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Abstract
Take a prime power q, an integer n ≥ 2, and a coordinate subspace S ⊆ GF(q)n

over the Galois field GF(q). One can associate with S an n-partite n-uniform clutter
C, where every part has size q and there is a bijection between the vectors in S and
the members of C. In this paper, we determine when the clutter C is ideal, a property
developed in connection to Packing and Covering problems in the areas of Integer Pro-
gramming and Combinatorial Optimization. Interestingly, the characterization differs
depending on whether q is 2, 4, a higher power of 2, or otherwise. Each characteriza-
tion uses crucially that idealness is a minor-closed property: first the list of excluded
minors is identified, and only then is the global structure determined. A key insight is
that idealness of C depends solely on the underlying matroid of S. Our theorems also
extend from idealness to the stronger max-flow min-cut property. As a consequence,
we prove the Replication and τ = 2 Conjectures for this class of clutters.

Keywords Vector space over finite field · Multipartite uniform clutter · Ideal clutter ·
The max-flow min-cut property · Minor-closed property · Matroid

1 Introduction

Let V be a finite set of elements, and let C be a family of subsets of V calledmembers.
A cover is defined as a subset of V that intersects every member in C. Given weights
w ∈ Z

V+, a minimum weight cover can be computed by solving the integer program
min{w�x : M(C)x ≥ 1, x ∈ Z

V+}, where M(C) is the incidence matrix of C whose
columns are labeled by the elements and whose rows are the incidence vectors of the
members. The linear programming relaxation of this integer program is the problem
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of minimizing w�x over the associated set covering polyhedron given by Q(C) :=
{x ∈ R

V : M(C)x ≥ 1, x ≥ 0}. For the purpose of finding a minimum weight cover,
we may assume without loss of generality that no member properly contains another,
in which case we call C a clutter over ground set V [15]. A necessary and sufficient
condition for the relaxation to return an integer solution for any w ∈ Z

V+, thereby
giving a minimum weight cover, is that every extreme point of Q(C) is an integral
vector, in which case we say that C is ideal [12].

Every clutter whose members are pairwise disjoint is obviously ideal. Many non-
trivial examples of ideal clutters can be found in Combinatorial Optimization – let us
mention a few here: the clutter of st-paths of a graph [27], (inclusionwise) minimal st-
cuts of a graph [14], minimal T -joins of a graph [17], minimal T -cuts of a graph [17],
and odd circuits of a signed graph that has no odd-K5 minor [18]. Each of these
examples has as ground set the edge set of the associated graph. In general, it is co-NP-
complete to decidewhether a clutter is ideal [13], and understanding the various aspects
of the theory of ideal clutters is one of the long-standing open research directions in
the area: 11 of the 18 conjectures in the book Combinatorial Optimization. Packing
and Covering [10] are directly about general or special instances of ideal clutters.

Very little is known about the structure of all ideal clutters (see [10][Sects. 1.1, 1.2,
and 4]). As such, previous works focused on ideal clutters that arise from graphs and
combinatorial optimization problems. In this paper, we introduce a novel approach to
discover and understand ideal clutters, by studying the notion of multipartite uniform
clutters. Our approach leads to a geometric framework to generate ideal clutters,
thereby providing a new perspective for studying ideal clutters.

1.1 Multipartite uniform clutters and vector spaces

Multipartite uniform clutters A multipartite uniform clutter C is obtained as a
family of hyperedges of an n-partite hypergraph whose vertices are partitioned
into n nonempty disjoint subsets V1, . . . , Vn for some n ≥ 1, and every hyper-
edge intersects each of the subsets exactly once. Then all members of C have an
equal size n, and therefore, C is n-uniform (or simply uniform) and a clutter. In
particular, in a multipartite uniform clutter, the size of a member is equal to the
number of partitions. For example, Q6, the clutter of triangles in K4 given by
Q6 := {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}, is a 3-partite 3-uniform clutter over
ground set {1, . . . , 6} partitioned into {1, 2} ∪ {3, 4} ∪ {5, 6}. The class of multipar-
tite uniform clutters looks restricted, but in fact, it is general enough to understand
the entire class of ideal clutters. More precisely, it was shown in [4] that if we had
a characterization of when a multipartite uniform clutter is ideal, then this would in
turn completely characterize ideal clutters. This is because any given clutter can be
“locally embedded” in a multipartite uniform clutter [4]1. This connection allows us
to take a different angle on understanding idealness.

Vector spaces overGF(q) Thanks to their special structure, onemay take advantage
of a geometric framework for constructing multipartite uniform clutters. To explain

1 We discuss related ideas in Sect. 6.1.
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it, take a prime power q and GF(q), the Galois field of order q. For convention, we
denote by 0 and 1 the additive and multiplicative identities of GF(q), respectively.
When q is a power of a prime number p, we call p the characteristic of GF(q).
GF(q)n for some n ≥ 1 is the set of n-dimensional vectors whose coordinates are
in GF(q) and is called a coordinate space. We say that any vector subspace of the
coordinate space over GF(q) is a coordinate subspace. Throughout the paper, we
refer to a coordinate subspace over GF(q) as a vector space over GF(q) or simply as
a coordinate subspace. For any vector space S ⊆ GF(q)n over GF(q), there exists a
matrix A whose entries are in GF(q) such that S = {x ∈ GF(q)n : Ax = 0} where 0
denotes the vector of all zeros of appropriate dimension and all equalities in the system
Ax = 0 are over GF(q). Given S, we construct a multipartite uniform clutter in the
following way. Taking n disjoint copies V1, . . . , Vn of GF(q), we can view GF(q)n

as V1×· · ·×Vn so that S is a subset of V1×· · ·×Vn . Themultipartite uniform clutter
of S is the clutter over ground set V1 ∪ · · · ∪ Vn defined by

mult(S) := {{x1, . . . , xn} : (x1, . . . , xn) ∈ S, xi ∈ Vi for i ∈ [n]} .

Here, the size of a member equals the number of partitions n, and mult(S) is an n-
partite n-uniform clutter. For example, R1,1 := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
is a vector space over GF(2), and R1,1 is isomorphic to {(1, 3, 5), (1, 4, 6),
(2, 3, 6), (2, 4, 5)} ⊆ {1, 2} × {3, 4} × {5, 6}.2 So, mult(R1,1) is isomorphic3 to Q6.
There is a one-to-one correspondence between the members of mult(S) and the vec-
tors in S. Although we focus on vector spaces over a finite field, we remark that the
definition of multipartite uniform clutters extends to any subset of the direct product
of finite groups. We discuss this further in Sect. 2.1.

Binary spaces and clutter minors Abdi, Cornuéjols, Guric̆anová, and Lee [4] con-
sidered vector spaces over GF(2), often referred to as binary spaces, and provided
a characterization of when their multipartite uniform clutters are ideal. For example,
mult(R1,1) = Q6 is ideal [34]. The characterization is in terms of clutter minors, or
simply minors. Given a clutter C over ground set V and disjoint subsets I , J of V ,
we define C \ I/J as the clutter over V − (I ∪ J ) that consists of the minimal sets
of {C − J : C ∈ C, C ∩ I = ∅}. Here, we say that C \ I/J is the minor of clutter C
obtained after deleting I and contracting J . We call it a proper minor if I ∪ J 	= ∅.
It is well-known that if a clutter is ideal, then so is every minor [34].

Theorem 1.1 ([4]). Let S be a binary space. Then mult(S) is ideal if, and only if,
mult(S) has none of L7, O5, b(O5) as a minor.

Here, L7, O5, b(O5) are some non-ideal clutters over at most 10 elements, which we
define and explain in detail in Appendix A. The proof of Theorem 1.1 is based on
the connection between binary spaces and binary matroids, by which we can apply
Seymour’s Theorem [32] on the sums of circuits property, introduced in [33].

2 This holds because there is a natural bijection between {0, 1}3 and {1, 2} × {3, 4} × {5, 6}.
3 Given clutters C,C′, we say that C is isomorphic to C′ and write C ∼= C′ if C′ can be obtained from C
after relabeling the elements of C.
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1.2 Summary of our results

Results I Motivated by Theorem 1.1 for binary spaces, we consider the following
question. Given a vector space S over an arbitrary finite field GF(q), when is mult(S)

is ideal? In this paper, we completely answer this question. We divide our analysis
into three cases. First, we consider prime powers that are odd, secondly the q = 4
case, and thirdly powers of 2 greater than 4. What follows is a summary of our main
results for the three cases.

For our first result, we need two more definitions. The dimension of vector space S
is defined as the maximum number of linearly independent vectors in S over GF(q).
Moreover, denote by �3 the clutter over ground set {1, 2, 3} whose members are
{1, 2}, {2, 3}, {3, 1}. Notice that �3 is the clutter of edges in a triangle and that �3 is
non-ideal because (1/2, 1/2, 1/2) is a fractional extreme point of the associated set
covering polyhedron Q(�3).

Theorem 1.2 (proved in Sect. 5). Take an odd prime power q, and let S be a vector
space over GF(q). Then the following statements are equivalent:

i. mult(S) is ideal,
ii. S has the form S = S1 × · · · × Sk where each Si has dimension at most 1,
iii. mult(S) contains no �3 as a minor.

The case of GF(4) allows more general structures in the vector space. We say that
row vectors v1, . . . , vr with r ≥ 2 form a sunflower if, after permuting the coordinates,
the vectors are of the form

v1

v2

...

vr

⎡
⎢⎢⎣

u0 u1 0 · · · 0
u0 0 u2 · · · 0
...

...
...

. . .
...

u0 0 0 · · · ur

⎤
⎥⎥⎦

where u0, u1 . . . , ur are some row vectors with nonzero entries and 0 denotes a row
vector of all zeros of appropriate length.

Theorem 1.3 (proved in Sect. 7.1). Let S be a vector space over GF(4). Then the
following statements are equivalent:

i. mult(S) is ideal,
ii. S has the form S = S1 × · · · × Sk where each Si has dimension at most 1 or

admits a sunflower basis,
iii. mult(S) contains no �3 as a minor.

Lastly, for the case when q is a power of 2 greater than 4, we define another small
non-ideal clutter. C2

5 is the clutter over ground set {1, . . . , 5} whose members are
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}. C2

5 is the clutter of edges in a cycle of length 5, and
notice that C2

5 is non-ideal because (1/2, 1/2, 1/2, 1/2, 1/2) is a fractional extreme
point of the associated polyhedron Q(C2

5 ).

Theorem 1.4 (proved in Sect. 7.1). Let q be a power of 2 such that q > 4, and let S
be a vector space over GF(q). Then the following statements are equivalent:
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i. mult(S) is ideal,
ii. S has the form S = S1 × · · · × Sk where each Si has dimension at most 1,
iii. mult(S) contains no C2

5 as a minor.

Theorems 1.2 to 1.4 lead to the conclusion that when q is a prime power other than
2, the class of coordinate subspaces whose multipartite uniform clutter is ideal has
restricted structures. Nevertheless, the main takeaway of this paper is that we propose
a novel framework to study and generate idealness by multipartite uniform clutters
and complete the analysis of the natural class of multipartite uniform clutters obtained
from coordinate subspaces. Our analysis is based on an interesting interplay between
the clutter and its underlying matroid.

Results II We take one step further to understand the max-flow min-cut (MFMC)
property [34] for the multipartite uniform clutters from coordinate subspaces.
While the idealness of a clutter corresponds to the integrality of the associated set
covering polyhedron, the MFMC property is the analogue of total dual integral-
ity [16, 19]. To formalize this, given a clutter C over ground set V with weights
w ∈ Z

V+, we consider τ(C, w) := min{w�x : M(C)x ≥ 1, x ∈ Z
V+} and

ν(C, w) := max
{
1�y : M(C)�y ≤ w, y ∈ Z

C+
}
. Note that τ(C, w) computes the

minimum weight of a cover of C, whereas ν(C, w) computes the maximum size of a
packing of members of C such that each element v appears in at most wv members
in the packing. Here, we say that C has the MFMC property if τ(C, w) = ν(C, w)

holds for every w ∈ Z
V+. Hence, the MFMC property of C is equivalent to the total

dual integrality of the linear system M(C)x ≥ 1, x ≥ 0, and therefore it follows that
the MFMC property implies idealness. The following result provides a complete char-
acterization of the MFMC property for the multipartite uniform clutters from vector
spaces.

Theorem 1.5 (proved in Sect. 5). Take any prime power q, and let S be a vector space
over GF(q). Then the following statements are equivalent:

i. mult(S) has the max-flow min-cut property,
ii. S has the form S = S1 × · · · × Sk where each Si has dimension at most 1,
iii. mult(S) has none of �3, Q6 as a minor.

Here, �3 does not have the MFMC property as it is non-ideal. While Q6 is ideal, it
does not have the MFMC property because τ(Q6, 1) = 2 > 1 = ν(Q6, 1).

As a corollary, idealness and the MFMC property coincide when q is an odd prime
power or q is a power of 2 greater than 4. In contrast, there is an example of a vector
space over GF(4) whose multipartite uniform clutter is ideal but does not have the
MFMC property. We demonstrate this example in Sect. 8. Theorem 1.5 also has a
consequence on the Replication Conjecture, proposed by Conforti and Cornuéjols [9].
In particular, the Replication Conjecture is a set covering analogue of the Duplication
Lemma for perfect graphs [25].

Corollary 1.6 (proved in Sect. 8). The Replication Conjecture holds true for the class
of multipartite uniform clutters from coordinate subspaces.
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Another corollary of Theorem 1.5 is on the τ = 2Conjecture, proposed byCornuéjols,
Guenin, and Margot [11]. They showed that if the τ = 2 Conjecture holds, then so
does the Replication Conjecture [11], providing a way of tackling the Replication
Conjecture.

Corollary 1.7 (proved in Sect. 8). The τ = 2 Conjecture holds true for the class of
multipartite uniform clutters from coordinate subspaces.

We will formally state the Replication Conjecture and the τ = 2 Conjecture along
with the proofs of Corollaries 1.6 and 1.7 in Sect. 8.

1.3 Organizations of the paper

This paper provides a complete characterization of when the multipartite uniform
clutter of a coordinate subspace is ideal and when it has the MFMC property. Recall
that the proof for the binary space case (Theorem 1.1) is based on understanding
connections between binary spaces and binarymatroids. It turns out that extending this
result to the case of vector spaces overGF(q) for a general prime power q also requires
characterizing relevant matroids that are representable over GF(q). The proofs of our
main results are divided into two steps. First, we characterize the underlying matroid
of a vector space after certain minors are forbidden from its multipartite uniform
clutter. Second, based on the theory of ideal clutters, we argue that the corresponding
multipartite uniform clutter is ideal or have the max-flow min-cut property. Although
we presented and categorized our results according to different cases of prime powers
in Sect. 1.2, we organize and structure the paper based on the proof steps.

The first proof step that analyzes the underlying matroid is covered in Sects. 3 and
4. In Sect. 3, we provide structural characterizations for the underlying matroid of
a vector space whose associated multipartite uniform clutters do not have �3 as a
minor. In Sect. 4, we study how such matroid structures shape the geometry of the
vector space, providing structural characterizations of the vector space.

The second step for proving idealness is given in Sects. 5 to 7. In Sect. 5, we prove
Theorem 1.5 which characterizes idealness for an odd prime power q. In fact, Theo-
rem 1.2 for the MFMC property of the multipartite uniform clutter of a vector space
overGF(q) for any prime power q sharesmuch of the proof with Theorem 1.5. Hence,
we prove the two theorems in Sect. 5. For the idealness under the case of powers of 2,
we need more techniques. In Sect. 6, we develop some tools for understanding vector
spaces generated by a sunflower basis that appear for the case of powers of 2. We
divide our analysis of the case of powers of 2 into the q = 4 case and the case of
q = 2k for k ≥ 3. The q = 4 case, Theorem 1.3, is covered in Sect. 7.1. The other
case, Theorem 1.4, is presented in Sect. 7.2.

We conclude the paper by proving Corollaries 1.6 and 1.7 on the Replication Con-
jecture and the τ = 2 Conjecture, respectively, for the class of multipartite clutters
from coordinate subspaces in Sect. 8. Section2 provides some basics of multipartite
uniform clutters and matroid theory. More advanced concepts in matroid theory and
the theory of ideal clutters are defined and explained whenever necessary.
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2 Preliminaries

2.1 Basics of multipartite uniform clutters

In the introduction, we explained how to construct multipartite uniform clutters from
vector spaces. In this section, we generalize this framework and discuss some basic
properties of multipartite uniform clutters.

Multipartite uniform clutters from set systems Let V1, . . . , Vn be n nonempty sets,
and take a subset S of V1 × · · · × Vn . We would take Vi = GF(q) for i ∈ [n] for a
vector space over GF(q), but we may take arbitrary finite sets that do not necessarily
have the same size. Then the multipartite uniform clutter of S, denoted mult(S), is
defined as the clutter over ground set V1 ∪ · · · ∪ Vn whose members are {x1, . . . , xn}
for (x1, . . . , xn) ∈ S. Here, S need not be a vector space. When each Vi has size two,
mult(S) for S ⊆ V1×· · ·×Vn coincideswith the cuboid of S, denoted cuboid(S) [4, 5].
In that case, V1 ×· · ·×Vn is given by {0, 1}n , so cuboids correspond to vertex subsets
of the n-dimensional 0,1 hypercube, and this is how the name cuboid is coined. In
particular, for a binary space S, we have thatmult(S) = cuboid(S). Hence,multipartite
uniform clutters generalize cuboids.

Remark 2.1 Let C be a clutter, and let V1, . . . , Vn be n non-empty sets. Then the
following statements are equivalent:

(i) C is isomorphic to mult(S) for some S ⊆ V1 × · · · × Vn ,
(ii) the ground set of C can be partitioned into V1, . . . , Vn so that for every C ∈ C,

|C ∩ Vi | = 1 for all i ∈ [n].
Remark 2.1 provides a different yet equivalent definition of multipartite uniform clut-
ters. Now that we have seen Remark 2.1, we know that the incidence matrix of a
multipartite uniform clutter can be partitioned. To bemore precise, notice that if a mul-
tipartite uniform clutter’s ground set is partitioned into n non-empty parts V1, . . . , Vn ,
then the columns of the member-element incidence matrix M(C) of C can be parti-
tioned into n groups, corresponding to V1, . . . , Vn , so that a row has precisely one
nonzero entry in each group. For instance,

M(Q6) =

⎡
⎢⎢⎣

0 1 0 1 0 1

(0,0,0) 1 1 1
(0,1,1) 1 1 1
(1,0,1) 1 1 1
(1,1,0) 1 1 1

⎤
⎥⎥⎦.

As mentioned in Sect. 1, one can also view a multipartite uniform clutter with parts
V1, . . . , Vn as the clutter of hyperedges of an n-partite n-uniform hypergraph whose
vertex set is partitioned into V1 ∪ · · · ∪ Vn .

Isomorphism We may define an isomorphism between two vector spaces by tak-
ing a bijection. Moreover, an isomorphism between two vector spaces leads to an
isomorphism between their multipartite uniform clutters.
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Remark 2.2 Take an integer n ≥ 1 and a prime power q, and let S ⊆ GF(q)n be a
vector space over GF(q). Let fi : GF(q) → GF(q) be a bijection for i ∈ [n], and
g : GF(q)n → GF(q)n be the bijection defined as

g(x) := ( f1(x1), . . . , fn(xn)) , x ∈ GF(q)n .

Then S is isomorphic to g(S), and moreover, mult(S) is isomorphic to mult (g(S)).

Projection and restriction of set systems Take an integer n ≥ 1. Let V1, . . . , Vn be n
nonempty sets, and let S be a subset of V1 × · · · × Vn . Given J ⊆ [n] and x ∈ S, x/J
denote the subvector of x that consists of the coordinates not in J . Given J ⊆ [n], we
refer to the operation of taking {x/J : x ∈ S} from S as dropping the coordinates in
J from S. Here, any set obtained after dropping some set J of coordinates from S is
referred as a projection of S. Next, we say that the points of a set S ⊆ V1 × · · · × Vn
agree on a coordinate i ∈ [n] if there exists v ∈ Vi such that xi = v for every x ∈ S.
Let Ui be a nonempty subset of Vi for i ∈ [n]. Here, Ui need not be a proper subset
of Vi . Throughout the paper, we consider the operation of taking S ∩ (U1 × · · · ×Un)

and dropping the coordinates where the points of S ∩ (U1 × · · · × Un) agree on. We
call the operation restricting S to U1 × · · · ×Un . We will refer to a set obtained from
S after restricting S to U1 × · · · × Un for some U1, . . . ,Un such that Ui ⊆ Vi for
i ∈ [d] as a restriction of S.
Lemma 2.3 Take an integer n ≥ 1. Let V1, . . . , Vn be n nonempty sets, and let S ⊆
V1 × · · · × Vn. If S′ be a set that is either a projection or a restriction of S, then
mult(S′) is a minor of mult(S).

Proof Suppose first that S′ is a projection, say for some J ⊆ [n], S′ is obtained from
S after dropping the coordinates of J . Then mult(S′) is the minor of mult(S) obtained
after contracting the elements in Vj for j ∈ J .

Suppose next that S′ is a restriction. Then S′ is obtained after restricting S to
U1 × · · · × Un for some U1, . . . ,Un such that Ui ⊆ Vi for i ∈ [n]. Then mult(S′) is
the minor of mult(S) obtained after deleting the elements in (Vi \Ui ) for i ∈ [n] and
contracting the elements in Vj for j ∈ J where J is the set of coordinates where the
points in S ∩ (U1 × · · · ×Un) agree on. ��

2.2 Matroid theory for vector spaces

As mentioned in the introduction, understanding connections between vector spaces
over GF(q) and matroids representable over GF(q) is the key to derive our main
results. In this section, we provide some basic matroid theory concepts and tools.

Matroid basics A matroid is defined over some ground set E and some family I of
subsets of E , called independent sets, that satisfy the following properties:

(1) ∅ ∈ I.
(2) Every subset of an independent set is an independent set, i.e., B ∈ I if A ∈ I and

B ⊆ A.
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(3) If A, B ∈ I and |B| < |A|, then there exists some a ∈ A\B such that B∪{a} ∈ I.
For example, given a matrix over a field F , one can construct a matroid over the set
of columns of the matrix by taking any collection of linearly independent columns as
an independent set.

A basis of a matroid is a maximal independent set. As one would expect, all bases
in a matroid have the same number of elements, and this number is referred to as the
(matroid) rank. A dependent set of a matroid is a subset of its ground set that is not
an independent set, and a circuit is a (inclusion-wise) minimal dependent set.

Graphic matroids (also called cycle matroids) are another common class of
matroids. Let G be a graph whose edge set is E . The graphic matroid of G, denoted
Matroid(G), is defined over ground set E , and its independent sets are (the edge sets
of) the forests in G. Note that a circuit of Matroid(G) is a cycle in G.

Matroids from vector spaces Take a prime power q, and consider the Galois field
GF(q) of order q, with additive and multiplicative identities denoted as 0 and 1,
respectively. Take an integer n ≥ 1, and let S ⊆ GF(q)n be a vector space over
GF(q). Let A be a matrix over n columns with entries in GF(q) such that S = {x ∈
GF(q)n : Ax = 0}, where the equality in the linear system Ax = 0 holds overGF(q).
The underlying matroid of S, denoted Matroid(S), is the matroid represented by A
over GF(q). Recall that the dimension of vector space S is defined as the maximum
number of linearly independent vectors in S over GF(q). Note that

the dimension of S = n − rank(A) = n − rank (Matroid(S))

where rank(A) is the matrix rank of A over GF(q) and rank (Matroid(S)) is the
matroid rank of Matroid(S) over GF(q). Although the representation matrix A is not
unique for vector space S, our terminology suggests that Matroid(S) is. The remark
below justifies this.

Remark 2.4 Take a prime power q, and let S be a vector space over GF(q). Then
the clutter of circuits of Matroid(S) is the set of inclusion-wise minimal members of
{support(x) : x ∈ S, x 	= 0} where support(x) = {i ∈ [n] : xi 	= 0} denotes the
support of a vector x ∈ GF(q)n .

Given vectors v1, . . . , vr ∈ GF(q)n , let 〈v1, . . . , vr 〉 :={∑
i∈[r ] λivi : λi ∈ GF(q) for i ∈ [r ]}, where addition is done over GF(q). The

set 〈v1, . . . , vr 〉, which we call the span of the vectors, is a vector space over GF(q).
A basis of a vector space S is an inclusion-wise minimal set of vectors whose span is
S. In this section, we characterize in terms of the underlying matroid when a vector
space is spanned by a set of vectors of disjoint supports, or a set of vectors that form
a sunflower.

Matroid minors Matroid deletions and contractions in Matroid(S) correspond to
restrictions and projections in S. LetM be a matroid over ground set E . The matroid
obtained after deleting a subset I of E is defined as the matroid over ground set E \ I
whose independent sets are the independent sets ofM contained in E \ I , and we use
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notationM \ I . The matroid obtained after contracting a subset J of E is defined as
the matroid over ground set E \ J and denoted as M/J , and a set U ⊆ E \ J is an
independent set ofM/J ifU ∪ J ′ is an independent set ofM for some subset J ′ of J .
Here, we call a matroid obtained from M after a series of deletions and contractions
a matroid minor of M. For a matroid M and disjoint subsets I , J of the ground set
ofM, we denote byM \ I/J the matroid minor ofM obtained after deleting I and
contracting J . Let C(M) denote the clutter of circuits of M.

Lemma 2.5 Take an integer n ≥ 1 and a prime power q, and let S ⊆ GF(q)n be
a vector space over GF(q). Then Matroid(S) \ I/J for some disjoint I , J ⊆ [n] is
precisely Matroid(S′) where S′ ⊆ GF(q)n−|I |−|J | is the vector space over GF(q)

obtained from S ∩ {x ∈ GF(q)n : xi = 0 ∀i ∈ I } after dropping coordinates in
I ∪ J .

Proof It is clear that S′ is a vector space overGF(q), soMatroid(S′) iswell-defined. To
show that Matroid(S)\I/J = Matroid(S′), we will argue that C (Matroid(S)\I/J ) =
C (Matroid(S′)

)
.

If C (Matroid(S) \ I/J ) = ∅, then every C ∈ C (Matroid(S)) intersects I , which
means that support(x) intersects I for every x ∈ S−{0}. This implies that S′ = {0}, in
which case C (Matroid(S′)

) = ∅. Thus wemay assume that C (Matroid(S)\I/J ) 	= ∅.
Let C1 ∈ C (Matroid(S) \ I/J ). Then there exists C ∈ C (Matroid(S)) such that

C ∩ I = ∅ andC1 = C − J . ThenC = support(x) for some x ∈ S by the definition of
Matroid(S) (see alsoRemark 2.4). AsC∩ I = ∅, it follows that xi = 0 for i ∈ I , which
implies that there exists x ′ ∈ S′−{0} such that support(x ′) = support(x)− J = C− J .
So, there exists C2 ∈ C (Matroid(S′)

)
such that C2 ⊆ C1. Therefore, every member

of C (Matroid(S)\I/J ) contains a member of C (Matroid(S′)
)
.

LetC2 ∈ C (Matroid(S′)
)
. ThenC2 = support(x ′) for some x ′ ∈ S′ byRemark 2.4.

This implies that there is some x ∈ S such that xi = 0 for i ∈ I and support(x)− J =
support(x ′). Since support(x) contains a circuit ofMatroid(S) and support(x)∩ I = ∅,
it follows that C2 = support(x ′) contains a circuit of Matroid(S) \ I/J . Therefore,
we deduce that C (Matroid(S)\I/J ) = C (Matroid(S′)

)
, as required. ��

Matroiddirect sumandgraphblockdecomposition ConsidermatroidsM1, . . . ,M�

over pairwise disjoint ground sets E1, . . . , E� and independent set families I1, . . . , I�,
respectively. The direct sum ofM1, . . . ,M�, denotedM1⊕· · ·⊕M�, is the matroid
over ground set E1∪· · ·∪E� whose independent set family is {I1∪· · ·∪I� : Ii ∈ Ii , i ∈
[�]}.We shall need the following basic remark about the direct sumofmatroids. For the
remark,we need to recall twonotions. First, a block of a graphG is anymaximal vertex-
induced subgraph ofG that is 2-vertex-connected. A bridge is a block that consists of a
single edge, which is trivially 2-vertex-connected. Finally, we say that a vector space S
is the product of vector spaces S1 and S2 if S = {(x, y) : x ∈ S1, y ∈ S2} =: S1×S2.

Lemma 2.6 The following statements hold:

1. For a graph G, let G1, . . . ,Gk be the blocks of G. Then Matroid(G) =
Matroid(G1) ⊕ · · · ⊕ Matroid(Gk).
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2. Take a prime power q and GF(q)-representable matroids M1,M2 over disjoint
ground sets. If A1 and A2 are GF(q)-representations ofM1 andM2, respectively,

then M1 ⊕ M2 can be represented by
(

A1 0
0 A2

)
.

3. Take a prime power q and a vector space S over GF(q). Then S = S1 × S2 for
some vector spaces S1, S2 over GF(q) if and only ifMatroid(S) = Matroid(S1)⊕
Matroid(S2).

Proof (1), (2): See Chapters 4.1 and 4.2 of [28]. (3) follows immediately from (2). ��

3 Matroid structures after forbidding non-ideal minors

In this section, we provide structural characterizations for the underlying matroid of
a vector space over GF(q). We start by proving a key tool, given in Lemma 3.1, that
helps us to analyze the structure of the underlying matroid after excluding �3 from
the multipartite uniform clutter. Using this tool, in Sect. 3.1, we study the case where
q is a power of 2 greater than 2. In Sect. 3.2, we consider the case when q is an odd
prime power.

Let q be a power of a prime number p. Recall that we denote by 0 and 1 the additive
and multiplicative identities of GF(q). Then there must exist an integer � such that
a + a + · · · + a (� times) equals 0 for all a ∈ GF(q), and in fact, the smallest of such
integers is p. Here, p is often referred to as the characteristic of GF(q). Throughout
this paper, we denote by −v and v−1 the additive and multiplicative inverses of v for
each v ∈ GF(q) − {0}.
Lemma 3.1 Take an integer n ≥ 3 and n non-empty sets V1, . . . , Vn, and let S ⊆
V1 × · · · × Vn. If mult(S) contains no �3 as a minor, then for any distinct a, b, c ∈ S
and distinct i, j, k ∈ [n] such that

ai = bi 	= ci , b j = c j 	= a j , ck = ak 	= bk, (�)

there exists d ∈ S − {a, b, c} that satisfies the following:
(1) d� ∈ {a�, b�, c�} for all � ∈ [n], and
(2) at least two of di = ci , d j = a j , and dk = bk hold.

Proof Let V denote the ground set of mult(S). We may assume that there exist three
distinct points a, b, c ∈ S satisfying (�) for some distinct i, j, k ∈ [n]. Take subsets
I , J of [n] as follows:

I = V − {a�, b�, c� : � ∈ [n]} and J = {a�, b�, c� : � ∈ [n] − {i, j, k}}.

We will show that if d ∈ S − {a, b, c} satisfying (1) and (2) does not exsit, then
mult(S) \ I/J contains �3 as a minor.

Notice that mult(S) \ I is mult(R0) where R0 = {v ∈ S : v� ∈ {a�, b�, c�} for
� ∈ [n]} and that each member of mult(R0) is {v1, . . . , vn} for some v ∈ S. Further-
more, each v ∈ R0 satisfies {v1, . . . , vn} − J = {vi , v j , vk}, so {v1, . . . , vn} − J
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remains minimal after contracting J from mult(R0). This in turn implies that
mult(R0)/J is equal tomult(R)where R := {(vi , v j , vk) : v ∈ S, v� ∈ {a�, b�, c�} for
� ∈ [n]} . So, mult(S)\I/J = mult(R). By definition, R contains points (ai , a j , ak),

(bi , b j , bk), and (ci , c j , ck) that are obtained from a, b, c. Suppose that there is no
d ∈ S−{a, b, c} that satisfies (1) and (2). Let d ∈ S with d� ∈ {a�, b�, c�} for � ∈ [n].
Since d satisfies (1), d does not satisfy (2). Then (di , d j , dk) can be (ci , b j , ck),
(ai , a j , ck), (ai , b j , bk), or (ai , b j , ck). To argue that mult(R) contains�3 as a minor,
let us look at the incidence matrix of mult(R):

⎛
⎜⎜⎜⎝

ai
︷︸︸︷
ci

︷︸︸︷
aj b j ck

︷︸︸︷
bk

a 1 0 1 0 1 0
b 1 0 0 1 0 1
c 0 1 0 1 1 0

...

⎞
⎟⎟⎟⎠.

Observe that a row ofM(mult(R)) other than the ones for a, b, c, if any, has at least two
ones in the columns for ai , b j , ck . So, after contracting the columns for ci , a j , bk and
removing non-minimal rows, the resulting incidence matrix is precisely M(�3). This
implies that we obtain �3 after contracting ci , a j , bk from mult(R), a contradiction
to the assumption that mult(S) has no �3 minor. ��

3.1 Excludingı3 for the case of characteristic 2

In this section, we prove Theorem 3.6 which provides an important tool for character-
izing the idealness of mult(S) where S is a vector space over GF(2k) for k ≥ 2. To
be more specific, Theorem 3.6 characterizes the structure of the underlying matroid
Matroid(S) when mult(S) has no �3 as a minor.

Lemma 3.2 Let q be a power of 2, and let S ⊆ GF(q)4 be a vector space over GF(q).
IfMatroid(S) is isomorphic4 to U2,4, then mult(S) has �3 as a minor.

Proof Suppose for a contradiction that mult(S) has no �3 as a minor. Since the rank
of U2,4 is 2, the dimension of S is 4 − −2 = 2. Let v1, v2 ∈ GF(q)4 be two
generators of S. By elementary row operations, we may assume that (v11, v

1
2) = (1, 0)

and (v21, v
2
2) = (0, 1). Then

v1

v2

[
1 0 x y
0 1 z w

]

where x, y, z, w ∈ GF(q). Each circuit of U2,4 has size 3, so x, y, z, w 	= 0. Then
a := (−x−1z)v1, b := v2, c := a + b are vectors in S. Let us consider

a
b
c

⎡
⎣

−x−1z 0 −z −x−1yz
0 1 z w

−x−1z 1 0 −x−1yz + w

⎤
⎦

4 MatroidsM,M′ are isomorphic ifM′ can be obtained fromM after relabeling the elements of M.
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Fig. 1 K4/e

and observe that a1 = c1 	= b1, b2 = c2 	= a2. We also have that a3 = b3 	= c3,
because q being a power of 2 implies z + z = 0 and z = −z. By Lemma 3.1, there
is a vector d ∈ GF(q)4 that satisfies at least two of d1 = b1 = 0, d2 = a2 = 0,
d3 = c3 = 0 and satisfies d4 ∈ {−x−1yz, w,−x−1yz + w}. But then the support
of d has size at most 2. Since every circuit of U2,4 has size 3, d = 0, and therefore,
d4 = −x−1yz + w = 0. This implies the support of c has size 2, a contradiction. ��

Graph minors We say that a graph H is a graph minor of a graph G if H can be
obtained from G after a series of edge deletions, edge contractions, and deletions of
isolated vertices. If G is connected, then H is a graph minor of G if and only if for
some disjoint subsets E1, E2 of E(G), we can obtain H from G by deleting E1 and
contracting E2. It is well-known that if H is a graph minor of G, then Matroid(H) is
a matroid minor of Matroid(G) (see Chapter 3.2 in [28]).

K4 is the complete graph on 4 vertices, and we denote by K4/e what is obtained
from K4 after contracting an edge from it (see Fig. 1).

Lemma 3.3 Let q = 2k for some k ≥ 2, and let S ⊆ GF(q)5 be a vector space over
GF(q). If Matroid(S) is isomorphic to Matroid(K4/e), then mult(S) has �3 as a
minor.

Proof In Fig. 1, we can see that the fundamental cycles of K4/e with respect to span-
ning tree {4, 5} are {1, 4, 5}, {2, 4}, {3, 5}. Pick vectors v1, v2, v3 ∈ S whose supports
are the three cycles. Notice that these vectors are linearly independent. Since the
dimension of S is 5 − 2 = 3, vectors v1, v2, v3 generate S. After elementary row
operations, S is generated by the 3 vectors v1, v2, v3 of the following forms:

v1

v2

v3

⎡
⎣
1 0 0 x y
0 1 0 z 0
0 0 t 0 w

⎤
⎦

where t, x, y, z, w 	= 0. Since q > 2, wemay assume that z andw are distinct nonzero
elements in GF(q). Now consider the restriction S′ of S defined as follows:

S′ := S ∩
{
x ∈ GF(q)5 : x1 ∈ {0, z, w}, x2 ∈ {0, x}, x3 ∈ {0, t y}

}
.
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Wewill show that mult(S′) has�3 as aminor. Then as S′ is a restriction of S, it follows
from Lemma 2.3 that mult(S) also has �3 as a minor. Notice that

S′ =
{

3∑
i=1

λiv
i : λ1 ∈ {0, z, w}, λ2 ∈ {0, x}, λ3 ∈ {0, y}

}
.

Consider three distinct points a := zv1, b := wv1, c := xv2 + yv3 in S′:

a
b
c

⎡
⎣

z 0 0 zx zy
w 0 0 wx wy
0 x ty zx wy

⎤
⎦

As z 	= w, we have that c4 = a4 	= b4 and b5 = c5 	= a5. We also have a3 = b3 	= c3,
because t y 	= 0. Suppose for a contradiction that mult(S′) has no �3 as a minor. By
Lemma 3.1, there is d ∈ S′ − {a, b, c} that satisfies
(1) d1 ∈ {0, z, w}, d2 ∈ {0, x}, d3 ∈ {0, t y}, d4 ∈ {zx, wx}, d5 ∈ {zy, wy}, and
(2) at least two of d3 = t y, d4 = wx , d5 = zy hold.

The points of S′ − {a, b, c} are the following:

S′ − {a, b, c} =
⎧⎨
⎩

(0, 0, 0, 0, 0), (0, x, 0, zx, 0), (0, 0, t y, 0, wy),
(z, x, 0, 0, zy), (z, 0, t y, zx, (z + w)y), (w, x, 0, (z + w)x, wy),

(w, 0, t y, wx, 0), (z, x, t y, 0, (z + w)y), (w, x, t y, (z + w)x, 0)

⎫⎬
⎭ .

Since z, w 	= 0 and z 	= w, (z + w)x /∈ {zx, wx} and (z + w)y /∈ {zy, wy}. Since
z, w, x, y 	= 0, 0 /∈ {zx, wx} and 0 /∈ {zy, wy}. This indicates that no point in
S′ − {a, b, c} satisfies condition (1), a contradiction. Therefore, mult(S′) has �3 as a
minor, and so does mult(S), as required. ��

How does a graph with no K4/e graph minor look like? We have the following
result. Given an integer t ≥ 3, denote by At the graph that consists of two vertices
and t parallel edges connecting them. A subdivision of At is a graph obtained after
adding vertices in between the edges of At .

Lemma 3.4 Let G = (V , E) be a connected graph. If G contains no K4/e as a graph
minor, then each block of G is a bridge, a cycle, or a subdivision of At for some t ≥ 3.

Proof See §B in the appendix. ��
We call a graph a series–parallel network if each of its blocks is a series–parallel

graph.

Theorem 3.5 ([8]). LetM be amatroid. Then the following statements are equivalent:

(i) M contains none of U2,4 and Matroid(K4) as a matroid minor,
(ii) M is the graphic matroid of a series–parallel network.

Theorem 3.6 Let q = 2k for some k ≥ 2, and let S be a vector space over GF(q). If
mult(S) has no �3 as a minor, then for some k ≥ 1,Matroid(S) = M1 ⊕ · · · ⊕Mk ,
where eachMi is the graphic matroid of a bridge, a cycle, or a subdivision of At for
some t ≥ 3.
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Proof Assume that mult(S) has no �3 as a minor. Suppose for a contradiction that
Matroid(S) contains U2,4 or Matroid(K4/e) as a matroid minor. This in turn implies
that there exists S′ obtained from S after a series of restrictions andprojections such that
Matroid(S′) is isomorphic to U2,4 or Matroid(K4/e) by Lemma 2.5. Here, mult(S′)
contains�3 as a minor by Lemmas 3.2 and 3.3. As mult(S′) is a minor of mult(S) due
to Lemma 2.3, it follows that mult(S) also contains a �3 as a minor, a contradiction.
Hence, Matroid(S) contains none of U2,4 and Matroid(K4/e) as a matroid minor.
As Matroid(K4/e) is a matroid minor of Matroid(K4), Theorem 3.5 implies that
Matroid(S) is the graphic matroid of a series–parallel network not containing K4/e
as a graph minor. Then by Lemma 3.4, each block of the graph is a subdivision of At

for some t ≥ 3, a bridge, or a cycle. So, the assertion follows from Lemma 2.6, as
required. ��

3.2 Excluding13,Q6 and odd prime powers

Theorem 3.6 characterized the case where q is a power of 2 greater than 2 and the mul-
tipartite uniform clutter contains no �3 minor. In this section, we prove Theorem 3.9
which settles the case of odd prime powers. Theorem 3.9 also covers the case when q
is a power of 2 and the multipartite uniform clutter contains none of �3 and Q6 as a
minor, which will be the key to study the MFMC property later.

Lemma 3.7 Take an integer n ≥ 1 and a prime power q, and let S ⊆ GF(q)n be a
vector space over GF(q). If S does not admit a basis with vectors of pairwise disjoint
supports, then mult(S) contains �3 or Q6 as a minor. Moreover, if q is an odd prime
power, then mult(S) contains �3 as a minor.

Proof Assume that S does not admit a basis with vectors of pairwise disjoint supports.
We will show that if mult(S) does not contain �3 as a minor, then q is a power of 2
and mult(S) contains Q6 as a minor.

Assume that mult(S) contains no �3 as a minor. Let v1, . . . , vr ∈ GF(q)n be a
basis of S. After elementary arithmetic operations over GF(q), we may assume that
for each i = 1, . . . , r ,

vii = 1 and vij = 0 ∀ j ∈ [r ] − {i}.

Since there is no basis of S with vectors of pairwise disjoint supports, we may assume
that v1r+1, v

2
r+1 	= 0. This in turn implies that n ≥ 3. Let x and y be the multiplicative

inverses of v1r+1 and v2r+1 in GF(q), respectively. Let a := 0 ∈ GF(q)n , b := xv1,
and c := yv2. Notice that a, b, c ∈ S and that a, b, c satisfy

(a1, a2, ar+1) = (0, 0, 0), (b1, b2, br+1) = (x, 0, 1), (c1, c2, cr+1) = (0, y, 1).

Now we consider R = {d ∈ S : d j ∈ {a j , b j , c j } for j ∈ [n]}.
Claim 1 R ⊆ {λ1v1 + λ2v

2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}}.
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Proof of Claim. Let u ∈ R. Then u = ∑r
j=1 λ jv

j for some λ1, . . . , λr ∈ GF(q).
Since a j = b j = c j = 0 for j = 3, . . . , r , it follows that u3 = · · · = ur = 0, which
implies that λ3 = · · · = λr = 0 and so u = λ1v

1 + λ2v
2. Notice that λ1 ∈ {0, x} and

λ2 ∈ {0, y}, because a1, b1, c1 ∈ {0, x} and a2, b2, c2 ∈ {0, y}. ��
Claim 2 q is a power of 2 and R = {λ1v1 + λ2v

2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}}.
Proof of Claim. By Lemma 3.1, R contains a vector d /∈ {a, b, c} such that
(d1, d2, dr+1) equals (0, y, 0), (x, 0, 0), (x, y, 1), or (x, y, 0). By Claim 1, d ∈{
λ1v

1 + λ2v
2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}}. As d 	= a, b, c, itmust be that xv1+yv2 =

d, so xv1 + yv2 ∈ R. In particular, R = {
λ1v

1 + λ2v
2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}}.

Since d = xv1 + yv2, we obtain (xv1 + yv2)r+1 = 1 + 1 = dr+1 ∈ {0, 1}. Since
1 	= 0, we have 1 + 1 = 0, so q is a power of 2, as required. ��

By Claim 2, we deduce that R equals
{
λ1v

1 + λ2v
2 : λ1 ∈ {0, x}, λ2 ∈ {0, y}}

whose projection onto the space of coordinates 1, 2, r + 1 is precisely
{(0, 0, 0), (x, 0, 1), (0, y, 1), (x, y, 0)}, which is isomorphic to R1,1 = {(0, 0, 0),
(1, 0, 1), (0, 1, 1), (1, 1, 0)}. Since mult(R1,1) = Q6, mult(S) has Q6 as a minor
by Lemma 2.3. So, we have shown that if mult(S) has no �3 as a minor, then q is a
power of 2 and mult(S) contains Q6 as a minor, as required. ��

Lemma 3.7 tells us that forbidding�3 for the case of odd prime powers and�3, Q6
for the case of powers of 2 implies that S is generated by vectors of pairwise disjoint
supports. The next lemma characterizes the structure of the underlying matroid if S
admits a basis with vectors of pairwise disjoint supports.

Lemma 3.8 Take an integer n ≥ 1 and a prime power q, and let S ⊆ GF(q)n be a
vector space over GF(q). Then the following statements are equivalent:

(i) S has the form S = 〈v1, . . . , vr 〉 where v1, . . . , vr ∈ GF(q)n have pairwise
disjoint supports,

(ii) Matroid(S) = Matroid(G) where every block of G is either a bridge or a cycle.

Proof (i)⇒(ii): Let M be a minor of Matroid(S). Then it follows from Lemma 2.5
that M is isomorphic to Matroid(S′) where S′ is obtained from S ∩ {x ∈ GF(q)n :
xi = 0 ∀i ∈ I } after dropping coordinates in I ∪ J for some I , J ⊆ [n] with
I ∩ J = ∅. Since S has a basis with vectors of pairwise disjoint supports, so does S′,
implying in turn that the circuits ofMatroid(S′) are pairwise disjoint. Then the circuits
of M are pairwise disjoint. Note that any of U2,4, Matroid(K4/e), and Matroid(A3)

have two circuits that intersect. Therefore, Matroid(S) contains none of them as a
minor. By Lemma 3.4 and Theorem 3.5, (ii) holds. (ii)⇒(i): Note that the circuits of
Matroid(S) are pairwise disjoint, meaning that S is generated by vectors of pairwise
disjoint supports. ��
Theorem 3.9 Let S be a vector space over GF(q) for a prime power q. Suppose that
one of the following holds.

(a) q is an odd prime power, and mult(S) has no �3 as a minor,
(b) q is a power of 2, and mult(S) has none of �3 and Q6 as a minor.
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Then Matroid(S) = M1 ⊕ · · · ⊕ Mk , where each Mi is the graphic matroid of a
bridge or a cycle.

Proof Lemma 3.7 implies that if (a) or (b) holds, then S admits a basis with vectors
of pairwise disjoint supports. Then it follows from Lemma 3.8 that Matroid(S) is
Matroid(G) where every block of G is a bridge or a cycle. Then we deduce the
assertion of this theorem from Lemma 2.6, as required. ��

4 Vector space structure characterization

The characterizations of the underlying matroid provided in Theorems 3.6 and 3.9
are that the underlying matroid can be decomposed as the direct sum of the graphic
matroids of some simple graphs. In Sect. 4.1, we consider how thesematroid structures
correspond to the geometry of vector spaces. In Sect. 4.2, we will see that these further
lead to the decomposition of the associated multipartite uniform clutters.

4.1 Vector space decomposition

First, the following result considers the setting where the underlying matroid comes
from a graph each of whose blocks is a bridge or a cycle.

Theorem 4.1 Take an integer n ≥ 1 and a prime power q, and let S ⊆ GF(q)n be a
vector space over GF(q). Then the following statements are equivalent:

(i) Matroid(S) = M1 ⊕ · · · ⊕ Mk , where each Mi is the graphic matroid of a
bridge or a cycle,

(ii) S has the form S = S1 × · · · × Sk for some k where each Si has dimension at
most 1.

Proof Note that Matroid({0}) is the graphic matroid of a bridge and that {0} = {0} ×
· · · × {0}. Moreover, for a vector space T over GF(q), T has dimension 1 if and only
if Matroid(T ) is the graphic matroid of a cycle. Then Lemma 2.6 implies that (i) holds
if and only if (ii) holds, as required. ��

In Theorem 3.6, we have another outcome, a subdivision of At for t ≥ 3 when q is
a power of 2 greater than 2. The following lemma provides a structural description of
a vector space whose underlying matroid is the graphic matroid of a subdivision of At

for some t ≥ 3. We say that two elements e1, e2 of a matroid are in series if for every
circuit C of the matroid, either C ∩ {e1, e2} = {e1, e2} or C ∩ {e1, e2} = ∅ holds. In
the context of graphic matroids, two edges e1, e2 are in series if for every cycle C ,
edge e1 is on C if and only if e2 is on C .

Lemma 4.2 Take an integer n ≥ 1 and a prime power q, and let T ⊆ GF(q)n be a
vector space over GF(q). Then Matroid(T ) is the graphic matroid of a subdivision
of At for some t ≥ 3 if and only if T is generated by a sunflower basis.
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Proof (⇒): Assume that Matroid(T ) = Matroid(G) where G is a subdivision of At

for some t ≥ 3. Notice that G consists of two vertices and t internally vertex-disjoint
paths connecting them.Let P0, . . . , Pt−1 denote the paths, and let E(P0), . . . , E(Pt−1)

denote their edge sets. Then it follows from Remark 2.4 that T contains a point whose
support is E(P0) ∪ E(Pi ). Therefore, T contains t − 1 points v1, . . . , vt−1 (in row
vectors) of the following form:

v1

v2

...

vt−1

⎡
⎢⎢⎣

u01 u1 0 · · · 0
u02 0 u2 · · · 0
...

...
...

...
...

u0t−1 0 0 · · · ut−1

⎤
⎥⎥⎦

where u01, . . . , u
0
t−1 ∈ GF(q)|E(P0)| and ui ∈ GF(q)|E(Pi )| for i ∈ [n] are vectors of

nonzero entries. As T is a vector space in GF(q)n , Matroid(T ) is over n elements,
and therefore, G has n edges. Since G is a subdivision of At , a spanning tree of
G has n − (t − 1) edges, which means that Matroid(T ) = Matroid(G) has rank
n − (t − 1). Then the dimension of T is n − Matroid(T ) = t − 1, so we have
T = 〈v1, . . . , vt−1〉. Now, let us argue that we may assume that u01 = · · · = u0t−1
without loss of generality. As P1∪P2 is a cycle ofG, Remark 2.4 implies that there is a
pointv ∈ T whose support is E(P1)∪E(P2). Thenv canbewritten asv = μ1v

1+μ2v
2

for some μ1, μ2 ∈ GF(q) − {0}. As the support of v is E(P1) ∪ E(P2), we have that
μ1u01 + μ2u02 = 0, which implies that u02 = λ2u01 for some nonzero λ2. Similarly, we
obtain u0i = λi u01 for some nonzero λi for i ∈ [t − 1], as required. Therefore, after
scaling vi ’s if necessary, we may assume that u01 = · · · = u0t−1, as required.

(⇐): Suppose T = 〈v1, . . . , vt−1〉 where v1, . . . , vt−1 ∈ GF(q)n are vectors of
the following form (in row vectors), after permuting the coordinates, for some t ≥ 3:

v1

v2

...

vt−1

⎡
⎢⎢⎣

u0 u1 0 · · · 0
u0 0 u2 · · · 0
...

...
...

. . .
...

u0 0 0 · · · ut−1

⎤
⎥⎥⎦

for some row vectors u0, u1 . . . , ut−1 with no zero entries. Let Ei be the support of
ui for i = 0, 1, . . . , t − 1. Let C be a circuit of Matroid(T ). Then C = support(x)
for some x ∈ T . Let x =∑t−1

i=1 μiv
i . Then x is of the form

x
[∑t−1

i=1 μi u0 μ1u1 μ2u2 · · · μt−1ut−1
]
.

If C ∩ E0 	= ∅, then it means
∑t−1

i=1 μi 	= 0, and therefore, C ∩ E0 = E0. This implies
that the elements in E0 are in series. If C ∩ Ei 	= ∅ for some 1 ≤ i ≤ t − 1, then
μi 	= 0. This indicates that C ∩ Ei = Ei , implying in turn that the elements in Ei are
in series.

Then consider the case where each ui is 1-dimensional, under which we have
Ei = {ei } is a singleton for i = 0, . . . , t − 1. Observe that |support(x)| ≥ 2 for any
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x ∈ T . Then none of {e0}, {e1}, . . . , {et−1} is a circuit. However, we know that {e0, ei }
for i = 1, . . . , t − 1 are circuits of Matroid(T ) because v1, . . . , vt−1 ∈ T , Moreover,
vi + (q − 1)v j for i 	= j has support {ei , e j }, and therefore, {ei , e j } for distinct
i, j ∈ {1, . . . , t − 1} are all circuits. Then {{ei , e j } : i, j ∈ {0, 1, . . . , t − 1}, i 	= j

}
is the family of circuits of Matroid(T ) because any subset of the ground set of size at
least 3 would contain {ei , e j } for some i 	= j . Therefore, Matroid(T ) is Matroid(At ).

In general, as the elements of each Ei are in series, Matroid(T ) is a series extension
of Matroid(At ), which is the graphic matroid of a subdivision of At , as required. ��

Remark 4.2 implies the following characterization for the case of q = 2k for k ≥ 2.

Theorem 4.3 Take an integer n ≥ 1 and a prime power q, and let S ⊆ GF(q)n be a
vector space over GF(q). Then the following statements are equivalent:

(i) Matroid(S) = M1 ⊕ · · · ⊕ Mk , where each Mi is the graphic matroid of a
bridge, a cycle, or a subdivision of At for t ≥ 3,

(ii) S has the form S = S1 × · · · × Sk where each Si has dimension at most 1 or
admits a sunflower basis.

Proof As argued in the proof of Theorem 4.1, a vector space T over GF(q) has
dimension at most 1 if and only if Matroid(T ) is the graphic matroid of a bridge or a
cycle. Moreover, by Remark 4.2, T admits a sunflower basis if and only if Matroid(T )

is the graphic matroid of a subdivision of At for t ≥ 3. Then the assertion follows
from Lemma 2.6. ��

4.2 Product decomposition of multipartite uniform clutters

In the previous subsection, we saw that the vector space can be decomposed as the
product of smaller vector spaces.Wewill show that the associatedmultipartite uniform
clutter can also be decomposed.

Products of set systems and clutters Take two integers n1, n2 ≥ 1. Let V1, . . . , Vn1
be n1 nonempty sets, and let S1 be a subset of V1 × · · · × Vn1 . Let U1, . . . ,Un2 be n2
nonempty sets, and let S2 be a subset ofU1 × · · · ×Un2 . Recall that the product of S1
and S2 is defined as S1×S2 = {(x1, x2) : x1 ∈ S1, x2 ∈ S2} .We also define products
of clutters. Let C1, C2 be two clutters over disjoint ground sets E1, E2. The product of
C1 and C2, denoted C1 × C2, is defined as the clutter over ground set E1 ∪ E2 whose
members are C1 × C2 = {C1 ∪ C2 : C1 ∈ C1, C2 ∈ C2} . Having defined the product
of two clutters, we define the product of two multipartite uniform clutters mult(S1)
and mult(S2). In fact, we can show the following:

Lemma 4.4 The following statements hold:

1. mult(S1) × mult(S2) = mult(S1 × S2).
2. If mult(S1) and mult(S2) have the idealness (resp. MFMC) property, then so does

mult(S1 × S2).

Proof (1): Let C1 ∈ mult(S1) and C2 ∈ mult(S2). Then C1 = {x1, . . . , xn1
}
for some

x = (x1, . . . , xn1) ∈ S1 and C2 = {
y1, . . . , yn2

}
for some y = (y1, . . . , yn2) ∈
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S2. Moreover, (x, y) ∈ S1 × S2 and C1 ∪ C2 ∈ mult(S1 × S2). Conversely, any
C ∈ mult(S1 × S2) has the form C = {

x1, . . . , xn1 , y1, . . . , yn2
}
for some x =

(x1, . . . , xn1) ∈ S1 and y = (y1, . . . , yn2) ∈ S2. ThenC1 = {x1, . . . , xn1} ∈ mult(S1)
and C2 = {y1, . . . , yn2} ∈ mult(S2), which implies that C = C1 ∪ C2 ∈ mult(S1) ×
mult(S2). Therefore, we obtain mult(S1)×mult(S2) = mult(S1 × S2). (2): Let C1 and
C2 be two clutters over disjoint ground sets. Then we deduce from [23, Proposition
8.3] that if C1, C2 have the idealness (resp.MFMC) property, then so does C1×C2. This
implies that if mult(S1) and mult(S2) have the idealness (resp. MFMC) property, then
so does mult(S1) ×mult(S2) which equals mult(S1 × S2) due to part (1), as required.

��
So, if a set can be represented as the product of some smaller sets, we can check if its

multipartite uniform clutter is ideal by studying the smaller sets and their multipartite
uniform clutters. In particular, we will use this lemma to show implication (ii)→(i) in
Theorems 1.2 to 1.5.

5 TheMFMC property and odd prime powers

In this section, we prove Theorem 1.5 that characterizes when the multipartite uniform
clutter of a vector space has the MFMC property. Moreover, we prove Theorem 1.2
for the case when q is an odd prime power.

Lemma 5.1 Take an integer n ≥ 1 and a prime power q, and let S ⊆ GF(q)n be a
vector space over GF(q). If S has the form S = S1 × · · · × Sk for some k where each
Si has dimension at most 1, then mult(S) has the MFMC property, and is therefore
ideal.

Proof Wemay assume that S = 〈u1〉×· · ·×〈ur 〉×{0} for somevectors u1, . . . , ur with
no zero entries over GF(q), by Theorem 4.1. Subsequently, mult(S) = mult(〈u1〉) ×
· · ·×mult(〈ur 〉)×mult({0}), and to prove mult(S) has theMFMC property, it suffices
to argue that mult(〈ui 〉) for i ∈ [r ] and mult({0}) have the MFMC property, by
Lemma 4.4. First, notice that mult({0}) has only one member, so it clearly has the
MFMC property. In fact, we can argue that each mult(〈ui 〉) has pairwise disjoint
members as well. Notice that for any distinct x, y ∈ GF(q), xui and yui do not have
common coordinates, implying in turn that the members of mult

(〈ui 〉) corresponding
to xui and yui are disjoint. That means that the members of mult

(〈ui 〉) are pairwise
disjoint, implying in turn that it has the MFMC property, thereby proving that mult(S)

has the MFMC property. ��
Having proved Theorem 3.9, Theorem 4.1, and Lemma 5.1, we are now ready to

show Theorem 1.5. The basic flow of our proof is as follows. Lemma 5.1 shows that if
a vector space S is given by the product of some vector spaces of dimension at most 1,
then mult(S) has the MFMC property. Conversely, it follows from Theorems 3.9 and
4.1 that if a vector space S cannot be written as such a product, then mult(S) has some
minors certifying that the clutter does not have the MFMC property. More details are
explained in the proof as follows.
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Proof of Theorem 1.5 (iii)⇒(ii) follows from Theorems 3.9 and 4.1. (ii)⇒(i) follows
from Lemma 5.1. (i)⇒(iii): Assume that mult(S) has the MFMC property. �3 is a
non-ideal clutter, so it does not have the max-flow min-cut property. Recall that Q6 is
the clutter of triangles in K4. Notice that the minimum number of edges required to
intersect every triangle in K4 is two and that themaximum number of disjoint triangles
in K4 is one. This implies that τ(Q6, 1) = 2 and ν(Q6, 1) = 1, so Q6 does not have
the max-flow min-cut property. Like idealness, the MFMC property is a minor-closed
property [34]. Therefore, a clutter with the MFMC property contains none of �3, Q6
as a minor, implying in turn that mult(S) has none of �3, Q6 as a minor. ��

The proof of Theorem 1.2 works similarly as that of Theorem 1.5. The additional
component is that when q is an odd prime power and a vector space S over GF(q)

cannot be written as the product of some vector spaces of dimension at most 1, then
mult(S) has a non-ideal minor due to Theorems 3.9 and 4.1.

Proof of Theorem 1.2 Take an integer n ≥ 1 and an odd prime power q, and let S ⊆
GF(q)n be a vector space over GF(q). Since �3 is non-ideal, direction (i)⇒(iii) is
clear. Direction (iii)⇒(ii) follows from Theorems 3.9 and 4.1, and Lemma 5.1 shows
direction (ii)⇒(i). Therefore, (i)–(iii) are equivalent. ��

6 Idealness and sunflower basis

In this section, we consider the case when q = 2k for k ≥ 2. Excluding�3 minor from
mult(S), vector space S has the form S = S1 × · · · × Sk where each Si has dimension
at most 1 or admits a sunflower basis by Theorem 4.3. If each Si has dimension at
most 1, then Lemma 5.1 implies that mult(S) is ideal. Hence, what remains is to study
the case where some Si is generated by a sunflower basis. In Sect. 6.1, we consider
the notion of localizations, a tool for studying the idealness of mult(S). In Sect. 6.2,
we use this tool to analyze the case where vector space S is generated by a sunflower
basis.

6.1 Localization

We mentioned before that a clutter is ideal if and only if every minor of it is ideal.
In this section, we will define and study localizations that appear as a minor of a
multipartite uniform clutter.

Definition 6.1 Given a multipartite uniform clutter C whose ground set is partitioned
into non-empty parts V1, . . . , Vn , a localization of C is any minor obtained from C
after contracting precisely one element from each Vi .

Thus, a localization of C is obtained after contracting v1, . . . , vn for some v =
(v1, . . . , vn) ∈ V1 × · · · × Vn . As C = mult(S) for some S ⊆ V1 × · · · × Vn by
Remark 2.1, the localization is equal to

local(S, v) := mult(S)/{v1, . . . , vn}
= {the minimal sets of {{x1, . . . , xn} − {v1, . . . , vn} : (x1, . . . , xn) ∈ S}} .
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We call local(S, v) the localization ofmult(S)with respect to v. So, every localization
of C is equal to local(S, v) for some v and that local(S, v) = {∅} if v ∈ S. In [4],
localizations of a cuboid are referred to as induced clutters.

It turns out that a multipartite uniform clutter is ideal if and only if all localizations
are ideal; let us prove this in the remainder of this section. We say that a clutter is
minimally non-ideal if it is non-ideal but every proper minor of it is ideal. We need
the following lemma.

Lemma 6.2 Let C be a minimally non-ideal clutter, and let V denote the ground set of
C. Then there is no subset U of V satisfying |C ∩U | = 1 for every member C of C.
Proof Since C is non-ideal, P(C) = {1 ≥ x ≥ 0 : M(C)x ≥ 1} has a fractional
extreme point x∗. Let v ∈ V . Notice that P(C/v) and P(C \ v) are obtained from
P(C) ∩ {x : xv = 0} and P(C) ∩ {x : xv = 1} after projecting out the variable xv . As
C/v andC\v are ideal, P(C/v) and P(C\v) are integral. Then both P(C)∩{x : xv = 0}
and P(C)∩{x : xv = 1} are integral, implying in turn that x∗ does not belong to any of
these two. So, it follows that 0 < x∗

v < 1 for each v ∈ V . Now, consider a nonsingular
row submatrix A of M(C) such that Ax∗ = 1. Suppose that V has a subsetU such that
|C ∩U | = 1 for every member C of C. Let χU denote the characteristic vector ofU in
{0, 1}V . Since |C ∩U | = 1 for every member C of C, we have that M(C)χU = 1 and
thus AχU = 1. Since A is nonsingular, Ax = 1 has a unique solution, so it follows
that x∗ = χU , a contradiction. Therefore, there is no such subset U of V , as required.

��
Theorem 6.3 Amultipartite uniform clutter is ideal if and only if all of its localizations
are ideal.

Proof Let C be a multipartite uniform clutter whose ground set is partitioned into
nonempty parts V1, . . . , Vn . (⇒): If C is ideal, every minor of C is ideal, and so are all
of its localizations. (⇐): Assume that C is non-ideal. Then it has aminimally non-ideal
minor C′ := C \ I/J obtained after deleting I and contracting J for some disjoint
subsets I , J ⊆ V1∪· · ·∪Vn . Observe that C \ I is another multipartite uniform clutter
whose ground set is partitioned into nonempty parts U1, . . . ,Un where Ui := Vi\I
for i ∈ [n]. In particular, every member C of C \ I satisfies |C ∩Ui | = 1 for i ∈ [n].
Suppose that J ∩ Ui = ∅ for some i ∈ [n]. Then |(C − J ) ∩ Ui | = |C ∩ Ui | = 1
for every member C of C \ I . As C′ is obtained after contracting J from C \ I , we
have |C ′ ∩Ui | = 1 for every member C ′ of C′. This contradicts Lemma 6.2 due to our
assumption that C′ is minimally non-ideal. Therefore, for each i ∈ [n], J ∩ Ui 	= ∅,
so we have that J ∩ Vi 	= ∅. Let vi denote some element in J ∩ Vi for i ∈ [n]. Since
{v1, . . . , vn} ⊆ J , C′ is a minor of C/{v1, . . . , vn}, which is a localization. Therefore,
one of C’s localizations is non-ideal, as required. ��

In contrast to idealness, even if all localizations have the MFMC property, a multi-
partite uniformcluttermay not have theMFMCproperty. For example, all localizations
of Q6 = mult(R1,1) are isomorphic to the clutter over ground set {1, 2, 3}whosemem-
bers are {1}, {2}, {3}. The clutter over 3 elements trivially has the MFMC property,
but Q6 does not [24, 34].
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6.2 Fields of characteristic 2: a study of the localizations for At

Recall that a vector space S is generated by a sunflower basis if and only if Matroid(S)

is the graphic matroid of a subdivision of At for some t ≥ 3 by Remark 4.2. In this
section, we consider the case whenMatroid(S) = Matroid(At ) for some t ≥ 3, where
At denotes the graph that consists of two vertices and t parallel edges connecting
them. In particular, we prove three lemmas on properties of localizations of mult(S).
Remark 6.4 identifies the structure of S for the case when Matroid(S) = Matroid(At )

for t ≥ 3. Lemma 6.5 characterizes the members of each localization of mult(S).
Among those members, Lemma 6.6 specifies the members of size 1 or 2.

Lemma 6.4 Take an integer n ≥ 3 and a prime power q, and let S ⊆ GF(q)n be a
vector space over GF(q). Then Matroid(S) = Matroid(An) if and only if S ∼= {x ∈
GF(q)n : x1 + · · · + xn = 0}.
Proof Let {1, 2, 3 . . . , n} denote the edge set of An . Then {1, 2}, {1, 3}, . . . , {1, n}
are circuits of Matroid(An). (⇐): Let S be the clutter of the minimal supports of
the points in S − {0}. Then S = {{i, j} : i 	= j}, so Matroid(S) = Matroid(An)

by Remark 2.4. (⇒): Since Matroid(S) = Matroid(An), S contains n − 1 points
u1, . . . , un−1 whose supports are {1, 2}, {1, 3}, . . . , {1, n}, respectively. Notice that
u1, . . . , un−1 are linearly independent over GF(q), so the dimension of S is at least
n − 1. On the other hand, the dimension is less than n, because S 	= GF(q)n . Thus,
S = 〈u1, . . . , un−1〉. After scaling the ui s, if necessary, we may assume that the first
coordinate of each ui is 1. Hence, u1, . . . , un−1 are of the form displayed below (left),
where λ1, . . . , λn−1 ∈ GF(q) − {0}. Notice that {x ∈ GF(q)n : x1 + · · · + xn =
0} = 〈v1, . . . , vn−1〉 where v1, . . . , vn−1 are displayed below (right):

u1

u2
...

un−1

⎡
⎢⎢⎣

1 λ1 0 · · · 0
1 0 λ2 · · · 0
...

...
...

...
...

1 0 0 · · · λn−1

⎤
⎥⎥⎦

v1

v2

...

vn−1

⎡
⎢⎢⎣

1 −1 0 · · · 0
1 0 −1 · · · 0
...

...
...

...
...

1 0 0 · · · −1

⎤
⎥⎥⎦ ,

implying in turn that {x ∈ GF(q)n : x1 + · · · + xn = 0} ={
(x1,−λ−1

1 x2,−λ−1
2 x3, . . . ,−λ−1

n−1xn) : x ∈ S
}

. Therefore, S ∼= {x ∈ GF(q)n :
x1 + · · · + xn = 0}, as required. ��

By Remark 6.4, we may focus on the set

S = {x ∈ GF(q)n : x1 + · · · + xn = 0}

to understand vector spaces whose underlying matroids areMatroid(An). Recall that a
localization of mult(S)with respect to α ∈ GF(q)n , denoted local(S, α), is the minor
of mult(S) after contracting the elements corresponding to α (see Sect. 2.1). mult(S)

is defined over ground set V1 ∪ · · · ∪ Vn where each Vi is a copy of GF(q), and
local(S, α)’s ground set is given byU1 ∪ · · ·Un whereUi = Vi −{αi }. The following
lemma provides a characterization of the members of local(S, α) for any α /∈ S.
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Lemma 6.5 Take an integer n ≥ 3. Let q be a power of 2, and let α ∈ GF(q)n with
σ := α1 + · · · + αn 	= 0. Let S = {x ∈ GF(q)n : x1 + · · · + xn = 0}, and let
C ⊆ U1 ∪ · · · ∪ Un where Ui = GF(q) − {αi }. Then the following statements are
equivalent:

(i) C is a member of local(S, α).
(ii) C contains at most one element in Ui for each i ∈ [n] and∑(v : v ∈ C) =

σ +∑(αi : C ∩Ui 	= ∅).

Proof (i)⇒(ii): There exists x = (x1, . . . , xn) ∈ S such that C = {x1, . . . , xn} −
{α1, . . . , αn}. ThenC∩Ui = {xi }−{αi }, implying thatC∩Ui has atmost one element.
Without loss of generality, we may assume that x = (x1, . . . , xk, αk+1, . . . , αn) and
x1 	= α1, . . . , xk 	= αk for some 1 ≤ k ≤ n. Then C = {x1, . . . , xk}. Since x ∈ S, we
have

n∑
i=1

xi =
k∑

i=1

xi +
n∑

j=k+1

α j = 0.

As the characteristic of GF(q) is 2,
∑k

i=1 xi = −∑k
i=1 xi , implying in turn that∑k

i=1 xi = ∑n
j=k+1 α j . As

∑n
i=1 αi = σ , we also get

∑n
j=k+1 α j = σ +∑k

i=1 αi ,

and therefore, we obtain
∑k

i=1 xi = σ +∑k
i=1 αi , as required.

(i)⇐(ii): Without loss of generality, we may assume that C = {x1, . . . , xk} where
xi ∈ Ui for i ∈ [k]. Then {x1, . . . , xk} ∩ {α1, . . . , αn} = ∅. Since∑k

i=1 xi = σ +∑k
i=1 αi , we have

∑k
i=1 xi +∑n

j=k+1 α j = σ +∑n
i=1 αi = 0, implying in turn that

(x1, . . . , xk, αk+1, . . . , αn) ∈ S. As C = {x1, . . . , xk, αk+1, . . . , αn} − {α1, . . . , αn},
it follows that C is a member of local(S, α), as required. ��

Using Lemma 6.5, we can show the following lemma providing a characterization
of the members of size 1 and 2 in local(S, α) for α /∈ S. Recall that mult(S) is given
by {{x1, . . . , xn} : (x1, . . . , xn) ∈ S, xi ∈ GF(q) for i ∈ [n]} whose ground set is
GF(q) × · · · × GF(q). Here, any y with yi ≡ xi (mod q) for i ∈ [n] is equivalent
to x . Similarly, if xi is an element in Vi = GF(q), then any yi with yi ≡ xi (mod q)
refers to the same element xi .

Lemma 6.6 Take an integer n ≥ 3. Let q be a power of 2, and let α ∈ GF(q)n with
σ := α1 + · · · + αn 	= 0. Let S = {x ∈ GF(q)n : x1 + · · · + xn = 0}. Then the
following statements hold:

(1) the members of size 1 of local(S, α) are {α1 + σ }, . . . , {αn + σ }.
(2) the members of size 2 of local(S, α) form a graph that consists of q2 −1 connected

components G1, . . . ,G q
2 −1 satisfying the following: for each j = 1, . . . , q

2 − 1,

• G j ’s vertex set is
{
β
j
1 , β

j
1 + σ

}
∪· · ·∪

{
β
j
n , β

j
n + σ

}
where

{
β
j
i , β

j
i + σ

}
⊆

Ui − {αi + σ } = GF(q) − {αi , αi + σ } for i ∈ [n],
• G j is abipartite graphwith bipartition

{
β
j
1 , . . . , β

j
n

}
∪
{
β
j
1 + σ, . . . , β

j
n + σ

}
,

• β
j
i = β

j
1 + α1 + αi for i ∈ [n], and
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Fig. 2 Members of size 1 and 2 of local(S, α)

• G j ’s edge set is
{{

β
j
i , β

j
k + σ

}
: i 	= k

}
, i.e., G j is obtained from a complete

bipartite graph after removing the edges of a perfect matching (see Fig.2 for
an illustration).

Proof See §C of the appendix. ��

7 Characterizing idealness for powers of 2

In this section, based on our development from the previous sections, we consider a
vector space S over GF(2k) for some k ≥ 2 and show a characterization of when
mult(S) is ideal. In Sect. 7.1, we prove Theorem 1.3 characterizing when the multi-
partite uniform clutter of a vector space over GF(4) is ideal. In Sect. 7.2, we prove
Theorem 1.4 which characterizes when the multipartite uniform clutter of a vector
space S over GF(2k) with k > 2 is ideal.

7.1 The q = 4 case

The proof of Theorem 1.3 uses the following two lemmas. We first show Lemma 7.1
which implies that mult(T ) is ideal if T is a vector space over GF(4) such that
Matroid(T ) ∼= Matroid(An) for some n ≥ 3. We then prove in Remark 7.2 that
idealness is closed under series extensions.

Lemma 7.1 Let T = {x ∈ GF(4)n : x1 + · · · + xn = 0} for some n ≥ 3. Then
mult(T ) is ideal.

Proof By Theorem 6.3, it suffices to argue that all localizations of mult(T ) are ideal.
Let α = (α1, . . . , αn) /∈ T . We will show that the localization of mult(T ) with
respect to α, denoted local(T , α), is ideal. Let σ = α1 + · · · + αn 	= 0. Note that
local(T , α) has n members of cardinality 1, {α1+σ }, . . . , {αn +σ } by Lemma 6.6 (1).
By Lemma 6.6 (2), the members of cardinality 2 form a connected bipartite graph G
where
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• G is bipartite on {β1, . . . , βn} ∪ {β1 + σ, . . . , βn + σ } where {βi , βi + σ } =
GF(4) − {αi , αi + σ } for i ∈ [n],

• βi = β1 + α1 + αi for i ∈ [n], and
• the edge set of G is {{βi , βk + σ } : i 	= k}.

We will show that there is no member of cardinality at least 3 in local(T , α). Suppose
for a contradiction that local(T , α) has a member C whose cardinality is at least 3.
As C does not contain any of the members of local(T , α) that have cardinality 1
or 2, C ⊆ {β1, . . . , βn} or C ⊆ {β1 + σ, . . . , βn + σ }. Without loss of generality,
we may assume that C = {β1, . . . , βk} for some k ≥ 3. Then, by Lemma 6.5, we
have

∑k
i=1 βi = σ +∑k

i=1 αi . Substituting βi = β1 + α1 + αi for i = 2, . . . , k,
we obtain

∑k
i=1 (β1 + α1) = σ . Since σ is nonzero and

∑k
i=1 (β1 + α1) is either

β1 + α1 or 0, we get
∑k

i=1 (β1 + α1) = β1 + α1 = σ . However, β1 + α1 = σ

in turn implies that βi = β1 + α1 + αi = αi + σ , contradicting the assumption
that βi ∈ GF(4) − {αi , αi + σ }. Therefore, local(T , α) does not have a member of
cardinality at least 3, as required.

Thus the members of local(T , α) have size either 1 or 2. Let C be what is obtained
from local(T , α) after deleting every element that appears in amember of cardinality 1.
As no minimally non-ideal clutter has a member of cardinality 1, local(T , α) is ideal
if and only if C is ideal. Notice that M(C), the incidence matrix of C, is the edge
- vertex incidence matrix of a bipartite graph. It follows from Kőnig’s theorem for
bipartite matching that C is ideal. Therefore, local(T , α) is ideal, and mult(T ) is ideal,
as required. ��
Lemma 7.2 Suppose that S is a vector space over GF(q) such that Matroid(S) has
elements in series. Let S′ be a projection of S obtained after dropping one of the
elements in series. Then mult(S) is ideal if and only if mult(S′) is ideal.
Proof Without loss of generality, assume that Matroid(S) has n elements and that
elements n − 1, n are in series. Let S′ be defined as the projection of S obtained after
dropping the nth coordinate of the points in S. Then S′ is a vector space in GF(q)n−1,
and by Lemma 2.5, Matroid(T ) = Matroid(S)/{n}.

Let x ∈ S. Then support(x) is the union of some circuits of Matroid(S) by
Remark 2.4. As n − 1, n are series elements, a circuit of Matroid(S) contains n − 1
if and only if it contains n, implying in turn that n − 1 ∈ support(x) if and only
if n ∈ support(x). Let v1, . . . , vr give rise to a basis of S. If n ∈ support(x) for
some x ∈ S, then n ∈ support(v�) for some � ∈ [r ], and thus, we may assume that
n ∈ support(v1) and that v1n 	= 0. After scaling the v�’s, if necessary, we may assume
that v�

n = 0 for � ∈ [r ] − {1}. Since n − 1 ∈ support(x) if and only if n ∈ support(x)
for x ∈ S, we have that v1n−1 	= 0 and v�

n−1 = 0 for � ∈ [r ] − {1}. Then for some
y, z ∈ GF(q) − {0},

v1

v2

...

vr

⎡
⎢⎢⎣

· · · y z
· · · 0 0
... 0 0

· · · 0 0

⎤
⎥⎥⎦ .

Then it follows that S = {
(x1, . . . , xn−1, zy−1xn−1) : (x1, . . . , xn−1) ∈ S′}, and by

Remark 2.2, mult(S) ∼= mult(T ) where T = {(x1, . . . , xn−1, xn−1) :
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(x1, . . . , xn−1) ∈ S′}. Let V1 ∪ · · · ∪ Vn be the ground set of mult(S) where each
Vi is a copy of GF(q). Then

mult(T ) = {C : C ′ ∈ mult(S′), C ∩ (V1 ∪ · · · ∪ Vn−1) = C ′, C ∩ Vn=C ′ ∩ Vn−1
}
.

In words, mult(T ) is obtained from mult(S′) after duplicating the element in Vn−1 of
each member C ′ ∈ mult(S′). Then the Vn−1 part and the Vn part of the members of
mult(T ) are identical. Hence, mult(T ) is ideal if and only if mult(S′). As mult(S) is
isomorphic to mult(T ), it follows that mult(S) is ideal if and only if mult(S′) is ideal.

��
Now we are ready to prove Theorem 1.3. The proof first reduces to the case when

the vector space T admits a sunflower basis. Then the idea is to show that Matroid(T )

is a series extension of Matroid(T ′) where Matroid(T ′) ∼= Matroid(At ) for some
t ≥ 3. We then use Lemmas 7.1 and 7.2 to show that mult(T ) is ideal.

Proof of Theorem 1.3 Take an integer n ≥ 1, and let S ⊆ GF(4)n be a vector space
overGF(4). First of all, (i)⇒(iii) is straightforward as�3 is non-ideal. Inwhat follows,
we will show directions (iii)⇒(ii) and (ii)⇒(i).

(iii)⇒(ii): By Theorem 3.6, Matroid(S) = M1 ⊕ · · · ⊕ Mk for some k ≥ 1 where
for each i ∈ [k], Mi is the graphic matroid of a bridge, a cycle, or a subdivision At

for some t ≥ 3. Then it follows from Theorem 4.3 that S satisfies (ii).
(ii)⇒(i): It suffices to show that mult(Si ) is ideal for every i ∈ [k] due to Lemma

4.4. To this end, take an i ∈ [k]. If Si has dimension at most 1, then Si = {0} or
Si = 〈v〉 for some nonzero vector v, in which case it follows from Lemma 5.1 that
Si is ideal. Thus we may assume that Si = 〈v1, . . . , vr 〉 where r ≥ 2 and v1, . . . , vr

give rise to a sunflower basis of Si . Let T ′ = 〈w1, . . . , wr 〉 where

w1

w2

...

wr

⎡
⎢⎢⎣

1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

...
...

1 0 0 · · · 1

⎤
⎥⎥⎦ .

Then T ′ = {
x ∈ GF(4)r+1 : x1 + · · · + xr+1 = 0

}
, so by Lemma 7.1, mult(T ′) is

ideal. Suppose that vi is of the form (u0, ui ) for i ∈ [r ], and let d� denote the number
of entries in u� for � = 0, 1, . . . , r . Then we define T as

T :=

⎧⎪⎨
⎪⎩

(x1, . . . , x1︸ ︷︷ ︸
d0

, x2, . . . , x2︸ ︷︷ ︸
d1

, . . . , xr+1, . . . , xr+1︸ ︷︷ ︸
dr

) : (x1, x2, . . . , xr+1) ∈ T ′

⎫⎪⎬
⎪⎭

.
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Then T is generated by y1, . . . , yr where

y1

y2
...

yr

⎡
⎢⎢⎢⎢⎢⎣

d0︷︸︸︷
1

d1︷︸︸︷
1

d2︷︸︸︷
0 · · ·

dr︷︸︸︷
0

1 0 1 · · · 0
...

...
...

...
...

1 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

.

Note that T ′ is a projection of T obtained after dropping the coordinates that corre-
spond to some series elements of Matroid(T ). As mult(T ′) is ideal, it follows from
Remark 7.2 that mult(T ) is ideal. Moreover, Si can be obtained from T by taking
coordinate-wise bijections. Hence, Remark 2.2 implies that mult(Si ) ∼= mult(T ),
thereby showing that mult(Si ) is ideal, as required. ��

7.2 Powers of 2 greater than 4

We start by proving Lemmas 7.3 and 7.4 which imply that if mult(S) is ideal, then the
underlying matroid Matroid(S) does not contain two distinct circuits that intersect.
The proofs of the lemmas rely on the tools from Sect. 6.2. For the first lemma, recall
that C2

5 is the clutter of edges in a cycle of length 5, and that C2
5 is non-ideal.

Lemma 7.3 Let q be a power of 2 greater than 4, and let S ⊆ GF(q)3 be a vector
space over GF(q) such thatMatroid(S) is isomorphic toMatroid(A3). Thenmult(S)

has C2
5 as a minor.

Proof By Remark 6.4, we may assume that S = {x ∈ GF(q)3 : x1 + x2 + x3 = 0}.
Let α = (α1, α2, α3) /∈ S. We will show that local(S, α) has C2

5 as a minor. Let
σ = α1 +α2 +α3, and we choose a, b ∈ GF(q) such that a ∈ GF(q)−{α1, α1 +σ }
and b ∈ GF(q) − {α1, α1 + σ, a, a + σ }.
Claim 3 a + b + α1 ∈ GF(q) − {α1, α1 + σ, a, a + σ, b, b + σ }.
Proof of Claim. If a + b+ α1 = α1 or α1 + σ , then b = a or b = a + σ , contradicting
the choice of b. If a + b+α1 = a or a + σ , then b = α1 or b = α1 + σ , contradicting
the choice of b. If a+b+α1 = b or b+σ , then a = α1 or a = α1+σ , a contradiction
as a /∈ {α1, α1 + σ }. Therefore, a + b + α1 /∈ {α1, α1 + σ, a, a + σ, b, b + σ }, as
required. ��

By Lemma 6.6 (2), the members of cardinality 2 in local(S, α) form a graph with
q
2 − 1 connected components G1, . . . ,G q

2 −1 where the vertex set of G j is

{
β
j
1 , β

j
1 + σ

}
∪
{
β
j
2 , β

j
2 + σ

}
∪
{
β
j
3 , β

j
3 + σ

}

where β
j
i , β

j
i + σ ∈ Ui − {αi + σ } andUi = GF(q) − {αi } for i ∈ [3]. Furthermore,

G1, . . . ,G q
2 −1 are 6-cycles by Lemma 6.6 (2) (see Fig. 3 for an illustration). As
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Fig. 3 The subgraph of Hn,α after deleting the vertices

q
2 − 1 ≥ 3, without loss of generality, we may assume that β1

1 = a, β2
1 = b, and

β3
1 = a + b + α1, i.e., G1,G2,G3 contain a, b, a + b + α1 ∈ U1 − {α1 + σ },

respectively.

Claim 4 The following statements hold:

(1) β1
1 + σ = a + σ , β1

2 + σ = a + α1 + α2 + σ , and β1
3 = a + α1 + α3,

(2) β2
2 = b + α1 + α2 and β2

2 + σ = b + α1 + α2 + σ , and
(3) β3

3 + σ = a + b + α3 + σ .

Proof of Claim. The claim follows from Lemma 6.6 (2). ��
Now keep elements β1

1 , β
1
1 +σ, β1

2 +σ, β1
3 in G1, β2

2 , β
2
2 +σ in G2, and β3

3 +σ in
G3 and delete the other elements from local(S, α). (see Fig. 3 for an illustration; we
keep only the circled elements). Let C denote the resulting minor of local(S, α).

As αi + σ for i ∈ [n] are deleted, we know from Lemma 6.6 (1) that C contains
no member of size 1. By Lemma 6.6 (2), C has 3 members of size 2:

{
β1
1 , β

1
2 + σ

}
,{

β1
3 , β

1
1 + σ

}
,
{
β1
3 , β

1
2 + σ

}
, and these are the only ones. (see Fig. 3 for an illustration;

the 3 thick edges represent the 3 members of size 2 in C).
Claim 5

{
β1
1 , β

2
2 , β

3
3 + σ

}
and

{
β1
1 + σ, β2

2 + σ, β3
3 + σ

}
are the only members of

size greater than 2 in C.
Proof of Claim. C contains at most one element in Ui for i ∈ [3] by Lemma 6.5, so
C has no member of size greater than 3. Moreover, a member of size 3 contains one
element from each U1,U2,U3. The subsets of size 3 that do not contain a member of
size 2 but one element from each of U1,U2,U3 are the following:

{
β1
1 , β

2
2 , β

1
3

}
,
{
β1
1 , β

2
2 + σ, β1

3

}
,
{
β1
1 , β

2
2 , β

3
3 + σ

}
,
{
β1
1 , β

2
2 + σ, β3

3 + σ
}

,

{
β1
1 + σ, β1

2 + σ, β3
3 + σ

}
,
{
β1
1 + σ, β2

2 , β
3
3 + σ

}
,
{
β1
1 + σ, β2

2 + σ, β3
3 + σ

}
.

By Lemma 6.5, a subset {x1, x2, x3} where xi ∈ Ui for i = 1, 2, 3 is a member if and
only if x1 + x2 + x3 = σ + α1 + α2 + α3. Notice that β1

1 + β2
2 + β1

3 = b + α2 + α3
cannot be σ + α1 + α2 + α3, because b is not α1 + σ by our choice of b. This
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implies that
{
β1
1 , β

2
2 , β

1
3

}
is not a member. Similarly,

{
β1
1 , β

2
2 + σ, β1

3

}
is not a mem-

ber, because b 	= α1. Notice also that {β1
1 +σ, β1

2 +σ, β3
3 +σ } is not amember, because

β1
1 + σ + β1

2 + σ + β3
3 + σ = a + b+ α1 + α2 + α3 + σ cannot be σ + α1 + α2 + α3

by our assumption that a 	= b. Observe that β1
1 + β2

2 + β3
3 + σ = σ + α1 + α2 + α3,

implying in turn that
{
β1
1 , β

2
2 , β

3
3 + σ

}
and

{
β1
1 + σ, β2

2 + σ, β3
3 + σ

}
are mem-

bers, whereas
{
β1
1 , β

2
2 + σ, β3

3 + σ
}
and

{
β1
1 + σ, β2

2 , β
3
3 + σ

}
are not. Therefore,{

β1
1 , β

2
2 , β

3
3 + σ

}
and

{
β1
1 + σ, β2

2 + σ, β3
3 + σ

}
are the only members of size at least

3 in C, as required. ��
Now that we have characterized all members of C, we know that the incidence

matrix of the corresponding minor C is the following 0,1 matrix:

⎛
⎜⎜⎜⎜⎝

β1
1 β1

2 + σ β1
3 β1

1 + σ β3
3 + σ β2

2 β2
2 + σ

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎠

.

Contracting the elements corresponding to β2
2 , β

2
2 + σ from C, we obtain a C2

5 minor.
Since C is a minor of local(S, α), we deduce that local(S, α) also has C2

5 as a minor,
as required. ��
Lemma 7.4 Up to isomorphism, Matroid(A3) is the unique minor-minimal matroid
with distinct circuits that have a nonempty intersection. Consequently, if two distinct
circuits of a matroid intersect, then the matroid hasMatroid(A3) as a minor.

Proof Let M be a minor-minimal matroid over ground set E with distinct circuits that
intersect.

Let C1,C2 be any pair of distinct circuits that intersect. Observe that C1 ∪C2 = E ,
for if not, M\C1 ∪ C2 would a proper matroid minor with distinct circuits, namely
C1,C2, that intersect, which cannot be the case. Observe further that I := C1 ∩ C2,
which by assumption is nonempty, has size one. For if not, for any e ∈ I , M/(I −{e})
would be a proper matroid minor with distinct circuits, namely C1 − (I − {e}),C2 −
(I − {e}), that intersect, which cannot be the case.

In summary, every two circuits that intersect, have E as their union and an intersec-
tion of size one. SinceM is amatroid, there is a circuitC3 ⊆ (C1∪C2)−{e}. Clearly,C3
intersects bothC1,C2. Thus, |C1∩C3| = |C2∩C3| = 1 andC1∪C3 = C2∪C3 = E . It
can be readily checked that |C1| = |C2| = 2, implying in turn that M ∼= Matroid(A3),
as required. ��

Now we are ready to prove Theorem 1.4. The crux of the proof is outlined as
follows. If mult(S) is ideal where S is a vector space over GF(2k) for some k > 2,
then mult(S) has no C2

5 as a minor. Then Matroid(S) has no two distinct circuits that
intersect, by Lemmas 7.3 and 7.4. Then we use Theorem 4.1 to argue that S has a basis
with vectors of pairwise disjoint supports.
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Proof of Theorem 1.4 Take an integer n ≥ 1. Let q be a power of 2 larger than 4, and let
S ⊆ GF(q)n be a vector space over GF(q). (iii)⇒(ii): Since mult(S) contains no C2

5
as a minor, Matroid(S) has no Matroid(A3) as a matroid minor, by Lemma 7.3. Thus,
every two distinct circuits ofMatroid(S)must be disjoint, by Lemma 7.4. This implies
that Matroid(S) is the graphic matroid of a graph whose blocks are bridges and cycles,
so (ii) follows from Lemma 2.6 and Theorem 4.1. (i)⇒(iii) follows immediately from
the fact that C2

5 is non-ideal. (ii)⇒(i) follows immediately from Lemma 5.1. ��

8 The replication and � = 2 conjectures

Let C be a clutter over ground set V . Given the weights of the elements w ∈ Z
V+,

the minimum weight of a cover of C can be computed by the following integer linear
program:

τ(C, w) = min
{
w�x : M(C)x ≥ 1, x ∈ Z

V+
}

.

A dual of this integer program is given by the following:

ν(C, w) = max
{
1�y : M(C)�y ≤ w, y ∈ Z

C+
}

,

and this computes the maximum size of a packing of members of C such that each
element v appears in at most wv members in the packing. The linear programming
relaxations of these two integer programs are the following primal-dual pair:

τ ∗(C, w) = minimize w�x
subject to M(C)x ≥ 1

x ≥ 0
,

ν∗(C, w) = maximize 1�y
subject to M(C)�y ≤ w

y ≥ 0
.

By linear programming duality, we have that

τ(C, w) ≥ τ ∗(C, w) = ν∗(C, w) ≥ ν(C, w).

Although τ ∗(C, w) = ν∗(C, w) always holds, it is not always the case that τ(C, w) =
ν(C, w). If τ(C, w) = ν(C, w) holds for every w ∈ Z

V+, we say that C has the max-
flow min-cut property. In fact, the max-flow min-cut property is equivalent to the total
dual integrality for the integer program computing τ(C, w). Namely, C has the max-
flow min-cut property if and only if the linear system M(C)x ≥ 1, x ≥ 0 is totally
dual integral. This implies that if C has the max-flow min-cut property, then Q(C) is
integral [16, 19] and thus C is ideal.

As themax-flowmin-cut property is a special case of idealness, a natural question is
as to when a clutter has the max-flowmin-cut property. In this section, we characterize
when the multipartite uniform clutter of a vector space over a finite field has the max-
flow min-cut property.

The readers may have already noticed that Theorem 1.5 is similar to Theorem 1.2
and Theorem 1.4. As a direct corollary of these theorems, we obtain the following:
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Theorem 8.1 Take a prime power q other than 2, 4, and let S be a vector space over
GF(q). Thenmult(S) is ideal if and only ifmult(S) has themax-flowmin-cut property.

Unlike the case when q /∈ {2, 4}, there is a vector space over GF(4) whose multi-
partite uniform clutter is ideal but does not have the max-flow min-cut property. The
element set of GF(4) can be represented as {0, 1, a, b}where a and b are the numbers
satisfying the following addition and multiplication tables:

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

× 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

Example Consider S = 〈(1, 1, 0), (1, 0, 1)〉 ⊆ GF(4)3. Then

S =
{

(0, 0, 0), (1, 1, 0), (a, a, 0), (b, b, 0), (1, 0, 1), (0, 1, 1), (b, a, 1), (a, b, 1),
(a, 0, a), (b, 1, a), (0, a, a), (1, b, a), (b, 0, b), (a, 1, b), (1, a, b), (0, b, b)

}
.

One can check by using PORTA [29] that
{
x ∈ R

12+ : M(mult(S))x ≥ 1
}
is an integral

polyhedron, somult(S) is ideal. Notice further thatmult(S) does not have themax-flow
min-cut property, since S contains

{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} ∼= R1,1

as a restriction and so mult(S) has Q6 as a minor by Lemma 2.3.

We say that clutter C packs if τ(C, 1) = ν(C, 1). We say that C has the packing
property if every minor of C packs. It was observed in [11] that minimally non-ideal
clutters do not pack due to Lehman’s theorem [22] and that if a clutter has the packing
property, then it is ideal. Moreover, notice that the packing property is a relaxed notion
of the max-flow min-cut property. Here, the Replication Conjecture predicts that the
packing property implies the max-flow min-cut property. We answer the conjecture in
the affirmative for the class ofmultipartite uniform clutters from coordinate subspaces.

Proof of Corollary 1.6 Take a prime power q, and let S be a vector space over GF(q).
Suppose that mult(S) has the packing property. Then every minor of mult(S) packs
and is ideal. Note that�3 is non-ideal. Moreover, it is easy to check that τ(Q6, 1) = 2
and ν(Q6, 1) = 1, which means that Q6 does not pack. Therefore, mult(S) has none
of �3 and Q6 as a minor. Then it follows from Theorem 1.5 that mult(S) has the
max-flow min-cut property. ��

Nextwe consider the τ = 2Conjecture [11]which predicts that a stronger statement
than the Replication Conjecture holds true. We call a clutter minimally non-packing
if it does not have the packing property but every proper minor of it does. It is known
that a minimally non-packing clutter is either ideal or minimally non-ideal [11]. Here,
the τ = 2 Conjecture is that if a clutter C is ideal and minimally non-packing, then its
covering number, defined as τ(C, 1), is two. We show that if the multipartite uniform

123



From coordinate subspaces over finite fields...

clutter of a coordinate subspace is ideal and minimally non-packing, then its covering
number is two.

Proof of Corollary 1.7 Take a prime power q, and let S be a vector space over GF(q).
Suppose that mult(S) is ideal and minimally non-packing. As mult(S) does not pack,
it does not have the max-flow min-cut property. Then by Theorem 1.5, mult(S) has
�3 or Q6 as a minor. Note that as �3 is non-ideal but mult(S) is ideal, mult(S) has
no �3 as a minor. Then it follows that mult(S) has Q6 as a minor. Since Q6 itself
does not pack and every proper minor of mult(S) packs, mult(S) is isomorphic to Q6.
In fact, Q6 is ideal and minimally non-packing, and it has covering number two, as
required. ��
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A Multipartite uniform clutters from binary spaces

Recall that the associated matroid of a vector space S over a finite field is denoted as
Matroid(S). For a binary space S, idealness of mult(S) can be characterized in terms
of Matroid(S).

Theorem A.1 ([4]). Take an integer n ≥ 1, and let S ⊆ GF(2)n be a binary space.
Then mult(S) is ideal if, and only if,Matroid(S) has the sums of circuits property.

The sums of circuits property was introduced by Seymour [33]. Theorem A.1 is orig-
inally stated in terms of what is called the cuboid of S, defined in Sect. 2.1. To avoid
confusion, let us stick to multipartite uniform clutters. In [32], Seymour proved that
a binary matroid has the sums of circuits property if and only if it has none of F∗

7 ,
R10, M(K5)

∗ as a matroid minor, where F∗
7 is the dual of the Fano matroid, R10 is the

binary matroid whose graft representation is displayed in Fig. 4, and M(K5)
∗ is the

cut matroid of K5.
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Fig. 4 R10

Fig. 5 The Fano plane

Theorem 1.1 provides a characterization of ideal multipartite uniform clutters from
binary spaces, and it is in terms of excluded clutter minors. Recall that the following
are two non-ideal clutters in the list of excluded clutter minors.

• L7 is the clutter over ground set {1, . . . , 7} whose members are {1, 2, 3}, {1, 4, 5},
{1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}, and L7 is isomorphic to the clutter
of lines of the Fano plane (Fig. 5).

• O5 is the clutter over ground set E(K5), the edge set of K5, whose members are
the odd cycles of K5.

So, an ideal clutter contains none of L7, O5 as a minor.
A subset B of V is called a cover of a clutter C if B intersects every member of

C. The blocker of C, denoted b(C), is defined as the clutter over the same ground set
V whose members are the minimal covers of C. The following is a consequence of
Lehman’s width-length inequality [21]:

Theorem A.2 ([21]). Let C be a clutter over ground set V . Then C is ideal if, and only
if, b(C) is ideal.

Theorem A.2 implies that the blockers of L7 andO5 are non-ideal. It can be observed
that the blocker of L7 is itself and that

• b(O5) is the clutter over ground set E(K5) whose members are the cut comple-
ments of K5.

As a consequence of Seymour’s theorem [32] that a binary matroid has the sums of
circuits property if and only if it has none of F∗

7 , R10, M(K5)
∗ as a matroid minor.

The proof of Theorem 1.1 given in [4] is based on this result. We refer the reader to [4]
for a formal proof.
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B Proof of lemma 3.4

We will prove Lemma 3.4 that characterizes graphs with no K4/e as a graph minor.
Given a graph G = (V , E) and its block decomposition, we may associate G with a
bipartite graph B(G) where

• a part of the bipartition of B(G) consists of the cut-vertices of G,
• the other part consists of the blocks of G, and
• a cut-vertex u and a block B are adjacent in B(G) if u is a vertex in B.

It is well-known that B(G) is a tree all of whose leaves are blocks of G (see [7]). We
call a vertex of G that is not a cut vertex an internal vertex.

Proof of Lemma 3.4 Assume that G contains no K4/e as a graph minor. We will prove
by induction on the number of edges that each block of G is a bridge, a cycle, or a
subdivision of At for some t ≥ 3. The base case is trivial. For the induction step, we
may assume that G has at least 3 edges. If G has more than one block, a block of G
has less edges than G does, so we may apply the induction hypothesis to each block of
G. Thus we may assume that G is 2-vertex-connected, in which case, G has no loop.

Let e be an edge of G. By the induction hypothesis, each block of G − {e} is a
bridge, a cycle, or a subdivision of At for some t ≥ 3. Moreover, since G has no loop,
G − {e} has no loop either. We first prove the following claim:

Claim 6 Either B(G − {e}) is a single vertex, i.e., G − {e} is 2-vertex-connected, or
B(G − {e}) is a path whose two ends are blocks of G and e is incident to internal
vertices of the two end blocks of the path.

Proof of Claim. We may assume that G − {e} has at least two blocks. Since G is
2-vertex-connected, e connects two distinct blocks B1, B2 of G − {e}. Recall that
B(G−{e}) is a tree, so there is a unique path between B1 and B2 in B(G−{e}). Then,
after putting e back, the blocks of G − {e} on the path between B1 and B2 become a
single block in G. In fact, since G is 2-vertex-connected, G has no other block. This
implies thatG−{e} has no block other than the ones onC . So,B(G−{e}) contains no
vertex outside C , and therefore, B(G −{e}) is a path where B1, B2 are its two ends. If
e is not incident to an internal vertex of B1, then e is incident to the cut-vertex of B1,
implying that B1 is separated from B2 in G, a contradiction. Thus e is incident to an
internal vertex of B1. Similarly, e is incident to an internal vertex of B2, as required. ��

Next, we claim the following:

Claim 7 All but at most one block of G − {e} are bridges.
Proof of Claim. Wemay assume thatG−{e} has at least two blocks. Then, by Claim 1,
B(G − {e}) is a path B1, u1, B2, . . . , uk−1, Bk for some k ≥ 2, where B1, . . . , Bk are
the blocks of G − {e} and u� is the cut-vertex separating B� and B�+1 for � ∈ [k − 1].
Moreover, by Claim 1, e = u0uk , where u0 is an internal vertex of B1 and uk is an
internal vertex of Bk .

Suppose for a contradiction that G − {e} has two blocks that are not bridges. Then
Bi , Bj for some distinct i, j ∈ [k] are not bridges. In particular, Bi and Bj have cycles
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Fig. 6 e = ui−1u j

Ci andC j , respectively. Here, bothCi andC j have at least two edges asG−{e} has no
loop. After contracting the edges of B� for � ∈ [k] − {i, j} from G − {e}, the vertices
in B1, . . . , Bi−1 are identified with ui−1, the vertices in Bi+1, . . . , Bj−1 are identified
with u j−1, and the vertices in Bj+1, . . . , Bk are identified with u j . Therefore, the
resulting graph is ui−1, Bi , u j−1, Bj , u j , where ui−1 and u j are internal vertices of
Bi and Bj , respectively, and u j−1 is the cut-vertex separating Bi , Bj . Notice that
e connects ui−1 and u j after the contraction, because u0, uk were identified with
ui−1, u j , respectively (see Fig. 6 for an illustration).We then delete the edges outside of
the cyclesCi ,C j . After adding e back,we obtain a subdivision of K4/e, a contradiction
asG has no K4/e as a graphminor. Therefore, at most one block ofG−{e} is a bridge.

��
If every block of G −{e} is a bridge, then it follows from Claim 1 that G is a cycle.

Thus we may assume that a block B of G − {e} is a cycle or a subdivision of At for
some t ≥ 3. Then, by Claim 2, the other blocks of G − {e} are bridges.
Claim 8 G is the union of B and a path P whose ends are two vertices in B and the
other vertices are disjoint from V (B).

Proof of Claim. It follows from Claim 1 that e and the bridges of G − {e} form a path
P connecting two vertices of B. An interior vertex of P , if exists, is in a block of
G − {e} other than B, so it is not contained in V (B), as required. ��

As B is a cycle or a subdivision of At for some t ≥ 3, B is a disjoint union of
internally vertex-disjoint uv-paths for some distinct u, v ∈ V (B). Let P1, . . . , Pt be
the uv-paths.

Claim 9 If t = 2, G is a subdivision of A3.

Proof of Claim. If t = 2, B is a cycle and P connects two vertices on the cycle by
Claim 3. So, G is the union of three internally vertex-disjoint paths connecting the
two vertice, implying in turn that G is a subdivision of A3. ��

By Claim 4, we may assume that t ≥ 3. We will show that P is also a path
connecting u and v, thereby proving that G is a subdivision of At+1, obtained from
uv-paths P1, . . . , Pt , P .

Claim 10 P is an uv-path.

Proof of Claim. Suppose for a contradiction that P is not a uv-path. Then one of P’s
two ends is not in {u, v}.

First, consider the case when one end of P is in {u, v}. Without loss of generality,
we may assume that one end of P is u and the other end is w ∈ V − {u, v}. Without
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Fig. 7 w /∈ {u, v}

Fig. 8 w1, w2 /∈ {u, v}

loss of generality, assume that w is on P1. Then the subgraph of G obtained after
deleting the edges E − E(P)∪ E(P1)∪ E(P2)∪ E(P3) (see Fig. 7 for an illustration)
is a subdivision of K4/e, contradicting the assumption that G has no K4/e as a graph
minor.

Now consider the case when both ends of P are not in {u, v}. Let the ends of P be
w1, w2 ∈ V −{u, v}. There are two cases to consider:w1, w2 are on the same uv-path
of B, or w1, w2 are on different uv-paths. If w1, w2 are on the same uv-path, we may
assume that they are on P1 without loss of generality. In this case, deleting the edges
E − E(P) ∪ E(P1) ∪ E(P2) ∪ E(P3) and contracting the edges of the uw1-path on
P1 (see Fig. 8 for an illustration), we obtain a subdivision of K4/e, a contradiction.

If w1, w2 are on different uv-paths, we may assume that w1 is on P1 and w2 is on
P2 without loss of generality. Deleting the edges E − E(P)∪ E(P1)∪ E(P2)∪ E(P3)
and contracting the edges of P (see Fig. 8 for an illustration), we obtain a subdivision
of K4/e, a contradiction as G has no K4/e as a graph minor. ��

By Claims 3 and 5, P is an uv-path that is internally vertex-disjoint from P1, . . . , Pt ,
implying in turn that G is a subdivision of At+1. This finishes the proof. ��

C Proof of lemma 6.6

Proof of Lemma 6.6 (1) By Lemma 6.5, C is a member of size 1 if and only if C =
{σ +αi } for some i ∈ [n]. Therefore, {α1 +σ }, . . . , {αn +σ } are the members of size
1 in local(S, α), as required.

(2) First, we will argue that a member of cardinality 2 contains none of α1 +
σ, . . . , αn + σ . Let {u, v} be a member of size 2 where u ∈ Ui and v ∈ Uj for some
i 	= j . Then we get u + v = σ + αi + α j by Lemma 6.5. If u = αi + σ , then v = α j ,
contradicting the assumption that v ∈ Uj = GF(q)−{α j }. Therefore, themembers of
cardinality 2 are contained inU ′ := (U1 − {α1 + σ })∪· · ·∪(Un − {αn + σ }). Notice
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that we have preserved the symmetry betweenU1 −{α1 +σ }, . . . ,Un −{αn +σ } and
that U1 − {α1 + σ } is not different from the other Ui − {αi + σ }’s.

Observe that U1 − {α1 + σ } = GF(q) − {α1, α1 + σ } has q − 2 elements and
that U1 − {α1 + σ } can be partitioned as U1 − {α1 + σ } = {

β1
1 , β

1
1 + σ

} ∪ · · · ∪{
β

q
2 −1
1 , β

q
2 −1
1 + σ

}
, with q

2 −1 sets of cardinality 2, where β1
1 , . . . , β

q
2 −1
1 are distinct

elements. For i = 2, . . . , n and j = 1, . . . , q
2 − 1, we denote by β

j
i ∈ Ui the element

satisfying β
j
i = β

j
1 + α1 + αi .

Claim 11 Ui −{αi +σ } = {β1
i , β

1
i + σ

}∪· · ·∪
{
β

q
2 −1
i , β

q
2 −1
i + σ

}
for i = 1, . . . , n.

Proof of Claim. We may assume that i ≥ 2. Let j, � be distinct indices in
[ q
2 − 1

]
.

As β
j
1 	= β�

1 , we get β
j
i 	= β�

i . Similarly, β
j
1 	= β�

1 + σ implies β
j
i 	=

β�
i + σ . Therefore, β1

i , β
1
i + σ, . . . , β

q
2 −1
i , β

q
2 −1
i + σ are distinct elements, so

{
β1
i , β

1
i + σ

}
, · · · ,

{
β

q
2 −1
i , β

q
2 −1
i + σ

}
partition Ui − {αi + σ }, as required. ��

By Claim 1, each element inU ′ is β
j
i or β

j
i + σ for some i ∈ [n] and j ∈ [ q2 − 1

]
.

Now we are ready to characterize what the members of size 2 are.

Claim 12 Let u, v be distinct elements in U ′. Then {u, v} is a member in local(S, α)

if and only if for some j ∈ [ q2 − 1
]
and distinct i, k ∈ [n], we have u = β

j
i and

v = β
j
k + σ or u = β

j
i + σ and v = β

j
k .

Proof of Claim. (⇐)Without loss of generality, we may assume that j = 1, i = 1, and
k = 2. As β1

2 = β1
1 + α1 + α2, we have β1

1 + β1
2 + σ = α1 + α2 + σ . So, by Lemma

6.5, {u, v} is a member.
(⇒) Without loss of generality, we may assume that u ∈ U1, v ∈ U2. Then

u = β
j
1 or u = β

j
1 + σ for some j ∈ [ q

2 − 1
]
. If u = β

j
1 , then by Lemma 6.5,

v = β
j
1 +α1 +α2 +σ = β

j
2 +σ . Similarly, if u = β

j
1 +σ , we can argue that v = β

j
2 ,

as required. ��
For j ∈ [ q

2 − 1
]
, let G j denote the graph induced by the elements in{

β
j
1 , . . . , β

j
n

}
∪
{
β
j
1 + σ, . . . , β

j
n + σ

}
. By Claim 2, the edge set of G j is pre-

cisely
{{

β
j
i , β

j
k + σ

}
: i 	= k

}
. Moreover, Claim 2 also implies that there is no edge

between G j and G� if j 	= �, as required. ��
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