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Abstract
We study the quickest change-point (disorder) detection problems for an observable multi-
dimensional Wiener process with the constantly correlated components changing their drift
rates at certain unobservable random (change-point) times. These problems seek to determine
the times of alarmswhich should be as close as possible to the unknown change-point times at
which some of the components have changed their drift rates. The optimal stopping times of
alarm are shown to be the first times at which the appropriate posterior probability processes
exit certain regions restricted by the stopping boundaries. We characterise the value func-
tions and optimal boundaries as unique solutions to the associated free-boundary problems
for partial differential equations. It is observed that the optimal stopping boundaries can also
be uniquely specified by means of the equivalent nonlinear Fredholm integral equations in
the class of continuous functions of bounded variation. We also provide estimates for the
value functions and boundaries which are solutions to the appropriately constructed ordinary
differential free-boundary problems.
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1 Introduction

The quickest change-point (disorder) detection problems for observable multidimensional
Wiener process seek to determine the times of alarm at which some of the components
of the process change their local drift rates as soon as possible and with minimal error
probabilities.More precisely, we consider the classical Bayesian formulation of this problem,
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which consists of the minimisation of linear combinations of the probabilities of false alarms
and the expected linear penalty costs in the detection of the change-points correctly. It is
customary assumed that the change-point times are independent exponentially distributed
random variables.

The quickest change-point detection problem for observable one-dimensional Wiener
processes is well-understood in its classical formulation (see, e.g. Shiryaev (1961, 1963,
1965) for a solution to the original problem and Shiryaev (2019) for the introducti on to the
area). The standard Poisson disorder problem, inwhich the intensity of the observable process
changes from one value to another, was solved in full generality in Peskir and Shiryaev
(2002) (see also (Peskir and Shiryaev 2006; Chapter VI, Sections 23 and 24)). Dayanik
and Sezer (2006) solved the quickest disorder detection problem for observable compound
Poisson processes, in which the changing characteristics were the intensity and distribution
of jumps. Other formulations based on the exponential delay penalty setting were studied
in Beibel (2000) for an observable Wiener process and in Bayraktar and Dayanik (2006)
for an observable Poisson process. The standard Poisson disorder problem with various
types of probabilities of false alarms and delay penalty functions was studied in Bayraktar
et al. (2005, 2006). These problem settings are suitable when modelling the situations in
which other measures of the errors due to false alarms are preferable or the costs of delay
in disorder detection are not necessarily linear (e.g. continuous compounding by the interest
rates in financial applications). Further extensions of the quickest change-point detection
problem were studied for observable Wiener processes in Gapeev and Peskir (2006) in the
finite horizon setting and, for certain time-homogeneous diffusion processes in Gapeev and
Shiryaev (2013), on infinite time intervals. The aim of all the problems for one-dimensional
observable processes mentioned above was to determine stopping times of alarm as close as
possible to the times of change of the local characteristics of the observations.

Multidimensional versions of the quickest change-point (disorder) detection problems
naturally arisewhenonemodels real-world systemsdescribed by several stochastic processes,
which may have dependent components. Bayraktar et al. (2007) solved the problem for two
observable independent Poisson processes, in which stopping times were sought as close as
possible to the earliest of the two appropriate disorder times. Dayanik et al. (2008) solved the
problem for observable multidimensional Wiener and Poisson processes with independent
components, which change their local characteristics simultaneously. In this paper, we study
the multidimensional Wiener quickest change-point detection problem. Our setting is closer
to the one of Bayraktar et al. (2007), since the change-point times of the components are
different, but is more general in the sense that we observe multiple correlated components.
Themultidimensional structure of the problem is clearly exhibitedwhenmaking the reduction
to the appropriate optimal stopping problem. Possible applications of the solutions to these
quickest detection problems include: assembly line breakdown in plant production of an
item when we aim to detect the earliest of all change-point times (see Bayraktar et al. 2007);
abnormal returns in one of many stocks when we aim to detect just one of the change-point
times; total system breakdown when we aim to detect the latest of all change-point times.
More recently, some results for multidimensional sequential testing and detection problems
were obtained inEkströmandWang (2022),where the independent drivingBrownianmotions
were considered. Ernst and Peskir (2022) and Ernst et al. (2024) studied the quickest real-time
detection of a Brownian coordinate drift for a model with the observable two-dimensional
andmultidimensional standardBrownianmotionwith independent components and changing
drift rates. It was shown that the optimal stopping boundaries for the appropriate posterior
probability processes are determined as unique solutions to the nonlinear Fredholm integral
equations in the class of continuous functions of bounded variation.

123



Methodology and Computing in Applied Probability             (2025) 27:2 Page 3 of 25     2 

We begin by reducing the original change-point detection problem for a multidimensional
Wiener process with constantly correlated components to an optimal stopping problem for a
multidimensional Markov diffusion process. The components of the diffusion form a family
of the posterior probability processes which correspond to every subset of change-point times
and play the role of sufficient statistics for the original optimal stopping problem. For the
reduction, we use the ideas from Gapeev and Jeanblanc (2010), where the filtering equations
for the posterior probabilities are derived for two observable constantly correlated Wiener
processes. It is shown that the optimal stopping times of alarms are the first times at which one
of the posterior probability processes exits from the regions restricted by stochastic boundary
surfaces determined by the current values of the other sufficient statistics. We formulate the
equivalent free-boundary problemand prove a verification theoremwhich identifies its unique
solution with the value function of the optimal stopping problem. We note that the optimal
stopping boundaries can also be uniquely specified by means of the equivalent nonlinear
Fredholm integral equations in the class of continuous functions of bounded variation. From
the methodological point of view, the main complication in our setting arises from the higher
dimensions of the sufficient statistics processes, which are needed to formulate the optimal
stopping problem for a Markov process, due to the presence of the multiple disorder times.
Moreover, the correlation structure of the observable processes needs to be taken into account
when deriving the filtering equations. The proof of the verification theorem uses the change-
of-variable formula with local time on surfaces from Peskir (2007). We also provide lower
estimates for the value functions, which inherently construct the upper estimates for the
stochastic boundary surfaces, in the case in which we aim to detect the earliest of the change-
point times of the components. These estimates are given as solutions to the appropriate
one-dimensional free-boundary problems for ordinary differential equations.

In Section 2, we introduce the setting of the model for the quickest change-point detec-
tion problem for observable multidimensional Wiener processes with constantly correlated
components. We derive stochastic differential equations for a family of posterior probabil-
ity processes corresponding to the appropriate subsets of the disorder times, by means of
generalised Bayes’ formula from (Liptser and Shiryaev 2001; Chapter VII, Theorem 7.23).
In Section 3, we construct the associated optimal stopping problem for the posterior proba-
bility processes and formulate the equivalent multidimensional free-boundary problem. The
verification theorem is proved providing an appropriate characterisation of the optimal stop-
ping boundary surface as the unique solution to the free-boundary problem. Moreover, we
observe that the optimal stopping boundary surface is uniquely characterised by means of
the appropriate nonlinear Fredholm integral equations in the class of continuous functions of
bounded variation. Finally, in Section 4, we provide estimates for the original solution to the
problem of detection of the earliest of all change-point times considered in the model. The
main results of the paper are stated and proved in Section 3.

2 The Problem Formulation

Let us consider a probability space (�,G, P�π ) with constantly correlated standard Wiener
processes (Brownian motions) Bi = (Bi

t )t≥0, for i = 1, . . . , n, for some n ∈ N, with
the quadratic covariation 〈Bi , B j 〉t = ρi, j t , for some constants ρi, j ∈ (−1, 1) given and
fixed, for i, j = 1, . . . , n, and nonnegative random variables θ j , for j = 1, . . . , n, such
that P�π (θ j = 0) = π j and P�π (θi > t | θi > 0) = e−λi t with λi > 0, for t ≥ 0. Suppose
that the variables θi and θ j are independent of each other, for i, j = 1, . . . , n, i �= j ,
and of the processes Bk , for k = 1, . . . , n. Hereafter, �π denotes an n-dimensional vector
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�π = (π1, . . . , πn) ∈ [0, 1]n , for n ∈ N. Assume that we observe the continuous processes
Xi = (Xi

t )t≥0, for i = 1, . . . , n, of the form

Xi
t = μi (t − θi )

+ + νi B
i
t , (2.1)

where the constantsμi , νi > 0, for i = 1, . . . , n, are given and fixed. Our aim is to determine
anoptimal stopping timeof alarm τ∗ with respect to the observablefiltration (Ft )t≥0 generated
by all Xi , for i = 1, . . . , n, that is, Ft = ∨n

i=1σ(Xi
s | 0 ≤ s ≤ t), for t ≥ 0, which

is as close as possible to the random variable fk(θ1, . . . , θn), for any given (continuous)
function fk : [0,∞)n �→ [0,∞), for some k = 1, . . . ,m and some m ∈ N. Specifically, the
quickest change-point (disorder) detection problem for a multidimensional Wiener process
is to compute the Bayesian risk function

V∗(�π) = inf
τ

( m∑
k=1

(
bk P�π
(
τ < fk(θ1, . . . , θn)

)+ ck E �π
[(

τ − fk(θ1, . . . , θn)
)+])) (2.2)

and find the optimal stopping time τ∗ at which the infimum is attained in Eq. 2.2, where
bk, ck > 0 are given constants, for k = 1, . . . ,m. Here, P�π (τ < fk(θ1, . . . , θn)) represents
the probability of false alarm and E �π [(τ − fk(θ1, . . . , θn))+] represents the average delay
of detecting the function fk(θ1, . . . , θn) correctly, for k = 1, . . . ,m.

By using standard arguments (see (Shiryaev 1978; Pages 195-197)), we get that

P�π
(
τ < fk(θ1, . . . , θn)

) = E �π
[
I
(
τ < fk(θ1, . . . , θn)

)]
= E �π
[
E �π
[
I
(
τ < fk(θ1, . . . , θn)

) ∣∣Fτ

]] = E �π
[
P�π
(
τ < fk(θ1, . . . , θn)

∣∣Fτ

)]
(2.3)

and

E �π
[(

τ − fk(θ1, . . . , θn)
)+] (2.4)

= E �π
∫ τ

0
I
(
fk(θ1, . . . , θn) ≤ t

)
dt = E �π

∫ ∞

0
I
(
fk(θ1, . . . , θn) ≤ t ≤ τ

)
dt

= E �π
∫ ∞

0
E �π
[
I
(
fk(θ1, . . . , θn) ≤ t ≤ τ

) ∣∣Ft
]
dt

= E �π
∫ τ

0
P�π
(
fk(θ1, . . . , θn) ≤ t

∣∣Ft
)
dt

holds, for any stopping time τ with respect to the observable filtration (Ft )t≥0, for k =
1, . . . ,m, where I (·) denotes the indicator function.
2.1 Sufficient Statistics and Filtering Equations

Let us now reduce the original problem of Eq. 2.2 to an optimal stopping problem for a
multidimensional (strong) Markov process. We define the posterior probability processes
(


∗,k
t )t≥0 by 


∗,k
t = P�π ( fk(θ1, . . . , θn) ≤ t |Ft ), for t ≥ 0 and k = 1, . . . ,m, and observe

that it follows from Eqs. 2.3-2.4 that the Bayesian risk function in Eq. 2.2 can be represented
as

V∗(�π) = inf
τ

E �π
[ m∑
k=1

(
bk (1 − 
∗,k

τ ) + ck

∫ τ

0



∗,k
t dt

)]
. (2.5)

For each (ordered) sequence J = { j1, . . . , jn}, j1 ≤ . . . ≤ jn , for n ∈ N, such that
J ⊆ N , where we set N = {1, . . . , n}, we define the posterior probability process (
J

t )t≥0

as
J
t := P�π (

⋂
i∈J {θi ≤ t} |Ft ), for t ≥ 0. In order to simplify the notation,wewill order the

processes 
J by choosing an arbitrary integer-valued bijection O : {1, . . . , 2n} �→ 2N from
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the set of integers {1, . . . , 2n} to the power set (i.e. the set of all subsets) of N and denoting
by �
 = (
1, . . . , 
2n ) the 2n-dimensional process with components given by


j
t = 


O( j)
t ,

for t ≥ 0 and j = 1, . . . , 2n . Let us now assume that the functions fk(θ1, . . . , θn) are such
that every process 
∗,k = (


∗,k
t )t≥0 is of the form



∗,k
t ≡ P�π

(
fk(θ1, . . . , θn) ≤ t

∣∣Ft
) =

2n∑
j=1

ak, j 

j
t , (2.6)

for t ≥ 0 and some constants ak, j , as well as for every k = 1, . . . ,m and j = 1, . . . , 2n

(examples of such functions fk(θ1, . . . , θn) will be provided in Section 4 below). In what
follows, we prove that the 2n-dimensional process �
 has the strong Markov property.

Let us now introduce the probability measure P J (·) := P�π (· | ⋂i∈J {θi =
0}⋂⋂ j∈N\J {θ j = ∞}) and the (weighted) density process Z J = (Z J

t )t≥0 by

Z J
t := exp

(∑
i∈J

λi t

)
d(P J |Ft )

d(P∅ |Ft )
, (2.7)

for t ≥ 0 and J ⊆ N , where P J |Ft denotes the restriction of themeasure P J toFt , for t ≥ 0.
Let the correlation matrix � = (σi, j )i, j∈N of the n-dimensional process X = (X1, . . . , Xn)

be given by

σi, j = 〈Xi , X j 〉1
νiν j

, (2.8)

for i, j ∈ N , and denote the entries of the inverse correlation matrix by �−1 = (ηi, j )i, j∈N ,
which exists, because � is a symmetric and positive definite matrix. We can express the
density process fromEq. 2.7 in terms of processes adapted to the observable filtration (Ft )t≥0,
and these processes will be linear combinations of the observable processes Xi , for i ∈ N ,
as the following lemma shows. The arguments are essentially based on the application of
Girsanov’s theorem for a multidimensional Wiener process.

Lemma 2.1 In the model for a quickest change-point detection in the drift rates of multidi-
mensional Wiener processes stated above, we have

Z J
t = exp

(∑
i∈J

(λi t + Y i
t ) − 1

2

( ∑
i, j∈J

μiμ j

νiν j
ηi, j

)
t

)
, (2.9)

for t ≥ 0 and J ⊆ N, where we have set

Y i
t := μi

νi

n∑
j=1

ηi, j

ν j
X j
t , (2.10)

for t ≥ 0 and every i ∈ N.

Proof See Appendix below. ��
Let us now define the process (

α,L
t )t≥0 recursively by


α,L
t := λαk

∫ t

0


[α1,...,αk−1],L
u

Z K∪L
t

Z K∪L
u

du, 
∅,L
t := π L Z L

t , ∅,∅ ≡ 1, (2.11)

for t ≥ 0 and K , L ⊆ N such that K �= ∅, K ∩ L = ∅, and any permutation α :=
[α1, . . . , αk] ∈ Perm(K ), where Perm(K ) denotes the set of all permutations of K , and
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π L := ∏l∈L πl . The process α,L can be regarded as a (weighted) likelihood ratio process
corresponding to the event

⋂
l∈L{θl = 0}⋂{0 < θα1 ≤ · · · ≤ θαk ≤ t}⋂⋂i∈N\(K∪L){t <

θi }, since it can be written in the form


α,L
t = π L exp

(∑
i∈N

λi t

)∫
At

d(Pu,L |Ft )

d(P∅ |Ft )

k+r∏
i=1

λαi e
−uiλαi dk+r �u, (2.12)

for t ≥ 0, where r ∈ N is the number of elements of the set N \ (K ∪ L) and

{αk+1, . . . , αk+r } = N \ (K ∪ L), (2.13)

At = {x ∈ R
k+r | 0 < x1 ≤ · · · ≤ xk ≤ t and t < xk+i for i = 1, . . . , r}, (2.14)

Pu,L(·) = P�π (· |⋂i∈L {θi = 0}⋂⋂ j=1,...,k+r {θα j = u j }), (2.15)

for t ≥ 0 and �u = (u1, . . . , uk+r ) ∈ R
k+r . Therefore, the processes � J ,L = (�

J ,L
t )t≥0 and

� J = (� J
t )t≥0 defined by

�
J ,L
t :=

∑
J⊆K⊆N\L

∑
α∈Perm(K )


α,L
t and � J

t :=
∑

L1⊆N\J ,L2⊆J

�
J\L2,L1∪L2
t , (2.16)

for t ≥ 0 and J , L ⊆ N such that J ∩ L = ∅, can be regarded as a (weighted) likelihood
ratio processes corresponding to the events {(θl = 0)l∈L }⋂{(0 < θi ≤ t)i∈J }⋂{(0 <

θi )i∈N\(J∪L)} and {(θi ≤ t)i∈J }, respectively.Hence, by using the generalisedBayes’ formula
from (Liptser and Shiryaev 2001; Chapter VII, Theorem 7.23), we obtain that the posterior
probability process 
J = (
J

t )t≥0 takes the form


J
t = � J

t

�
∅

t

, (2.17)

for t ≥ 0 and J ⊆ N .
It follows from the expression in Eq. 2.9 that Z J satisfies the following stochastic differ-

ential equation

dZ J
t = Z J

t

(∑
i∈J

λi dt +
∑
i∈J

dY i
t

)
, (2.18)

for t ≥ 0 and J ⊆ N . By applying Itô’s formula from (Liptser and Shiryaev 2001; Chapter IV,
Theorem 4.4) to the expressions in Eqs. 2.18 and 2.11, we get

d
α,L
t =

(
λαk

[α1,...,αk−1],L
t +

∑
i∈K∪L

λi 
α,L
t

)
dt +

∑
i∈K∪L


α,L
t dY i

t , (2.19)

d
∅,L
t =

∑
i∈L

λi 
∅,L
t dt +

∑
i∈L


∅,L
t dY i

t , (2.20)

for t ≥ 0 and K , L ⊆ N such that K �= ∅, K ∩ L = ∅, and any α := [α1, . . . , αk] ∈
Perm(K ). Therefore, by using the expression in Eq. 2.16, we further obtain

d�
J ,L
t =

(∑
i∈J

λi �
J\{i},L
t +

∑
i /∈J

λi �
J ,L
t

)
dt +

∑
i∈J∪L

�
J ,L
t dY i

t +
∑

i /∈J∪L

�
J∪{i},L
t dY i

t

(2.21)
for t ≥ 0, and, by summing up the related equations, we get

d� J
t =
(∑

i∈J

λi �
J\{i}
t +

∑
i /∈J

λi �
J
t

)
dt +
∑
i∈J

� J
t dY i

t +
∑
i /∈J

�
J∪{i}
t dY i

t , (2.22)
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for t ≥ 0 and J , L ⊆ N such that J ∩ L = ∅. Hence, by applying Itô’s formula to the
expression in Eq. 2.17, we conclude that

d
J
t =
∑
i∈J

λi

(



J\{i}
t −
J

t

)
dt +
∑
i∈N

(



J∪{i}
t −
J

t 

{i}
t

)(
dY i

t −
n∑
j=1



{ j}
t d〈Y i , Y j 〉t

)
,

(2.23)
for t ≥ 0 and J ⊆ N .

Furthermore, we get from Eq. 2.10 that

〈Y i , Y j 〉t = μiμ j

νiν j

n∑
k,l=1

ηi,k η j,l σk,l t = μiμ j

νiν j
ηi, j t (2.24)

holds, for all t ≥ 0, and therefore, we can write the equation in Eq. 2.23 as

d
J
t =
∑
i∈J

λi

(



J\{i}
t −
J

t

)
dt+
∑
i∈N

(



J∪{i}
t −
J

t 

{i}
t

) μi

νi

n∑
j=1

ηi, j

ν j

(
dX j

t −μ j 

{ j}
t dt
)

(2.25)

for t ≥ 0. Defining the innovation processes B
i = (B

i
t )t≥0, for i = 1, . . . , n, by

B
i
t := Xi

t

νi
− μi

νi

∫ t

0

{i}

s ds, (2.26)

for t ≥ 0, and using the P. Lévy’s characterisation theorem (Liptser and Shiryaev 2001;

Chapter IV, Theorem 4.1), we see that B
i
is a standard Brownian motion with respect to the

filtration (Ft )t≥0 under the probability measure P�π . Moreover, we have 〈Bi
, B

j 〉t = σi, j t ,
for all t ≥ 0 and every i, j ∈ N , and we can rewrite Eq. 2.25 as

d
J
t =
∑
i∈J

λi

(



J\{i}
t − 
J

t

)
dt +
∑
i∈N

(



J∪{i}
t − 
J

t 

{i}
t

) μi

νi

n∑
j=1

ηi, j d B
j
t (2.27)

for t ≥ 0. Alternatively, by defining the processes B̂i = (B̂i
t )t≥0, for i = 1, . . . , n, as

B̂i
t := Y i

t −∑n
j=1

∫ t
0 


{ j}
s d〈Y i , Y j 〉s√〈Y i , Y i 〉t/t

=
(
Y i
t − μi

νi

n∑
j=1

∫ t

0



{ j}
s

μ j

ν j
ηi, j ds

)
νi

μi
√

ηi,i
,

(2.28)
for t ≥ 0, and, by using the P. Lévy’s characterisation theorem, we see that B̂i is a Brownian
motion with respect to the filtration (Ft )t≥0 under the probability measure P�π . Moreover,
taking into account the expression in Eq. 2.24, we have

〈B̂i , B̂ j 〉t = ηi, j√
ηi,iη j, j

t, (2.29)

for all t ≥ 0 and i, j ∈ N , and thus, we can rewrite Eq. 2.23 as

d
J
t =
∑
i∈J

λi

(



J\{i}
t − 
J

t

)
dt +
∑
i∈N

(



J∪{i}
t − 
J

t 

{i}
t

) μi

νi

√
ηi,i d B̂

i
t , (2.30)

for t ≥ 0.Therefore, by using either the expression inEq. 2.27 or the one inEq. 2.30,weobtain
that the process �
 satisfies the conditions of (Øksendal 1998; Chapter V, Theorem 5.2.1])
about the existence and uniqueness of strong solutions of stochastic differential equations,
and thus, by virtue of (Øksendal 1998; Chapter VII, Theorem 7.2.4), it has the strongMarkov
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property with respect to its natural filtration, which coincides with (Ft )t≥0. Moreover, since
we have the representations


J
t ≡ P�π (

⋂
i∈J {θi ≤ t} |Ft ) =

∑
J⊆K⊆N

P�π (
⋂

i∈K {θi ≤ t}⋂⋂i∈N\K {t < θi } |Ft ), (2.31)

P�π (
⋂

i∈K {θi ≤ t}⋂⋂i∈N\K {t < θi } |Ft ) = 
K
t −

∑
i∈N\K



K∪{i}
t +

∑
i �= j∈N\K



K∪{i, j}
t + . . .

(2.32)

· · · + (−1)n−k−1
∑

i∈N\K



N\{i}
t + (−1)n−k
N

t ,

for t ≥ 0 and J , K ⊆ N , where k is the number of elements of K and
∑
K⊆N

P�π ({(θi ≤ t)i∈K }⋂ {(t < θi )i∈N\K } |Ft ) = 1, (2.33)

holds as well, it follows that the state space of the process �
 is given by

D :=
{

�π ∈ [0, 1]2n
∣∣∣∣ for some �π ′ ∈ [0, 1]2n with

2n∑
j=1

π ′
j = 1 (2.34)

we have that πi =
∑

O(i)⊆O( j)⊆N

π ′
j for i = 1, . . . , 2n

}
.

Finally, by using the expressions in Eqs. 2.5-2.6 and the strong Markov property of the
process �
, we can reduce the problem of Eq. 2.2 to the optimal stopping problem

V∗(�π) = inf
τ

E �π
[ m∑

j=1

b j

(
1 −

2n∑
i=1

ai, j 

i
τ

)
+ c j

∫ τ

0

2n∑
i=1

ai, j 

i
t dt

]
, (2.35)

where the infimum is taken over all stopping times τ with respect to (Ft )t≥0 such that
the integrals above have finite expectation, so that E �π τ < ∞ (see, e.g. (Shiryaev 1978;
Chapter IV, Section 4) and (Peskir and Shiryaev 2006; Chapter VI, Section 22). Here, the
process �
 starts at some �π ∈ D under the probability measure P�π . Note that, from the
linearity of the representations in Eqs. 2.31-2.32, it follows that the value function V∗(�π) is
concave.

3 Main Results

The main results of the paper are presented in this section. We obtain certain properties
of the optimal stopping time and the optimal boundaries in the problem of Eq. 2.35 and
provide the characterisation of the value function V∗ and optimal stopping boundary surface
as the unique solution to a multidimensional free-boundary problem. We also formulate an
equivalent nonlinear Fredholm integral equation for the optimal stopping boundary surface.

Let us first introduce some further notations. For any j = 1, . . . , 2n , we denote by J the
subset of N corresponding to the index j , that is J := O( j) ⊆ N . For any subset K ⊆ N ,
we denote the number of its elements by |K |, and we put λ(K ) :=∑k∈K λk .
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3.1 The Structure of the Optimal Stopping Time

Define the linear function F j (�π) by

F j (�π) =
2n∑
i=1

f j,i πi , (3.1)

where the constants f j,i are given by

f j, j = − 1

λ(J )
, if J �= ∅, (3.2)

f j,i = −
∏

k∈(J\O(i)) λk

λ(O(i))

∑
α∈Perm(J\O(i))

|J\O(i)|∏
q=1

1

λ(O(i)) +∑q
r=1 λαr

, if ∅ �= O(i) ⊂ J ,

(3.3)

f j,i = 0, otherwise, (3.4)

for any �π ∈ D and j = 1, . . . , 2n . By applying Itô’s formula to the expression F j ( �
t ) as
well as the optional sampling theorem (see, e.g. (Liptser and Shiryaev 2001; Chapter III, The-
orem 3.6) or (Karatzas and Shreve 2012; Chapter I, Theorem 3.22), by using the expression
in Eq. 2.30, we can see that the expression

E �π
[
F j ( �
τ )

] = F j (�π) + E �π
[ ∫ τ

0



j
t dt − τ

]
, (3.5)

holds, for any stopping time τ such that E �π τ < ∞, and any �π ∈ D and j = 1, . . . , 2n .
Therefore, the value function of the optimal stopping problem in Eq. 2.35 can be rewritten
as

V ∗(�π) := V∗(�π) +
m∑

k=1

( 2n∑
i=1

ck ai,k F
i (�π) − bk

)
= inf

τ
E �π
[
G( �
τ ) + c τ

]
, (3.6)

where we have defined

G(�π) :=
m∑

k=1

2n∑
i=1

(
ck ai,k F

i (�π) − bk ai,k πi
)

and c :=
m∑

k=1

2n∑
i=1

ck ai,k, (3.7)

for �π ∈ D. Note that we can conclude from Eq. 2.6 that the constants a j,i satisfy

0 ≤
2n∑
j=1

a j,i π j ≤ 1, (3.8)

for �π ∈ D and i = 1, . . . ,m, and we obtain that c ≥ 0, so that the optimal stopping problem
in Eq. 3.6 is well-posed. Moreover, by using the expression in Eq. 3.1, we can rewrite G(�π)

as

G(�π) =
2n∑
i=1

gi πi with gi =
m∑

k=1

( 2n∑
j=1

ck a j,k f j,i − bk ai,k

)
, (3.9)

and from the concavity of the function V∗(�π) and the linearity of the function F j (�π), for
j = 1, . . . , 2n , we also get that the value function V ∗(�π) is concave.
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From the general optimal stopping theory for Markov processes (see, e.g. (Peskir and
Shiryaev 2006; Chapter I, Section 2.2) and the form of the value function in Eq. 3.6, we
know that the optimal stopping time in Eq. 2.35 is given by

τ∗ = inf
{
t ≥ 0
∣∣ V ∗( �
t ) = G( �
t )

}
, (3.10)

whenever it exists.
Let us now choose an integer l such that l = 1, . . . , 2n and denote by �
−l the process

�
 without its l-th component, and by �π−l the vector �π ∈ D without its l-th component πl .
Assume that gl < 0 holds (the case gl > 0 can be considered similarly) and G(�π) achieves
its minimum at πl = 1, for all �π ∈ D. We see from Eq. 3.9 that the linear function G(�π) is
decreasing inπl , and by the concavity of the function V ∗(�π) and the fact that V ∗(�π) = G(�π),
for all �π ∈ D, we get that the optimal stopping time from Eq. 3.10 is of the form

τ∗ = inf
{
t ≥ 0
∣∣
l

t ≥ b∗( �
−l
t )
}
, (3.11)

whenever it exists, for some function 0 ≤ b∗(�π−l) ≤ 1 and all �π ∈ D.
Summarising the facts proved above, we are now in a position to state the following result.

Lemma 3.1 Let the posterior probability processes 
∗,k be such that the expression in Eq.
2.6 holds, for k = 1, . . . ,m. Assume there exists some l = 1, . . . , 2n such that gl < 0, and
the function G(�π) achieves its minimum at πl = 1, for all �π ∈ D. Then, the optimal stopping
time τ∗ in the problems Eqs. 2.35 and 3.6 is of the form Eq. 3.11, whenever it exists, for some
function 0 ≤ b∗(�π−l) ≤ 1 and all �π ∈ D.

In what follows, we work under the assumptions of Lemma 3.1.

3.2 The Location and Structure of the Optimal Stopping Boundary

Let us define the linear function H j (�π) as

H j (�π) =
∑
i∈J

λi
(
πO−1(J\{i}) − π j

) =
2n∑
i=1

h j,i πi , (3.12)

where the constants h j,i are given by

h j, j = −λ(J ), for J �= ∅, (3.13)

h j,i = λk, if O(i) = J \ {k} with k ∈ J , (3.14)

h j,i = 0, otherwise. (3.15)

for any �π ∈ D and j = 1, . . . , 2n . By using the expression in Eq. 2.30 and the optional
sampling theorem, we get

E �π
∫ τ

0
H j ( �
t ) dt + π j = E �π 
 j

τ , (3.16)

for any stopping time τ such that E �π τ < ∞, and any �π ∈ D and j = 1, . . . , 2n . Therefore,
the optimal stopping problem of Eq. 2.35, and thus Eq. 3.6, is equivalent to

Ṽ∗(�π) := V∗(�π) +
m∑

k=1

( 2n∑
i=1

bk ai,k − bk

)
= inf

τ
E �π
∫ τ

0
H( �
t ) dt, (3.17)
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where we denote

H(�π) =
m∑

k=1

( 2n∑
i=1

ck ai,k πi − bk ai,k H
i (�π)

)
, (3.18)

for �π ∈ D. By using the expression in Eq. 3.12, we can rewrite the function H(�π) in the
form

H(�π) =
2n∑
i=1

hi πi with hi =
m∑

k=1

(
ck ai,k −

2n∑
j=1

bk a j,k h j,i

)
. (3.19)

It is seen from Eq. 3.17 that, whenever H( �
t ) < 0, for t ≥ 0, it is not optimal to stop the
observations, or, equivalently

H(�π) ≥ 0 for �π ∈ S, (3.20)

where the stopping region S is defined as (compare with Eq. 3.11)

S := {�π ∈ D
∣∣πl ≥ b∗(�π−l)

}
. (3.21)

By virtue of the expression in Eq. 3.19, this fact means that the set

{
�π ∈ D

∣∣∣∣
2n∑
i=1

hi πi < 0

}
(3.22)

belongs to the continuation region C defined by

C := {�π ∈ D
∣∣πl < b∗(�π−l)

}
. (3.23)

If we assume that hl > 0, the expression above leads to the inequality

b∗(�π−l) ≥ b∗(�π−l) ≡ hlπl −∑2n
i=1 hiπi

hl
, (3.24)

so that b∗(�π−l) ≤ b∗(�π−l) holds, for all �π−l ∈ [0, 1]2n−1 such that �π ∈ D. Therefore we call
admissible the parameters of the model that satisfy Eq. 3.24, because otherwise, the optimal
stopping time is not of the form Eq. 3.11, whenever it exists.

Let us take �π, �π ′ ∈ D such that πl < b∗(�π−l), π ′
k ≤ πk , and �π ′

k = �πk , for some
k = 1, . . . , 2n such that k �= l, and assume that hk > 0 holds. Then, using the fact that
�
 is a (time-homogeneous continuous) strong Markov process and taking into account the
comparison results for solutions of multidimensional stochastic differential equations in
Veretennikov (1980), we get

V ∗(�π ′) − G(�π ′) ≡ Ṽ∗(�π ′) ≤ E �π ′
∫ τ∗(�π)

0
H( �
t ) dt ≤ E �π

∫ τ∗(�π)

0
H( �
t ) dt

= Ṽ∗(�π) ≡ V ∗(�π) − G(�π) < 0, (3.25)

which leads to the fact that πl ≡ π ′
l < b∗(�π ′−l). Since we can choose πl arbitrarily close to

b∗(�π−l), it follows that b∗(�π−l) ≤ b∗(�π ′−l), and therefore, the boundary b∗(�π−l) is decreasing
in πk , for k = 1, . . . , 2n such that k �= l. The case in which hk < 0 is considered similarly
and leads to the fact that b∗(�π−l) is increasing in πk , for k = 1, . . . , 2n .

Let us summarise the results proved above in the following assertion.

Lemma 3.2 Suppose that the assumptions of Lemma 3.1 hold. Then, under the assumption
that hl > 0 holds, for some l = 1, . . . , 2n, the inequality inEq. 3.24 holds and the parameters
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of the model are admissible. Moreover, if the inequality hk > 0 (hk < 0) holds, for some
k = 1, . . . , 2n such that k �= l, then the boundary b∗(�π−l) is decreasing (increasing) in πk ,
for �π ∈ D.

3.3 The Free-boundary Problem

Bymeans of standard arguments (see, e.g. (Karatzas andShreve, 2012;ChapterV, Section 5.1)
and (Øksendal 1998; Theorem 7.5.4), it can be seen from the expression in Eq. 2.30 that the
infinitesimal operator L of the process �
 is given by the expression

L =
2n∑
j=1

∑
i∈J

λi (πO−1(J\{i}) − π j ) ∂π j (3.26)

+ 1

2

2n∑
j=1

2n∑
i=1

∑
k,l∈N

μkμl

νkνl
ηk,l (πO−1(J∪{k}) − π jπO−1({k})) (πO−1(O(i)∪{l}) − πiπO−1({l})) ∂2π jπi

,

for all �π ∈ D. In order to find analytic expressions for the unknown value function V ∗(�π)

from Eq. 3.6 and the unknown boundary b∗(�π−l) from Eq. 3.11, we will use results from
the general theory of optimal stopping problems for (time-homogeneous continuous strong)
Markov processes (see, e.g. (Shiryaev 1978; Chapter III, Section 8) and (Peskir and Shiryaev
2006;Chapter IV,Section8). Specifically,we formulate the associated free-boundaryproblem

(LV )(�π) = −c for πl < b(�π−l), (3.27)

V (π1, . . . , πl−1, b(�π−l)−, πl+1, . . . , π2n ) = G(π1, . . . , πl−1, b(�π−l), πl+1, . . . , π2n ),

(3.28)

V (�π) = G(�π) for πl > b(�π−l), (3.29)

V (�π) < G(�π) for πl < b(�π−l), (3.30)

(LV )(�π) > −c for πl > b(�π−l), (3.31)

for some 0 ≤ b(�π−l) ≤ 1, where the instantaneous stopping condition of Eq. 3.28 is satisfied
at b(�π−l), for all �π−l ∈ [0, 1]2n−1 such that �π ∈ D. Since the problem formulated in Eqs.
3.27-3.31 may admit multiple solutions, we need to use some additional conditions which
would specify the appropriate solution, and thus, provide the value function and the optimal
stopping boundary for the initial problem of Eqs. 3.6 and 2.35. Therefore, we will assume
that

∂πk V (π1, . . . , πl−1, πl , πl+1, . . . , π2n )
∣∣
πl=b(�π−l )− = gk (smooth fit) (3.32)

holds, for all k = 1, . . . , 2n and �π ∈ D. Note that the smooth-fit conditions of Eq. 3.32
are naturally used for the value function at the optimal stopping boundary, whenever the
general payoff function G(�π) is continuously differentiable in πl at the boundary b(�π−l), for
l = 1, . . . , 2n fixed (see (Peskir and Shiryaev 2006; Chapter IV, Section 9) for an extensive
overview).

We further search for analytic solutions of the elliptic-type free-boundary problem in Eqs.
3.27-3.30 satisfying the conditions of Eqs. 3.31-3.32 and such that the resulting boundary is
continuous and of bounded variation. Since such free boundary problems cannot normally
be solved explicitly, the existence and uniqueness of classical as well as viscosity solutions
of the variational inequalities arising in the context of optimal stopping problems have been
extensively studied in the literature (see, e.g. Friedman (1976), Bensoussan et al. (1982),
Krylov (1980), or Øksendal (1998)). Although the necessary conditions for existence and
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uniqueness of such solutions in (Friedman 1976; Chapter XVI, Theorem 11.1), (Krylov 1980;
Chapter V, Section 3, Theorem 14) with (Krylov 1980; Chapter VI, Section 4, Theorem 12),
and (Øksendal 1998; Chapter X, Theorem 10.4.1) can be verified by virtue of the properties
of the coefficients of the process �
, the application of these classical results would still have
a rather inexplicit character.

We therefore continuewith the following verification assertion related to the free-boundary
problem formulated above.

Theorem 3.1 Suppose that the assumptions of Lemmata 3.1 and 3.2 hold. Assume that
V (�π; b∗(�π−l)) together with 0 ≤ b∗(�π−l) ≤ 1 form a solution of the free-boundary problem
in Eqs. 3.27-3.31, and the boundary b∗(�π−l) is continuous and of bounded variation. Define
the stopping time τ∗ as the first exit time of the process 
l from the interval [0, b∗( �
−l)) as
in Eq. 3.11, and assume that E �π τ∗ < ∞ holds, for �π ∈ D. Then, the value function V ∗(�π)

from Eq. 3.6 takes the form

V ∗(�π) =
{
V (�π; b∗(�π−l)), if πl < b∗(�π−l)

G(�π), if πl ≥ b∗(�π−l)
(3.33)

with
V (�π; b∗(�π−l)) = E �π

[
G( �
τ∗) + c τ∗

]
, (3.34)

and the boundary b∗(�π−l) is uniquely determined by the smooth-fit condition of Eq. 3.32.

Proof In order to verify the assertions stated above, let us denote by V (�π) the right-hand
side of the expression in Eq. 3.33. Then, using the fact that the function V (�π) satisfies the
conditions of Eqs. 3.29-3.30 by construction, we can apply the local time-space formula from
(Peskir 2007; Theorem 3.1) (see also (Peskir and Shiryaev 2006; Chapter II, Section 3.5) for
a summary of the related results and further references) to obtain

V ( �
t ) + c t = V (�π) + Mt + Lt +
∫ t

0

(
(LV )( �
s) + c

)
I
(

l

s ≥ b∗( �
−l
s )
)
ds, (3.35)

for all t ≥ 0, where the process M = (Mt )t≥0 defined by

Mt =
2n∑
i=1

∑
k∈N

∫ t

0
Vπi (

�
s)
μk

νk

√
ηk,k

(

O−1(O(i)∪{k})

s − 
i
s


O−1({k})
s

)
I
(

l

s �= b∗( �
−l
s )
)
d B̂k

s ,

(3.36)
for t ≥ 0, is a continuous local martingale under the probability measure P�π with respect to
the filtration (Ft )t≥0. Here, the process L = (Lt )t≥0 is given by

Lt = 1

2

∫ t

0
�πl V ( �
s) I

(

l

s = b∗( �
−l
s )
)
d�ls, (3.37)

where the function �πl V (�π) is given by

�πl V (�π) = Vπl (π1, . . . , πl−1, πl+, πl+1, . . . , π2n )−Vπl (π1, . . . , πl−1, πl−, πl+1, . . . , π2n ),

(3.38)
and the process �l = (�lt )t≥0 defined by

�lt = P�π − lim
ε↓0

1

2ε

∫ t

0
I
(
b∗( �
−l

s ) − ε < 
l
s < b∗( �
−l

s ) + ε
)
d〈
l − b∗( �
−l)〉s, (3.39)

for t ≥ 0, is the local time of
l at the surface b∗( �
−l), at which the partial derivative Vπl (�π)

may not exist. It follows from the fact that the gain function G(�π) in Eq. 3.6 is decreasing
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in πl with the minimum at πl = 1 and the conditions Eqs. 3.29-3.30 that the inequality
�πl V (�π) ≤ 0 should hold for all �π ∈ D, so that the continuous process L defined in Eq.
3.37 is non-increasing. We may therefore conclude that Lt = 0 can hold, for all t ≥ 0, if and
only if the smooth-fit conditions of Eq. 3.32 is satisfied.

By using the assumption that the inequality in Eq. 3.31 holds with the boundary b∗(�π−l),
we conclude from the condition in Eq. 3.29 that (LV )(�π) + c ≥ 0 holds, for any �π ∈ D
such that πl �= b∗(�π−l). Moreover, it follows from the conditions of Eqs. 3.28-3.30 that the
inequality V (�π) ≤ G(�π) holds, for all �π ∈ D. Thus, the expression in (3.35) yields that the
inequalities

G( �
τ ) + c τ − Lτ ≥ V ( �
τ ) + c τ − Lτ ≥ V (�π) + Mτ , (3.40)

hold, for any stopping time τ such that E �π τ < ∞ and E �π Lτ > −∞, and all �π ∈ D. Let
(τn)n∈N be a localising sequence of stopping times for the process M such that τn = inf{t ≥
0 | |Mt | ≥ n}. Taking the expectations with respect to the probability measure P�π in Eq. 3.40,
by means of the optional sampling theorem, we get the inequalities

E �π
[
G( �
τ∧τn ) + c (τ ∧ τn) − Lτ∧τn

] ≥ E �π
[
V ( �
τ∧τn ) + c (τ ∧ τn) − Lτ∧τn

]
(3.41)

≥ V (�π) + E �π Mτ∧τn = V (�π).

Hence, letting n go to infinity and using Fatou’s lemma, we obtain

E �π
[
G( �
τ ) + c τ − Lτ

] ≥ E �π
[
V ( �
τ ) + c τ − Lτ

] ≥ V (�π), (3.42)

for any stopping time τ such that E �π τ < ∞ and E �π Lτ > −∞, and all �π ∈ D, where
Lτ = 0 holds, whenever the condition of Eq. 3.32 is satisfied. By virtue of the structure of
the stopping time in Eq. 3.11 and the condition Eq. 3.29, it is readily seen that the equalities
in Eq. 3.40 hold with τ∗ instead of τ when πl ≥ b∗(�π−l).

Let us now show that the equalities are attained in Eq. 3.42, for πl < b∗(�π−l), when
τ∗ replaces τ , and the smooth-fit conditions of Eq. 3.32 hold. By virtue of the fact that the
function V (�π) and the continuous boundary of bounded variation b∗(�π−l) solve the partial
differential equation in Eq. 3.27 and satisfy the conditions in Eqs. 3.28 and 3.32, it follows
from the expression in Eq. 3.35 and the structure of the stopping time in (3.11) that

G( �
τ∗∧τn ) + c (τ∗ ∧ τn) = V ( �
τ∗∧τn ) + c (τ∗ ∧ τn) = V (�π) + Mτ∗∧τn , (3.43)

holds forπl < b∗(�π−l). Hence, taking the expectations and letting n go to infinity in Eq. 3.43,
using the facts that G(�π) is bounded and E �π τ∗ < ∞, we apply the Lebesgue dominated
convergence theorem to obtain the equality

E �π
[
G( �
τ∗) + c τ∗

] = V (�π), (3.44)

for all �π ∈ D. We may therefore conclude that the function V (�π) coincides with the value
function V ∗(�π) of the optimal stopping problem in Eq. 3.6 whenever the smooth-fit condition
of Eq. 3.32 holds.

In order to prove the uniqueness of the value function V ∗(�π) and the boundary b∗(�π−l)

as solutions to the free-boundary problem in Eqs. 3.27-3.31 with the smooth-fit condition of
Eq. 3.32, let us assume that there exists another continuous boundary of bounded variation
b′(�π−l) such that 0 ≤ b′(�π−l) ≤ 1 holds. Then, define the function V ′(�π) as in Eq. 3.33
with V ′(�π; b′(�π−l)) satisfying Eqa. 3.27-3.31 and the stopping time τ ′ as in Eq. 3.11 with
b′(�π−l) instead of b∗(�π−l), such that E �π τ ′ < ∞ holds. In this case, tollowing the arguments
from the previous part of the proof and using the fact that the function V ′(�π) solves the
partial differential equation in Eq. 3.27 and satisfies the conditions of Eqs. 3.28 and 3.32 with
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b′(�π−l) instead of b∗(�π−l) by construction, we apply the change-of-variable formula from
Peskir (2007) to get

V ′( �
t ) + c t = V ′(�π) + M ′
t +
∫ t

0

(
(LV ′)( �
s) + c

)
I
(

l

s ≥ b′( �
−l
s )
)
ds, (3.45)

for all t ≥ 0, where the process M ′ = (M ′
t )t≥0 defined as in Eq. 3.36 with V ′

πi
(�π) instead

of Vπi (�π) is a continuous local martingale with respect to the probability measure P�π . Thus,
taking into account the structure of the stopping time τ ′, we obtain from Eq. 3.45 that

G( �
τ ′∧τ ′
n
) + c (τ ′ ∧ τ ′

n) ≥ V ′( �
τ ′∧τ ′
n
) + c (τ ′ ∧ τ ′

n) = V ′(�π) + M ′
τ ′∧τ ′

n
, (3.46)

holds, for πl < b′(�π−l) and any localising sequence (τ ′
n)n∈N of M ′. Hence, taking expec-

tations and letting n go to infinity in Eq. 3.46, using the fact that G(�π) is bounded and
E �π τ ′ < ∞, by means of the Lebesgue dominated convergence theorem, we have that the
equality

E �π
[
G( �
τ ′) + c τ ′] = V ′(�π), (3.47)

is satisfied. Therefore, recalling the fact that τ∗ is an optimal stopping time in Eq. 3.6 and
comparing the expressions in Eqs. 3.44 and 3.47, we see that the inequality V ′(�π) ≥ V (�π)

should hold, for all �π ∈ D.
Finally, we show that b′(�π−l) should coincide with b∗(�π−l), for all �π−l ∈ [0, 1]2n−1 such

that �π ∈ D. By using the fact that V ′(�π) and V (�π) satisfy Eqs. 3.28-3.30, and V ′(�π) ≥ V (�π)

holds, for all �π ∈ D, we get that b′(�π−l) ≤ b∗(�π−l). Then, by inserting τ∗ ∧ τ ′
n into Eq. 3.45

in place of t and applying arguments similar to the ones used above, we obtain

E �π
[
V ′( �
τ∗) + c τ∗

] = V ′(�π) + E �π
∫ τ∗

0

(
(LV ′)( �
s) + c

)
I
(

l

s ≥ b′( �
−l
s )
)
ds, (3.48)

for all �π ∈ D. Thus, since we have V ′(�π) = V (�π) = G(�π), for πl = b∗(�π−l), and
V ′(�π) ≥ V (�π), we see from the expressions in Eqs. 3.44 and 3.48 that the inequality

E �π
∫ τ∗

0

(
(LV ′)( �
s) + c

)
I
(

l

s ≥ b′( �
−l
s )
)
ds ≤ 0 (3.49)

should hold. Due to the assumption of continuity of b′(�π−l), we may therefore conclude that
b∗(�π−l) = b′(�π−l), so that V ′(�π) coincides with V (�π), for all �π ∈ D. ��
Corollary 3.1 It is shown by means of the same arguments as in Ernst and Peskir (2022) and
Ernst et al. (2024) that the expression in Eq. 3.17 takes the form

Ṽ∗(�π; b∗(�π−l)) = E �π
∫ τ∗

0
H( �
t ) dt, (3.50)

with the optimal stopping time of alarm τ∗ from Eq. 3.11, and thus, the equality

Ṽ∗(�π; b∗(�π−l)) =
∫ ∞

0
E �π
[
H( �
t ) I

(

l

t < b∗( �
−l
t )
)]
dt (3.51)

holds, while the optimal stopping boundary b∗(�π−l) provides a unique solution of the non-
linear Fredholm integral equation∫ ∞

0
E(�π−l ,b(�π−l ))

[
H( �
t ) I

(

l

t < b( �
−l
t )
)]
dt (3.52)

for all �π−l ∈ [0, 1]2n−1 such that �π ∈ D, in the class of continuous functions of bounded
variation.
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4 Examples and Estimates for the Value Function

In the previous sections we characterised the Bayesian risk function of Eq. 2.2 as the solution
to the optimal stopping problem in Eq. 2.35 and, under certain assumptions, to the free-
boundary problem in Eqs. 3.27-3.32. However, explicit solutions to such a complicated
multidimensional free-boundary problem are generally not available. Therefore, in what
follows, we first study specific examples that satisfy the assumptions in Lemma 3.1 and
Proposition 3.2, and then provide estimates for the value function and optimal boundaries
in Eq. 2.35, which are easier to compute. We assume for the notational convenience that the
bijection O satisfies O(1) = ∅, so that we have 
1 = 
∅ ≡ 1.

4.1 The Cases of Earliest and Latest Change-points

Let us now present an example, in which we can can indeed find l = 1, . . . , 2n such that
gl < 0 and hl > 0 holds, and G(�π) achieves its minimum at πl = 1, for all �π ∈ D.
Let m = 2 and the functions f1(θ1, . . . , θn) and f2(θ1, . . . , θn) in Eq. 2.2 be given by
f1(θ1, . . . , θn) = ∧i∈N θi and f2(θ1, . . . , θn) = ∨i∈K θi , for some ∅ �= K ⊆ N . This
means that the posterior probability processes 
∗,1 and 
∗,2 from Eq. 2.5 are of the form
Eq. 2.6 with

a1,1 = 0, a j,1 = (−1)|O( j)|−1 for j = 2, 3, . . . , 2n, (4.1)

ak,2 = 1, a j,2 = 0 for j = 1, . . . , k − 1, k + 1, . . . , 2n, (4.2)

where we have taken k ∈ N such that 2 ≤ k ≤ 2n to be such that O(k) = K . Notice that, by
virtue of the expressions in Eqs. 3.2-3.4, we have

∑
K⊆O( j)⊆N

(−1)|O( j)\K | f j,k = 1

λ(N )
, (4.3)

and, by using the expressions in Eqs. 3.9, 3.19 and 4.1-4.2, we get

g j = −a j,1

(
b1 + c1

λ(N )

)
− b2 a j,2 + c2 fk, j if O( j) ⊆ K , (4.4)

g j = −a j,1

(
b1 + c1

λ(N )

)
otherwise, (4.5)

and

hk = ak,1 (b1 λ(N ) + c1) + b2 λ(K ) + c2, (4.6)

h j = a j,1 (b1 λ(N ) + c1) − b2 λi if ∅ �= O( j) = K \ {i} with i ∈ K , (4.7)

h1 = −b1 λ(N ) − b2 λi if K ≡ {i}, (4.8)

h j = a j,1 (b1 λ(N ) + c1) if ∅ �= O( j) �= K \ {i} with i ∈ K , (4.9)

h1 = −b1 λ(N ) if K �≡ {i}. (4.10)

In the case in which |K | is an odd number, we can choose l ≡ k, and from Eqs. 4.4-4.10
and the fact that al,1 ≡ ak,1 = 1, it follows that gl < 0 and hl > 0 holds. In the case in
which |K | is an even number and K �= N , we can choose l such that O(l) = K ∪ {k} with
k ∈ N \K , and from Eqs. 4.4-4.10 and the fact that al,1 = 1, it follows that gl < 0 and hl > 0
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holds. In the case in which K ≡ N and |K | is an even number, we additionally assume that

b1 − b2 + c1 − c2
λ(N )

< 0. (4.11)

Therefore, we can choose l ≡ k again and, from Eqs. 4.4-4.10 with Eq. 4.11 and the fact
that al,1 ≡ ak,1 = −1, it follows that the inequalities gl < 0 and hl > 0 hold.

By using the definition of D in Eq. 2.34, we obtain that

π j = 1 if O( j) ⊆ O(l), (4.12)

π j = πi if O( j) = O(i) ∪ {r} with r ∈ O(l), (4.13)

holds, for all �π ∈ D. Therefore, by using the fact that a j,1 = −ai,1, for O(i) = O( j) \ {r}
with r ∈ O( j), we get that

∑2n
j=1 a j,1π j = 1. If we choose j such that O( j) ⊆ K , it follows

that fk, j is negative and K ⊆ O(l) implies that π j = 1. Hence, we conclude from Eqs. 3.8,
3.9 and 4.4-4.5 that G(�π) attains its minimum at πl = 1, for all �π ∈ D.

Let us finally note that, in the case whenm = 1 and the function f1(θ1, . . . , θn) is defined
as above, we can choose l = 2, 3, . . . , 2n , such that |O(l)| = 1, and we will have that gl < 0
and hl > 0 holds, and G(�π) attains its minimum at πl = 1, for all �π ∈ D.

4.2 Estimates for the Solution in the Earliest Change-point Case

In order to find estimates for the value functionV∗(�π) fromEq. 2.35 and the boundary b∗(�π−l)

from Eq. 3.11, wewill use the solution to the ordinary free-boundary problem from (Shiryaev
1978; pages 203-204) (see also (Peskir and Shiryaev 2006; Chapter VI, Section 22.1)). We
assume that m = 1, the function f1(θ1, . . . , θn) is given as in Section 4.1 and b1 = 1 in Eq.
2.2. Therefore, the problem in Eq. 2.2 is reduced to finding a stopping time of alarm τ∗ with
respect to the observable filtration (Ft )t≥0, which is as close as possible to the earliest of all
considered change-point times.

Let κi = μi
√

ηi,i/νi , for i ∈ N , and define the ordinary differential operator L∗ by

L∗ := λ(N ) (1 − π∗)
d

dπ∗
+ π2∗ (1 − π∗)2

2

∑
i, j∈N

|κiκ j | d2

dπ2∗
, (4.14)

for π∗ ∈ (0, 1). Let us formulate the ordinary free-boundary problem

(L∗V1)(π∗) = −c1 π∗ for π∗ ∈ [0, h), (4.15)

V1(h−) = 1 − h (continuous fit), (4.16)

V ′
1(h−) = −1 (smooth fit), (4.17)

V1(π∗) < 1 − π∗ for π∗ ∈ [0, h), (4.18)

V1(π∗) = 1 − π∗ for π∗ ∈ (h, 1], (4.19)

for some 0 ≤ h ≤ 1. It is shown in (Shiryaev 1978; pages 203-204) that there exist a
unique concave solution V1(π∗) to the problem in Eqs. 4.15-4.19 with the property that the
V ′
1(0+) = 0 holds, which could be equivalently simplified to |V ′

1(0+)| < ∞. In particular,
the solution is given by

V1(π∗) =
{
1 − h − ∫ h

π∗ ψ(x)dx if π∗ ∈ [0, h),

1 − π∗ if π∗ ∈ [h, 1], (4.20)
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and the constant h is the unique root of the equation

ψ(h) = −1, (4.21)

which satisfies h ≥ λ(N )/(λ(N ) + c1), where we set

ψ(π∗) := −c1
γ

e−λ(N )δ(π∗)/γ
∫ π∗

0

eδ(x)

x(1 − x)2
dx, (4.22)

δ(π∗) := log
π∗

1 − π∗
− 1

π∗
, γ :=

∑
i, j∈N |κiκ j |

2
, (4.23)

for π∗ ∈ (0, 1). By using the fact that V1(π∗) satisfies Eq. 4.19, we obtain

(L∗V1)(π∗) ≥ −c1 π∗, (4.24)

for π∗ ∈ (λ(N )/(λ(N )+c1), 1], and hence, for all π∗ ∈ [0, h)∪(h, 1], since V1(π∗) satisfies
Eq. 4.15 and h ≥ λ(N )/(λ(N ) + c1).

Letting 
∗ ≡ 
∗,1, we obtain from Eqs. 2.6 and 4.1 that


∗
t ≡ P�π (θ1 ∧ θ2 ∧ . . . ∧ θn ≤ t |Ft ) =

∑
i∈N



{i}
t −

∑
i, j∈N ,i �= j



{i, j}
t

+
∑

i, j,k∈N ,i �= j,i �=k, j �=k



{i, j,k}
t − . . . + (−1)n−2

∑
i∈N



N\{i}
t + (−1)n−1
N

t , (4.25)

while applying Itô’s formula, by using the expressions in Eqs. 2.30 and 4.1-4.2, we can see
that the process 
∗ satisfies the stochastic differential equation

d
∗
t =
∑
i∈N

λi (1 − 
∗
t ) dt +

∑
i∈N

κi 

{i}
t (1 − 
∗

t ) d B̂
i
t , (4.26)

for all t ≥ 0. Therefore, using the fact that the function V1(π∗) satisfies the smooth-fit
condition Eqs. 4.17 and 4.19, we can apply the local time-space formula from Peskir (2007)
to obtain

V1(

∗
t )=V1(


∗
0)+
∫ t

0
V ′
1(


∗
s ) λ(N ) (1 − 
∗

s ) ds +
∑
i∈N

∫ t

0
V ′
1(


∗
s ) κi 
{i}

s (1 − 
∗
s ) d B̂

i
s

(4.27)

+ 1

2

∫ t

0
V ′′
1 (
∗

s )
∑
i, j∈N

(
κiκ jηi, j√

ηi,iη j, j

{i}

s 

{ j}
s

)
(1 − 
∗

s )
2 I (
∗

s �= h) ds,

for all t ≥ 0. From the expressions in Eqs. 4.18-4.19, by means of the optional sampling
theorem, we get that the expression

E �π
[
1 − 
∗

τ + c1

∫ τ

0

∗

t dt

]
≥ E �π
[
V1(


∗
τ ) + c1

∫ τ

0

∗

t dt

]
(4.28)

= V1(

∗
0) + E �π

∫ τ

0

(
V ′
1(


∗
t ) λ(N ) (1 − 
∗

t ) + c1 
∗
t

)
dt

+ 1

2
E �π
∫ τ

0
V ′′
1 (
∗

t )
∑
i, j∈N

(
κiκ jηi, j√

ηi,iη j, j



{i}
t 


{ j}
t

)
(1 − 
∗

t )
2 I (
∗

t �= h) dt

is satisfied, for any stopping time τ such that E �π τ < ∞, and all �π ∈ D. Since the func-
tion V1(π∗) is twice continuously differentiable and concave, we have that the inequality
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V ′′
1 (π∗) ≤ 0 holds, for π∗ ∈ [0, h) ∪ (h, 1]. From Eq. 4.28 and the fact that the inequalities

−1 < ηi, j/
√

ηi,iη j, j < 1 hold, we therefore obtain

E �π
[
1 − 
∗

τ + c1

∫ τ

0

∗

t dt

]
≥ V1(


∗
0) + E �π

∫ τ

0

(
V ′
1(


∗
t ) λ(N ) (1 − 
∗

t ) + c1 
∗
t

)
dt

(4.29)

+ 1

2
E �π
∫ τ

0
V ′′
1 (
∗

t )
∑
i, j∈N

(
|κiκ j | 
{i}

t 

{ j}
t

)
(1 − 
∗

t )
2 I (
∗

t �= h) dt .

By using the fact that



{i}
t ≡ P�p(θi ≤ t |Ft ) ≤ P�p(θ1 ∧ θ2 ∧ . . . ∧ θn ≤ t |Ft ) ≡ 
∗

t (4.30)

holds, for all t ≥ 0 and any i ∈ N , while the expression in Eq. 4.24 is satisfied, we obtain

E �π
[
1 − 
∗

τ + c1

∫ τ

0

∗

t dt

]
(4.31)

≥ V1(

∗
0) + E �π

∫ τ

0

(
(L∗V1)(
∗

t ) + c1

∗
t

)
I (
∗

t �= h) dt ≥ V1(

∗
0),

for any stopping time τ such that E �π τ < ∞, and all �π ∈ D. Since 
∗
0 = ∑2n

j=1 a j,1π j ,
under the measure P�π , by using the expression in Eq. 2.35, we have

V∗(�π) ≡ inf
τ

E �π
[
1 − 
∗

τ + c1

∫ τ

0

∗

t dt

]
≥ V1

( 2n∑
j=1

a j,1 π j

)
, (4.32)

for �π ∈ D.
By using the results from Section 4.1 in the case m = 1, we can choose l = 1, . . . , 2n ,

where O(l) = {r}, for some r ∈ N , and apply Lemma 3.1 to obtain that the optimal stopping
time τ∗ is of the form Eq. 3.11. Therefore, by using the fact that 
∗ is of the form Eq. 4.25,
we have that al,1 = 1, and hence, the optimal stopping time τ∗ is of the form

τ∗ = inf
{
t ≥ 0
∣∣
∗

t ≥ g∗
1(

�
t )
}
, (4.33)

with g∗
1(�π) given by

g∗
1(�π) = b∗(�π−l) +

2n∑
j=1

a j,1 π j − πl , (4.34)

for �π ∈ D. Moreover, from the expressions in Eq. 3.24 and Eqs. 4.6-4.10, we obtain that

b∗(�π−l) ≥ b∗(�π−l) = πl −
2n∑
j=1

a j,1 π j + λ(N )

λ(N ) + c1
, (4.35)

and it follows that 0 < λ(N )/(λ(N ) + c1) ≤ g∗
1(�π) for �π ∈ D.

We can also deduce from Theorem 3.1 that the function V ∗(�π) defined in Eq. 3.6 satisfies
the conditions of Eqs. 3.29-3.30, and therefore, by using the expression in Eq. 4.34, we have
that V∗(�π) < 1 −∑2n

j=1 a j,1π j holds, for all �π ∈ D such that 0 ≤∑2n
j=1 a j,1π j < g∗

1(�π).
Since V1(π∗) satisfies the conditions of Eqs. 4.18-4.19, it follows from Eq. 4.32 that g∗

1(�π) ≤
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h, and we also get from Eq. 4.34 that

b∗(�π−l) ≤ h + πl −
2n∑
j=1

a j,1 π j , (4.36)

for �π ∈ D.
Summarising the facts proved above, we are now ready to state the main result of this

section.

Corollary 4.1 Suppose that the assumptions of Theorem 3.1 hold. Assume that the function
V1(π∗) is concave and, together with the constant h ∈ [0, 1], solves the ordinary free-
boundary problem in Eqs. 4.15-4.19. Then, we have that the lower bound in Eq. 4.32 holds
for the value function V∗(�π) from Eq. 2.35, while the upper bound in Eq. 4.36 holds for
the boundary b∗(�π−l) from Eq. 3.11. Moreover, the optimal stopping time in Eq. 2.35 can
be written in the form of Eq. 4.33, where the optimal boundary g∗

1(�π) is such that 0 <

λ(N )/(λ(N ) + c1) ≤ g∗
1(�π) ≤ h ≤ 1, for �π ∈ D.

Appendix

A.1 Proof of Lemma 2.1

Define the n-dimensional row vector μJ = (μJ
1 , . . . , μJ

n ) and the row process X =
(X

1
, . . . , X

n
) as

μJ
i = μi

νi
for i ∈ J , μJ

i = 0 for i ∈ N \ J , X
i
t = Xi

t

νi
for i ∈ N , (A.1)

for t ≥ 0. From the definition of X in Eq. 2.1, under the measure P∅, we have

Xi
t

νi
= Bi

t for i ∈ N , (A.2)

and under the measure P J we have

Xi
t

νi
= μi

νi
t + Bi

t for i ∈ J ,
Xi
t

νi
= Bi

t for i ∈ N \ J , (A.3)

for t ≥ 0. Therefore, by the Girsanov theorem for n-dimensional Brownian motion (see,
e.g. (Liptser and Shiryaev 2001; Chapter VI, Theorem 6.4)), we conclude that the weighted
density process Z J satisfies

Z J
t = exp

(∑
i∈J

λi t

)
d(P J |Ft )

d(P∅ |Ft )
= exp

(∑
i∈J

λi t + μJ�−1(Xt )
T − 1

2
μJ�−1(μJ )T t

)

(A.4)

= exp

(∑
i∈J

λi t +
∑
i∈J

μi

νi

n∑
j=1

ηi, j

ν j
X j
t − 1

2

∑
i, j∈J

μiμ j

νiν j
ηl, j t

)

= exp

(∑
i∈J

(
λi t + Y i

t

)− 1

2

∑
i, j∈J

μiμ j

νiν j
ηl, j t

)
,
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for t ≥ 0, where the processes Y i are defined as in Eq. 2.10, for i ∈ N , and (·)T denotes the
vector transpose. �

A.2 Sufficient Statistics in the Case of Exponential Delay Penalty Costs

We describe here the sufficient statistics and their corresponding stochastic differential (fil-
tering) equations in the case of exponential delay penalty costs.We are interested in detecting
the so-called kth-to-default event, which is a generalisation of the earliest and the latest of
all disorder times. Specifically, keeping the notation from Section 2, let m = 1 and let the
Bayesian risk function from Eq. 2.2 be of the form

V∗( �p) = inf
τ

(
b1 P�p
(
τ < f1(θ1, . . . , θn)

)+ c1 E �p
[
eβ(τ− f1(θ1,...,θn))+ − 1

])
, (A.5)

where β > 0 and the function f1(θ1, . . . , θn) is equal to the k-th element θik in the ordering
θi1 ≤ θi2 ≤ · · · ≤ θin of the elements of (θ1, . . . , θn), that is, it is given by

f1(θ1, . . . , θn) =
∧

J⊆N ,|J |=k

∨
j∈J

θ j , (A.6)

for some k ∈ N . The term E �p[eβ(τ− f1(θ1,...,θn))+ − 1] represents the average exponential
delay of detecting the function f1(θ1, . . . , θn). We also note that

E �π
[
eβ(τ− f1(θ1,...,θn))+ − 1

] = E �π
∫ ∞

0
I ( f1(θ1, . . . , θn) ≤ t ≤ τ) β eβ(t− f1(θ1,...,θn)) dt

(A.7)

= E �π
∫ ∞

0
E �π
[
I
(
f1(θ1, . . . , θn) ≤ t ≤ τ

)
β eβ(t− f1(θ1,...,θn))

∣∣Ft
]
dt

= E �π
∫ τ

0
βE �π
[
I
(
f1(θ1, . . . , θn) ≤ t

)
eβ(t− f1(θ1,...,θn))

∣∣Ft
]
dt .

In order to reduce the problem in Eq. A.5 to an optimal stopping problem for a multidi-
mensional Markov process, we define the process 
̃∗,1 = (
̃

∗,1
t )t≥0 by


̃
∗,1
t := E �π [I ( f1(θ1, . . . , θn) ≤ t) eβ(t− f1(θ1,...,θn)) |Ft ], (A.8)

for t ≥ 0. Hence, from Eqs. 2.3 and A.7, it follows that the Bayesian risk function in Eq. A.5
can be written as

V∗(�π) = inf
τ

E �π
[
b1 (1 − 
∗,1

τ ) + c1

∫ τ

0
β 
̃

∗,1
t dt

]
. (A.9)

Let us also define the posterior probability process 
̃J = (
̃J
t )t≥0 by


̃J
t := E �π

[
I

(⋂
i∈J

{θi ≤ t}
)
eβ(t− f1(θ1,...,θn))+

∣∣∣∣Ft

]
, (A.10)

for t ≥ 0 and J ⊆ N , and denote by 
̃ = (
̃1, . . . , 
̃2n ) the 2n-dimensional process with
components given by 
̃ j = 
̃O( j), for j = 1, . . . , 2n . Note that, by the inclusion-exclusion
principle, we have that

I
(
f1(θ1, . . . , θn) ≤ t

) =
n∑

i=k

(−1)i−k (i − 1)!
(k − 1)!(i − k)!

∑
J⊆N ,|J |=i

I
( ⋂

j∈J {θ j ≤ t}),
(A.11)
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and therefore, the representation in Eq. 2.6 is satisfied and the process 
̃∗,1 = (
̃
∗,1
t )t≥0 is

of the form


̃
∗,1
t ≡ E �π

[
I
(
f1(θ1, . . . , θn) ≤ t

)
eβ(t− f1(θ1,...,θn))

∣∣Ft
] =

2n∑
j=1

a j,1 
̃
j
t , (A.12)

where we have

a j,1 = (−1)i−k (i − 1)!
(k − 1)!(i − k)! for k = 1, . . . , |O( j)| = i, a j,1 = 0 otherwise,

(A.13)

for j = 1, . . . , 2n . Moreover, by using the fact that the equalities

I
( ⋂

i∈J {θi ≤ t}⋂ { f1(θ1, . . . , θn) ≤ t}) (A.14)

=
n∑

i=k

(−1)i−k (i − 1)!
(k − 1)!(i − k)!

∑
L⊆N ,|L|=i

I
( ⋂

j∈L∪J {θ j ≤ t}),
I
( ⋂

i∈J {θi ≤ t}) eβ(t− f1(θ1,...,θn))+ (A.15)

= I
( ⋂

i∈J {θi ≤ t}⋂ { f1(θ1, . . . , θn) ≤ t})eβ(t− f1(θ1,...,θn))

+ (1 − I ( f1(θ1, . . . , θn) ≤ t)
)
I
( ⋂

i∈J {θi ≤ t}),
hold, we get that


̃J
t = 
J

t +
n∑

i=k

(−1)i−k (i − 1)!
(k − 1)!(i − k)!

∑
L⊆N ,|L|=i

(

̃J∪L

t − 
J∪L
t

)
, (A.16)

for t ≥ 0 and J ⊆ N . It follows that, for any J ⊆ N such that |J | < k, the process 
̃J can
be written as a linear combination of the processes 
J , 
J∪L and 
̃J∪L , where L ⊆ N and
|J ∪ L| ≥ k. Therefore, we only need to obtain the stochastic differential equations satisfied
by the processes 
̃J , for all J ⊆ N such that |J | ≥ k.

For any R, L ⊆ N such that R �= ∅, R∩L = ∅ and any permutation α := [α1, . . . , αr ] ∈
Perm(R), we define the process (̃

α,L
t )t≥0 recursively by

̃
α,L
t := λαr

∫ t

0
̃

[α1,...,αr−1],L
u

Z R∪L
t eβt

Z R∪L
u eβu

du for |R ∪ L| ≥ k, (A.17)

̃
α,L
t := 

α,L
t for |R ∪ L| < k, ̃

∅,L
t := π L eβt Z L

t for |L| ≥ k, (A.18)

where ZL andα,L are given byEqs. 2.7 and 2.11.By analogywith the arguments in Section 2
above, from the generalised Bayes formula in (Liptser and Shiryaev 2001; Chapter VII,
Theorem 7.23), we obtain that the posterior probability process (
̃J

t )t≥0 takes the form


̃J
t = �̃ J

t

�
∅

t

, (A.19)

for t ≥ 0, where we set

�̃ J
t :=

∑
L1⊆N\J
L2⊆J

∑
R⊇J\L2

R⊆N\(L1∪L2)

∑
α∈Perm(R)

̃
α,L1∪L2
t , (A.20)
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for J ⊆ N and �∅ as in Eq. 2.16. By using Itô’s formula, from Eqs. 2.18 and A.17, we get

d̃
α,L
t =

(
λαr ̃

[α1,...,αr−1],L
t +

(
β +
∑

i∈R∪L

λi

)
̃

α,L
t

)
dt +

∑
i∈R∪L

̃
α,L
t dY i

t , (A.21)

for all t ≥ 0 and R, L ⊆ N such that R �= ∅, R ∩ L = ∅ and |R ∪ L| ≥ k, and any
α := [α1, . . . , αr ] ∈ Perm(R). We also obtain from Eq. A.18 that

d̃
∅,L
t =

(
β +
∑
i∈L

λi

)
̃

∅,L
t dt + ̃

∅,L
t

∑
i∈L

dY i
t (A.22)

holds, for t ≥ 0 and L ⊆ N such that |L| ≥ k. Therefore, by using the expression in Eq.
A.20 and summing up the related expressions, we further obtain

d�̃ J
t =
(∑

i∈J

λi �̃
J\{i}
t +

(
β +
∑
i /∈J

λi

)
�̃ J

t

)
dt +
∑
i∈J

�̃ J
t dY i

t +
∑
i /∈J

�̃
J∪{i}
t dY i

t ,

(A.23)

for t ≥ 0. Hence, by applying Itô’s formula to the expression in Eq. A.19 and arguments
similar to the ones used in Section 2, we conclude that

d
̃J
t =
(∑

i∈J

λi 
̃
J\{i}
t +

(
β −
∑
i∈J

λi

)

̃J

t

)
dt +
∑
i∈N

(

̃

J∪{i}
t − 
̃J

t 

{i}
t

) μi

νi

√
ηi,i d B̂

i
t ,

(A.24)

for t ≥ 0 and J ⊆ N such that |J | ≥ k. It follows that ( �
, 
̃) is a (time-homogeneous
strong) Markov process, even after removing all the components 
̃J , where J ⊆ N and
|J | < k.

Finally, by using the expressions in Eqs. A.9, 2.6 and A.12, we can reduce the problem
of Eq. A.5 to the optimal stopping problem

V∗(�π) = inf
τ

E �π
[
b1

(
1 −

2n∑
i=1

ai,1 
i
τ

)
+ c1

∫ τ

0

2n∑
i=1

ai,1 
̃i
t dt

]
. (A.25)

Here, the processes �
 and 
̃ start at the same �π ∈ D under the probability measure P�π .
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