϕ(0) = κϕ(0), (8.1)

if we take the limits κ → 0 and κ → ∞. When taking κ to ∞ we obtain the absorbing
boundary condition ϕ(0) = 0 and taking κ to 0 yields the reflecting boundary condition
∂xϕ(0) = 0. This shows that the absorbing and reflecting cases can be obtained as limits
of the elastic case. Moreover, we observe the same when analysing the elastic stopping
times

τ = inf{t > 0 : Lt > χκ}, χκ ∼ Exp(κ).

In the limit κ → ∞ we get χκ → 0 and the stopping time τ becomes the first time the
process X hits the boundary at 0, i.e. the absorbing stopping time. For κ→ 0 we have
the convergence χκ → ∞ and the elastic killing time τ i converges to ∞. As a result the
limit process becomes purely reflecting. The goal of this section is to show that we also
have this convergence at the level of the measure-valued processes as we let κ go to 0 or
∞. We will write νκ for the solution to the elastic SPDE to emphasis the dependence
on the elastic-killing parameter κ.
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SPDEs of the type (2.1) with an absorbing boundary are studied in [18] and in [19].
Existence and uniqueness of solutions is proved in these articles. The absorbing nature
of the boundary is defined through the space of test functions

CA0 (R) := {ϕ ∈ S(R) : ϕ(0) = 0}. (8.2)

By using the space of test functions

CR0 (R) := {ϕ ∈ S(R) : ∂xϕ(0) = 0} (8.3)

in the formulation of the SPDE (2.1) we have instead a reflecting boundary. With a few
adjustments to the proof for the elastic case, we can also prove Theorem 2.8.

Proof of Theorem 2.8. The particle system is now simply the fully reflected system (1.1)
without any ‘killing’. This amounts to removing the indicator functions from the empiri-
cal measures (1.3). By the work in Section 3, we immediately obtain all the probabilistic
estimates required to implement the same arguments as in Section 4. Thus, we obtain
that limit points of the empirical measures belong to the class Λ and are solutions to
the desired SPDE with a reflecting boundary phrased in terms of CR0 (R).

Since the limit points belong to the class Λ, we can prove uniqueness as in Section 5,
but now using the reflecting heat kernel GRε to mollify solutions (instead of the elastic
heat kernel). In the reflecting case the weak formulation of the boundary simplifies
because the process takes values in the space of probability measures. Denoting by TRε
the convolution operator with GRε and by ν0 a solution to the reflecting SPDE, we see
that for the anti-derivative at the boundary, an application of Fubini’s theorem and
the fact that GRε integrates to 1 gives ∂−1

x TRε ν
0
t (0) = −ν0t [0,∞). The rest of the proof

now follows with the same arguments as in the elastic case (the only changes are some
substantial simplifications to the arguments, as less terms need to be treated).

Now that we have existence and uniqueness for the three boundary cases, we can
prove Theorem 2.9 on the weak convergence of the solution to the elastic equation to
the absorbing and reflecting counter parts in the following way

• verify tightness of (νκ) to establish existence of limit points

• show that limit points solve the absorbing or reflecting SPDEs, respectively,

• deduce weak convergence from uniqueness of solutions.

The first step concerns tightness. As in the case of the particle approximations we
consider tightness on the space of càdlàg processes with values in the space of tempered
distributions.

Lemma 8.1. Let (νκ,W 0) be a sequence of solutions with νκ in the class Λ to the SPDE
(2.1) with elastic boundary condition for parameter κ > 0. Then, the sequence (νκ,W 0)
is tight on (DS′ ,M1)× (CR, ∥·∥∞) for both cases, κ→ ∞ and κ→ 0 .

Proof. We follow the same approach as in Proposition 4.3. By the probabilistic repre-
sentation from Proposition 7.3 we know that for ϕ ∈ S we have
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⟨νκt , ϕ⟩ = E
[
ϕ(Xt)1t<τκ |Fνκ,W 0

t

]
. (8.4)

We can then again apply the decomposition of [27, Proposition 4.2] and obtain that the
first condition we need to show is

E
[
|⟨ν̂κt , ϕ⟩ − ⟨ν̂κs , ϕ⟩|4

]
= O(|t− s|2), as |t− s| → 0 (8.5)

for
⟨ν̂κt , ϕ⟩ = E

[
ϕ(Xt∧τκ)|Fνκ,W 0

t

]
.

The definition of X is independent of κ and we can conclude condition (8.5) with the
same methods as in Proposition 4.3. To conclude tightness using the approach of Propo-
sition 4.3 we need to verify that for all t ∈ [0, T ] and η > 0

lim
δ→0

lim sup
κ→0

P(Lκt+δ − Lκt ⩾ η) = 0, Lκt = P
(
τκ ⩽ t|Fνκ,W 0

t

)
, (8.6)

to obtain tightness in the case κ → 0 and the same condition with lim supκ→∞ for the
other case. Markov’s inequality yields

P(Lκt+δ − Lκt ⩾ η) ⩽ η−1P(t < τκ ⩽ t+ δ)

We consider a process Ỹ given by

Ỹ κ
t = Xκ

0 +

∫ t

0
µsds+

∫ t

0
σsdWs

where dWs = ρsdW
0
s +

√
1− ρ2sdW

1
s . The reflecting particle X is then given by Xt =

Ỹt + Lt, using the Skorokhod problem. Moreover, we set Y κ
t := Ỹ κ

t + χκ. We can apply
this together with the definition of the stopping time τκ to obtain

P (τκ ⩽ t) = P (Lt ⩾ χκ) = P
(

inf
s∈[0,t]

Ỹs ⩽ −χκ
)

= P
(

inf
s∈[0,t]

Y κ
s ⩽ 0

)
.

Taking ε > 0 we have

P (t < τκ ⩽ t+ δ) =P (t < τκ ⩽ t+ δ, Y κ
t ⩾ ε) + P (t < τκ ⩽ t+ δ, Y κ

t ∈ (0, ε))

+ P (t < τκ ⩽ t+ δ, Y κ
t ⩽ 0) .

The last term is zero because Y κ
t ⩽ 0 implies τκ ⩽ t. This gives the estimate

P (t < τκ ⩽ t+ δ) ⩽ P (t < τκ ⩽ t+ δ, Y κ
t ⩾ ε) + P (Y κ

t ∈ (0, ε)) . (8.7)

To deal with the second term on the right-hand side we apply the scale transformation
and change of measure discussed in Section 3 to transform Y κ into a Brownian motion.
The only dependence on κ is then left in the initial condition. However, note that
χκ converges to zero or infinity almost surely if we take the limit κ → ∞ or κ → 0,
respectively. Since the function ζ is continuous in the x variable and the measure Q is
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equivalent to P we also get Q-almost sure convergences to zero or infinity for ζ(t, χκ).
Using the properties of Brownian motion we then have

lim sup
κ→∞

P(Y κ
t ∈ (0, ε)) ⩽ CqQ (Bt ∈ (0, Cµ,σε))

1/q = o(1), as ε→ 0,

for q > 1, a constant Cq > 0 depending on q and B a Brownian motion under Q. In the
case κ→ 0 we get

lim sup
κ→0

P(Y κ
t ∈ (0, ε)) = 0.

To estimate the other term in (8.7), we follow the structure of the proof of [18, Propo-
sition 4.7]. We get

P (t < τκ ⩽ t+ δ, Y κ
t ⩾ ε) ⩽ P

(
inf

s∈[t,t+δ]
Y κ
s ⩽ 0, Y κ

t ⩾ ε

)
⩽ P

(
inf

s∈[t,t+δ]
(Y κ
s − Y κ

t ) ⩽ −ε
)
.

Using the scale transformation ζ from Section 3 we define Uκs := ζ(t + s, Y κ
t+s) − ζ(t +

s, Y κ
t ). The dynamics of Uκ are given by dUκs = uκsds + dWs, where uκ is a uniformly

bounded drift coefficient. This means we can find a constant c1 > 0 such that

P
(

inf
s∈[t,t+δ]

(Y κ
s − Y κ

t ) ⩽ −ε
)

= P
(

inf
s∈[0,δ]

Uκs ⩽ −κ
)

⩽ P
(

inf
s∈[0,δ]

Ws ⩽ −c1(ε− δ)

)
= Φ(−c1δ−1/2(ε− δ))

where Φ is the normal c.d.f. We need that ε− δ > 0 and the convergences

δ−1/2(ε(δ)− δ) → ∞, ε(δ) → 0.

Choosing ε(δ) = δ1/2 log(1/δ) gives the desired convergences and we get (8.6). This
completes the tightness proof.

To show weak convergence, it is now sufficient to prove that the limit points solve
the respective SPDEs for the reflecting and absorbing cases. To do this, we again rely on
the martingale approach described in Section 4.2. Consider the maps Mϕ(νκ), Sϕ(νκ)
and Cϕ(νκ) defined in (4.7). We need to show that, as we take the limit κ → 0/∞, we
obtain the corresponding quantities for the reflecting and absorbing cases, respectively.

Proposition 8.2. Fix t ⩽ T and define Ψh : {ξ ∈ DS′ : ξs ∈ M⩽1(R)} × S → R by

Ψh(ξ, ϕ) :=

∫ t

0
⟨ξs, h(s, ·)ϕ⟩ds (8.8)

with h denoting a placeholder for µ, σ2 or ρσ. If νκ → ν∗ weakly on (DS′ ,M1) and
ϕκ → ϕ∗ in S, then we also have the convergence Ψκ

h → Ψ∗
h weakly on R.
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Proof. We show the result for the case κ → 0. The other case follows using the same
line of argument. We fix a bounded Lipschitz function f ∈ Lip(R). By Lemma 8.1
and the resulting relative compactness we can find a weakly convergent subsequence,
again denoted by (νκ, ϕκ). By Skorokhod representation we can assume almost sure
convergence and use the triangle inequality and the Lipschitz continuity of f to obtain

|E [f(Ψκ
h)]− E [f(Ψ∗

h)]| ⩽ C

(
E
[∣∣∣∣∫ t

0
⟨νκs − ν∗s , h(s, ·)ϕ∗⟩ds

∣∣∣∣]

+ E
[∣∣∣∣∫ t

0
⟨νκs , h(s, ·)ϕ∗ − h(s, ·)ϕκ⟩ds

∣∣∣∣]
)

=: C (E[Iκ1 ] + E[Iκ2 ])

for some C > 0. We can treat the first term as in [19, Proposition 4.7]. For the second
term involving Iκ2 , using that h is bounded and νκs is a sub-probability measure gives

Iκ2 ⩽ c ∥ϕ∗ − ϕκ∥∞ → 0 as κ→ 0.

This completes the proof for convergence to the reflecting case. The same arguments
show the result for the case κ→ ∞.

Proof of Theorem 2.9. Combining the martingale approach we used in Section 4.2 with
the results of Lemma 8.1 and Proposition 8.2 it follows that νκ converges to a solution to
the reflecting or absorbing SPDE when taking the limit κ→ 0 and κ→ ∞, respectively.
The necessary regularity results follow in the same way as in Section 4.3. We can then
conclude weak convergence from the uniqueness result of Theorem 2.8 for the reflecting
case and [19, Theorem 2.6] for the absorbing case.

A Appendix: Properties of the Elastic Heat Kernel

We begin by introducing several heat kernels, corresponding to a standard Brownian
motion either on the whole real line or on the positive half-line with either reflection
or elastic killing imposed at the origin. Recall first that the Gaussian heat kernel on R
with variance ε, which we denote by pε, is given by

pε(x) =
1√
2πε

e−
x2

2ε . (A.1)

The reflecting (or Neumann) heat kernel GRε on [0,∞) can then be defined as

GRε (x, y) := pε(x− y) + pε(x+ y). (A.2)

Finally, the elastic (or Robin) heat kernel GE,κε is given by [4, Appendix 1, Sect. 10]:

GE,κε (x, y) =
1√
2πε

[
e−(x−y)2/2ε + e−(x+y)2/2ε

]
− κ exp

(
κ(x+ y) +

κ2ε

2

)(
1− Erf

(
x+ y + κε√

2ε

))
=GRε (x, y)− gE,κε (x, y)

(A.3)
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where Erf is the error function

Erf(x) =
2√
π

∫ x

0
e−z

2
dz.

Lemma A.1. The two maps x 7→ GE,κε (x, y), for y ⩾ 0, and y 7→ GE,κε (x, y), for x ⩾ 0
belong to CE,κ0 (R) for all ε > 0.

Proof. This follows from direct computation of the derivatives.

The following lemma allows us to switch derivatives from y to x.

Lemma A.2. The derivatives of the elastic heat kernel GE,κε satisfy

(i) ∂yG
E,κ
ε (x, y) = −∂xGE,κε (x, y) + 2∂xpε(x+ y)− 2∂xg

E,κ
ε (x, y)

(ii) ∂yyG
E,κ
ε (x, y) = ∂xxG

E,κ
ε (x, y).

Proof. (i) We have

∂yG
E,κ
ε (x, y) = ∂yG

R
ε (x, y)− ∂yg

E,κ
ε (x, y)

∂xG
E,κ
ε (x, y) = ∂xG

R
ε (x, y)− ∂xg

E,κ
ε (x, y).

Note that by symmetry of gE,κε in x and y we have ∂yg
E,κ
ε (x, y) = ∂xg

E,κ
ε (x, y). Recall

that the reflecting heat kernel is given by GRε (x, y) = pε(x − y) + pε(x + y). Thus, we
get the relation

∂yG
R
ε (x, y) = −∂xGRε (x, y) + 2∂xpε(x+ y).

Considering the two equations for the elastic heat kernel we have

∂yG
E,κ
ε (x, y) = −∂xGE,κε (x, y) + 2∂xpε(x+ y)− 2∂xg

E,κ
ε (x, y).

(ii) First of all, it is readily seen that ∂yyGRε (x, y) = ∂xxG
R
ε (x, y). The same relation

holds for gE,κε , by symmetry in x and y. This gives the result.

We also need a bound on the elastic correction term gE,κε .

Lemma A.3. For all x, y ⩾ 0 and all ε > 0 we have gE,κε (x, y) ⩽ κ exp(−(x+ y)2/2ε).

Proof. By definition of the error function and a change of variable, we can estimate

gE,κε (x, y) = κeκ(x+y)+
κ2ε
2

(
1− Erf

(
x+ y + κε√

2ε

))
= 2κeκ(x+y)+

κ2ε
2

1√
2πε

∫ ∞

0
e−

(z+x+y)2

2ε e−
κ2ε
2 e−κ(z+x+y)dz

⩽ κ
2√
2πε

∫ ∞

0
e−

z2

2ε e−
(x+y)2

2ε dz ⩽ κe−
(x+y)2

2ε .
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B Appendix: Elastic Heat Kernel Mollification in H−1

Let ζ be a finite signed measure and let pε denote the Gaussian heat kernel. The
convolution ζ ∗ pε, given by ζ ∗ pε(x) =

∫
R pε(x − y)ζ(dy), is a function in C∞(R).

Moreover, the sequence (ζ ∗ pε) converges weakly to ζ as ε→ 0, i.e., for every bounded
and continuous function ϕ : R → R we have

∫
R ϕ(x)(ζ ∗ pε)(x)dx →

∫
R ϕ(x)ζ(dx) as

ε → 0. This smooth approximation is the basis of the kernel smoothing method but
instead of the Gaussian heat kernel we use the elastic heat kernel GE,κε . We define the
smoothed measure TE,κε ζ as

TE,κε ζ(x) = ⟨ζ,GE,κε (x, ·)⟩ =
∫ ∞

0
GE,κε (x, y)ζ(dy). (B.1)

The reason for this choice is that it is an element of the test function space CE,κ0 (R).
Furthermore, it is known in an explicit form which enables explicit computations such as
the switching of derivatives in Lemma A.2. The weak convergence still holds for TE,κε ζ
in the case we are interested in. Furthermore, we have the following property.

Proposition B.1 (Contraction). If f ∈ L2(0,∞), then ∥TE,κε f∥2 ⩽ ∥f∥2 for all ε > 0.

Proof. Note that GE,κε ⩾ 0 and apply the Cauchy-Schwarz inequality to get

|TE,κε f(x)|2 = |
∫ ∞

0
GE,κε (x, y)f(y)dy|2 = |

∫ ∞

0
(GE,κε (x, y))

1
2 (GE,κε (x, y))

1
2 f(y)dy|2

⩽
∫ ∞

0
GE,κε (x, y)dy ·

∫ ∞

0
GE,κε (x, y)f(y)2dy.

Integrating over x ⩾ 0 yields the result.

The space in which we perform the energy estimates is H−1, the dual space of H1.
The Sobolev space H1 is the space of L2-functions with weak derivative in L2 equipped
with the norm

∥f∥H1(0,∞) :=
(
∥f∥2L2(0,∞) + ∥∂xf∥2L2(0,∞)

)1/2
.

The space H−1 is its dual space given by the linear functionals on H1 with norm

∥ζ∥−1 := sup
∥ϕ∥H1(0,∞)=1

|ζ(ϕ)|.

The following proposition is adapted from [18]. It justifies that the empirical measures
and their limit points are indeed valued in H−1.

Proposition B.2. Let ζ be a finite signed measure. Then ζ ∈ H−1.

Another tool we need for the energy estimates is the notion of an anti-derivative
operator ∂−1

x , which we define as

∂−1
x f(x) = −

∫ ∞

x
f(y)dy (B.2)

for an integrable function f : R → R. Note that we then have ∂x∂−1
x f = f . We use this

operator in the following estimate for the H−1-norm.
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Lemma B.3. Let ζ ∈ H−1. Let the convolution operator TE,κε and the anti-derivative
∂−1
x be defined as above. Then there exists a constant C > 0 such that

∥ζ∥−1 ⩽ C lim inf
ε→0

(∥∥∂−1
x TE,κε ζ

∥∥
L2(0,∞)

+

∣∣∣∣∫ ∞

0
TE,κε ζ(y)dy

∣∣∣∣) . (B.3)

Proof. Take a function ϕ ∈ H1(0,∞). By integration by parts we have

⟨ζ, TE,κε ϕ⟩ = (TE,κε ζ, ϕ)L2(0,∞) =

∫ ∞

0
∂x∂

−1
x TE,κε ζ(x)ϕ(x)dx

= −∂−1
x TE,κε ζ(0)ϕ(0)−

∫ ∞

0
∂−1
x TE,κε ζ(x)∂xϕ(x)dx,

where the boundary term at infinity vanishes due to the decay ∂−1
x TE,κε ζ(x) → 0, as

x → ∞, and Morrey’s inequality [14], which gives ∥ϕ∥∞ < ∞. Furthermore, Morrey’s
inequality also gives ϕ(0) ⩽ C ∥ϕ∥H1 , for a universal constant C > 0, and hence

|ζ(ϕ)| ⩽ lim inf
ε→0

(
C|∂−1

x TE,κε ζ(0)| ∥ϕ∥H1 +
∥∥∂−1

x TE,κε ζ
∥∥
2
∥ϕ∥H1

)
.

Taking the supremum over all ϕ with ∥ϕ∥H1 = 1 yields the result.

References

[1] F. Ahmad, B.M. Hambly, and S. Ledger. “A stochastic partial differential equation
model for the pricing of mortgage backed securities”. In: Stoch. Proc. Applic. 128
(2018), pp. 3778–3806.

[2] E. Alòs and S. Bonaccorsi. “Stochastic Partial Differential Equations with Dirichlet
White-Noise Boundary Conditions”. In: Ann. I. H. Poincarè 38.2 (2002), pp. 125–
154.

[3] A.V. Balakrishnan. Applied Functional Analysis. Springer Verlag, 1976.

[4] A.N. Borodin and P. Salminen. Handbook of Brownian Motion - Facts and For-
mulae. Birkhäuser, 2002.

[5] K. Burdzy, Z.Q. Chen, and J. Sylvester. “The heat equation and reflected Brownian
motion in time-dependent domains”. In: The Annals of Probability 32.1B (2004),
pp. 775–804.

[6] K. Burdzy, Z.Q. Chen, and J. Sylvester. “The heat equation and reflected Brownian
motion in time-dependent domains. II Singularities of solutions”. In: Journal of
Functional Analysis 204 (2003), pp. 1–34.

[7] K. Burdzy, Z.Q. Chen, and J. Sylvester. “The heat equation and reflected Brownian
motion in time-dependent with insulated boundaries”. In: Journal of Mathematical
Analysis and Applications 294 (2004), pp. 581–595.

[8] K. Burdzy and D. Nualart. “Brownian motion reflected on Brownian motion”. In:
Probab. Theory Relat. Fields 122 (2002), pp. 471–493.

[9] N. Bush et al. “Stochastic evolution equations in portfolio credit modelling”. In:
SIAM. J. Financial Math. 2.1 (2011), pp. 627–664.

43



[10] I. Chueshov and B Schmalfuss. “Parabolic Stochastic Partial Differential Equations
with Dynamical Boundary Conditions”. In: Differential and Integral Equations 17
(2004), pp. 751–780.

[11] I. Chueshov and B Schmalfuss. “Qualitative Behavior of a Class of Stochastsic
Parabolic PDEs with Dynamical Boundary Conditions”. In: Discrete and Contin-
uous Dynamical Systems 18 (2007), pp. 315–338.

[12] Michele Coghi et al. “A McKean-Vlasov SDE and particle system with interaction
from reflecting boundaries”. In: SIAM J. Math. Anal. 54.2 (2022), pp. 2251–2294.

[13] G. DaPrato and J. Zabczyk. “Evolution Equations with White-Noise Boundary
Conditions”. In: Stochastics: An International Journal of Probability and Stochastic
Processes 42.3-4 (1993), pp. 167–182.

[14] L.C. Evans. Partial Differential Equations. Graduate Studies in mathematics.
American Mathematical Society, 2010.

[15] E. Fausti and A. Sojmark. “An interacting particle system for the front of an epi-
demic advancing through a susceptible population”. In: arXiv:2210.09286 (2022).

[16] K. Giesecke, K. Spiliopoulos, and R. Sowers. “Default clustering in large portfolios:
Typical events”. In: Ann. Appl. Probab. 23.1 (2013), pp. 348–385.

[17] M. Giles and C. Reisinger. “Stochastic finite differences and multilevel Monte Carlo
for a class of SPDEs in finance”. In: SIAM Journal on Financial Mathematics 3.1
(2012), pp. 572–592.

[18] B.M. Hambly and S. Ledger. “A Stochastic McKean-Vlasov Equation for Absorb-
ing Diffusions on the Half-Line”. In: Ann. Appl. Prob. 27 (2017), pp. 2698–2752.

[19] B.M. Hambly and A. Søjmark. “An SPDE model for systemic risk with endogenous
contagion”. In: Finance and Stochastic 23.3 (2019), pp. 535–594.

[20] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical Methods for Financial Mar-
kets. Springer Finance Textbooks. Springer Berlin, 2009.

[21] F. Knight. Essentials of Brownian Motion and Diffusion. Mathematical Surveys,
Vol. 19. Amer. Math. Soc. Providence, RI, 1981.

[22] P. Kotelenez. “A class of quasilinear stochastic partial differential equations of
McKean-Vlasov type with mass conservation”. In: Probability Theory and Related
Fields 102.2 (1995), pp. 159–188.

[23] N.V. Krylov. “A Wn
2 -theory of the Dirichlet problem for SPDEs in general smooth

domains”. In: Probab. Theory Relat. Fields 98.3 (1994), pp. 389–421.

[24] N.V. Krylov and S.V. Lototsky. “A Sobolev Space Theory of SPDEs with Constant
Coefficients on a Half Line”. In: SIAM. J. Math. Ana. 30 (1998), pp. 298–325.

[25] T.G. Kurtz and J. Xiong. “Particle representations for a class of nonlinear SPDEs”.
In: Stochastic Processes and their Applications 83.1 (1999), pp. 103–126.

[26] S. Ledger. “Sharp regularity near an absorbing boundary for solutions to second
order SPDEs in a half-line with constant coefficients”. In: Stoch PDE: Anal Comp
2.1 (2014), pp. 1–26.

44



[27] S. Ledger. “Skorokhod’s M1 topology for distribution-valued processes”. In: Elec-
tron. Commun. Probab. 21.1 (2016), pp. 1–11.

[28] S. Ledger and A. Sojmark. “Uniqueness for contagious McKean-Vlasov systems in
the weak feedback regime”. In: Bull. London Math. Soc. 52 (2020), pp. 448–463.

[29] B. Maslowski. “Stability of semilinear equations with boundary and pointwise
noise”. In: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22.1 (1995), pp. 55–93.

[30] D. Nualart and F. Viens. “Evolution Equation of a stochastic Semigroup with
White-Noise Drift”. In: Ann. Probab. 28.1 (2000), pp. 36–73.

[31] A. Pilipenko. An introduction to stochastic differential equations with reflection.
Universitätsverlag Potsdam, 2014.

[32] S. Psarakis and J. Panaretos. “On Some Bivariate Extensions of the Folded Normal
and the Folded t Distribution”. In: Journal of Applied Statistical Sciences 10.2
(2001), pp. 119–136.

[33] C. Reisinger and Z. Wang. “Analysis of Multi-Index Monte Carlo Estimators for
a Zakai SPDE”. In: J. Comp. Math. 36 (2018), pp. 202–236.

[34] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Vol. 3.
Grundlehren der mathematischen Wissenschaften. Springer Berlin, 1999.

[35] L.C.G. Rogers and D. Williams. Diffusions, Markov processes, and martingales.
Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge,
2000.

[36] A. Shirikyan. “Controllability implies mixing II. Convergence in the dual-Lipschitz
metric”. In: J. Eur. Math. Soc. (JEMS) 23.4 (2021), pp. 1381–1422.

[37] R.B. Sowers. “Multidimensional Reaction-Diffusion Equations with White Noise
Boundary Perturbations”. In: The Annals of Probability 22.4 (1994), pp. 2071–
2121.

[38] A. Sznitman. “Nonlinear reflecting diffusion process and the propagation of chaos
nd fluctuations assoicatied”. In: J. Funct. Anal. 56 (56), pp. 311–336.

[39] W. Whitt. Stochastic-Process Limits: An Introduction to Stochastic-Process Limits
and Their Application to Queues. Springer Series in Operations Research and
Financial Engineering. Springer, 2002.

This research has been supported by the EPSRC Centre for Doctoral Training in Math-
ematics of Random Systems: Analysis, Modelling and Simulation (EP/S023925/1).

45


	Introduction
	Summary of main results
	Making sense of the elastic boundary at the origin
	Literature on SPDEs with noisy boundary conditions

	Convergence to an SPDE with elastic boundary
	Functional convergence and well-posedness of the SPDE
	Reflecting and absorbing boundaries as limiting cases

	Probabilistic estimates for the particle system
	Convergence of the particle system
	Evolution equation for the empirical measures
	Convergence to the Limit SPDE
	Regularity of Limiting Solutions

	Uniqueness of the SPDE
	Weak Boundary Condition and Elastic Boundary Terms
	Proof of uniqueness for solutions to the SPDE

	Existence of a density and its integrability
	Ruling out a Dirac mass at the origin

	Extension to nonlinear interactions in the drift
	Absorption and Reflection as Limiting Cases
	Appendix: Properties of the Elastic Heat Kernel
	Appendix: Elastic Heat Kernel Mollification in H-1

