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Abstract

We develop efficient algorithms of exact simulation for quadratic stochastic intensity mod-

els which have become increasingly popular for modelling events arrivals, especially in eco-

nomics, finance and insurance. They have huge potential to be applied tomany other areas such

as operations management, queueing science, biostatistics and epidemiology. Our algorithms

are developed by the principle of exact distributional decomposition, which lies in a fully an-

alytical expression for the joint Laplace transform of quadratic process and its integral newly

derived in this paper. They do not involve any numerical Laplace inversion, and have been

validated by extensive numerical experiments, and substantially outperform all existing alter-

natives in the literature. Moreover, our algorithms are extendable to multidimensional point

processes, and beyond Cox processes to additionally incorporate two-sided random jumps with

arbitrarily distributed sizes in the intensity for capturing self-exciting and self-correcting ef-

fects in event arrivals. Applications to portfolio loss modelling are provided to demonstrate

the applicability and flexibility of our algorithms.
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1 Introduction

Highly analytically tractable models are treasures in the toolbox for quantitative analysis in finance.

In particular, they can lead to analytical formulas for fast evaluating financial products, for effi-

ciently calibrating the real-time data of market prices of liquidly-traded vanilla financial derivatives

(such as European options), and then for evaluating more exotic and less liquidly-traded derivatives

often with the aid of efficient simulations. Researchers for decades are fascinated in searching for

these models. A notable class are affine models which include the classical Ornstein-Uhlenbeck

(OU) and Cox-Ingersoll-Ross (CIR) processes as special cases. At the early stage, affine term struc-

ture models have gained significant attention in the finance literature, mainly due to their analytical

tractability and statistical flexibility (Cuchiero et al., 2010). Affinemodels have been later extended

broadly to stochastic models for price movements and stochastic volatilities, and more recently for

point (jump) processes with stochastic intensities.

Indeed, affine models have been widely adopted for modelling the dynamics of economic vari-

ables, see e.g. Duffie andKan (1996), Duffie et al. (2000, 2003) in continuous time, and Gourieroux

et al. (2006), Le et al. (2010), Joslin et al. (2011) in discrete time. They are highly tractable, and

many quantities of interest, such as bond prices, default probabilities and option prices, have analyt-

ical forms. However, a key limitation of classical affine models is that they cannot simultaneously

allow for negative correlation and positivity among state variables, see e.g. Duffie and Liu (2001).

Alternatively, quadratic class serves as a very strong competitor to the affine class, and becomes

increasingly popular recently for financial modelling, especially for nonnegative variables such as

asset prices, interest rates and intensity processes of event arrivals. For example, they are adopted

for modelling asset prices by Leippold and Wu (2002), and for exchanges rates by Leippold and

Wu (2007). They are intensively used for interest rates and form a framework called quadratic term

structure models, see e.g. Jamshidian (1996), Duffie and Liu (2001), Ahn et al. (2002), Leippold

andWu (2003), Chen et al. (2004) in continuous time, and Ang et al. (2011), Campbell et al. (2017)

in discrete time. The typical finding is that, they outperform the classical affine term structure mod-

els in better capturing the correlation and heteroscedasticity of yields (Dai and Singleton, 2000;

Duffie and Liu, 2001; Ahn et al., 2002; Li and Zhao, 2006), particularly for short-term government

bond yields in near zero-rate environments (Kim and Singleton, 2012; Andreasen and Meldrum,

2013).

More recently, quadratic class is adopted for stochastic intensity processes of event arrivals (e.g.
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price jumps, corporate defaults, bankruptcies, crises, disasters), and hence forms a framework of

quadratic intensity models. For example, the jump-arrival intensity for unscheduled FOMC (Fed-

eral Open Market Committee) announcements is quadratic in Piazzesi (2001, 2005). Similarly, in

order to capture the jump clustering of large movements and potential market crashes in the S&P

500 index, Santa-Clara and Yan (2010) used a quadratic model for the intensity process of jump

arrivals. As pointed out by Singleton (2009, p.369), stochastic intensity models for default risk

have largely paralleled with the literature on stochastic interest rate models. Naturally, quadratic

intensity models, as an important class of point processes, are also suitable for modelling default

arrivals and for pricing credit products (such as defaultable bonds, credit default swaps and col-

lateralised debt obligations), see e.g. Duffie and Liu (2001) in continuous time, and Doshi et al.

(2013, 2017, 2018), Choi et al. (2020) in discrete time. For example, Duffie and Liu (2001) evalu-

ated corporate bond prices, and found that the quadratic model can offer a more flexible correlation

structure for capturing the negative instantaneous correlation between positive default intensities

and interest rates, which is impossible for standard affine models such as the popular CIR inten-

sity models (Duffie and Singleton, 1999). Alternatively, Singleton (2009, §14.2.2) and Doshi et al.

(2013, 2017, 2018) used discrete-time quadratic intensity models for pricing credit default swaps.

Moreover, Gourieroux and Monfort (2008) applied them to French human mortality in insurance.

In fact, similar quadratic intensity models were developed for survival analysis in biostatistics and

epidemiology earlier than the economic literature, see e.g. Woodbury and Manton (1977) and

Aalen and Gjessing (2004).

Evidently from voluminous existing literature, quadratic intensity models are important. Due

to vast events of different types occurring randomly in the real world, their potential applications

to modelling these event arrivals (e.g. job losses, trade orders, unscheduled announcements, news

reports, information flows, online posts, website visits, particulate emissions, traffic flows, queues,

customer arrivals, crimes, reliability, COVID-19 infections) in different disciplines and interdisci-

plines of both natural science and social science may be even larger in the future. In the paper, we

only offer applications in finance to facilitate our illustration. As an obvious example of potential

applications beyond finance, they may be also feasible for modelling call arrivals in telephone call

centers with time-varying arrival rates, which have been extensively studied in the literature of

operations management, see e.g. Whitt (1999), Gans et al. (2003), Avramidis et al. (2004), Brown

et al. (2005), Cezik and L’Ecuyer (2008), Kim and Whitt (2014) and Ata and Peng (2020).

Efficient algorithms of Monte Carlo simulation for stochastic models would be generically use-

ful, and play important roles in their practical implementations, such as simulation-based statistical
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inference, optimisation and empirical studies, see e.g. Hong and Nelson (2009), L’Ecuyer (2012)

and Fu (2015). In the financial industry, for instance, simulations are widely adopted for risk

management (e.g. stress tests) and asset pricing (e.g. option pricing), see e.g. Glasserman (2003),

Asmussen and Glynn (2007), Hong and Liu (2009) and Gordy and Juneja (2010). Traditional algo-

rithms for simulating continuous-time stochastic processes are mainly based on time discretisation

such as Euler scheme. Although straightforward for implementations, they introduce estimation

bias which is hard to be quantified and measured. In particular, an algorithm for exact simulation

is highly desirable, since it has the primary advantage of generating sample paths according to

the law of underlying process exactly without bias. More precisely, exact simulation means that

the joint distribution of simulated values coincides with the joint distribution of the continuous-

time process on any simulation time grid (Glasserman, 2003, p.79). Therefore, the problems of

designing exact simulation for stochastic processes have attracted substantial attention in the aca-

demic community, see e.g. Beskos and Roberts (2005), Ahdida and Alfonsi (2013), Chen and

Huang (2013), Giesecke and Smelov (2013) for diffusion and jump-diffusion processes, Broadie

and Kaya (2006), Cai et al. (2017), Kang et al. (2017), Li and Wu (2019) for stochastic-volatility

models, and Giesecke et al. (2011a,b), Dassios and Zhao (2011, 2013, 2017) for point processes,

see also a recent survey by Glynn (2016).

Exact simulation for the quadratic intensity model was first proposed in Giesecke et al. (2011a,

§4.2.2) as projection scheme, which is the only exact algorithm in the existing literature. It is the-

oretically correct, but it is difficult to implement even a small number of event realisations using

a normal computer in practice. As pointed out by themselves in their paper, the key drawback of

projection scheme is that it involves massive recursive calculations of projected intensities, and

these recursions cumulate a huge number of analytic terms in symbolic format stored in a com-

puter, which would be extremely time-consuming and memory-consuming. Therefore, to speed up

they also proposed an approximation scheme which, however, is not exact any more.

In our paper, we adopt a completely different approach, and develop the first practically im-

plementable exact simulation scheme for quadratic intensity models. It is based on exact distri-

butional decomposition without any numerical inversion of cumulative distribution function or

Fourier transform. Quite elegantly, interarrival times and the intensity levels at event-arrival times

can be sequentially decomposed into simpler and more easily simulatable random variables. More-

over, our algorithms are applicable to more general quadratic intensity models beyond the canon-

ical version in Giesecke et al. (2011a). For example, two-sided random jumps with arbitrarily

distributed jump sizes are also allowed.
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Another theoretical contribution of this paper is that, we obtain a fully analytical expression

for the joint Laplace transform of a quadratic process and its integral (as given later by Theorem

3.1),1 an analogically important result as the counterpart for the classical CIR process.2 This fully

analytical expression is crucial, since it further inspires us to exactly identify and decompose the

underlying distributions, which is the key to our exact decomposition approach for simulation de-

sign.

The paper is organised as follows. Section 2 introduces the quadratic intensity model formally.

Section 3 derives key distributional properties, which lead to our new algorithm for exact simula-

tion in Section 4. Section 5 outlines some further extensions of quadratic intensity models with

additional self-exciting and self-correcting effects, and multidimensional point processes, with the

associated simulation algorithms given by Appendix P. Section 6 provides extensive numerical ex-

periments for validating our algorithms, performance comparisons with other algorithms, and an

application to loss modelling for a credit portfolio. Section 7 draws a brief conclusion and suggests

potential topics for future research. All the proofs are deferred to the appendices.The associated

codes for replicating numerical results in our paper can be found in Qu et al. (2024).

2 Quadratic Intensity Models

Let us first introduce a simple canonical version of quadratic (stochastic) intensity models similarly

as adopted by e.g. Santa-Clara and Yan (2010) and Giesecke et al. (2011a). More comprehensive

model extensions are given in Section 5.

Definition 2.1 (Quadratic OU Process). Stochastic process λt is a quadratic OU process such that

λt = X2
t , t ≥ 0, (2.1)

where

• Xt is the state process following a general mean-reverting Ornstein-Uhlenbeck (OU) process
1To the best of our knowledge, the parameters of this joint Laplace transform in the previous literature were just

left within unsolved (or partially solved, or numerically solved) ordinary differential equations (ODEs) as in Giesecke
et al. (2011a) or in a semi-analytical integral form as Chen et al. (2004, §4.4) Recently, Li and Wu (2019, p.770) derived
the conditional Laplace transform of quadratic process, and developed simulation algorithms for the quadratic stochastic
volatility model. They also suggested using the joint Laplace transform already given in Chen et al. (2004) to alteratively
obtain the conditional Laplace transform of quadratic process.

2The fully analytical expression for the joint Laplace transform of CIR process and its integral can be found in e.g.
Glasserman (2003, Equation 3.76) and Lamberton and Lapeyre (2008, Proposition 6.2.4).
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in continuous time on a probability space (Ω,F ,P),3 i.e.,

dXt = −δ(Xt − µ)dt+ σdWt, t ≥ 0, (2.2)

• δ ∈ R+ is the mean-reverting rate (or mean-reverting speed),

• µ ∈ R is the mean-reverting level,

• σ ∈ R+ is the volatility parameter,

• Wt is a standard Brownian motion.

It is trivial to alternatively define a quadratic OU process seemingly more general than the

canonical version (2.1) by parameterising as λt = (aXt + b)2 for any a, b ∈ R. However, it is

essentially equivalent by replacing µ by (aµ + b) and σ by aσ in (2.2) for the original canonical

version.

Definition 2.2 (Quadratic Intensity Model). A quadratic intensity model is a point process

Nt :=
X
i≥1

1{Ti≤t}, N0 = 0,

where Ti’s are ordered arrival times with the quadratic intensity λt specified by Definition 2.1.

Notice that, a quadratic intensity model is non-affine in general, and cannot be simply consid-

ered as a subclass of affine processes (Duffie et al., 2003). Since by Itô’s lemma, we have

dλt =

�
− 2δX2

t + 2µδXt + σ2
�

dt + 2σXtdWt

=
�
−2δλt + 2µδ

È
λtsign(Xt) + σ2

�
dt + 2σ

È
λtdW̃t,

where W̃t is a standard Brownian motion defined by dW̃t := sign(Xt)dWt = Xt
|Xt|dWt, see also

e.g. Chen et al. (2004, p.522). In particular, for the centered case with µ = 0, the intensity process

reduces to a special CIR process,

dλt =
�
σ2 − 2δλt

�
dt+ 2σ

È
λtdW̃t.

However, it does not satisfy the Feller condition, and zero is accessible. So, the quadratic model

for µ 6= 0 in general cannot be reduced to a CIR process, as also pointed out by Jamshidian (1996,
3Notice that it is more general than the original Ornstein-Uhlenbeck (OU) process (Uhlenbeck and Ornstein, 1930),

since it includes both central (µ = 0) and noncentral (µ 6= 0) OU processes. It is a classical model of Vasicek (1977)
for describing the evolution of interest rates in finance.
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p.103). One key advantage of quadratic models over the CIR counterparts is that, they guarantee

non-negative values without any additional conditions, such as the Feller condition and initial con-

ditions (Lamberton and Lapeyre, 2008, §6.2.2).
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Figure 1: Simulated paths of state process Xt and quadratic intensity λt = X2
t under the parameter setting

(X0, µ, δ, σ) = (−0.5, 0.8, 1.1, 1.3).

Given the value ofXt ∈ R at time t, the solution to the SDE (2.2) at time t+ s for any s > 0 is

Xt+s = Xte
−δs + µ

�
1− e−δs

�
+ σ

sZ
0

e−δ(s−u)dWu, (2.3)

with a normal marginal distribution N
�
ν, ς2

�
, i.e.,

Xt+s | Xt
D
= ν + ςε, ε ∼ N(0, 1), (2.4)

where

ν := Xte
−δs + µ

�
1− e−δs

�
, ς := σ

Ê
1− e−2δs

2δ
. (2.5)

For the purpose of illustration, simulated sample paths of state process Xt and the associ-
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Point Nt
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Figure 2: Illustration for exactly simulating a path of point processNt and a skeleton of intensity process λt.

ated quadratic intensity λt within the period [0, 10] under the parameter setting (X0, µ, δ, σ) =

(−0.5, 0.8, 1.1, 1.3) are jointly plotted in Figure 1. As we can see from (2.5), the underlying

quadratic intensity process λt at any (regularly-spaced or irregularly-spaced) time points can be ex-

actly simulated very easily due to the marginal distribution of squared normal.4 For applications,

another advantage of quadratic specification is that, by construction, no parametric restriction is

required to ensure the strict positivity of intensity processes.5

Let’s first very briefly introduce key steps for our exact simulation before diving into theoretic

and algorithmic details. Based on our theoretical results newly derived in Section 3, an entire

path of a point process with quadratic intensity can be exactly simulated in a recursive manner

as explained in Section 4. Figure 2 illustrates that, conditional on the current event-arrival time

t = T and the associated positions of the intensity (quadratic) process and point process, the next

event-arrival can be exactly simulated via the following core procedures:

1. Conditional on the current event-arrival time t = T , the state process XT and intensity

λT = X2
T , exactly simulate the (next) interarrival time τ ;

2. With this simulated interarrival time τ , exactly simulate the pre-event6 intensity level λT+τ−

right before the next arrival time T + τ ;
4However, the exact simulation for point processNt is nontrivial, which is the main problem we have tackled in this

paper.
5For example, the Feller condition is required to ensure the positivity of a CIR process.
6Here, "pre-event" means prior to an event (or equivalently a jump in the point process Nt for counting the number

of event arrivals).
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3. With this simulated pre-event intensity level λT+τ− , exactly simulate the pre-event position

of state process XT+τ− ;

4. Add one unit in the point process at the next event-arrival time T + τ .

By implementing these fours steps recursively, a full path of point process can be exactly simulated.

3 Distributional Properties

In this section, we investigate distributional properties of quadratic intensity model, and provide

the theoretical foundation for designing our exact simulation algorithms later in Section 4. Without

loss of generality, we focus on a single recursion of a point process by resetting the current time t

as the currently-realised event-arrival time, i.e., the current arrival time t. The (next) interarrival

time between the current arrival time t and the next arrival time is denoted by τ . The next arrival

time is then t+ τ .

3.1 Joint Laplace Transform of Intensity Process and Its Integral

The conditional joint Laplace transform of state process Xt and its quadratic process X2
t can be

derived analytically in Proposition 3.1 as below.

Proposition 3.1. The joint bivariate Laplace transform of
�
Xt+s, X

2
t+s

�
conditional onXt at the

current arrival time t for any s > 0 is given by

E
h
e−uXt+se−wX

2
t+s

���Xt

i
=

1√
2ς2w + 1

exp

�
ς2

2(2ς2w + 1)

�
u− ν

ς2

�2

− ν2

2ς2

�
, (3.1)

where u ∈ R, w > − 1

2ς2
, and ν, ς are specified by (2.5). The Laplace transform of X2

t+s condi-

tional on Xt is given by

E
h
e−wX

2
t+s

���Xt

i
=

1√
2ς2w + 1

exp

�
− ν2w

2ς2w + 1

�
. (3.2)

For notational simplicity, let us denote the cumulative intensity process (i.e., compensator of

point process Nt) by

Λt :=

tZ
0

λsds.

Based on
�
Xt, X

2
t ,Λt

�
, we can construct a martingaleMt in Lemma 3.1 as below which will be

later used for carrying out a change of measure.
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Lemma 3.1. For w > − δ

2σ2
, we have a P-martingale

Mt := e−wΛte−κ1Xte−κ2X2
t eκ0t, t ≥ 0, (3.3)

where

κ2 :=
−δ +

√
δ2 + 2σ2w

2σ2
, κ1 :=

2µδκ2

δ + 2σ2κ2
, κ0 := µδκ1−

1

2
σ2
�
κ2

1 − 2κ2

�
. (3.4)

SinceMt is a strictly positive martingale, an equivalent martingale probability measure P̃ ∼ P

can be defined via the Radon-Nikodỳm derivative

dP̃
dP

=
Mt

Mu
, 0 ≤ u ≤ t. (3.5)

Under this new measure P̃, the parameter setting of process Xt is transformed from (µ, δ, σ) to�
µ̃, δ̃, σ̃

�
via (3.6) in Proposition 3.2 as below.

Proposition 3.2. The parameter setting (µ, δ, σ) of process Xt under P is transformed to the new

parameter setting
�
µ̃, δ̃, σ̃

�
of process Xt under P̃ according to

δ̃ :=
È
δ2 + 2σ2w, µ̃ :=

δ2

δ2 + 2σ2w
µ, σ̃ := σ, (3.6)

for w > − δ

2σ2
.

Based on the joint Laplace transform of
�
Xt, X

2
t

�
in Proposition 3.1 and change of measure in

Proposition 3.2, now we can analytically derive the conditional joint Laplace transform of (λt,Λt)

in Theorem 3.1 as below, the most important theoretical result in this paper.

Theorem 3.1. The joint bivariate Laplace transform of (λt+s,Λt+s − Λt) conditional on Xt at

the current arrival time t for any s > 0 is given by

E
h
e−uλt+se−w(Λt+s−Λt)

���Xt

i
=

e−κ1Xte−κ2X2
t e−κ0sÈ

2ς̃2u+ (1− 2ς̃2κ2)
exp

 
ς̃2

2
�
2ς̃2u+ (1− 2ς̃2κ2)

� �κ1 +
ν̃

ς̃2

�2

− ν̃2

2ς̃2

!
, (3.7)

where w > − δ

2σ2
, u > κ2 −

1

2ς2
,

ν̃ := Xte
−δ̃s + µ̃

�
1− e−δ̃s

�
, ς̃ := σ̃

s
1− e−2δ̃s

2δ̃
, (3.8)

and
�
µ̃, δ̃, σ̃

�
, (κ2, κ1, κ0) are given by (3.6) and (3.4), respectively.
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Joint Laplace transforms, similar to (3.7), are also found in e.g. Chen et al. (2004) and Giesecke

et al. (2011a). However, the parameters of their results are not explicitly given but just left within

an unsolved (or partially solved, or numerically solved) ODE system or in a semi-analytical inte-

gral form. To the best of our knowledge, no fully analytical expression as ours (3.7) exists in the

literature. It is mainly due to the fact that the traditional ODE approach adopted in the literature

involves massive calculations, whereas our new approach avoids those calculations via a change

of measure and eventually leads to a much more concise expression. More importantly, we will

shortly see that, this fully analytic expression as purposely organised in the form (3.7) is crucial

for us to discover an exact distributional decomposition that ultimately leads to our new algorithm

for exact simulation.

3.2 Interarrival Time

Theorem 3.2. The probability density function (PDF) of interarrival time τ conditional on Xt at

the current arrival time t is given by

fτ |Xt (s | Xt) = −P (s)Q(s)
�
p(s) + q(s)

�
, s > 0, (3.9)

where

P (s) :=
e−κ1Xte−κ2X2

t e−κ0s

√
1− 2ς̃2κ2

, (3.10)

Q(s) := exp

�
ς̃2κ2

1 + 2ν̃κ1 + 2ν̃2κ2

2 (1− 2ς̃2κ2)

�
, (3.11)

and

p(s) := −
�
µµ̃+

ς̃2

1− 2ς̃2κ2

�
, (3.12)

q(s) := − δ̃ (κ1 + 2ν̃κ2)

(1− 2ς̃2κ2)2

"
(ν̃ − µ̃)

�
1− 2ς̃2κ2

�
− σ̃2e−2δ̃s

2δ̃
(κ1 + 2ν̃κ2)

#
(3.13)

are the (partial) derivatives of lnP (s) and lnQ(s), respectively, with (ν̃, ς̃) specified in (3.8),

parameters
�
µ̃, δ̃, σ̃

�
under the new measure P̃ specified in (3.6) by setting w = 1, i.e.

δ̃ :=
È
δ2 + 2σ2, µ̃ :=

δ2

δ̃2
µ, σ̃ := σ, (3.14)

and (κ2, κ1, κ0) specified in (3.4) by setting w = 1, i.e.,

κ2 :=
δ̃ − δ
2σ̃2

≡ 1

δ̃ + δ
, κ1 :=

2µδκ2

δ̃
≡ 2µ̃δ̃κ2

δ
, κ0 := µµ̃+ σ̃2κ2. (3.15)
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3.3 Pre-Event Intensity and State

Theorem 3.3. Conditional on Xt at the current arrival time t and interarrival time τ = s, the

Laplace transform of pre-event intensity level λt+s− is given by

E
h
e−uλt+τ−

��� τ = s,Xt

i
=

Ψ′(u)

Ψ′(0)
, (3.16)

where

Ψ(u) :=
1È

2ς̃2u+ (1− 2ς̃2κ2)
exp

 
ς̃2

2
�
2ς̃2u+ (1− 2ς̃2κ2)

� �κ1 +
ν̃

ς̃2

�2
!
, (3.17)

where (ν̃, ς̃) are specified in (3.8) with (µ̃, δ̃, σ̃) in (3.14) and (κ2, κ1, κ0) in (3.15).

Given the pre-event intensity level λt+s− , the associated positionXt+s− of state process could

be either positive or negative. Proposition 3.3 below gives the probability of the sign of Xt+s−

when λt+s− and Xt are known.

Proposition 3.3. Conditional on Xt at the current arrival time t and the pre-event intensity level

λt+s− = λ ∈ R+, we have

P
�
Xt+s− =

√
λ
���λt+s− = λ,Xt

�
=

e
− (
√
λ−ν)2

2ς2

e
− (
√
λ−ν)2

2ς2 + e
− (
√
λ+ν)2

2ς2

,

P
�
Xt+s− = −

√
λ
���λt+s− = λ,Xt

�
=

e
− (
√
λ+ν)2

2ς2

e
− (
√
λ−ν)2

2ς2 + e
− (
√
λ+ν)2

2ς2

,

where ν and ς are specified by (2.5).

4 Exact Simulation Algorithms

Based on the distributional properties derived in Section 3, exact simulation algorithms for a point

process with quadratic intensity can be developed in this section. More precisely, we can develop

exact simulation algorithms for the interarrival time τ , the pre-event intensity level λt+τ− and the

pre-event state position Xt+τ− based on Theorem 3.2, Theorem 3.3 and Proposition 3.3, respec-

tively.

4.1 Exact Simulation of Interarrival Time

We offer two algorithms for exactly simulating the interarrival time τ based on Theorem 3.2 and

integrate them into Algorithm 4.1:

12



Algorithm 4.2 and 4.3: When the parameter setting (Xt, µ, δ, σ) of state process satisfies certain

conditions, we discover that the interarrival time τ can be expressed simply as the minimum

of two random variables, V ∗ and V ∗t , both of which can be exactly simulated via Algorithm

4.2 and Algorithm 4.3, respectively. Then, we obtain the exact simulation scheme for inter-

arrival time τ in Algorithm 4.1.

Algorithm 4.4: When the conditions for parameters in Algorithm 4.1 do not hold, we switch to

Algorithm 4.4 for exactly simulating the interarrival time τ in general.

These algorithms are provided as below.

Algorithm 4.1 Exact Simulation for Interarrival Time τ

1: a∗ ← −2µ̃σ̃2κ2Xt
δ

2: b∗ ← Xt (Xt − 2µ̃)

3: c∗ ← µ̃Xt
δκ2

. with
�
µ̃, δ̃, σ̃

�
and (κ2, κ1, κ0) specified respectively in (3.14) and

(3.15)

4: Condition 1 ←
�
κ1Xt + κ2X

2
t > 0

�
5: Condition 2a ←

�
a∗ > 0

�
&&

�
(b∗)2 − 4a∗c∗ < 0

�
6: Condition 2b ←

�
a∗ > 0

�
&&

�
− b∗

2a∗ > 1
�

&&
�
a∗ + b∗ + c∗ > 0

�
7: Condition 2c ←

�
a∗ > 0

�
&&

�
− b∗

2a∗ < 0
�

&&
�
c∗ > 0

�
8: Condition 2d ←

�
a∗ < 0

�
&&

�
c∗ > 0

�
&&

�
a∗ + b∗ + c∗ > 0

�
9: Condition 2 ← Condition 2a || Condition 2b || Condition 2c || Condition 2d

10: if
�
Condition 1 && Condition 2

�
then

11: sample V ∗ via Algorithm 4.2

12: sample V ∗t via Algorithm 4.3

13: τ ← min{V ∗, V ∗t }

14: else

15: sample τ via Algorithm 4.4

16: end if

17: return τ
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Algorithm 4.2 Exact Simulation for Random Variable V ∗

1: RV ∗(λ, s) ← eλsfV ∗ (s)
λ

. with the PDF fV ∗(s) given analytically by (J.4)

2: λ∗ ← arg min
λ∈R+

�
max
s∈R+

RV ∗(λ, s)
�

3: CV ∗ ← max
s∈R+

RV ∗ (λ∗, s)

. by numerical optimisation

4: repeat

5: sample V ∗ ∼ Exp (λ∗)

6: sample U ∼ U(0, 1)

7: until
�
U ≤ RV ∗ (λ∗, V ∗)

CV ∗

�
8: return V ∗

Note that, V ∗ is independent ofXt, which can be seen from its CDF (J.3) or its PDF (J.4). The

associated optimisation results λ∗ andCV ∗ depend only on parameters (µ, δ, σ) and will not change

with respect to Xt. Therefore, for a given parameter setting, the definition of RV ∗ in Step 1 and

maximisation in Step 2 and 3 of Algorithm 4.2 need to be numerically solved only once prior to the

implementation of all simulations for V ∗. In fact, this maximisation optimises the Accept/Reject

(A/R) scheme7 for exact simulation.

Algorithm 4.3 Exact Simulation for Random Variable V ∗t
1: sample U ∼ U[0, 1]

2: if
�
U ≤ e−κ1Xt−κ2X2

t

�
then

3: V ∗t ← +∞

4: else

5: Z ← lnU + κ1Xt + κ2X
2
t

6: a ← κ2Xt (Xt − 2µ̃)− σ̃2κ2

δ̃
Z

7: b ← 2µ̃Xt
δ

8: c ← − Z
2δ̃κ2

9: V ∗t ← −1
δ̃

ln
�
−b+
√
b2−4ac

2a

�
10: end if

11: return V ∗t

We carry out numerical tests to verify Algorithm 4.1 based on 105 replications under parameter

settings (Xt, µ, δ, σ) = (0.5, 0.8, 1.1, 1.3), and (−0.5,−0.8, 1.1, 1.3) which satisfyCondition 1

and any of Condition 2a−2d. The comparisons for the empirical CDF and PDF with the asso-
7For introducing the Accept/Reject (A/R) method in general, see e.g. Glasserman (2003, §2.2.2) and Asmussen and

Glynn (2007, §II.2b).
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ciated true (theoretical) CDF (3.9) and PDF (G.2) are presented in Figure 3, respectively. We can

see that empirical CDFs and PDFs are well fitted to their true counterparts.

 
Figure 3: Comparison of the empirical CDF and PDF for Algorithm 4.1 based on 105 replications with

the true (theoretical) CDF (G.2) and PDF (3.9) of interarrival time τ under parameter settings
(Xt, µ, δ, σ) = (0.5, 0.8, 1.1, 1.3), and (−0.5,−0.8, 1.1, 1.3), respectively.

Alternatively, we could implement Algorithm 4.4 below to exactly simulate the interarrival

time in general.
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Algorithm 4.4 Exact Simulation for Interarrival Time τ (Directly through PDF)

1: Rτ (s) ← − eκ0s

κ0
P (s)Q(s)

�
p(s) + q(s)

�
. with P (s), Q(s), p(s) and q(s) provided in (3.10), (3.11), (3.12) and

(3.13) respectively and κ0 specified in (3.15)

2: CM ← max
0<s<+∞

{Rτ (s)}

. by numerical optimisation

3: C0 ← 1
κ0

�
δ̃ (κ1 + 2κ2Xt)

�
(Xt − µ̃)− σ̃2

2δ̃
(κ1 + 2κ2Xt)

�
+ µµ̃

�
4: C∞ ←

È
2δ̃κ2e

−κ1Xt−κ2X2
t e

µ̃2δ̃κ2
2

δ2
(δ̃+δ)(δ̃+2δ)

. with
�
µ̃, δ̃, σ̃

�
specified in (3.14) and (κ2, κ1, κ0) specified in (3.15)

5: Cτ ← max {C0, CM , C∞}

6: repeat

7: sample τ ∼ Exp (κ0)

8: sample U ∼ U[0, 1]

9: until
�
U ≤ Rτ (τ)

Cτ

�
10: return τ

For a given parameter setting, the maximisation8 in Step 2 of Algorithm 4.4 needs to be nu-

merically solved only once prior to the implementation of all A/R simulations. For example, for a

given parameter setting (Xt, µ, δ, σ) = (0.5, 0.8, 1.1, 1.3), we can numerically find CM as illus-

trated in Figure 4. To demonstrate the accuracy of Algorithm 4.4 for simulating the interarrival

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.3
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0.6
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Figure 4: Numerical maximisation in Step 2 of Algorithm 4.4.

time τ , we carry out numerical validations by comparing the empirical CDF and PDF (via Algo-
8The algorithm for numerical maximisation adopted here is Brent (1973) which is directly available in MatLab

(function fminbnd) or R (function optimize).
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rithm 4.4) with the true CDF (3.9) and PDF (G.2) as presented in Figure 5. Overall, we observe

that Algorithm 4.4 can achieve a high level of accuracy.
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Figure 5: Comparisons between the empirical CDF/PDF of interarrival time τ based on Algorithm
4.4 with 105 replications and the associated true CDF (3.9) and PDF (G.2) under parame-
ter settings (Xt, µ, δ, σ) = (0.5, 0.8, 1.1, 1.3), (0.5,−0.8, 1.1, 1.3), (−0.5, 0.8, 1.1, 1.3) and
(−0.5,−0.8, 1.1, 1.3), respectively.

4.2 Exact Simulation of Pre-Event Intensity and State

Conditional on the state position Xt at the current arrival time t and the realisation of interarrival

time τ (via Algorithm 4.1), we can develop an exact scheme for simulating the (next) pre-event

intensity level λt+τ− and state position Xt+τ− in Algorithm 4.5.
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Algorithm 4.5 Exact Simulation of Pre-Event Intensity and State
Conditional on the state position Xt at the current arrival time t and the realisation of interarrival

time τ , the (next) pre-event intensity level λt+τ− and state positionXt+τ− can be exactly simulated

via the following steps:

1: ν̃ ← Xte
−δ̃τ + µ̃

�
1− e−δ̃τ

�
2: ς̃ ← σ̃

É
1−e−2δ̃τ

2δ̃

. with
�
µ̃, δ̃, σ̃

�
specified in (3.14)

3: A ← ς̃2

2

�
κ1 + ν̃

ς̃2

�2

4: B ← 2ς̃2

5: C ← 1− 2ς̃2κ2

. with (κ2, κ1) specified in (3.15)

6: pλ ←
A
C

A
C

+ 1
2

7: sample Bλ ∼ Bernoulli (pλ)

8: sample J ∼ Poisson
�
A
C

�
. with the probability mass function (PMF)

P(J = j) =

�
A
C

�j
j!

e−
A
C , j = 0, 1, · · ·

9: sample λt+τ− ∼ Gamma
�
J + 3

2 +Bλ,
C
B

�
. with the PDF

P
�
λt+τ− = x

�
=

�
C
B

�J+ 3
2

+Bλ

Γ
�
J + 1

2 +Bλ
�xJ+ 3

2
+Bλe−

C
B
x, x > 0

10: return λt+τ−

Conditional on the pre-event intensity level λt+τ− , the pre-event state positionXt+τ− can be sim-

ulated via the following procedures:

1: ν ← Xte
−δτ + µ

�
1− e−δτ

�
2: ς ← σ

q
1−e−2δτ

2δ

3: X ←
È
λt+τ−

4: pX ← e
− (X−ν)2

2ς2

e
− (X−ν)2

2ς2 +e
− (X+ν)2

2ς2

5: sample BX ∼ Bernoulli (pX)

6: Xt+τ− ← (2BX − 1)X

7: return Xt+τ−
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We can numerically verify our exact scheme for simulating the pre-event intensity level by

comparing the CDF and PDF estimated by our Algorithm 4.5 and by the direct numerical inver-

sion of Laplace transform (3.16) of pre-event intensity level.9 The associated plots of CDFs and

PDFs under different parameter settings are illustrated in Figure 6, where we can observe that

simulation-estimated CDFs and PDFs are well fitted to their direct numerical inversions.
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Figure 6: Comparison of the distribution functions of the pre-event intensity level λt+τ− estimated by three
methods, 1) our exact simulation of Algorithm 4.5 based on 105 replications, 2) simulation of
numerical Laplace inversion using Ridout (2009) based on 105 replications, 3) direct numerical in-
version of Laplace transform (3.16) without simulation, under parameter settings (Xt, µ, δ, σ, τ) =
(0.5, 0.8, 1.1, 1.3, 0.5) and (−0.5, 0.8, 1.1, 1.3, 0.5), respectively.

Alternatively, the pre-event intensity level can be simulated via numerically inverting Laplace

transform (3.16). Note that, however, it would not practically exact, since numerical Laplace in-

version involves truncation-based approximations which additionally induce truncation errors and
9A variety of methods are available for numerically inverting Laplace transform with high accuracy, such as Gaver

(1966), Stehfest (1970), Abate andWhitt (1992, 1995, 2006) and Abate et al. (2000). Here, we adopt the Euler algorithm
of Abate and Whitt (2006, §5) and Abate et al. (2000, §8), see more details in Appendix O.
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discretisation errors.10 We provide numerical comparisons11 in CPU time (in seconds) between

our exact simulation (Algorithm 4.5) and numerical Laplace inversion for simulating the pre-event

(pre-jump) intensity level λt+τ− under parameter settings (X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 0.5)

and (−0.5, 0.8, 1.1, 1.3, 1), respectively, in Table 1. The associated plots of simulation-estimated

CDFs and PDFs under different parameter settings are also illustrated in Figure 6. Here, a recently-

developed simulation algorithm by Ridout (2009) for simulating a general random variable via

numerical Laplace inversion is directly adopted. Ridout (2009) shows that his algorithm is more

efficient than alternatives, such as Devroye (1981). However, the associated code12 is written in

a loop-based format, which cannot be easily vectorised. In terms of simulating the pre-event in-

tensity level λt+τ− as one random variable defined by the conditional Laplace transform (3.16) in

particular, it is straightforward to vectorise our Algorithm 4.5, making our algorithm much faster

than the loop-based algorithm of Ridout (2009) for numerically inverting Laplace transform (3.16)

as evident in Table 1. If we also adopt the loop-based format for our Algorithm 4.5 for a fairer

comparison, our Algorithm 4.5 is still about 5 times faster than the Laplace inversion.

Table 1: Numerical comparisons in CPU time (in seconds) between our exact simulation (Algorithm 4.5) and
numerical Laplace inversion for simulating the pre-event (pre-jump) intensity level λt+τ− under pa-
rameter settings (X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 0.5) and (−0.5, 0.8, 1.1, 1.3, 1), respectively.

Parameters (X0, µ, σ, δ, t) = (0.5, 0.8, 1.1, 1.3, 0.5) (X0, µ, σ, δ, t) = (−0.5, 0.8, 1.1, 1.3, 1)

Paths 15,625 62,500 250,000 1,000,000 15,625 62,500 250,000 1,000,000
Inversion (Ridout, 2009) 1.50 4.73 17.90 66.06 1.54 5.02 22.87 83.98

Exact (Loop) 0.24 0.94 3.32 13.77 0.28 0.94 4.42 16.94
Exact (Vectorised) 0.01 0.02 0.07 0.27 0.01 0.02 0.07 0.26

4.3 Exact Simulation of Quadratic Intensity Models

By integrating Algorithms 4.1 and 4.5, it is then straightforward to exactly simulate the entire path

of a point process with quadratic intensity recursively as summarised by Algorithm 4.6. For a

point process Nt with quadratic intensity λt = X2
t and initial value X0 ∈ R, a path of Nt can be

simulated exactly via the following steps recursively based on the current arrival time t = 0.
10This generic problem of numerical Laplace inversion for exact simulation was also pointed out in the literature, e.g.

Li and Wu (2019, p.771).
11The experiments are conducted by R on a laptop PCwith an Intel Core i7-6500UCPU@2.50GHz processor, 8.00GB

of RAM, Windows 10 Home, and 64-bit operating system.
12 TheR code byRidout (2009) is publicly available: https://www.kent.ac.uk/smsas/personal/msr/rlaptrans.html.
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Algorithm 4.6
1: T ← 0

2: NT ← 0

3: XT ← X0

4: repeat

5: sample τ via Algorithm 4.1

6: sample λT+τ− and XT+τ− via Algorithm 4.5

7: T ← T + τ

8: XT ← XT+τ−

9: NT ← NT + 1

10: until
�
T > t

�
11: Nt ← NT − 1

12: return Nt

For simulating the interarrival time τ in general, Algorithm 4.2 and 4.3 are more efficient than

Algorithm 4.4, since with the aid of parameter combination we could strategically avoid the nu-

merical optimisation within the recursive loop in Algorithm 4.6 with Algorithm 4.1 for simulating

point processes. The details of numerical tests and comparisons will be carried out later in Section

6.

5 Extensions

Once the canonical model is found exactly simulatable via Algorithm 4.6, it is then easy to make

further extensions to more comprehensive quadratic intensity models. In this section, we present

the generality of our scheme, by further developing algorithms for exactly simulating extended

models with quadratic intensity, such as exogenous and endogenous jumps in intensity processes,

and multidimensional point processes with contemporaneous jumps (cojumps). These extended

models are also new to the literature. Our newly developed algorithms here could potentially facil-

itate and broaden their applications in practice. The associated simulation algorithms are outlined

in Appendix P, and applications to portfolio loss modelling are provided in Section 6.3.

5.1 Jump-Quadratic Intensity Models

The canonical quadratic intensity model of Definition 2.2 studied in previous sections has no jump

component in the intensity, and it belongs to the big family of doubly stochastic Poisson processes

or Cox processes (Cox, 1955). By definition, these point arrivals are independent conditional on
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the realisations of state variables. This key property makes the associated models more analytically

tractable. However, it may be still too restrictive to capture more complex dependence structures

in the real world, such as "contagious" defaults which have been documented recently by e.g. Das

et al. (2007), Duffie et al. (2007, 2009), Benzoni et al. (2015) and Azizpour et al. (2018).

In this section, we extend the canonical quadratic intensity model beyond the classical Cox

family by adding jumps in the intensity process, in particular, endogenous jumps with self-exciting

and self-correcting effects, where the associated distributional functions (such as the PMF of Nt)

in analytical forms are no longer available and efficient simulation algorithms are more desirable.13

As specified in Definition 5.1 below, these jumps are endogenous, since they occur simultaneously

in the state process Xt, intensity process λt and counting process Nt. These extra two types of

endogenous jumps with arbitrary sizes would equip additional flexibilities for modelling event ar-

rivals with endogenous impacts such as contagion and stress release.14

Definition 5.1 (Quadratic IntensityModel with Self-Exciting and Self-Correcting Effects). A quadratic

intensity model with self-exciting and self-correcting effects is a point process

Nt =
X
i≥1

1{Ti≤t},

with stochastic intensity λt = X2
t and

Xt = X0e
−δt + µ

�
1− e−δt

�
+ σ

tZ
0

e−δ(t−u)dWu| {z }
Gaussian OU Diffusion

+
X

0≤Ti<t
Yie
−δ(t−Ti)| {z }

Two-Sided Jumps

, t ≥ 0, (5.1)

where {Yi}i=1,2,··· are jump sizes in state process Xt, a sequence of random variables with an

arbitrary FT−i -measurable CDF G(y), y ∈ R, occurring at the associated ordered arrival times

{Ti}i=1,2,···, respectively.

Note that, jump sizes being FT−i -measurable means that, the functional form of the CDFG(y)

is revealed just before the arrival time Ti. This distribution could have a highly general depen-

dency structure G(y) = G(y | ·). For example, it could depend on the initial state X0, the past

history of state process at or just before the jump arrival times {Tk}k=1,2,··· ,i, all past jump sizes
13In particular, self-correcting and stress-release point processes are even less analytically tractable than self-exciting

point processes, see e.g. Isham and Westcott (1979), Ogata and Vere-Jones (1984), Vere-Jones and Ogata (1984) and
Lee et al. (2022).

14Here, "stress release" means a type of events that the occurrence of past events inhibits the occurrence of future
events, see e.g. Isham and Westcott (1979), Ogata and Vere-Jones (1984), Vere-Jones and Ogata (1984) and Lee et al.
(2022). Conceptually, "stress release" is just opposite to "contagion" which means a type of events that the occurrence
of past events accelerates the occurrence of future events.
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{Yk}k=1,2,··· ,i−1, the cumulated number of jumps Nt, and so on. As long as we can record these

above information, we can express G(y) as the form,

G(y) = G
�
y | T1, T2, · · · , Ti, X0, XT−1

, · · · , XT−i
, XT1 , · · · , XTi−1 , Y1, Y2, · · · , Yi−1

�
.

(5.2)

Since y ∈ R, the jumps in the intensity process λt of this extended model with Definition 5.1 are

allowed to be two-sided. If the realised jump in the intensity is upward, it is self-exciting similarly

as Hawkes (1971); if the realised jump in the intensity is downward, it is self-correcting similarly

as Isham and Westcott (1979). There is a great flexibility in modelling jump sizes {Yi}i=1,2,···.

Notice that, these jump sizes can be either positive or negative, fixed or random with an arbitrary

FT−i -measurable distribution, or even more general to be functions of any previous information

such as the functional form (5.2). Of course, when they are all equal to zero, the model reduces to

the canonical version of Definition 2.2.

Since endogenous jumps only occur at the associated arrival times of a point process, we can

extend Algorithm 4.6 to Algorithm P.1 by developing an exact simulation scheme for a quadratic

intensity model with self-exciting and self-correcting effects.

We could further incorporate exogenous jumpswith externally-exciting and externally-correcting

effects into state process Xt, i.e.,

Xt = X0e
−δt + µ

�
1− e−δt

�
+ σ

tZ
0

e−δ(t−u)dWu| {z }
Gaussian OU Diffusion

+
X

0≤Ti<t
Yie
−δ(t−Ti)| {z }

Self-Exciting/Correcting Jumps

+
X

0≤Sk<t
Zke

−δ(t−Sk),| {z }
Externally-Exciting/Correcting Jumps

(5.3)

where {Sk}k=1,2,··· are the arrival times of externally-exciting or externally-correcting jumps fol-

lowing a Poisson process of constant rate % > 0, and {Zk}k=1,2,··· are the associated jump sizes

with an arbitrary FS−
k
-measurable CDF GZ(z), z ∈ R. These additional jumps are exogenous,

since they are arriving independently from point process Nt. By adjusting Algorithm P.1, we still

can exactly simulating this extension via Algorithm P.2.

5.2 Multidimensional Cojump-Quadratic Intensity Models

Multidimensional point processes with quadratic intensities and contemporaneous jumps (or co-

jumps) can be also exactly simulated by further adjusting our original algorithms for univariate
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point processes. These cojumps in intensity processes could introduce self/mutually exciting and

correcting effects into a dynamic system, leading to a much more complicated dependency among

point processes in continuous time. More precisely, the multidimensional cojump-quadratic inten-

sity model is defined as aD-dimensional point process
n
N

()
t

o
=1,2,··· ,D

, where the th-component

point process N ()
t ≡

n
T

()
i

o
i=1,2,···

has its intensity process specified as λ()
t =

�
X

()
t

�2
with the

state process

X
()
t = X

()
0 e−δt + µ

�
1− e−δt

�
+ σ

tZ
0

e−δ(t−u)dW ()
u| {z }

Gaussian OU Diffusion

+
DX̀
=1

X
0≤T (`)

i <t

Y
(,`)
i e

−δ
�
t−T (`)

i

�
| {z }

Cojumps

,

(5.4)

where
n
W

()
t

o
=1,2,··· ,D

are mutually independent Brownian motions,
n
Y

(,`)
i

o
=`

are sizes of

self-exciting or self-correcting jumps occurring at time T ()
i , and

n
Y

(,`)
i

o
 6=`

are sizes of mutual

jumps occurring at time T (`)
i . In general, these cojump sizes

n
Y

(,`)
i

o
,`=1,2,··· .,D

follow an ar-

bitrary F
T

(`)−
i

-measurable joint CDF G(y) for a vector y ∈ RD. Depending on the directions

of impacts to intensities, these mutual jumps could be mutually-exciting, mutually-correcting or

even mutually-reversing. This flexility now can simultaneously allow for negative correlation and

positivity among state variables, which cannot be captured by classical affine models as also men-

tioned at the introduction of this paper. By adjusting Algorithm P.1, we still can exactly simulating

this multidimensional extension via Algorithm P.3. Similarly, we can further extend to simulate

a multidimensional version with additional exogenous jumps in intensity processes by adjusting

Algorithm P.2.

6 Numerical Experiments and Applications

In this section, we illustrate the performance of our exact scheme through numerical experiments.

They are conducted by R or MatLab on a laptop PC with an Intel Core i7-6500U CPU@2.50GHz

processor, 8.00GB of RAM,Windows 10 Home, and 64-bit operating system. The computing time

is measured by the elapsed CPU time in seconds. The true (theoretical) value of conditional ex-

pectation is provided by (B.2), which is used for numerically validating and testing our algorithms.

The errors from the associated true values are reported by three standard measures:

1. Error = estimated value− true value;

2. Relative error (error %) = estimated value − true value
true value ;

3. Root mean square error (RMSE) =
È
bias2 + SE2, where the SE is the standard error of

simulation output, and the bias is the difference between the expectation of estimator and the
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associated true value. The bias is zero for exact scheme.15

6.1 Numerical Validation

First of all, we carry out the conventional convergence analysis for Algorithm 4.6 under four dif-

ferent parameter settings for (X0, µ, δ, σ, t) to demonstrate the accuracy and efficiency of our al-

gorithms. In particular, we simulate in a fixed period [0, t] under

• Case I: Algorithm 4.6 by applying Algorithm 4.1 in Step 5;

• Case II: Algorithm 4.6 by applying only Algorithm 4.4 (without Algorithm 4.2 and 4.3) in

Step 5.

The simulated sample paths of point processes within a long period [0, 500] and the associated

histograms are plotted in Figure 7. The (log-log) plots for the RMSE against the CPU time are pre-

sented in Figure 8, and the associated numerical results are reported in Table 2. It is evident that our

exact scheme can achieve a high level of accuracy and efficiency. We also observe that implement-

ing Algorithm 4.6 under Case I is more efficient than the one under Case II. This is because, under

certain combinations of (Xt, µ, δ, σ) such that Condition 1 and any of Condition 2a−2d in

Algorithm 4.1 are satisfied, we could apply our decomposition scheme to sample the interarrival

time τ without any numerical optimisation within the loops for simulating point processes, and

thereby speed up the entire simulation in Algorithm 4.6.

6.2 Numerical Comparisons

In this section, we establish comparisons of numerical performance between our exact schemewith

the classical discretisation scheme as well as the exact algorithm of projection scheme (Giesecke

et al., 2011a), respectively.

Discretisation Scheme Conventionally, the discretisation scheme for simulating a point process

is implemented via the time-scaling method (Meyer, 1971), see also e.g. Lando (1998), Das et al.

(2007) and Lando and Nielsen (2010): Given the current arrival time t = T , the (next) interarrival

time τ satisfies

τ
D
= inf

�
s ≥ 0 :

Z T+s

T
λudu ≥ E

�
, (6.1)

where E follows an exponential distribution of unit parameter, i.e., E ∼ Exp(1). The integral termZ T+s

T
λudu is approximately by discretising the intensity process λt within the period [T, T + s]

using the Euler scheme. Therefore, the associated point process can be approximately simulated via
15Here, we adopt these error measures and the definition of RMSE in Giesecke et al. (2011a,b) and Giesecke and

Smelov (2013) for consistent comparisons.
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Figure 7: Simulated paths and histograms of point processes under parameter settings
(X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 0.5), (0.5,−0.8, 1.1, 1.3, 0.5), (−0.5, 0.8, 1.1, 1.3, 1)
and (−0.5,−0.8, 1.1, 1.3, 1), respectively.

(6.1) recursively. Based on the principle of optimal allocation for computation budget proposed by

Duffie and Glynn (1995), we set the number of time-discretisation grids to be the square root of the

sample-path number. The numerical comparison between our exact scheme (Algorithm 4.6 under

Case I) and discretisation scheme under the parameter setting (X0, µ, δ, σ) = (0.5, 0.8, 1.1, 1.3)

with t = 0.5, 1, 2, 3 are reported in Table 3. Figure 9 shows the comparison of the convergence

of the RMSE against the CPU time graphically. We can see that the estimators obtained via our

scheme have lower RMSE than the discretisation-based estimators, especially for a longer horizon.

This indicates that our scheme outperforms the discretisation scheme in terms of convergence rate.

Projection Scheme Projection scheme proposed by Giesecke et al. (2011a) is theoretically based

on a change of filtration such that the projected intensity simply has a time-deterministic dynamics

which can be exactly computed. Then, the traditional inverse scheme or thinning scheme could

be applied to exactly simulate point processes. Given the specification of projection scheme in

Giesecke et al. (2011a, §5.2), we carry out a comparison between our exact scheme and their pro-
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Table 2: Comparisons between Algorithm 4.6 under Case I and Case II under parameter settings
(X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 0.5), (0.5,−0.8, 1.1, 1.3, 0.5), (−0.5, 0.8, 1.1, 1.3, 1) and
(−0.5,−0.8, 1.1, 1.3, 1), respectively.

Paths True Simulation Error Error% RMSE CPU time Simulation Error Error% RMSE CPU time
(X0, µ, σ, δ, t) = (0.5, 0.8, 1.1, 1.3, 0.5)

Case I Case II
15,625 0.3138 0.3110 -0.0028 -0.89% 0.0051 0.65 0.3158 0.0020 0.64% 0.00508 1.57
62,500 0.3138 0.3136 -0.0002 -0.07% 0.0025 4.74 0.3148 -0.0009 -0.29% 0.00254 12.37
250,000 0.3138 0.3139 0.0001 0.03% 0.0013 16.58 0.3143 0.0005 0.16% 0.00128 34.89
1,000,000 0.3138 0.3139 0.0001 0.02% 0.0006 74.80 0.3139 0.0001 0.02% 0.00064 176.97

(X0, µ, σ, δ, t) = (0.5,−0.8, 1.1, 1.3, 0.5)
Case I Case II

15,625 0.1837 0.1804 -0.0033 -1.81% 0.0037 0.64 0.1824 -0.0013 -0.69% 0.0037 1.76
62,500 0.1837 0.1843 0.0006 0.33% 0.0019 2.52 0.1827 -0.0009 -0.51% 0.0019 7.13
250,000 0.1837 0.1835 -0.0002 -0.09% 0.0009 16.09 0.1835 -0.0002 -0.09% 0.0009 29.66
1,000,000 0.1837 0.1837 0.0000 0.01% 0.0005 41.93 0.1837 0.0000 0.03% 0.0005 137.53

(X0, µ, σ, δ, t) = (−0.5, 0.8, 1.1, 1.3, 1)
Case I Case II

15,625 0.5193 0.5223 0.0030 0.58% 0.0069 0.77 0.5224 0.0031 0.59% 0.0069 3.24
62,500 0.5193 0.5177 -0.0016 -0.31% 0.0034 3.13 0.5214 0.0022 0.42% 0.0034 12.64
250,000 0.5193 0.5206 0.0013 0.25% 0.0017 13.14 0.5181 -0.0011 -0.22% 0.0017 70.03
1,000,000 0.5193 0.5189 -0.0004 -0.08% 0.0009 48.03 0.5194 0.0001 0.02% 0.0009 183.63

(X0, µ, σ, δ, t) = (−0.5,−0.8, 1.1, 1.3, 1)
Case I Case II

15,625 0.8430 0.8378 -0.0052 -0.62% 0.0096 0.85 0.8381 -0.0048 -0.57% 0.0097 3.00
62,500 0.8430 0.8510 0.0081 0.96% 0.0049 3.41 0.8453 0.0023 0.27% 0.0049 10.34
250,000 0.8430 0.8434 0.0005 0.06% 0.0024 13.52 0.8436 0.0006 0.07% 0.0024 48.09
1,000,000 0.8430 0.8430 0.0000 0.00% 0.0012 56.08 0.8433 0.0004 0.04% 0.0012 191.48

jection scheme under the parameter setting (X0, µ, δ, σ) = (0.5, 0, 1.1, 1.3)16 with t = 0.5 and 1,

respectively. The numerical results in details are reported in Table 4, and the convergence plots

are presented in Figure 10. We can see that both schemes achieve high levels of accuracy but our

Algorithm 4.6 is much faster. In particular, our scheme is more efficient when simulating sample

paths for a longer horizon. This is due to the fact that, the projection scheme involves massive

recursive numerical calculations for the projected intensity, and these recursions would accumu-

late a huge number of analytic terms in the projected intensity dynamics, which would be both very

time-consuming and memory-consuming, especially when horizon t or numberNt becomes larger.

Therefore, the projection scheme is practically hard to be maintained truly exact for simulating the

scenarios of many jumps occurring within a given horizon. That is why they alternatively intro-

duced an approximation algorithm for speeding up. Nevertheless, such an approximate scheme

inevitably generates biases as pointed out by Giesecke et al. (2011a, §4.2.3). For µ 6= 0, the out-

performance of our scheme would become even more substantial, since the recursive calculation of

the projected intensity further involves numerical integration to calculate the coefficient functions,
16The projection scheme proposed by Giesecke et al. (2011a) involves mathematically tedious calculations and is

very time-consuming once the intensity process becomes more complicated, as the authors mentioned themselves.
Therefore, we directly adopt their original MatLab codes for the numerical examples of projection scheme under the
same parameter setting to be consistently comparable to our exact scheme. The parameter setting above is equivalent
to (X0,K0,K1, H0, H1) = (0.5, 1.69,−2.2, 0, 6.76) in Equation (39) of Giesecke et al. (2011a), a special case of
quadratic OU process by setting µ = 0.
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Figure 8: Convergence analysis via log-log plots of RMSE v.s. CPU time for Case I and Case II
under parameter settings (X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 0.5), (0.5,−0.8, 1.1, 1.3, 0.5),
(−0.5, 0.8, 1.1, 1.3, 1) and (−0.5,−0.8, 1.1, 1.3, 1), respectively.

which requires more computing time.

However, our scheme is designed only for exactly simulating this specifical class of quadratic-

intensity point processes. The key advantage of projection scheme (Giesecke et al., 2011a) as

well as discretisation scheme over ours is their generality with broader applicability beyond the

quadratic-intensity point processes.

6.3 Portfolio Loss Modelling

Efficient algorithms for simulating portfolio loss processes are extensively discussed in the litera-

ture, see e.g. Glasserman and Li (2005) and Giesecke and Kim (2011a,b). In this section, we offer

some numerical examples on risk assessments for large portfolios.
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Table 3: Comparisons between our exact scheme (Algorithm 4.6) for Case I, and discretisation scheme under
parameter setting (X0, µ, δ, σ) = (0.5, 0.8, 1.1, 1.3) for t = 0.5, 1, 2 and 3, respectively.

Paths Grid True Simulation Bias SE RMSE CPU Time
Discretisation 15,625 125 0.3138 0.3082 -0.0056 0.0050 0.0075 1.67
t = 0.5 62,500 250 0.3138 0.3128 -0.0011 0.0025 0.0027 5.91

250,000 500 0.3138 0.3132 -0.0007 0.0013 0.0015 24.45
1,000,000 1000 0.3138 0.3137 -0.0002 0.0006 0.0007 116.52

Exact 15,625 0.3138 0.3119 0 0.0050 0.0050 0.73
t = 0.5 62,500 0.3138 0.3183 0 0.0026 0.0026 3.86

250,000 0.3138 0.3138 0 0.0013 0.0013 13.84
1,000,000 0.3138 0.3138 0 0.0006 0.0006 61.81

Discretisation 15,625 125 0.8430 0.8337 -0.0092 0.0097 0.0134 1.91
t = 1 62,500 250 0.8430 0.8392 -0.0038 0.0049 0.0062 6.31

250,000 500 0.8430 0.8412 -0.0019 0.0024 0.0031 26.89
1,000,000 1000 0.8430 0.8411 -0.0018 0.0012 0.0022 121.47

Exact 15,625 0.8430 0.8392 0 0.0096 0.0096 3.53
t = 1 62,500 0.8430 0.8415 0 0.0049 0.0049 5.56

250,000 0.8430 0.8428 0 0.0024 0.0024 20.17
1,000,000 0.8430 0.8431 0 0.0012 0.0012 82.25

Discretisation 15,625 125 2.1239 2.1110 -0.0128 0.0184 0.0224 1.94
t = 2 62,500 250 2.1239 2.1139 -0.0100 0.0092 0.0136 6.25

250,000 500 2.1239 2.1185 -0.0054 0.0046 0.0071 26.58
1,000,000 1000 2.1239 2.1185 -0.0054 0.0023 0.0059 116.61

Exact 15,625 2.1239 2.1233 0 0.0187 0.0187 4.97
t = 2 62,500 2.1239 2.1241 0 0.0093 0.0093 9.63

250,000 2.1239 2.1301 0 0.0047 0.0047 37.50
1,000,000 2.1239 2.1238 0 0.0023 0.0023 153.81

Discretisation 15,625 125 3.4964 3.4535 -0.0429 0.0254 0.0499 1.95
t = 3 62,500 250 3.4964 3.4570 -0.0395 0.0128 0.0415 5.59

250,000 500 3.4964 3.4778 -0.0186 0.0065 0.0197 25.67
1,000,000 1000 3.4964 3.4805 -0.0159 0.0032 0.0162 122.94

Exact 15,625 3.4964 3.4944 0 0.0261 0.0261 4.89
t = 3 62,500 3.4964 3.5051 0 0.0131 0.0131 13.97

250,000 3.4964 3.5025 0 0.0066 0.0066 55.08
1,000,000 3.4964 3.4968 0 0.0033 0.0033 220.44

Aggregated Loss Distribution We have a portfolio of investments, and the arrival of losses is

modelled by a self-exciting and self-correcting point process Nt ≡ {Ti}i=1,2,··· with intensity λt

in Definition 5.1 with N0 = 0. The aggregated loss process of this large portfolio by time t is

Lt =
X
i≥1

Li1{Ti≤t},

where Li is the individual loss that occurs at arrival time Ti, i = 1, 2, · · · .

Our exact scheme in Algorithm P.1 for point processes with quadratic intensities offers a greater

flexibility in risk assessments of large portfolio investments, especially in the choices for each loss

size Li and jump size Yi. For instance, simulated sample paths of state process Xt and the asso-

ciated intensity λt with jump sizes {Yi}i=1,2,··· following a standard normal distribution N(0, 1)

are presented in Figure 11. In Figure 12, we illustrate a simulated path of a self-exciting and

self-correcting point process with quadratic intensity and N0 = 0 under the parameter setting
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Figure 9: Comparison of convergence via log-log plots of RMSE v.s. CPU time between our exact scheme
(Algorithm 4.6) under Case I, and discretisation scheme under parameter setting (X0, µ, δ, σ) =
(0.25, 0.8, 1.1, 1.3) for t = 0.5, 1, 2 and 3, respectively.

Figure 10: Comparison of convergence via log-log plots of RMSE v.s. CPU time between our exact scheme
(Algorithm 4.6) under Case I, and projection scheme (Giesecke et al., 2011a) under parameter
setting (X0, µ, δ, σ) = (0.5, 0, 1.1, 1.3) for t = 0.5 and 1, respectively.

(X0, µ, σ, δ, t) = (0.5, 0.8, 1.1, 1.3, 500) and Yi ∼ N(0, 1) for jump sizes. Comparing with Figure

7 for the canonical version, more large spikes are now observed in histograms mainly due to the
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Table 4: Comparisons between our exact scheme (Algorithm 4.6) under Case I, and projection scheme
(Giesecke et al., 2011a) under parameter setting (X0, µ, δ, σ) = (0.5, 0, 1.1, 1.3) for t = 0.5 and 1,
respectively.

Paths True Simulation Error Error% RMSE CPU time Simulation Error Error% RMSE CPU time
t = 0.5 Projection Exact
15,625 0.2270 0.2193 -0.0077 -3.39% 0.0041 774.33 0.2248 -0.0021 -0.94% 0.0042 1.56
62,500 0.2270 0.2277 0.0007 0.32% 0.0021 2942.45 0.2275 0.0005 0.22% 0.0021 4.33
250,000 0.2270 0.2261 -0.0009 -0.38% 0.0011 9857.22 0.2272 0.0002 0.10% 0.0011 12.23
1,000,000 0.2270 0.2269 -0.0001 -0.03% 0.0005 41400.33 0.2270 0.0000 0.01% 0.0005 55.53
t = 1 Projection Exact
15,625 0.5587 0.5671 0.0084 1.50% 0.0074 1003.37 0.5565 -0.0023 -0.41% 0.0072 1.89
62,500 0.5587 0.5533 -0.0054 -0.97% 0.0037 4404.86 0.5569 -0.0019 -0.34% 0.0037 5.03
250,000 0.5587 0.5555 -0.0032 -0.58% 0.0018 11107.05 0.5584 -0.0003 -0.06% 0.0018 17.98
1,000,000 0.5587 0.5595 0.0008 0.14% 0.0009 47960.32 0.5585 -0.0002 -0.04% 0.0009 63.90

additionally-introduced self-exciting and self-correcting effects.
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Figure 11: Simulated paths of state process Xt with self-exciting and self-correcting jumps and quadratic
intensity λt with parameter setting (X0, µ, δ, σ) = (−0.5, 0.8, 1.1, 1.3) and Yi ∼ N(0, 1).

Various quantities about the aggregated loss process can be estimated by simulations. We can

also obtain the Monte Carlo estimate of the CDF for the aggregated loss process at time t, i.e.,

P (Lt ≤ l). Figure 13 illustrates how the loss distribution P (Lt ≤ l) varies with different settings

forLi, Yi and t under the parameter setting (X0, µ, δ, σ) = (0.5, 0.8, 1.1, 1.3)with 105 replications
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Figure 12: Simulated paths and histograms of self-exciting and self-correcting point process Nt under pa-
rameter setting (X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 500) and Yi ∼ N(0, 1).

for Yi = 0 and Yi ∼ N(0, 1), respectively. The individual loss Li is assumed to be fixed, uniformly

distributed on [0, 1] and exponentially distributed, respectively, all with expected loss 0.5. We can

see that, the tail in the CDF of aggregated loss process becomes much heavier if self-exciting jumps

are incorporated into the loss process.

Probability Mass Function The probability mass functions (PMF) have many important appli-

cations, e.g. credit portfolio analysis and pricing, see Choi et al. (2020) for more details. If there is

no any jump in the intensity process, i.e., Yi = 0 for any i, the empirical PMF of aggregated num-

ber of losses at time t, P(Nt = n), n = 0, 1, · · · , estimated by 107 replications against the associ-

ated true values17 under parameter settings, Case 1,2,3,4: (X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 1),

(−0.5, 0.8, 1.1, 1.3, 1), (0.5, 0.8, 1.1, 1.3, 0.5) and (−0.5, 0.8, 1.1, 1.3, 0.5) are plotted in Figure
17For these special cases without jump in the intensity, since they reduce to Cox processes, the true values of PMFs

in theory can be calculated by

P(Nt = n) = E
h

Λnt
n!
e−Λt

i
=

1

n!
E
�
Λnt e

−Λt
�

=
(−1)n

n!

∂n

∂wn
E
�
e−wΛt

� �����
w=1

, n = 0, 1, · · · ,

where E
�
e−wΛt

�
is the Laplace transform of cumulative intensity Λt and can be calculated by setting u = 0 and

replacing (t, s) with (0, t) in Theorem 3.1.
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Figure 13: The estimated CDFs of aggregated portfolio loss process at time t, P(Lt ≤ l), under the parameter
setting (X0, µ, δ, σ) = (0.5, 0.8, 1.1, 1.3) with 105 replications for Yi = 0 and Yi ∼ N(0, 1),
respectively.

14, respectively. The associated numerical results and computational cost measured by the CPU

time (in seconds) for generating 107 replications are reported in Table 5. We can see that the esti-

mated PMFs using our exact scheme are well fitted to the true values. Of course, our algorithms

can be applied to exactly simulating more general point processes whose PMFs are not available

in analytical forms. For example, the estimated PMFs by our exact simulation for additional jumps

Yi ∼ N(0, 1) and Yi ∼ N(0, 2) in intensity processes are also reported in Table 5 and plotted in

Figure 14, where we observe that these additional jumps make the tails of distributions heavier than

the Cox counterparts (Yi = 0) and could be more suited to loss modelling with contagion risk.

7 Concluding Remarks

Quadratic stochastic intensity models have become increasingly popular, especially in economics,

finance and insurance, for modelling events arrivals. In this paper, we obtain a fully analytical

expression for the crucial theoretical result (Theorem 3.1), i.e., the joint Laplace transform of

quadratic process and its integral, which shows that the quadratic intensity model and the cur-

rently more popular CIR counterpart actually have a similar level of analytical tractability. The

main contribution of this paper is that we develop new algorithms for exact simulation based on

the principle of exact distributional decomposition. The algorithms are accurate and efficient, and

have been numerically verified and tested by extensive numerical experiments. We also find that

they substantially outperform all existing alternatives in the literature. Moreover, our exact scheme

has the generality to be extended for more general point processes (beyond Cox processes) where
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Figure 14: The estimated PMFs of aggregated number of losses at time t, P(Nt = n), n = 0, 1, · · · , via exact
simulation with 107 replications for Yi = 0, Yi ∼ N(0, 1), Yi ∼ N(0, 2) against the true values
for Yi = 0 under four parameter settings, Case 1,2,3,4: (X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 1),
(−0.5, 0.8, 1.1, 1.3, 1), (0.5, 0.8, 1.1, 1.3, 0.5) and (−0.5, 0.8, 1.1, 1.3, 0.5), respectively, with
the associated numerical results reported in Table 5.

their PMFs are not available in analytical forms and traditional simulation approaches such as nu-

merical Laplace transform are not applicable. For example, additional two-sided random jumps

with arbitrarily distributed sizes in the intensity can be incorporated for capturing self-exciting and

self-correcting effects in event arrivals, which form a new class of quadratic (stochastic) intensity

models. We also generalise by introducing a new family of multidimensional point processes with

cojumps in intensity processes, and offer the associated algorithms for exact simulation, which fa-

cilitate more practical applications such as portfolio credit risk modelling at a more granular level.

The cojump sizes could be arbitrary, and simultaneously allow for negative correlation and posi-
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Table 5: The empirical PMFs of aggregated number of losses at time t, P(Nt = n), n = 0, 1, · · · , es-
timated by 107 replications for Yi = 0, Yi ∼ N(0, 1), Yi ∼ N(0, 2) against the true values
for Yi = 0 under four parameter settings, Case 1,2,3,4: (X0, µ, δ, σ, t) = (0.5, 0.8, 1.1, 1.3, 1),
(−0.5, 0.8, 1.1, 1.3, 1), (0.5, 0.8, 1.1, 1.3, 0.5) and (−0.5, 0.8, 1.1, 1.3, 0.5), respectively.

P(Nt = n) Case 1 Case 2
n Yi = 0 (True) Yi = 0 Yi ∼ N(0, 1) Yi ∼ N(0, 2) Yi = 0 (True) Yi = 0 Yi ∼ N(0, 1) Yi ∼ N(0, 2)
0 0.5304 0.5300 0.5303 0.5305 0.6455 0.6453 0.6456 0.6456
1 0.2629 0.2696 0.2543 0.2131 0.2435 0.2378 0.2169 0.1761
2 0.1146 0.1118 0.1004 0.0906 0.0753 0.0727 0.0693 0.0667
3 0.0508 0.0491 0.0457 0.0467 0.0237 0.0265 0.0288 0.0328
4 0.0228 0.0218 0.0238 0.0273 0.0078 0.0105 0.0142 0.0187
5 0.0102 0.0098 0.0137 0.0175 0.0027 0.0043 0.0080 0.0118
6 0.0046 0.0044 0.0086 0.0121 0.0009 0.0017 0.0048 0.0081
7 0.0020 0.0020 0.0057 0.0088 0.0003 0.0007 0.0031 0.0058
8 0.0009 0.0009 0.0039 0.0067 0.0001 0.0003 0.0021 0.0044
9 0.0004 0.0004 0.0028 0.0053 0.0000 0.0001 0.0015 0.0034
10 0.0002 0.0002 0.0021 0.0042 0.0000 0.0000 0.0011 0.0028

CPU Time 2,108 3,436 8,569 8,545 10,871 15,891
P(Nt = n) Case 3 Case 4

n Yi = 0 (True) Yi = 0 Yi ∼ N(0, 1) Yi ∼ N(0, 2) Yi = 0 (True) Yi = 0 Yi ∼ N(0, 1) Yi ∼ N(0, 2)
0 0.7589 0.7589 0.7589 0.7589 0.8433 0.8433 0.8435 0.8433
1 0.1853 0.1862 0.1728 0.1453 0.1339 0.1291 0.1179 0.0975
2 0.0428 0.0421 0.0420 0.0442 0.0192 0.0220 0.0245 0.0277
3 0.0100 0.0098 0.0139 0.0185 0.0030 0.0044 0.0076 0.0114
4 0.0023 0.0023 0.0057 0.0096 0.0005 0.0009 0.0031 0.0058
5 0.0005 0.0005 0.0027 0.0057 0.0001 0.0002 0.0014 0.0034
6 0.0001 0.0001 0.0014 0.0037 0.0000 0.0000 0.0008 0.0022
7 0.0000 0.0000 0.0008 0.0025 0.0000 0.0000 0.0004 0.0015
8 0.0000 0.0000 0.0005 0.0018 0.0000 0.0000 0.0003 0.0011
9 0.0000 0.0000 0.0003 0.0014 0.0000 0.0000 0.0002 0.0008
10 0.0000 0.0000 0.0002 0.0011 0.0000 0.0000 0.0001 0.0006

CPU Time 1,039 1,505 3,633 6,755 7,341 9,374

tivity among state variables, which cannot be captured by classical affine models. Finally, we use

portfolio risk management as an example to show the applicability and flexibility of our algorithms.

Of course, the models and the associated simulation algorithms can be used for other applications

far beyond. For instance, it could easily be extended to pricing financial derivatives, particularly

path-dependent or multiple-name structured credit products similarly as Choi et al. (2020) where

analytical pricing formulas are unavailable and efficient simulations are more desirable. In the

paper, we only adopt financial applications of credit risk modelling to facilitate our illustration.

However, the developed methods and algorithms would undoubtedly have a much wider applica-

tion spectrum. These models have huge potential to be further applied to many other fields of

both natural science and social science, for modelling events arrivals, such as job losses, trade or-

ders, unscheduled announcements, news reports, information flows, online posts, website visits,

particulate emissions, traffic flows, queues, customer arrivals, crimes, reliability and COVID-19

infections. For example, in the areas of queuing theory and operations management, they may be

useful for modelling call arrivals in telephone call centers with stochastically time-varying arrival

rates as motivated by Whitt (1999), Avramidis et al. (2004) and Ata and Peng (2020). The models

with associated simulation algorithms might be extendable to multi-factor counterparts and even
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beyond the quadratic processes, such as polynomial processes (Cuchiero et al., 2012; Filipović and

Larsson, 2016, 2020), which could be interesting and meaningful topics for future research.
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Appendices

A Joint Laplace Transform of
�
ε, ε2

�
, ε ∼ N(0, 1)

Proposition A.1. The bivariate Laplace transform of
�
ε, ε2

�
for a standard normal random variable ε ∼

N(0, 1) is given by

E
�
e−uεe−wε

2
�

=
1√

2w + 1
exp

�
u2

2(2w + 1)

�
, (A.1)

where u ∈ R and w > −1

2
.

Proof. For a standard normal random variable ε ∼ N(0, 1), we have
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ds
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2w + 1
exp
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u2

2(2w + 1)

�
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B Expectations of Intensity Process λt and Point Process Nt

The conditional expectations of intensity process and point process can be obtained analytically in simple

forms as in Proposition B.1 below, which can be used for numerically validating and testing our algorithms

in this paper.

Proposition B.1. The expectation of intensity level λt+s conditional on Xt at time t is given by

E[λt+s | Xt] =

�
Xte

−δs + µ
�
1− e−δs

� �2

+
σ2

2δ

�
1− e−2δs

�
, (B.1)

and the expectation of point number Nt+s conditional on Nt and Xt is given by

E [Nt+s | Nt, Xt] = Nt +

�
µ2 +

σ2

2δ

�
s

+
2µ

δ
(Xt − µ)

�
1− e−δs

�
+

1

2δ

�
(Xt − µ)

2 − σ2

2δ

� �
1− e−2δs

�
. (B.2)

Proof. Recalling (2.4), i.e.,

Xt+s | Xt
D
= ν + ςε, ε ∼ N(0, 1),
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we have the expectation of λt+s conditional on Xt,

E [λt+s | Xt] = E
�
X2
t+s

��Xt

�
= ν2 + ς2,

where ν and ς are specified in (2.5). For the conditional expectation of point process, since

E[Nt+s | Nt, Xt] = Nt + E
�Z t+s

t
λudu

����Xt

�
= Nt +

Z t+s

t
E [λu | Xt] du,

then (B.2) follows.

C Proof for Proposition 3.1

Proof. Based on (2.4), we have the conditional joint bivariate Laplace transform of
�
Xt+s, X

2
t+s

�
,

E
h
e−uXt+se−wX

2
t+s

���Xt

i
= E

�
e−u(ν+ςε)e−w(ν+ςε)2

�
= e−(uν+wν2)E

�
e−(uς+2wνς)εe−wς

2ε2
�
, ε ∼ N(0, 1).

According to the joint Laplace transform of
�
ε, ε2

�
in Proposition A.1 in Appendix A, we immediately have

the result in (3.1). By setting u = 0 in (3.1), we have the univariate Laplace transform of X2
t .

D Proof for Lemma 3.1

Proof. The infinitesimal generator for the joint process (Λt, Xt, t) is given by

Af(Λ, x, t) =
∂f

∂t
− δ(x− µ)

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2
+ x2 ∂f

∂Λ
. (D.1)

Consider an exponential martingale in form of

f(Λ, x, t) = e−wΛe−κ2x
2

e−κ1xeκ0t, (D.2)

and set Af(Λ, x, t) = 0. Then,

κ0 + δ(x− µ)(2κ2x+ κ1) +
1

2
σ2
�
(2κ2x+ κ1)

2 − 2κ2

�
− wx2 = 0, (D.3)

which holds for any x. Therefore, we have three equations,

κ0 − µδκ1 +
1

2
σ2
�
κ2

1 − 2κ2

�
= 0,

δκ1 − 2µδκ2 + 2σ2κ1κ2 = 0, (D.4)

2σ2κ2
2 + 2δκ2 − w = 0,
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where κ0, κ1, κ2 can be solved analytically as given by (3.4). The third equation has two solutions and we

take the larger one. Hence, using (κ0, κ1, κ2) in (3.4) with f(Λ, x, t) in (D.2), we find a martingale (3.3) by

the basic property of infinitesimal generator.

E Proof for Proposition 3.2

Proof. The infinitesimal generator Ã under the new measure P̃ is defined as

Ãf̃ := lim
∆t→0+

Ẽ
h
f̃(t+ ∆t)

���Fti− f̃(t)

∆t
,

where Ẽ is denoted as the expectation under P̃. Changing the measure from P̃ to P, we have

Ãf̃ = lim
∆t→0+

E
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where

f(Λ, x, t) = eg(Λ,x,t)f̃(Λ, x, t), g(Λ, x, t) = −wΛ− κ2x
2 − κ1x+ κ0t,

and eg(Λt,Xt,t) is the exponential (P-)martingale (3.3). To find the parameter setting
�
µ̃, δ̃, σ̃

�
under the

new measure P̃, we substitute (E.1) into the original generator (D.1), and the infinitesimal generator for

(Λt, Xt, t) under P̃ is then given by
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where the last equation infers from (D.3). Given (3.4), we then have

Ãf̃(Λ, x, t) =
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p
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�
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Comparing the current generator (E.2) with the original generator (D.1), the parameters under the new

measure P̃ can be uniquely identified as (3.6).

F Proof for Theorem 3.1

Proof. Based on the change of measure with the Randon-Nikodým derivative (3.5), the joint bivariate

Laplace transform of (λt+s,Λt+s − Λt) under the original measure P can be elegantly expressed as the
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joint bivariate Laplace transform of
�
Xt+s, X

2
t+s

�
under the new measure P̃, more precisely,

E
h
e−uλt+se−w(Λt+s−Λt)

���Xt

i
= ewΛte−κ0(t+s)E

h
e−wΛt+se−κ1Xt+se−κ2X

2
t+seκ0(t+s) × eκ1Xt+se−(u−κ2)X2

t+s

���Xt

i
= Mte

wΛte−κ0(t+s)E
�
Mt+s

Mt
× eκ1Xt+se−(u−κ2)X2

t+s

����Xt

�
= e−κ1Xte−κ2X

2
t e−κ0sẼ

h
eκ1Xt+se−(u−κ2)X2

t+s

���Xt

i
.

According to Proposition 3.1 and 3.2, the joint bivariate Laplace transform of
�
Xt+s, X

2
t+s

�
under the new

measure P̃ is specified as

Ẽ
h
eκ1Xt+se−(u−κ2)X2

t+s

���Xt

i
=

1È
2ς̃2(u− κ2) + 1

exp

 
ς̃2

2
�
2ς̃2(u− κ2) + 1

� �κ1 +
ν̃

ς̃2

�2

− ν̃2

2ς̃2

!
,

where ν̃ and ς̃ are specified in (3.8). This leads to the result (3.7) for the joint bivariate Laplace transform

of (λt+s,Λt+s) conditional on Xt under the original measure P.

G Proof for Theorem 3.2

Proof. By setting u = 0 andw = 1 in (3.7), we immediately obtain the conditional marginal tail distribution

of s as

P (τ > s | Xt) = E
h
e−(Λt+s−Λt)

���Xt

i
=

e−κ1Xte−κ2X
2
t e−κ0sÈ

1− 2ς̃2κ2

exp

 
ς̃2

2
�
1− 2ς̃2κ2

� �κ1 +
ν̃

ς̃2

�2

− ν̃2

2ς̃2

!
= P (s)Q(s), (G.1)

which follows from the doubly stochastic Poisson structure of the point process Nt. The cumulative distri-

bution function (CDF) of τ conditional on Xt is then given by

Fτ |Xt (s | Xt) = 1− P (τ > s | Xt) = 1− P (s)Q(s), s > 0, (G.2)

which implies the associated PDF of τ as

fτ |Xt (s | Xt) = −∂P (s)

∂s
×Q(s)− P (s)× ∂Q(s)

∂s
= −P (s)Q(s)

�
p(s) + q(s)

�
.
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H Proof for Theorem 3.3

Proof. For the interarrival time τ conditional on Xt at the current arrival time t, we have

fτ |Xt (s | Xt) ds = P (τ ∈ ds | Xt) = E
�
1{τ∈ds}

��Xt

�
= E

h
λt+s−e

−(Λt+s−Λt)
���Xt

i
ds,

and

E
h
e−uλt+τ−1{τ∈ds}

���Xt

i
= E

h
e−uλt+s−λt+s−e

−(Λt+s−Λt)
���Xt

i
ds.

Hence, further conditional on the interarrival time τ = s, we have

E
h
e−uλt+τ−

��� τ = s,Xt

i
=

E
h
e−uλt+τ−1{τ∈ds}

���Xt

i
E
�
1{τ∈ds}

��Xt

� =
Ψ′(u)

Ψ′(0)
. (H.1)

Both the numerator and denominator of (H.1) can be obtained analytically by differentiating the conditional

joint Laplace transform of (λt,Λt) in (3.7) with w = 1, which immediately leads to (3.16).

I Proof for Proposition 3.3

Proof. According to (2.3) and (2.4), we have the transition density of Xt+s− |Xt as

fXt+s− |Xt (x | Xt) =
1√
2πς

e
− (x−ν)2

2ς2 .

Hence,

P
�
Xt+s− =

√
λ
���λt+s− = λ,Xt

�
=

fXt+s− |Xt
�√

λ
�

fXt+s− |Xt
�√

λ
�

+ fXt+s− |Xt
�
−
√
λ
� ,

P
�
Xt+s− = −

√
λ
���λt+s− = λ,Xt

�
= 1− P

�
Xt+s− =

√
λ
���λt+s− = λ,Xt

�
,

which immediately leads to Proposition 3.3.

J Proof for Algorithm 4.1

Proof. According to (G.1) in the proof for Theorem 3.2, the tail distribution function of interarrival time τ

conditional on Xt can be expressed as

P (τ > s | Xt) = P (s)Q(s) = P0(s)Q0(s),

where P (s) and Q(s) are specified in (3.10) and (3.11), respectively,

P0(s) :=
e−κ0sÈ

1− 2ς̃2κ2

exp

�
µ̃2
�
1− e−δ̃s

�
2δ2

�
1− 2ς̃2κ2

�� �δ̃ + 2δ
�

+
�
δ̃ − 2δ

�
e−δ̃s

��
(J.1)
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is a constant function of Xt,18 and

Q0(s) := exp

�
−κ1Xt − κ2X

2
t +

Xte
−δ̃s

1− 2ς̃2κ2

�
2µ̃

δ
+ κ2 (Xt − 2µ̃) e−δ̃s

��
. (J.2)

If Condition 1 and any of Condition 2a−2d are satisfied, then we have

lim
s→0+

P0(s) = lim
s→0+

Q0(s) = 1, lim
s→+∞

P0(s) = 0, lim
s→+∞

Q0(s) = e−κ1Xt−κ2X
2
t ∈ (0, 1),

and

∂P0(s)

∂s
= −P0(s)

�
ς̃2

1− 2ς̃2κ2
+

µ̃2
�
1− e−δ̃s

�2

4δ2 (1− 2ς̃2κ2)
2

�
δ̃
�
1 + e−δ̃s

�
+ δ

�
1− e−δ̃s

� �2
�

< 0,

∂Q0(s)

∂s
= − e−δ̃sQ0(s)�

1− 2ς̃2κ2

�2

�
a∗e−2δ̃s + b∗e−δ̃s + c∗

�
< 0.

Therefore, P0(s) and Q0(s) are both strictly decreasing functions on (0,+∞): P0(s) decreases from 1 to

0, and Q0(s) decreases from 1 to e−κ1Xt−κ2X
2
t . We have a well-defined random variable V ∗ with the CDF

FV ∗(s) = 1− e−κ0sÈ
1− 2ς̃2κ2

exp

�
ς̃2

2
�
1− 2ς̃2κ2

� 24κ1 +
µ̃
�
1− e−δ̃s

�
ς̃2

352

−
µ̃2
�
1− e−δ̃s

�2

2ς̃2

�
,

(J.3)

and the PDF

fV ∗(s) = P0(s)

�
ς̃2

1− 2ς̃2κ2

+
µ̃2
�
1− e−δ̃s

�2

4δ2
�
1− 2ς̃2κ2

�2

�
δ̃
�
1 + e−δ̃s

�
+ δ

�
1− e−δ̃s

� �2
�
, (J.4)

for s > 0. We have a defective random variable V ∗t with the CDF

FV ∗
t

(s) =

8><>:1− exp

�
−κ1Xt − κ2X

2
t + Xte

−δ̃s

1− 2ς̃2κ2

�
2µ̃

δ
+ κ2 (Xt − 2µ̃) e−δ̃s

��
, 0 < s < +∞,

1, s = +∞,
(J.5)

and the PDF

fV ∗
t

(s) =
e−δ̃sQ0(s)�
1− 2ς̃2κ2

�2

�
a∗e−2δ̃s + b∗e−δ̃s + c∗

�
, s > 0. (J.6)

Note that, V ∗ is independent of Xt since its CDF (J.3) is a constant function of Xt, and the CDF (J.5)

of V ∗t indicates that

lim
s→+∞

FV ∗
t

(s) = 1− e−κ1Xt−κ2X
2
t < 1 6= FV ∗

t
(+∞),

and hence

P (V ∗t = +∞) = e−κ1Xt−κ2X
2
t .

18We can derive P0(s) by settingXt = 0 in P (s)Q(s).
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We can exactly simulate V ∗ and V ∗t via the explicit inverse transformation method in Algorithm 4.2 and the

A/R scheme in Algorithm 4.3, respectively. Finally, the interarrival time τ conditional on Xt can be then

exactly simulated by

τ
D
= min {V ∗, V ∗t } ,

since

P (τ > s | Xt) = P0(s)Q0(s) = P (V ∗ > s)× P (V ∗t > s) .

K Proof for Algorithm 4.2

Proof. To sample V ∗ with the PDF fV ∗(s) in (J.4), we choose an exponential envelop V̂ with the PDF

gV̂ (s) = λe−λs, λ ∈ R+.

The ratio of two densities, RV ∗(λ, s), is given as

RV ∗(λ, s) =
fV ∗(s)

gV̂ (s)
=

eλsfV ∗(s)

λ
≤ RV ∗ (λ, s∗) ,

such that

RV ∗ (λ, s∗) = max
s∈R+

{RV ∗ (λ, s)} .

Overall, the ratio RV ∗(λ, s) is bounded by RV ∗ (λ, s∗), which is the associated A/R constant. The critical

value λ∗ can be obtained by minimising RV ∗ (λ, s∗) = max
s∈R+

{RV ∗ (λ, s)} in order to reduce the expected

number of simulated candidates to be rejected. This numerical maximisation is carried out only once before

entering the loop for sampling the point process since V ∗ is independent of Xt. It induces almost no cost,

but produces an optimal A/R scheme for exact simulation.

L Proof for Algorithm 4.3

Proof. The defective random variable V ∗t can be exactly simulated via an explicit inverse transformation,

since its CDF (J.5) can be inverted explicitly as

F−1
V ∗
t

(u) =

8>>>><>>>>:
−1

δ̃
ln

�
−b+

Ê
b2 − 4ĉ

�
â− σ̃2κ2

δ̃

�
ln(1− u) + Ẑ

�� �
ln(1− u) + Ẑ

�
2

�
â− σ̃2κ2

δ̃

�
ln(1− u) + Ẑ

��
�

, u ∈
�
0, 1− e−Ẑ

�
,

+∞, u ∈
�
1− e−Ẑ , 1

�
,

(L.1)

where

â := κ2Xt (Xt − 2µ̃) , ĉ := − 1

2δ̃κ2

, Ẑ := κ1Xt + κ2X
2
t .
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Note that, 1− U is also uniform on [0, 1], i.e., U D= 1− U for U ∼ U[0, 1]. We can simplify (L.1) as

V ∗t
D
= F−1

V ∗
t

(1− U) =

8><>:−1

δ̃
ln

�
−b+

√
b2 − 4ac

2a

�
, U ∈

�
e−Ẑ , 1

�
,

+∞, U ∈
�
0, e−Ẑ

�
.

M Proof for Algorithm 4.4

Proof. To sample the interarrival time τ conditional on Xt at the current arrival time t with the PDF

fτ |Xt (s | Xt) in (3.9), we choose an envelop of exponential distribution τ̂ ∼ Exp(κ0) with the PDF

gτ̂ (s) = κ0e
−κ0s, s > 0.

The ratio of two PDFs is given by

Rτ (s) =
fτ |Xt (s | Xt)

gτ̂ (s)
= −e

κ0s

κ0
P (s)Q(s)

�
p(s) + q(s)

�
,

which is bounded, since it is continuous and

lim
s→0+

Rτ (s) = C0 < +∞, lim
s→+∞

Rτ (s) = C∞ < +∞.

Denoting CM as the internal maximum of Rτ (s) on (0,+∞), which can be obtained via numerical optimi-

sation, we have

Rτ (s) ≤ Cτ = max {C0, CM , C∞}

for all s > 0, whereCτ is the associatedA/R constant. The acceptance condition of A/R scheme for sampling

τ is

U ≤ Rτ (τ̂)

Cτ
,

where U ∼ U[0, 1] and τ̂ ∼ Exp(κ0).

N Proof for Algorithm 4.5

Proof. According to Theorem 3.3, we can rewrite Ψ(u) in (3.17) with s = τ in a more concise form as

Ψ(u) = g−
1
2 (u) exp

�
Ag−1(u)

�
=

1√
Bu+ C

exp

�
A

Bu+ C

�
(N.1)

with Ψ(0) =
e
A
C

√
C
, and

Ψ′(u) = − B

(Bu+ C)
3
2

�
A

Bu+ C
+

1

2

�
exp

�
A

Bu+ C

�
, Ψ′(0) = −

B
�
A
C + 1

2

�
e
A
C

C
3
2

,
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where

g(u) := 2ς̃2u+
�
1− 2ς̃2κ2

�
≡ Bu+ C

with

g′(u) = 2ς̃2 = B, g(0) = 1− 2ς̃2κ2 = C > 0.

Hence, the Laplace transform (3.16) of pre-event intensity level conditional on the realised interarrival time

τ can be expressed as

E
h
e−uλt+τ−

��� τ,Xt

i
=

�
C

Bu+C

� 3
2
�

A
Bu+C + 1

2

�
e−

A
C

A
C + 1

2

exp

�
A

Bu+ C

�
=

�
C

Bu+C

� 3
2
�

A
Bu+C + 1

2

�
e−

A
C

A
C + 1

2

∞X
j=0

1

j!

�
A

Bu+ C

�j
=

�
C

Bu+C

� 3
2
e−

A
C

A
C + 1

2

" ∞X
j=0

1

j!

�
A

Bu+ C

�j+1

+
1

2

∞X
j=0

1

j!

�
A

Bu+ C

�j#
=

�
C

Bu+C

� 3
2
e−

A
C

A
C + 1

2

24 ∞X
j=0

�
A
C

�j
j!

�
C

Bu+ C

�j+1

+
1

2

∞X
j=0

�
A
C

�j
j!

�
C

Bu+ C

�j35
=

A
C

A
C + 1

2

∞X
j=0

P(J = j)

�
C
B

u+ C
B

�j+ 5
2

+
1
2

A
C + 1

2

∞X
j=0

P(J = j)

�
C
B

u+ C
B

�j+ 3
2

= pλ

∞X
j=0

P(J = j)E
h
e−uG

(j)
1

i
+ (1− pλ)

∞X
j=0

P(J = j)E
h
e−uG

(j)
2

i
= pλE

�
e−uG1

�
+ (1− pλ)E

�
e−uG2

�
,

where G(j)
1 ∼ Gamma

�
j +

5

2
,
C

B

�
and G(j)

2 ∼ Gamma
�
j +

3

2
,
C

B

�
for j = 0, 1, · · · . Quite elegantly,

the pre-event intensity level λt+τ− conditional on Xt and τ can be exactly decomposed as

λt+τ− | τ,Xt
D
=

8><>:G1, with probability pλ,

G2, with probability 1− pλ.

Given the pre-event intensity level λt+τ− , we can back out the underlying pre-event position of state pro-

cess, Xt+τ− , in order to sample the next interarrival time. Conditional on Xt, τ and λt+τ− , according to

Proposition 3.3, we have

Xt+τ−
D
= BX

È
λt+τ− − (1−BX)

È
λt+τ− = (2BX − 1)

È
λt+τ−

where BX ∼ Bernoulli (pX),

pX =
e
−

�√
λ
t+τ−−ν

�2

2ς2

e
−

�√
λ
t+τ−−ν

�2

2ς2 + e
−

�√
λ
t+τ−+ν

�2

2ς2

,

51



and (ν, ς) are specified in (2.5) by setting s = τ .

O Euler Algorithm of Abate and Whitt (2006, §5)

For the Laplace transform f̂ of a given function f , i.e.,

f̂(s) :=

∞Z
0

e−stf(t)dt,

the underlying function f can be approximated by

f(t) ≈ fn(t) :=
1

t

nX
k=0

ωkf̂
�αk
t

�
, t > 0, (O.1)

where nodes αk and weights ωk are (complex-valued) tuning parameters which depend on n but neither on

the Laplace transform f̂ nor the time argument t. For the Euler algorithm (Abate and Whitt, 2006, §5), the

parameters in (O.1) are n = 2M for a positive integerM , αk = βk, ωk = 10
M
3 ηk and

βk =
ln 10

3
M + πik, ηk ≡ (−1)kξk,

ξ0 =
1

2
, ξk = 1, 1 ≤ k ≤M, ξ2M =

1

2M
,

ξ2M−k = ξ2M−k+1 + 2−M
�
M

k

�
, 0 < k < M.

P Simulation Algorithms for Extensions in Section 5

Based on the current arrival time t = 0, a self-exciting and self-correcting point process Nt with quadratic

intensity λt = X2
t and state Xt in (5.1) can be exactly simulated via Algorithm P.1.
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Algorithm P.1
1: T ← 0

2: NT ← 0

3: XT ← X0

4: repeat

5: sample τ via Algorithm 4.1

6: sample λT+τ− and XT+τ− via Algorithm 4.5

7: sample Y with an arbitrary CDF G(·)

8: T ← T + τ

9: XT ← XT+τ− + Y

10: NT ← NT + 1

11: until
�
T > t

�
12: Nt ← NT − 1

13: return Nt

Based on the current arrival time t = 0, a self-exciting/correcting and externally-exciting/correcting

point process Nt with quadratic intensity λt = X2
t and state Xt in (5.3) can be exactly simulated via

Algorithm P.2.
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Algorithm P.2
1: T ← 0

2: NT ← 0

3: XT ← X0

4: repeat

5: sample τen via Algorithm 4.1

. by replacing τ with τen

6: sample τex ∼ Exp(%)

7: τ ← min {τen, τex}

8: sample λT+τ− and XT+τ− via Algorithm 4.5

9: if
�
τ = τen

�
then

10: NT ← NT + 1

11: sample Y with an arbitrary CDF G(·)

12: T ← T + τ

13: XT ← XT+τ− + Y

14: else

15: sample Z with an arbitrary CDF GZ(·)

16: T ← T + τ

17: XT ← XT+τ− + Z

18: end if

19: until
�
T > t

�
20: Nt ← NT − 1

21: return Nt

Note that, τ in Algorithm P.2 is now (re)interpreted as the interarrival time of jumps in the intensity

process λt rather than jumps in the point process Nt, since exogenous and endogenous jumps do not arrive

at the same time.

Based on the current arrival time t = 0, for a multidimensional point process
¦
N

()
t

©
=1,2,··· ,D

, the

th-component point process N ()
t with quadratic intensity λ()

t =
�
X

()
t

�2
and the state process X()

t in

(5.4) for each  = 1, 2, · · · , D can be exactly simulated via Algorithm P.3.
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Algorithm P.3
1: T ← 0

2: N ()
T ← 0

3: X()
T ← X

()
0

4: repeat

5: sample τ (`) via Algorithm 4.1 for ` = 1, 2, · · · , D

. by replacing τ with τ (`) using the associated parameters (µ`, δ`, σ`)

6: τ ← min
¦
τ (1), · · · , τ (D)

©
7: sample λ()

T+τ−
and X()

T+τ−
via Algorithm 4.5

8: sample a vector (Y1, · · · , YD) with an arbitrary joint CDF G(y), y ∈ RD

9: if
�
τ = τ ()

�
then

10: N
()
T ← N

()
T + 1

11: end if

12: T ← T + τ

13: X
(`)
T ← X

(`)

T+τ−
+ Y` for ` = 1, 2, · · · , D

14: until
�
T > t

�
15: N ()

t ← N
()
T − 1

16: return N ()
t
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