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A B S T R A C T

The generalized least square (GLS) is one of the most basic tools in regression analyses. A major issue in implementing the GLS is estimation of the
conditional variance function of the error term, which typically requires a restrictive functional form assumption for parametric estimation or
smoothing parameters for nonparametric estimation. In this paper, we propose an alternative approach to estimate the conditional variance function
under nonparametric monotonicity constraints by utilizing the isotonic regression method. Our GLS estimator is shown to be asymptotically
equivalent to the infeasible GLS estimator with knowledge of the conditional error variance, and involves only some tuning to trim boundary
observations, not only for point estimation but also for interval estimation or hypothesis testing. Simulation studies and an empirical example
illustrate excellent finite sample performances of the proposed method.

1. Introduction

The generalized least square (GLS) is one of the most basic tools in regression analyses. It yields the best linear unbiased estimator in
the classical linear regression model, and has been studied extensively in econometrics and statistics literature; see e.g., Wooldridge
(2010, Chapter 7), for a review. A major issue in implementing the GLS is that the optimal weights given by the conditional error
variance function (say, σ2( · )) are typically unknown to researchers and need to be estimated. One way to estimate σ2( · ) is to specify its
parametric functional form and estimate it by a parametric regression for the squared OLS residuals of the original regression on the
specified covariates. However, economic theory rarely provides exact functional forms of σ2( · ), and the feasible GLS using mis-
specified σ2( · ) is no longer asymptotically efficient (Cragg, 1983). To address this issue, Carroll (1982) and Robinson (1987) proposed
to estimate σ2( · ) nonparametrically and established the asymptotic equivalence of the resulting feasible GLS estimator with the
infeasible one under certain regularity conditions. This is a remarkable result, but it requires theoretically and practically judicious
choices of smoothing parameters, such as bandwidths, series lengths, or numbers of neighbors. It should be noted that such smoothing
parameters appear in not only the point estimator but also the standard error for inference, and their choices typically require some
assumption or knowledge of the smoothness of the conditional variance and associated density functions, such as their differentiability
orders.

In this paper, we propose an alternative approach to estimate the conditional error variance function to implement the GLS by
exploring a shape constraint of σ2( · ) instead of its smoothness as in Robinson (1987). As argued by Matzkin (1994), economic theory
often provides shape constraints for functions of economic variables, such as monotonicity, concavity, or symmetry. In particular, we
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focus on situations where σ2( · ) is known to be monotone in its argument even though its exact functional form is unspecified, and
propose to estimate σ2( · ) by utilizing the method of isotonic regression (see a review by Groeneboom and Jongbloed, 2014). It is
known that the conventional isotonic regression estimator typically yields piecewise constant function estimates and does not involve
any tuning parameters. Although the limiting behavior of the isotonic regression estimator is less tractable (such as the n1/3-consis-
tency and complicated limiting distribution), we show that our feasible GLS estimator using the optimal weights by the isotonic
estimator with some trimming for boundary observations is asymptotically equivalent to the infeasible GLS estimator. Furthermore, we
can plug in this isotonic estimator to estimate the asymptotic variance of the GLS estimator for statistical inference.

For the linear model Y = Xʹβ + U in the presence of heteroskedasticity σ2(X) = E
[
U2
⃒
⃒X
]
, using feasible GLS to improve the esti-

mation efficiency has a long history. On the one hand, several parametric models have been proposed to estimate conditional error
variance function σ2( · ). See Remark 5 below. On the other hand, Carroll (1982) and Robinson (1987) estimated σ2( · ) with kernel and
nearest neighbor estimator, respectively, and they showed their semiparametric GLS estimators are asymptotically equivalent to the
infeasible GLS estimator and thus efficient. Compared to existing parametric methods, our proposed method imposes monotonicity, a
feature implied by many parametric models, but it is nonparametric and does not rely on any specific parametric function form.1

Compared to existing nonparametric methods, our proposed method involves only some tuning to trim boundary observations which
does not require knowledge of the smoothness of the conditional variance and associated density functions. In the Monte Carlo
simulations, we show that our proposed method outperforms the above-mentioned nonparametric methods at almost every choice of
smoothing parameters, while it performs as well as parametric feasible GLS estimators with correctly specified conditional error
variance function.

The isotonic estimator can date back to the middle of the last century. Earlier work includes Ayer et al. (1955), Grenander (1956),
Rao (1969, 1970), and Barlow and Brunk (1972), among others. The isotonic estimator of a regression function can be formulated as a
least square estimation with monotonicity constraints. Suppose that the conditional expectation E[Y|X] = m(X) is monotone increasing,
for an iid random sample {Yi,Xi}

n
i=1, the isotonic estimator is the minimizer of the sum of squared errors, min

m∈M

∑n
i=1{Yi − m(Xi)}

2, where

M is the class of monotone increasing functions. The minimizer can be calculated with the pool adjacent violators algorithm (Barlow

and Brunk, 1972), or equivalently by solving the greatest convex minorant of the cumulative sum diagram
{
(0,0),

(
i,
∑i

j=1Yj

)
,i = 1,…,

n
}

, where the corresponding {Xi}
n
i=1 is an ordered sequence; see Groeneboom and Jongbloed (2014) for a comprehensive discussion of

different aspects of isotonic regression. Moreover, recent developments in the monotone single index model provide convenient and
flexible tools for combining monotonicity and multi-dimensional covariates. In a monotone single index model, the conditional mean
of Y is modeled as E[Y|X] = m(Xʹα), and the monotone link function m( · ) is solved with isotonic regression. Balabdaoui et al. (2019a)
studied the monotone single index model with the monotone least square method. Groeneboom and Hendrickx (2018), Balabdaoui
et al. (2019b), and Balabdaoui and Groeneboom (2021) developed a score-type approach for the monotone single index model. Their
approach can estimate the single index parameter α and the link function m( · ) at n− 1/2-rate and n− 1/3-rate, respectively. We employ
their approach for the estimation of the conditional variance function in the multivariate case. Recently, Babii and Kumar (2023)
applied the isotonic regression to their analysis of regression discontinuity designs. To this end, Babii and Kumar (2023) extended
existing results concerning the boundary properties of Grenander’s estimator (e.g., those from Woodroofe and Sun (1993), and Kulikov
and Lopuhaä (2006) to derive the asymptotic distribution of their trimmed isotonic regression discontinuity estimator. To regularize
the isotonic estimator in the weights of our proposed GLS estimator, we employ a similar trimming strategy while adapting the theory
of Babii and Kumar (2023) to the context of the conditional variance estimation. We contribute to this literature on isotonic regression
by showing that the isotonic estimates can be employed as first stage estimates to be plugged in for semiparametric objects.
Furthermore, we note that our isotonic estimator involves generated variables (i.e., OLS residuals), which make theoretical de-
velopments substantially different from the existing ones.

This paper is organized as follows. In Section 2, we consider the case where σ2( · ) is monotone in one covariate, present our GLS
estimator, and study its asymptotic properties. Section 3 extends our GLS approach to the case where σ2( · ) is specified by a monotone
single index function. Section 4 illustrates the proposed method by a simulation study and empirical example. Finally, Section 5
concludes.

2. Heteroskedasticity by univariate covariate

We first consider the case where monotone heteroskedasticity is caused by a single covariate. In particular, consider the following
multiple linear regression model

Y = α + βX + Zʹγ + U, E[U|X, Z] = 0, (2.1)

1 Monotone heteroskedasticity is often observed in economic literature. For example, Mincer (1974) argued that the variance of wages, when
conditioned on education, should increase with the level of education because individuals with higher education have a broader array of job choices.
Ruud (2000) cited this argument and provided empirical evidence in his Figure 18.1 based on the CPS data from March 1995. Another example can
be found in Example 8.6 of Wooldridge (2013, pp. 283–284), where he employed a univariateconditional variance function of log income to explain
the heteroskedasticity observed in net total financial wealth of people in the United States.
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where X ∈ X = [xL, xU] is a scalar covariate with compact support and Z is a vector of other covariates. In this section, we focus on the
case where heteroskedasticity is caused by the covariate X, i.e.,

E
[
U2
⃒
⃒X,Z

]
= E

[
U2
⃒
⃒X
]

≕ σ2(X), (2.2)

and σ2( · ) is a monotone increasing function. The case of monotone decreasing σ2( · ) is analyzed analogously (by setting U2 as − U2).
In the setup (2.2), we assume that the researcher knows which covariate should be included in σ2( · ) based on economic theory or other
prior information. This setup should be considered as a useful benchmark to provide a clear exposition of the main concept and the
asymptotic properties of the proposed monotone GLS estimator. Without the covariates Z, the above model covers a bivariate
regression model, and our approach is new even in such a fundamental setup. Furthermore, this setup covers the case where X con-
tained in (2.2) does not enter the regression model (2.1) by setting β = 0 (such a situation is considered in our empirical illustration in
Section 4.2). Extensions to relax the assumption in (2.2) will be discussed in Remark 1 and Section 3.

Let θ = (α, β, γʹ)́ be a vector of the slope parameters and W := (1,X, Zʹ)́ so that the model in (2.1) can be written as Y = Wʹθ+ U.
Based on an iid sample {Yi,Xi,Zi}ni=1, the infeasible GLS estimator for θ is written as

θ̂IGLS =

(
∑n

i=1
σ− 2
i WiWʹ

i

)− 1(
∑n

i=1
σ− 2
i WiYi

)

, (2.3)

where σ2
i = σ2(Xi). In order to make this estimator feasible, various approaches have been proposed in the literature.

In this paper, we are concerned with the situation where the researcher knows σ2( · ) is monotone in a particular regressor X but its
exact functional form is unspecified. In particular, by utilizing knowledge of the monotonicity of σ2( · ), we propose to estimate σ2( · ) by
the isotonic regression from the squared OLS residual on the regressor X. More precisely, let θ̂OLS =

( ∑n
i=1WiWʹ

i
)− 1( ∑n

i=1WiYi
)

be the
OLS estimator for (2.1), and Ûj = Yj − Wʹ

j θ̂OLS be its residual. Then we estimate σ2( · ) by

σ̂2
( · ) = isotonic regression function from

{
Û

2
j

}n

j=1
on
{
Xj
}n
j=1. (2.4)

Although this estimator is shown to be consistent for σ2( · ) in the interior of support [xL, xU] of X, it is generally biased at the lower
boundary xL, which may cause inconsistency of the resulting GLS estimator. Therefore, we propose to trim observations whose Xi’s are
too close to xL, and develop the following feasible GLS estimator

θ̂ =

(
∑n

i=1
I{Xi ≥ qn}σ̂ − 2

i WiWʹ
i

)− 1(
∑n

i=1
I{Xi ≥ qn}σ̂ − 2

i WiYi

)

, (2.5)

where I{ · } is the indicator function, and the trimming term qn is set as the
(
n− 1/3)-th sample quantile of {Xi}

n
i=1. The trimming term

I{Xi ≥ qn} is introduced because of the boundary bias of the isotonic estimator σ̂2
( · ) at the lower boundary xL, which will be

disproportionately amplified by the reciprocal structure of the GLS weights. On the other hand, the boundary bias of σ̂2
( · ) at the upper

boundary xU is asymptotically negligible for the limiting distribution of
̅̅̅
n

√
(θ̂ − θ).2

Let B (a,R) be a ball around a with radius R; for ε = U2 − σ2(X), define σ2
ε (x) = E

[
ε2
⃒
⃒X = x

]
. To study the asymptotic properties of

the proposed estimator θ̂, we impose the following assumptions.

Assumption.
A1: {Yi,Xi,Zi}ni=1 is an iid sample of (Y,X,Z). The support of (X, Z) is convex with non-empty interiors and is a subset of B (0,R)

for some R > 0. The support of X is a compact interval X = [xL,xU].
A2: σ2 : X →R is a monotone increasing function defined on X , and 0 < σ2(xL) < σ2(xU) < ∞. There exist positive constants a0

and M such that E
[
|U|2s

⃒
⃒
⃒X = x

]
≤ a0s!Ms− 2 for all integers s ≥ 2 and x ∈ X . For some positive constant δ, σ2( · ) is

continuously differentiable on (xL,xL + δ), and σ2
ε ( · ) is continuous on (xL,xL + δ).

A3: X has a continuous density function fX( · ) on X , and there exists a positive constant b such that b < fX(x) < ∞ for all x ∈ X .

Assumption A1 is standard. As pointed out in Balabdaoui et al. (2019b, p. 13), the compact support assumption can be relaxed when
X follows a sub-Gaussian distribution. In this case, the L2-convergence rate of the isotonic estimator will decrease fromOp

(
n− 1/3logn

)
to

Op

(
n− 1/3(logn)5/4

)
. Another impact of relaxing the distribution of X (and Z) to a sub-Gaussian one is on the concentration rate of

maxj
⃒
⃒
⃒Û

2
j − U2

j

⃒
⃒
⃒ (see Appendix A for more details). This rate, used in proving Lemma 1 and explaining the concentration of T1 and T2 in

Appendix A.2, will inflate by a factor of logn. However, even with this change, we still have maxj
⃒
⃒
⃒Û

2
j − U2

j

⃒
⃒
⃒ = op

(
n− 1/3), which is the

2 Alternatively, instead of trimming, we can construct a feasible GLS estimator by replacing a small σ̂ i with some pre-specified constant, as
implemented in Section 4.
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key to show that the impact of substituting infeasible U2 with estimated Û
2

on isotonic estimators is asymptotically negligible.
Considering that the convergence rates of these aforementioned terms are slowed down by a factor of logn at most, the validity of the
main results in this paper is preserved with sub-Gaussian covariates, but the analytical derivation would become more cumbersome.
For a clearer and more concise exposition, we maintain the compact support assumption on X. Assumption A2 is on the error term. The
monotonicity of σ2( · ) is the main assumption. The assumption on arbitrary higher moments, which rules out some fat-tailed distri-
butions, is commonly used to obtain some maximal inequalities (cf. van der Vaart and Wellner, 1996, Lemma 2.2.11, for a similar
assumption). Assumption A3 contains additional mild conditions on the density of X.

We first present asymptotic properties of the conditional error variance estimator σ̂2
( · ) in (2.4). Let q*

n be the
(
n− 1/3)-th population

quantile of X, DL
A[f ](a) be the left derivative of the greatest convex minorant of a function f( · ) evaluated at a ∈ A, and {W t} be the

standard Brownian motion. For c* := limn→∞n1/3( q*
n − xL

)
, Assumption A3 guarantees 0 < c* < ∞. Then we obtain the following

lemma for the behavior of σ̂2
( · ) around the boundary xL, which extends the result by Babii and Kumar (2023, Theorem 2.1(ii)) by

allowing the generated variable Û
2
i as a regressand for σ̂2

( · ).

Lemma 1. Under Assumptions A1–A3 and limx↓xL
dσ2(x)
dx > 0, it holds

n1/3{σ̂2
(qn) − σ2(qn)

}
→
d DL

[0,∞)

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

ε (xL)
c*fX(xL)

√

W t +

(

lim
x↓xL

dσ2(x)
dx

)

c*
(

1
2
t2 − t

)]

(1). (2.6)

Based on this lemma, the asymptotic distribution of our feasible GLS estimator θ̂ is obtained as follows.

Theorem 1. Under Assumptions A1–A3, it holds
̅̅̅
n

√
(θ̂ − θ)→d N

(
0,E
[
σ− 2(X)WWʹ]− 1

)
,

and the asymptotic variance matrix is consistently estimated by
(

1
n
∑n

i=1 σ̂ − 2
i WiWʹ

i

)− 1
. This theorem implies that our estimator θ̂ has the

same limiting distribution as the infeasible GLS estimator θ̂IGLS and thus achieves the semiparametric efficiency bound. This result
extends the scope of the isotonic regression method by showing that the isotonic estimates, possibly with generated variables, can be
employed as first stage estimates to be plugged in for semiparametric objects. We re-emphasize that θ̂ involves only a trimming term
qn, the

(
n− 1/3)-th sample quantile of {Xi}

n
i=1.3

Remark 1. (Extensions of (2.2)) The benchmark setup E
[
U2
⃒
⃒X,Z

]
= σ2(X) considered in this section can be extended in various

ways. First, an extension to a single index model (say, E
[
U2
⃒
⃒X,Z

]
= σ2(Xηx + Zʹηz)) will be discussed in the next section. Second, the

model in (2.1)–(2.2) can be extended to the case where the conditional variance varies with discrete covariates Z (or its subvector), say
E
[
U2
⃒
⃒X,Z = z

]
= σ2

z (X) with monotone functions σ2
z ( · ) for z ∈

{
z(1),…,z(D)

}
. In this case, we can implement the isotonic regression for

each group categorized by z, and construct the feasible GLS estimator in an analogous way as (2.5). Third, our approach may be
extended to the additive monotone heteroskedasticity, say E

[
U2
⃒
⃒X,Z

]
= σ2

x(X) + σ2
z (Z) with monotone functions σ2

x( · ) and σ2
z ( · ).

Although formal analysis is beyond the scope of this paper, the results in Mammen and Yu (2007) suggest that the isotonic estimators
for additive functions converge at similar rates as the univariate case, and we conjecture that a similar result as Theorem 1 can be
obtained. Finally, when the conditional error variance function is multiplicative, say E

[
U2
⃒
⃒X, Z

]
= σ2

x(X)σ2
z (Z), and the researcher

knows the form of σ2
z ( · ) (e.g., Z is household size and σ2

z (Z) = Z2), then our feasible GLS estimator can be applied to observations
reweighted by 1/σz(Z).

Remark 2. (Monotonicity Testing) Monotonicity is an assumption that can be tested. For observable random variables (Y,X), several
methods have been developed to test whether E[Y|X] is monotone increasing in X; see, e.g., Ghosal et al. (2000), Hall and Heckman
(2000), Dümbgen and Spokoiny (2001), Chetverikov (2019), and Hsu et al. (2019), among others. All these tests can be adapted for our

case, testing the monotonicity of σ2( · ) with generated
{
Û

2
j

}n

j=1
and observed

{
Xj
}n
j=1. Since Assumptions A1–A2 and θ̂OLS− θ =

Op
(
n− 1/2) imply Û

2
j − U2

j = Op
(
n− 1/2logn

)
uniformly over j = 1,…,n, the critical values of these tests can be adjusted accordingly to

maintain a proper asymptotic size.

3 Although our estimator θ̂ in (2.5) does not involve any tuning constant, the trimming term qn should be understood as the c ·
(
n− 1/3)-th sample

quantile of {Xi}
n
i=1, where the tuning constant is set as c = 1. Indeed Theorem 1 holds true with any c > 0. If we compare with other nonparametric

methods, smoothing parameters, such as bandwidths, series lengths, and neighbors, typically require two constants to implement. For example, for
the bandwidth parameter b = c1n− c2 , researchers need to choose c1 and c2. The constant c1, which is analogous to c above, can be any positive
number. However, they also need to choose a positive constant c2 whose upper bound typically depends on the (unknown) smoothness of underlying
functions.
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Remark 3. (Misspecification of E
[
U2
⃒
⃒X,Z

]
) We want to note that even if the assumption in (2.2) is violated (e.g., E

[
U2
⃒
⃒X,Z

]
varies

with Z or E
[
U2
⃒
⃒X,Z

]
= σ2(X) with non-monotone σ2( · )), our feasible GLS estimator θ̂ in (2.5) is still consistent for θ due to E[U|X,Z] =

0, and asymptotically normal at the
̅̅̅
n

√
-rate with the limiting distribution

̅̅̅
n

√
(θ̂ − θ)→d N

(
0,E
[
ρ(X)− 1WWʹ]− 1E

[
ρ(X)− 2E

[
U2
⃒
⃒X, Z

]
WWʹ]E

[
ρ(X)− 1WWʹ]− 1

)
,

where ρ( · ) = argminm∈M E
[{
U2 − m(X)

}2
]

for the class of monotone increasing functions M . Since σ̂2
( · ) can estimate ρ( · ), then the

asymptotic variance matrix can be consistently estimated by
(

1
n
∑n

i=1
σ̂ − 2

(Xi)WiWʹ
i

)− 1(
1
n
∑n

i=1
σ̂ − 4

(Xi)Û
2
i WiWʹ

i

)(
1
n
∑n

i=1
σ̂ − 2

(Xi)WiWʹ
i

)− 1

. (2.7)

This misspecification robust variance estimator is analogous to the one proposed by Cragg (1992) for the feasible GLS estimator with
parametrically specified models for the conditional error variance E

[
U2
⃒
⃒X,Z

]
.4 Remark 4. (Endogenous Regressor) The result of

Theorem 1 can also be extended to some linear instrumental variable (IV) regression model. For notational simplicity, consider the
following univariate IV regression:

Y = α + βX + U, E[U|Z] = 0,

where X is a scalar endogenous regressor and Z is a scalar IV, and we further assume E[X|Z] = η + γZ for some parameters (η,γ). This
linearity assumption on E[X|Z] is not essential, and may be relaxed by some nonparametric estimator of E[X|Z]. In this setup, the optimal
instrument for estimating (α, β)́ is given by (see, e.g. Newey, 1993)

E
[

∂(Y − α − βX)
∂(α, β)́

⃒
⃒
⃒
⃒Z
]

E
[
U2
⃒
⃒Z
]− 1

= −

(
1 0
η γ

)(
1
Z

)

v− 2(Z),

where v2( · ) = E
[
U2
⃒
⃒Z = ·

]
. Under the assumption of γ ∕= 0 (i.e., the IV is relevant), the optimal IV estimator is obtained by the method

of moments estimator of the following moment condition:

E
[(

1
Z

)

v− 2(Z)(Y − α − βX)
]

= 0. (2.8)

Under the monotonicity assumption of v2( · ), we can obtain the isotonic estimator v̂2
( · ) for v2( · ) by regressing the squared residuals

ê2
=
(
Y − α̃ − β̃X

)2
for an initial estimator

(
α̃, β̃
)

(e.g., the two-stage least squares estimator) on Z. The resulting estimator, v̂2
( · ),

should have the same properties as those of σ̂2
( · ) presented in Lemma 1, where qn is replaced with the

(
n− 1/3)-th sample quantile of

{Zi}ni=1. Based on this isotonic estimator, a feasible optimal IV estimator θ̂IV = (α̂IV, β̂IV )́ is given by

θ̂IV =

(
∑n

i=1
I{Zi ≥ qn}v̂

− 2
(Zi)
(

1
Zi

)

(1,Xi)

)− 1(
∑n

i=1
I{Zi ≥ qn}v̂

− 2
(Zi)
(

1
Zi

)

Yi

)

.

By applying the same arguments for Theorem 1, we can show that θ̂IV is asymptotically equivalent to the infeasible optimal IV esti-
mator based on (2.8) with known v2( · ).

3. Heteroskedasticity by multivariate covariates

We now consider the model

Y = α + Xʹβ + Zʹγ + U, E[U|X,Z] = 0, (3.1)

where X is a vector of covariates. This section focuses on the case where heteroskedasticity takes the form of a monotone single index
function of X with unknown parameters η0, i.e., E

[
U2|X, Z] = E

[
U2
⃒
⃒X
]
= σ2(Xʹη0) for a monotone increasing function σ2( · ). Single

index models are known to be more flexible than parametric models and achieve dimension reduction relative to nonparametric
models.

Remark 5. First, the monotone index model σ2(Xʹη0) covers various existing parametric models. Popular examples include σ2(X) =

4 Based on simulation studies, Cragg (1992) recommended to use his misspecification robust variance estimator even when the parametric form of
heteroskedasticity is correctly specified. Although a similar analysis is beyond the scope of this paper, we also recommend to employ the variance
estimator (2.7) in practice due to its consistency regardless of the assumption in (2.2).
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C(Xʹη0)
2− 2λ (Box and Hill, 1974), σ2(X) = Cexp(λ(Xʹη0)) (Bickel, 1978), σ2(X) = C

{
1 + λ(Xʹη0)

2} (Jobson and Fuller, 1980) for some
constants C > 0 and λ; interestingly, all these parametric functions are monotone increasing (or decreasing) in the index of X. Second,
although the setup E

[
U2
⃒
⃒X, Z

]
= σ2(Xʹη0) assumes that the researcher knows which (sub-)vector of covariates should be included in

σ2( · ), researchers do not have to select those covariates in the case where such prior information is unavailable. They can simply re-
define the model in (3.1) without covariates Z (or equivalently specify as E

[
U2
⃒
⃒X,Z

]
= σ2(Xʹη0 + Zʹηz0)). Our asymptotic theory below

applies even if some covariates are irrelevant for E
[
U2
⃒
⃒X,Z

]
.

For identification, η0 is normalized as ‖η0‖ = 1. Define

σ2
η (a) = E

[
σ2(Xʹη0)

⃒
⃒Xʹη = a

]
. (3.2)

We show in Lemma 4 that σ2( · ) and η0 can be consistently estimated by extending the method proposed in Balabdaoui et al. (2019b)
(BGH hereafter) and Balabdaoui and Groeneboom (2021) to allow generated variables. In particular, for a given η, define the isotonic

regression of
{
Û

2
i
}n

i=1 on
{
Xʹ
iη
}n
i=1 as

σ̂2
η = argmin

m∈M

1
n
∑n

i=1

{
Û

2
i − m

(
Xʹ
iη
)}2

, (3.3)

where M is the set of monotone increasing functions defined on R. Based on this, η̂ can be estimated by minimizing the square sum of a
score function. For example, the simple score estimator in the spirit of BGH and Balabdaoui and Groeneboom (2021) is given by

η̂ = argmin
η

⃦
⃦
⃦
⃦
⃦

1
n
∑n

i=1
Xi
{
Û

2
i − σ̂2

η
(
Xʹ
iη
)}
⃦
⃦
⃦
⃦
⃦

2

, (3.4)

where ‖ · ‖ is the Euclidean norm:
⃦
⃦
⃦a
⃦
⃦
⃦ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑k
j=1a2

j

√

for a = (a1,…, ak )́ ∈ Rk.

Letting σ̂2
i = σ̂2

η̂
(
Xʹ
i η̂
)

and W = (1,Xʹ,Zʹ)́ , we propose the following GLS estimator for θ = (α, βʹ, γʹ)́ :

θ̂ =

(
∑n

i=1
I
{
Xʹ
i η̂ ≥ qn

}
σ̂ − 2
i WiWʹ

i

)− 1(
∑n

i=1
I
{
Xʹ
i η̂ ≥ qn

}
σ̂ − 2
i WiYi

)

, (3.5)

where qn is the
(
n− 1/3)-th sample quantile of

{
Xʹ
i η̂
}n
i=1.

To avoid unnecessarily heavy notations, in the multivariate case, we redefine some notations, which have similar meanings to those
used in Section 2. Define ε = U2 − σ2(Xʹη0), σ2

ε ( · ) = E
[
ε2
⃒
⃒Xʹη0 = ·

]
, xL = infx∈X (xʹη0), and xU = supx∈X (x́ η0). Let fX( · ) be the density

function of the random variable Xʹη0. Let q*
n be the

(
n− 1/3)-th population quantile of Xʹη0, qn be the

(
n− 1/3)-th sample quantile of

{
Xʹ
i η̂
}n
i=1, c* = limn→∞n1/3( q*

n − xL
)
, and DL

A[f ](a) be the left derivative of the greatest convex minorant of function f( · ) evaluated at a ∈

A. Let dim(w) be the dimension of a vector w.

Assumption.
M1: {Yi,Xi,Zi}ni=1 is an iid sample of (Y,X,Z). The support of (X,Z), X × Z , is convex with non-empty interiors and is a subset of

B (0,R) for some R > 0.
M2: (i) There exists δ0 > 0 such that the function a ↦ σ2

η (a) defined in (3.2) is monotone increasing on Iη = {xʹη, x ∈ X } for each
η ∈ B (η0,δ0). (ii) 0 < infa∈Iη σ2

η (a) < supa∈Iη σ2
η (a) < ∞ for each η ∈ B (η0,δ0). (iii) There exist positive constants a0 and M

such that E
[
|U|2s

⃒
⃒
⃒X = x

]
≤ a0s!Ms− 2 for all integers s ≥ 2 and x ∈ X . (iv) σ2

η ( · ) is continuously differentiable on Iη for each

η ∈ B (η0,δ0). (v) σ2
ε ( · ) is continuous on (xL, xL + δ1) for some δ1 > 0.

M3: The random variable Xʹη0 has a density function fX( · ) that is continuous on Iη0 . There exists some real positive numbers b and
b, such that 0 < b < fX(a) < b < ∞ holds for all a ∈ Iη0 .

M4: For each η ∈ B (η0,δ0), the mapping a ↦ E[X|Xʹη = a] defined on Iη is bounded and has a finite total variation.
M5: Cov

[
Xʹ(η0 − η),  σ2(Xʹη0)

⃒
⃒Xʹη

]
∕= 0 almost surely for each η ∕= η0.

M6: B :=
∫
(x − E[X|xʹη0])(x − E[X|xʹη0])́

dσ2(a)
da

⃒
⃒
⃒
⃒
a=xʹη0

dP(x) has rank dim(η0) − 1.

Assumptions M1–M3 are analogs of Assumptions A1–A3, respectively. The main assumption is the monotonicity of σ2
η ( · ). As-

sumptions M4–M6 are additional regularity conditions for the monotone index model. By Assumption M1, we have − ∞ < xL < xU <

∞. Then similar to Lemma 1, we obtain the following lemma for the behavior of σ̂2
η̂ ( · ) around xL.

Lemma 2. Under Assumptions M1–M6 and lima↓xL
dσ2(a)
da > 0, it holds
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n1/3{σ̂2
η̂ (qn) − σ2(qn)

}
→
d DL

[0,∞)

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

ε (xL)
c*fX(xL)

√

W t +

(

lim
a↓xL

dσ2(a)
da

)

c*
(

1
2
t2 − t

)]

(1).

Based on this lemma, the asymptotic distribution of the GLS estimator θ̂ in (3.5) is obtained as follows.

Theorem 2. Under Assumptions M1–M6, it holds
̅̅̅
n

√
(θ̂ − θ)→d N

(
0,E
[
σ− 2(Xʹη0)WWʹ]− 1

)
,

and the asymptotic variance matrix is consistently estimated by
(

1
n
∑n

i=1 σ̂ − 2
i WiWʹ

i

)− 1
. Similar comments to Theorem 1 apply here. Our

estimator θ̂ is asymptotically equivalent to the infeasible GLS estimator θ̂IGLS. In terms of technical contribution, our theoretical
analysis generalizes existing ones in, e.g., Babii and Kumar (2023), BGH, and Balabdaoui and Groeneboom (2021) to accommodate
generated variables. Similar to Remark 3, even when the monotonicity assumption of σ2

η ( · ) is violated, θ̂ is still consistent for θ and
asymptotically normal at the

̅̅̅
n

√
-rate with certain robust asymptotic variance. Furthermore, endogenous regressors can be accom-

modated as in Remark 4.

Remark 6. We can suggest two informal robustness checks for the monotone index assumption in (3.2). One is to compute the
standard errors robust to possible misspecification obtained in the same manner as Remark 3 and compare them to those in Theorem 2.
This can serve as a robustness check for the monotone specification given variables of the conditional error variance functions. Another
is to report the results for the specification where all exogenous variables are included to σ2( · ) in addition to those for the chosen
specifications. A large difference between these results can be a sign of the misspecification of the chosen ones. See Section 4.2 for
illustration.

Remark 7. In this section, we employ the monotone single index structure to model the multivariate conditional variance function.
This strategy allows us to strike a balance between robustness and mitigating the curse of dimensionality. Indeed, the current spec-
ification can be extended to the multiple index model E

[
U2
⃒
⃒X = x

]
= x́0η0 +

∑M
i=1Gi

(
x́iηi
)
, for X =

(
Xʹ

0,X
ʹ
1…,Xʹ

M
)́

, where {Gi( · )}
M
i=1

are unknown monotone increasing functions. For the case of M = 1, this model simplifies to a monotone partially linear single index
model whose properties have been studied by Xu and Otsu (2020). We are optimistic that, under certain regularity conditions, similar
results as in this section can be obtained. To the best of our knowledge, we have not come across any works that discuss the multiple
monotone index model with M > 1 even for the conventional regression setup for E[Y|X = x]. A possible solution could be derived by
combining the existing literature on the monotone single index model (as cited in Section 1) with the literature on the monotone
additive model (for instance, Mammen and Yu, 2007). Another potential extension involves employing the nonparametric framework
of Fang et al. (2021) to model the multivariate conditional variance function. This framework is free of parametric structure, and it
requires the true conditional variance to be entirely monotone increasing in its arguments, i.e., σ2(x1, z1) ≤ σ2(x2, z2) if only if x1 ≤ x2
and z1 ≤ z2. Explorations of these extensions exceed the scope of this paper, and we leave them for future research.

4. Numerical illustrations

4.1. Simulation

We now investigate the finite sample properties of the proposed GLS estimator by a Monte Carlo experiment. We follow the
simulation design by Cragg (1983) and Newey (1993). The first data generating process, denoted by DGP1, is the heteroskedastic linear
model with a univariate covariate and normally distributed disturbance5:

Yi = β0 + β1Xi + ui, ui = σiεi, εi ∼ N(0, 1),

β0 = β1 = 1, log(Xi) ∼ N(0, 1), Xiandεiare independent,

σ2
i = .1 + .2Xi + .3X2

i . (4.1)

We consider three sample sizes, n = 50, 100, and 500. The number of replications is set to 1000.
In addition to the feasible GLS estimator with monotone heteroskedasticity (MGLS), we consider the ordinary least squares (OLS),

infeasible generalized least squares (GLS), feasible GLS (FGLS), and feasible GLS with nearest neighbor estimators (k-NN). GLS requires
knowledge of the conditional error variance function (4.1), including the values of the coefficients. In contrast, FGLS proceeds with the
known functional form, but the coefficients are estimated. The “k-NN automatic” chooses the number of neighbors by a cross-

5 Normal random variables are not compactly supported, and hence it violates Assumption A1. However, as discussed in the remark on
Assumption A1, this assumption can be relaxed.

Y. Arai et al. Journal of Econometrics 246 (2024) 105899 

7 



validation procedure suggested by Newey (1993). All the estimators except OLS are the weighted least squares estimators, and their
differences come from how the weights are calculated. Following Newey (1993), we calculate the weights for each method by taking a
ratio of the predicted squared residual to the estimated variance of the disturbance, censoring the result below 0.04.

Table 4.1 presents the simulation results for estimation. The first column shows the estimation methods, and the following two
columns show the root mean-squared error (RMSE) and mean absolute error (MAE) for DGP1 with n = 50. The results for GLS report
the levels of the RMSE and MAE, and those for others are their ratios relative to GLS. The next two columns give the corresponding
results with n = 100 and the last two columns with n = 500. Two rows for each estimator show the results for β0 and β1, respectively.
The inefficiency and inaccuracy of OLS are apparent. FGLS performs quite well, and this is natural when the conditional error variance
functions are correctly specified. The performance of k-NN varies with the choice of k and is in between OLS and FGLS. We observe that
the performance of MGLS is better than k-NN in every choice of smoothing parameters. The result of MGLS is comparable to that of
FGLS if not better. MGLS’s independence of a smoothing parameter is clearly desirable. We also note that MGLS performs well even for
n = 50.

The last four columns of Table 4.1 present the results for DGP2 with a homoskedastic error:

Yi = β0 + β1Xi + ui, ui ∼ N(0, 1),

β0 = β1 = 1, log(Xi) ∼ N(0, 1), Xianduiare independent.

σ2
i = .1 + .2Xi + .3X2

i .

For DGP2, all estimators work reasonably well although the performance of k-NN with k = 6 is worse than others.
Next, we consider the heteroskedastic linear models with multivariate covariates, denoted by DGP3:

Yi = β0 + β1X1i + β2X2i + ui, ui = σiεi, εi ∼ N(0, 1),

β0 = β1 = β2 = 1, log(X1i), log(X2i) ∼ N(0, 1), X1i, X2iandεiare independent,

σ2
i = .2(X1i + X2i)

2
. (4.2)

The conditional error variance function of DPG3 is of a monotone single index structure. Using the notation in (3.2), DGP3 corresponds
to the structure with σ2(a) = a2, Xʹ = (X1,X2), and η0 =

( ̅̅̅̅̅
.2

√
,
̅̅̅̅̅
.2

√ )́
. The left panel of Table 4.2 shows the results of DGP3 in the same

manner as Table 4.1. For each estimation method, two rows show the results for β0 and β1, and those for β2 are omitted to avoid
redundancy. k-NNs and MGLS perform better than FGLS, and this is in contrast to the performance of DGP1. In general, MGLS works
better than k-NNs except for a few cases.

To see the potential applicability of MGLS to a non-single index structure, we consider another heteroskedastic linear model
denoted by DGP4:

Yi = β0 + β1X1i + β2X2i + ui, ui = σiεi, εi ∼ N(0, 1),

Table 4.1
Simulation: Estimation with univariate covariate.

Estimator DGP1 DGP2

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

GLS (infeasible) 0.132 0.085 0.093 0.059 0.041 0.028 0.194 0.122 0.133 0.088 0.057 0.039
0.157 0.100 0.108 0.073 0.048 0.032 0.083 0.046 0.055 0.034 0.021 0.014

OLS 3.103 2.856 3.831 3.479 5.574 4.495 1.000 1.000 1.000 1.000 1.000 1.000
2.072 2.098 2.543 2.370 3.377 2.971 1.000 1.000 1.000 1.000 1.000 1.000

FGLS 1.279 1.210 1.245 1.233 1.598 1.152 1.032 1.041 1.026 1.033 1.024 1.067
1.427 1.268 1.406 1.280 1.271 1.242 1.090 1.092 1.075 1.036 1.088 1.090

k-NN (Automatic) 1.630 1.373 1.633 1.511 1.355 1.167 1.123 1.081 1.130 1.081 1.181 1.138
1.535 1.427 1.606 1.431 1.424 1.267 1.092 1.074 1.065 1.006 1.197 1.097

k-NN (k = 6) 1.554 1.361 1.525 1.498 1.474 1.417 1.274 1.243 1.253 1.155 1.359 1.276
1.466 1.421 1.472 1.462 1.454 1.459 1.178 1.143 1.177 1.114 1.350 1.344

k-NN (k = 15) 1.600 1.386 1.566 1.365 1.251 1.108 1.037 1.076 1.079 1.059 1.081 1.140
1.520 1.398 1.546 1.408 1.247 1.197 1.003 1.046 1.037 1.012 1.066 1.053

k-NN (k = 24) 1.781 1.568 1.685 1.457 1.291 1.160 1.011 1.039 1.039 0.980 1.044 1.098
1.630 1.560 1.673 1.471 1.312 1.246 1.002 1.026 1.015 0.994 1.038 1.025

MGLS 1.379 1.285 1.326 1.279 1.113 1.129 1.039 1.091 1.049 1.075 1.027 1.075
1.327 1.214 1.332 1.249 1.113 1.144 1.043 1.051 1.051 1.058 1.055 1.066

Note: “RMSE” and “MAE” stand for the root mean squared error and mean absolute error, respectively. The results for GLS report the levels of the
RMSE and MAE, and those for others are their ratios relative to GLS.
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β0 = β1 = β2 = 1, log(X1i), log(X2i) ∼ N(0, 1), X1i, X2iandεiare independent,

σ2
i = .1 + .2X̃i + .3X̃

2
i , log

(
X̃i

)
=
log(X1i) + log(X2i)

̅̅̅
2

√ . (4.3)

The right panel of Table 4.2 shows the results. The results for DGP 4 are overall similar to those of DGP3. An exception is FGLS, which
performs poorly for DGP3. MGLS works remarkably well for the heteroskedasticity of a non-single index structure.

Next, we turn to the simulation results on inference. Tables 4.3 and 4.4 show empirical coverages (EC) and average lengths (AL) for
the 95% confidence intervals under DGPs 1–4. Again we consider GLS, OLS, FGLS, k-NN, and MGLS. For OLS, three types of confidence
intervals are considered. They are based on the usual OLS standard error (OLS-U), the heteroskedasticity-robust standard error (OLS-
R), and the wild bootstrap standard error (OLS-boot). For MGLS, we also present the results for its robust version. We observe that the
empirical coverages are smaller than the nominal coverage 0.95 for all DGPs and all methods except GLS. It is natural that OLS-U
performs poorly since it is invalid except for DGP2. The performance of k-NN is worse than others for all DGPs in terms of empir-
ical coverage. OLS-R, OLS-boot, FGLS, and MGLS work similarly in terms of empirical coverage, however, we note that the average
length of OLS-R is much larger than those of FGLS and MGLS except for DGP2. While the empirical coverages of OLS-Boot are similar to
those of OLS-R, the average lengths of OLS-Boot are smaller than those of OLS-R but still larger than those of MGLS. MGLS works quite
well for all DGPs, especially for n = 500. The results of MGLS (Robust) are similar to those of MGLS especially when n = 100 and 500.
Finally, we note that the empirical coverages tend to be lower when n = 50 than when n = 100 and 500. Careful interpretation of
results is recommended when the sample size is small.

4.2. Empirical example

We illustrate how the proposed method in this paper can improve the precision of the traditional OLS approach. In doing so, we
revisit Acemoglu and Restrepo (2017) that investigate the relationship between an aging population and economic growth. After
Hansen (1939), a popular perspective is that countries undergoing faster aging suffer more economically partly because of excessive
savings by an aging population. In contrast to the perspective, Acemoglu and Restrepo (2017) find no evidence of a negative rela-
tionship between aging and GDP per capita after controlling for initial GDP per capita, initial demographic composition, and trends by
region.

Acemoglu and Restrepo (2017) estimated eight specifications for the regression of the change in (log) GDP per capita from 1990 to
2015 (denoted by GDP) on the population aging measured by the change in the ratio of the population above 50 to those between the
ages of 20 and 49 (denoted by Aging). The results are reproduced in Panel A of Table 4.5. Those in columns 1–5 are based on the sample
including 169 countries. Column 1 shows the result of the simple regression. Standard errors robust to heteroskedasticity are reported
in square brackets. Column 2 shows the result with an additional regressor, the initial log GDP per worker in 1990 (denoted by Initial
GDP). Column 3 in addition includes the initial demographic information, the ratio of the population above 50 to those between 20 and
49 in 1990 (denoted by Initial Ratio), and the population in 1990. Column 4 additionally uses dummies for seven regions, Latin
America, East Asia, South Asia, Africa, North Africa and Middle East, Eastern Europe and Central Asia, and Developed Countries.
Column 5 estimates the same specification as Column 4 with instruments of birthrates for the 1960, 1965, 1970, 1975, and 1980

Table 4.2
Simulation: Estimation with multivariate covariates.

Estimator DGP 3 DGP 4

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

GLS (infeasible) 0.162 0.103 0.110 0.071 0.045 0.028 0.165 0.108 0.115 0.076 0.049 0.033
0.163 0.107 0.109 0.072 0.048 0.033 0.108 0.067 0.071 0.046 0.029 0.020

OLS 3.401 3.589 4.255 4.168 6.650 6.695 3.069 2.653 3.792 2.980 4.897 4.186
1.942 1.950 2.317 2.260 3.051 2.610 2.318 2.170 2.914 2.338 3.809 3.198

FGLS 2.531 2.239 2.516 2.141 2.731 2.037 1.381 1.189 1.427 1.233 1.699 1.219
1.606 1.441 1.709 1.486 1.732 1.358 1.359 1.227 1.344 1.281 1.326 1.271

k-NN (Automatic) 1.952 1.925 2.108 1.709 1.786 1.537 1.868 1.638 1.778 1.488 1.709 1.390
1.546 1.429 1.680 1.489 1.516 1.318 1.766 1.771 1.865 1.763 2.009 1.626

k-NN (k = 6) 1.827 1.766 1.787 1.587 1.670 1.666 1.719 1.541 1.674 1.521 1.594 1.537
1.458 1.397 1.514 1.486 1.497 1.362 1.717 1.704 1.769 1.764 1.813 1.654

k-NN (k = 15) 1.914 1.957 1.850 1.669 1.490 1.385 1.769 1.611 1.669 1.491 1.373 1.246
1.468 1.401 1.511 1.428 1.313 1.248 1.712 1.727 1.769 1.639 1.588 1.517

k-NN (k = 24) 2.182 2.203 2.008 1.816 1.570 1.510 1.952 1.888 1.799 1.581 1.392 1.254
1.562 1.455 1.611 1.571 1.371 1.267 1.825 1.807 1.890 1.729 1.626 1.511

MGLS 2.144 1.977 1.993 1.659 1.667 1.481 1.839 1.549 1.647 1.422 1.320 1.251
1.486 1.467 1.477 1.401 1.238 1.186 1.670 1.533 1.604 1.451 1.448 1.360

Note: “RMSE” and “MAE” stand for the root mean squared error and mean absolute error, respectively. The results for GLS report the levels of the
RMSE and MAE, and those for others are their ratios relative to GLS.

Y. Arai et al. Journal of Econometrics 246 (2024) 105899 

9 



cohorts. Columns 6 to 8 report the result for OECD countries using specifications of Columns 1, 3, and 5, respectively. The number of
observations for the first five columns is 169, and that for the last three columns is 35. Seven out of eight OLS estimates indicate
positive relationships and five of them are statistically significant at the 5 percent level. Acemoglu and Restrepo (2017) discuss that

Table 4.3
Simulation: Inference with univariate covariate.

Estimator DGP 1 DGP 2

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

EC AL EC AL EC AL EC AL EC AL EC AL

GLS (infeasible) 0.956 0.528 0.955 0.370 0.956 0.164 0.939 0.749 0.947 0.516 0.955 0.224
0.946 0.627 0.962 0.441 0.960 0.196 0.948 0.316 0.952 0.207 0.970 0.085

OLS-U 0.798 1.008 0.742 0.740 0.636 0.349 0.939 0.749 0.947 0.516 0.955 0.224
0.492 0.409 0.421 0.290 0.348 0.131 0.948 0.316 0.952 0.207 0.970 0.085

OLS-R 0.766 0.962 0.805 0.862 0.884 0.648 0.933 0.733 0.941 0.507 0.949 0.222
0.730 0.761 0.772 0.689 0.880 0.488 0.874 0.272 0.881 0.185 0.935 0.081

OLS-Boot 0.740 0.885 0.845 0.517 0.907 0.356 0.917 0.718 0.947 0.516 0.955 0.224
0.690 0.681 0.856 0.527 0.894 0.345 0.846 0.270 0.952 0.207 0.970 0.085

FGLS 0.800 0.451 0.847 0.328 0.872 0.162 0.916 0.709 0.925 0.493 0.935 0.216
0.737 0.504 0.812 0.395 0.885 0.195 0.761 0.231 0.758 0.159 0.844 0.072

k-NN (Automatic) 0.708 0.410 0.659 0.258 0.701 0.102 0.902 0.711 0.884 0.483 0.883 0.205
0.576 0.351 0.574 0.251 0.650 0.115 0.927 0.306 0.917 0.197 0.881 0.079

k-NN (k = 6) 0.732 0.410 0.666 0.258 0.621 0.102 0.845 0.711 0.845 0.483 0.819 0.205
0.576 0.351 0.574 0.251 0.650 0.115 0.927 0.306 0.917 0.197 0.881 0.079

k-NN (k = 15) 0.735 0.418 0.704 0.266 0.717 0.105 0.929 0.725 0.907 0.492 0.914 0.210
0.582 0.353 0.592 0.258 0.677 0.118 0.944 0.310 0.931 0.200 0.919 0.081

k-NN (k = 24) 0.711 0.440 0.688 0.269 0.721 0.107 0.945 0.744 0.921 0.504 0.935 0.216
0.512 0.324 0.537 0.244 0.668 0.118 0.953 0.316 0.942 0.204 0.939 0.083

MGLS 0.779 0.499 0.812 0.363 0.905 0.165 0.885 0.640 0.907 0.468 0.937 0.219
0.725 0.523 0.744 0.392 0.888 0.188 0.951 0.333 0.968 0.222 0.972 0.092

MGLS (Robust) 0.762 0.483 0.791 0.354 0.903 0.163 0.879 0.635 0.902 0.463 0.933 0.216
0.725 0.465 0.744 0.359 0.888 0.181 0.951 0.258 0.968 0.177 0.972 0.079

Note: “EC” and “AL” stand for the empirical coverage probability and average length, respectively. “OLS-U”, “OLS-R”, and “OLS-Boot” use the normal
approximation with the usual OLS standard error, the heteroskedasticity robust standard error, and the percentile bootstrap interval, respectively.
“MGLS (Robust)” is based on the variance formula presented in Remark 2.

Table 4.4
Simulation: Inference with multivariate covariates.

Estimator DGP 3 DGP 4

n = 50 n = 100 n = 500 n = 50 n = 100 n = 500

EC AL EC AL EC AL EC AL EC AL EC AL

GLS (infeasible) 0.944 0.611 0.951 0.413 0.946 0.175 0.944 0.636 0.943 0.440 0.956 0.192
0.951 0.632 0.961 0.439 0.960 0.194 0.949 0.414 0.950 0.282 0.968 0.123

OLS-U 0.824 1.535 0.786 1.108 0.632 0.511 0.819 1.222 0.780 0.893 0.675 0.412
0.589 0.526 0.549 0.369 0.491 0.164 0.639 0.420 0.611 0.298 0.521 0.133

OLS-R 0.787 1.411 0.815 1.232 0.869 0.873 0.797 1.197 0.843 1.068 0.906 0.718
0.729 0.767 0.782 0.660 0.891 0.441 0.762 0.596 0.810 0.517 0.914 0.334

OLS-Boot 0.756 1.319 0.781 1.133 0.839 0.797 0.752 1.115 0.785 0.951 0.860 0.654
0.688 0.708 0.749 0.593 0.826 0.400 0.719 0.569 0.780 0.460 0.866 0.301

FGLS 0.831 1.069 0.845 0.759 0.897 0.336 0.801 0.596 0.823 0.424 0.834 0.191
0.658 0.517 0.722 0.395 0.826 0.198 0.797 0.382 0.862 0.262 0.855 0.112

k-NN (Automatic) 0.571 0.481 0.557 0.289 0.587 0.105 0.672 0.526 0.646 0.323 0.609 0.122
0.471 0.296 0.472 0.205 0.534 0.091 0.596 0.298 0.599 0.200 0.605 0.082

k-NN (k = 6) 0.597 0.481 0.574 0.289 0.549 0.105 0.670 0.526 0.639 0.323 0.571 0.122
0.471 0.296 0.472 0.205 0.534 0.091 0.596 0.298 0.599 0.200 0.605 0.082

k-NN (k = 15) 0.592 0.504 0.590 0.299 0.639 0.108 0.690 0.551 0.675 0.338 0.689 0.129
0.491 0.301 0.484 0.212 0.570 0.096 0.607 0.309 0.629 0.210 0.668 0.088

k-NN (k = 24) 0.582 0.557 0.561 0.313 0.618 0.111 0.681 0.590 0.664 0.347 0.702 0.132
0.459 0.287 0.450 0.204 0.562 0.096 0.598 0.297 0.608 0.207 0.662 0.091

MGLS 0.803 0.956 0.863 0.623 0.938 0.248 0.801 0.805 0.844 0.526 0.902 0.216
0.687 0.524 0.756 0.401 0.897 0.198 0.707 0.404 0.776 0.305 0.908 0.154

MGLS (Robust) 0.755 0.855 0.833 0.573 0.920 0.234 0.762 0.750 0.833 0.511 0.902 0.219
0.687 0.548 0.756 0.415 0.897 0.199 0.707 0.422 0.776 0.308 0.908 0.148

Note: “EC” and “AL” stand for the empirical coverage probability and average length, respectively. “OLS-U”, “OLS-R”, and “OLS-Boot” use the normal
approximation with the usual OLS standard error, the heteroskedasticity robust standard error, and the percentile bootstrap interval, respectively.
“MGLS (Robust)” is based on the variance formula presented in Remark 2.
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these findings can be explained by the adoption of automation technologies based on a theoretical model.
We estimate the same specifications by MGLS proposed in this paper. Acemoglu and Restrepo (2017) show that the negative effect

of aging can be mitigated or reversed by adopting new automation technologies given abundant capital. This also implies that the
effect of aging can be negative without sufficient capital. Hence it would be reasonable to consider Aging as a source of hetero-
skedasticity. The upper panel of Fig. 4.1 shows the relationship between the residual from the simple regression of column 1 in Panel A
and Aging. Heteroskedasticity due to Aging is not easily confirmed visually. We consider Initial Ratio as another source of hetero-
skedasticity since the low ratio of old to young in 1990 is likely correlated with more aging in 2015, leading to larger variability in GDP
per capita by the same reasoning discussed above. The lower panel of Fig. 4.1 presents the relationship between the residual from the
simple regression of column 1 in Panel A and Initial Ratio, and we see that the variability decreases with the growing ratio.

Panels B, C, and D of Table 4.5 show the results of MGLS. Panels B and C present the results for cases where the conditional error
variance functions depend on Aging and Initial Ratio, respectively. Panel D reports the results where the conditional error variance
functions depend on all exogenous regressors except the regional dummies. Standard errors based on Theorems 1–2 and their anal-
ogous versions for IV estimators are reported in parentheses, while robust standard errors are reported in square brackets. First, we

Fig. 4.1. Plots for residual and aging (upper) and residual and ratio of old to young workers in 1990 (lower).
Note: For both panels, the residuals are obtained from the regression of the change in GDP per capita from 1990 to 2015 (GDP) on the population
aging measured by the ratio of the population above 50 to those between the ages of 20 and 49 (Aging). For the upper panel, the variable on the
X-axis represents the change in the ratio of old to young workers from 1990 to 2015. For the lower panel, it represents the ratio of old to young
workers in 1990.

Y. Arai et al. Journal of Econometrics 246 (2024) 105899 

11 



observe reductions in standard errors for almost all MGLS estimates relative to OLS. The differences stand out when n = 169. Second,
the two standard errors are similar for the MGLS estimates. These are the supporting evidence for the monotone specification of the
conditional error variance function for the MGLS method with exogenous regressors and also the IV method. Third, the results given in
Columns 2, 3, and 4 are stable, while the results of IV estimates and OECD countries contain a lot of variations. Those variations can be
due to non-monotone conditional error variance functions and/or small sample sizes, and further investigations will be required.
Overall, the standard errors of MGLS tend to be smaller or no larger than those of OLS, which demonstrates the increased precision of
MGLS.

5. Conclusion

This paper proposes a feasible GLS estimator under nonparametric monotonicity constraints on the conditional variance function.
In particular, we employ the isotonic regression approach to estimate the conditional variance function, and study the asymptotic
properties of the resulting feasible GLS estimator. Our GLS estimator is asymptotically as efficient as the infeasible GLS estimator with
knowledge of the conditional error variance, and involves only some tuning to trim boundary observations, not only for point esti-
mation but also for interval estimation or hypothesis testing. Simulation and an empirical examples illustrate usefulness of the

Table 4.5
Effects of aging on GDP by OLS and MGLS.

Specification Sample of all countries (n = 169) OECD countries (n = 35)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: OLS        
Aging 0.335 1.036 1.162 0.773 1.703 − 0.262 0.042 1.186

(0.210) (0.257)*** (0.276)*** (0.322)** (0.411)*** (0.352) (0.346) (0.458)***
Initial GDP  − 0.153 − 0.138 − 0.156 − 0.190  − 0.205 − 0.260

 (0.039)*** (0.042)*** (0.046)*** (0.045)***  (0.072)*** (0.092)***

Panel B: MGLS (covariate of σ2( · ) =

Aging)
       

Aging 0.387 1.098 1.191 0.751 0.324 − 0.391 − 0.029 − 0.456
(0.189)** (0.187)*** (0.205)*** (0.267)*** (0.568) (0.247) (0.284) (0.436)
[0.150]*** [0.179]*** [0.198]*** [0.310]** [0.556] [0.190]** [0.340] [0.456]

Initial GDP  − 0.164 − 0.155 − 0.168 − 0.075  − 0.190 − 0.287
 (0.027)*** (0.029)*** (0.030)*** (0.040)*  (0.069)*** (0.114)**
 [0.031]*** [0.032]*** [0.029]*** [0.045]*  [0.069]*** [0.139]**

Panel C: MGLS (covariate of σ2( · ) =

Initial Ratio)
       

Aging 0.065 0.771 0.894 0.574 0.497 − 0.501 − 0.344 − 0.337
(0.196) (0.223)*** (0.231)*** (0.235)** (0.401) (0.270)* (0.219) (0.462)
[0.196] [0.249]*** [0.262]*** [0.272]** [0.421] [0.231]** [0.213] [0.518]

Initial GDP  − 0.164 − 0.141 − 0.159 − 0.079  − 0.148 − 0.329
 (0.031)*** (0.035)*** (0.041)*** (0.040)***  (0.056)*** (0.118)***
 [0.035]*** [0.037]*** [0.046]*** [0.050]**  [0.065]** [0.131]***

Panel D: MGLS (covariates of σ2( · ) = All)        
Aging 0.285 1.064 1.188 0.810 0.455 − 0.391 0.062 − 0.434

(0.221) (0.265)*** (0.281)*** (0.289)*** (0.464) (0.247) (0.274) (0.436)
[0.206] [0.249]*** [0.271]*** [0.323]** [0.418] [0.190]** [0.340] [0.480]

Initial GDP  − 0.152 − 0.136 − 0.146 − 0.069  − 0.203 − 0.292
 (0.030)*** (0.033)*** (0.041)*** (0.043)  (0.072)*** (0.119)**
 [0.033]*** [0.036]*** [0.044]*** [0.046]  [0.072]*** [0.139]**

Note: For all specifications from (1) to (8), GDP is the dependent variable. Column 1 shows the result of the simple regression of GDP on Aging.
Column 2 shows the result with an additional regressor, the initial log GDP per worker in 1990. Column 3, in addition, includes the initial de-
mographic information, the ratio of the population above 50 to those between 20 and 49 in 1990 (denoted by Initial Ratio), and the population in
1990. Column 4 additionally uses dummies for seven regions, Latin America, East Asia, South Asia, Africa, North Africa and Middle East, Eastern
Europe and Central Asia, and Developed Countries. Columns (6), (7) and (8) report the result for OECD countries using specifications (1), (3) and (5),
respectively. Panel A reproduces the results by Acemoglu and Restrepo (2017). For Panel A, heteroskedasticity robust standard errors are presented in
parentheses. Panels B, C, and D present the results by MGLS. Panels B and C show the results where the conditional error variance functions depend on
Aging and Initial Ratio, respectively. Panel D reports the results where the conditional error variance functions depend on all exogenous variables
except the regional dummies. For Columns (1)–(4) and (6)–(7) of Panels B and C, standard errors based on the formula in Theorem 1 are presented in
parentheses, while those based on the formula in Remark 3 are presented in square brackets. For Columns (1)–(4) and (6)–(7) of Panel D, standard
errors based on the formula in Theorem 2 are presented in parentheses, while those based on the formula analogous to Remark 3 are presented in
square brackets. For Columns (5) and (8) of Panels B, C, and D, standard errors are based on the formulae analogous to Remark 3.

* significant at 10%;
** significant at 5%;
*** significant at 1%.
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proposed method. As future research, it is interesting to develop a formal monotonicity test for the conditional error variance function,
and to extend the present analysis for the case of multivariate covariates to accommodate further monotonicity-type constraints.

Appendix A. Proof of lemma and theorem in Section 2

Notation.In this section, we use the following notation. For a function f( · ), we let ‖f‖∞ = supx∈X |f(x)| be the sup-norm and

‖f‖2,P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫
|f(x)|2dP

√

be the L2(P) norm; given there is no confusion in the context, we use the same set of notations for a vector a =

(a1,…, ak )́ : we let ‖a‖∞ = maxj∈{1,…,k}|ak| be the sup-norm and
⃦
⃦
⃦a
⃦
⃦
⃦ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑k
j=1a2

j

√

be the Euclidean norm. DL
A[f ](a) be the left derivative

of the greatest convex minorant of a function f evaluated at a ∈ A, Pn be the empirical measure of {Yi,Xi,Zi}ni=1, Gn be the empirical
process, i.e., Gnf = 1̅ ̅

n
√
∑n

i=1{f(Xi) − E[f(Xi)]}, ‖Gn‖F = supf∈F |Gnf |, and IA(x) = I{x ∈ A}. Let τ0(x) = σ2(x), τ0́(xL) be the right

derivative of τ0 at xL, τ̂(x) = σ̂2
(x), W be the support ofW := (1,X, Zʹ)́ , F(x) be the distribution function of X, Fn(x) = 1

n
∑n

i=1I{Xi ≤ x},

and Mn(x) = 1
n
∑n

i=1 Û
2
i I{Xi ≤ x}. For a,b ∈ R, let a ∧ b denote min{a,b}, and a≲b denote that there exists a positive constant C such that

a ≤ C · b. Let dim(w) be the dimension of a vector w.

A.1. Proof of Lemma 1

Since Ûj = Yj − Wʹ
j θ̂OLS is the OLS residual, Assumptions A1–A2 and θ̂OLS − θ = Op

(
n− 1/2) imply Û

2
j − U2

j = Op
(
n− 1/2logn

)
=

op
(
n− 1/3) uniformly over j = 1,…,n. To see this, decompose

Û
2
j − U2

j =
(
Yj − Wʹ

j θ̂OLS

)2
−
(
Yj − Wʹ

jθ
)2

= Wʹ
j(θ̂OLS + θ) ·Wʹ

j(θ̂OLS − θ) − 2Wʹ
jθ ·W

ʹ
j(θ̂OLS − θ) − 2UjWʹ

j(θ̂OLS − θ)
≕ Ij + IIj + IIIj.

For Ij, note that

Ij =
[
Wʹ

j(θ̂OLS − θ)
]2

+ 2Wʹ
jθ ·W

ʹ
j(θ̂OLS − θ)

≤
⃦
⃦Wj

⃦
⃦2
‖θ̂OLS − θ‖2

+ 2
⃦
⃦
⃦Wj

⃦
⃦
⃦ ·

⃦
⃦
⃦θ
⃦
⃦
⃦ ·

⃦
⃦
⃦Wj

⃦
⃦
⃦ ·

⃦
⃦
⃦θ̂OLS − θ

⃦
⃦
⃦

≤ R2‖θ̂OLS − θ‖2
+ 2R2

⃦
⃦
⃦θ
⃦
⃦
⃦ ·

⃦
⃦
⃦θ̂OLS − θ

⃦
⃦
⃦ = Op

(
n− 1/2),

(A.1)

where R is the constant defined in Assumption A1. The first inequality follows from the Cauchy–Schwarz inequality, the second
inequality follows from

⃦
⃦Wj

⃦
⃦ ≤ R (by Assumption A1), and the last equality follows from θ̂OLS − θ =Op

(
n− 1/2). Note that in the second

inequality, the upper bound no longer depends on the index j, so we have maxj
⃒
⃒Ij
⃒
⃒ = Op

(
n− 1/2). For IIj, using the same reasoning as for

the first inequality in (A.1), we have maxj
⃒
⃒IIj
⃒
⃒ = Op

(
n− 1/2). Note that here we only consider the second term following the first

inequality of (A.1). For IIIj, the same argument as above yields maxj
⃒
⃒
⃒Wʹ

j(θ̂OLS − θ)
⃒
⃒
⃒ = Op

(
n− 1/2). Furthermore, by Assumption A2 and a

similar argument after equation (7.11) on p.3297 of Balabdaoui et al. (2019a) (BDJ hereafter), we have max1≤j≤n

⃒
⃒
⃒U2

j

⃒
⃒
⃒ = Op(logn). By

the fact that max1≤j≤n
⃒
⃒Uj
⃒
⃒ ≤ max1≤j≤n

⃒
⃒
⃒U2

j — if max1≤j≤n
⃒
⃒Uj
⃒
⃒ ≥ 1, we have

max
1≤j≤n

⃒
⃒Uj
⃒
⃒ = Op(logn). (A.2)

In the case ofmax1≤j≤n
⃒
⃒Uj
⃒
⃒ < 1,max1≤j≤n

⃒
⃒Uj
⃒
⃒ = Op(logn) holds trivially. Combining (A.2) andmaxj

⃒
⃒
⃒Wʹ

j(θ̂OLS − θ)
⃒
⃒
⃒ =Op

(
n− 1/2), we have

maxj
⃒
⃒IIIj
⃒
⃒ = Op

(
n− 1/2logn

)
. Consequently, we have

max
j

⃒
⃒
⃒Û

2
j − U2

j

⃒
⃒
⃒ ≤ max

j

⃒
⃒Ij
⃒
⃒+max

j

⃒
⃒IIj
⃒
⃒+max

j

⃒
⃒IIIj
⃒
⃒

= Op
(
n− 1/2logn

)
= op

(
n− 1/3).

(A.3)

Furthermore, Assumption A3 guarantees q*
n − xL = O

(
n− 1/3

)
(by an expansion of q*

n = F− 1
(
n− 1/3

)
for the quantile function F− 1( · ) of

X), and we can define c* = limn→∞n1/3
(
q*
n − xL

)
=

dF− 1(q)
dq

⃒
⃒
⃒
⃒
q↓0

∈ (0,∞).

Now, we analyze n1/3{τ̂
(
q*
n
)
− τ0(xL)

}
. The term n1/3{τ̂(qn) − τ0(qn)} will be addressed in the final step of this subsection. Pick any

m > 0. Let

Zn1(t) = n2/3[{n− 1/3m+ τ0(xL)
}
Fn
(
xL + t

(
q*
n − xL

))
− Mn

(
xL + t

(
q*
n − xL

))]
.
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Observe that

P
(
n1/3{τ̂

(
q*
n
)
− τ0(xL)

}
≤ m

)
= P

(

arg max
s∈[xL ,xU ]

[{
n− 1/3m+ τ0(xL)

}
Fn(s) − Mn(s)

]
≥ q*

n

)

= P
(

arg max
t∈[0,(xU − xL)/(q*

n − xL)]
n− 2/3Zn1(t) ≥ 1

)

,

(A.4)

where the first equality follows from the switch relation (see a review by (Groeneboom and Jongbloed, 2014)), and the second equality
follows from a change of variables s = xL + t

(
q*
n − xL

)
and its implication, s ≥ q*

n ⇔ t ≥ 1. Let Û(y,w) = y − wʹθ̂OLS and

gn,t(y,w) = n1/6{τ0(xL) − Û(y,w)2}
I[xL ,xL+t(q*

n − xL)]
(x).

We decompose

Zn1(t) =
̅̅̅
n

√
(Pn − P)gn,t + n2/3E

[{
τ0(xL) − Û(Y,W)

2}
I[xL ,xL+t(q*

n − xL)]
(X)
]

+ n1/3m
{
Fn
(
xL + t

(
q*
n − xL

))
− F
(
xL + t

(
q*
n − xL

))}
+ n1/3mF

(
xL + t

(
q*
n − xL

))

≕ Zan1(t) + Zbn1(t) + Zcn1(t) + Zdn1(t).

Analysis of Zan1(t). We verify the conditions of van der Vaart (2000, Theorem 19.28). Define the class of random functions
(depending on θ̂OLS):

G n1 =
{
gn,t(y,w) = n1/6( τ0(xL) − Û(y,w)2)

I[xL ,xL+t(q*
n − xL)]

(x) : t ∈ [0,K]
}
,

for K ∈ (0,∞), where n in the subscript indicates the dependence on both the scaling parameter n1/6 and θ̂OLS. By van der Vaart (2000,
Example 19.6) we know that for a bracket size ϵ, G n1 has the entropy with bracketing of order log(1/ϵ). Thus, G n1 satisfies the entropy
condition for van der Vaart (2000, Theorem 19.28).

For each t, s ∈ [0,K], note that

Cov
(
gn,t , gn,s

)
= n1/3E

[{
Û(Y,W)

2
− τ0(xL)

}2
I[xL ,xL+(t∧s)(q*

n − xL)]
(X)
]
+ op(1)

= n1/3E
[{
U2 − τ0(xL)

}2
I[xL ,xL+(t∧s)(q*

n − xL)]
(X)
]
+ op(1)

= n1/3E
[[

ε2 + {τ0(X) − τ0(xL)}2]
I[xL ,xL+(t∧s)(q*

n − xL)]
(X)
]
+ op(1)

= n1/3
∫ xL+(t∧s)(q*

n − xL)

xL

[
σ2

ε (x) + {τ0(x) − τ0(xL)}2]fX(x)dx+ op(1)

=
[
σ2

ε (ξn) + {τ0(ξn) − τ0(xL)}2]fX(ξn)c*(t ∧ s) + op(1)
= σ2

ε (xL)fX(xL)c
*(t ∧ s) + op(1),

(A.5)

for ξn ∈
(
xL,xL + (t ∧ s)q*

n
)
. The first equality follows from q*

n − xL =O
(
n− 1/3). In the second equality, we replace the estimated Û

2
with

the unobservable U2. By (A.3), the discrepancy between Û
2

and U2 converges more rapidly than n− 1/3, and the factor

I[xL ,xL+(t∧s)(q*
n − xL)](X) further refines this rate. Consequently, under Assumptions A1 and A2, the impact of substituting Û

2
with U2 in the

second line is op(1). The third equality follows from the definition ε = U2 − τ0(X) and E[ε|X] = 0, the fourth equality follows from the
law of iterated expectations, the fifth equality follows from a Taylor expansion, and the last equality follows from c* = limn→∞n1/3( q*

n −

xL
)

and the continuity of σ2
ε ( · ) and τ0( · ) at xL from right. Similarly, we have Var

(
gn,t
)

= σ2
ε (xL)fX(xL)c*t+ op(1).

We next consider the envelop function of the class G n1, that is

Gn1(y,w) = n1/6
⃒
⃒τ0(xL) − Û(y,w)2⃒⃒ · I[xL ,xL+K(q*

n − xL)]
(x).

We can see that Gn1 is square integrable since similar arguments to (A.5) yield

E
[
G2
n1(Y,W)

]
= n1/3E

[⃒
⃒τ0(xL) − Û(Y,W)

2⃒⃒ · I[xL ,xL+K(q*
n − xL)]

(X)
]

= n1/3E
[⃒
⃒τ0(xL) − U2

⃒
⃒ · I[xL ,xL+K(q*

n − xL)]
(X)
]
+ op(1)

= n1/3E
[[

ε2 + {τ0(X) − τ0(xL)}2]
· I[xL ,xL+K(q*

n − xL)]
(X)
]
+ op(1)

= n1/3
∫ xL+K(q*

n − xL)

xL

[
σ2

ε (x) + {τ0(x) − τ0(xL)}2]fX(x)dx+ op(1)

= Op(1),

(A.6)

and thus the Lindeberg condition can be verified by Assumption A2: for any ζ > 0 and some δ > 0,
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E
[
G2
n1I
{
Gn1 > ζ

̅̅̅
n

√ }]
≤
n(2+δ)1/6

ζδnδ/2
E
[⃒
⃒τ0(xL) − Û(Y,W)

2⃒⃒2+δ
· I[xL ,xL+K(q*

n − xL)]
(X)
]

=
n(2+δ)1/6

ζδnδ/2
E
[⃒
⃒τ0(xL) − U2

⃒
⃒2+δ

· I[xL ,xL+K(q*
n − xL)]

(X)
]
+ op(1)

= O
(
n− δ/3)+ op(1) = op(1),

(A.7)

where the inequality follows from the same arguments that are used in the proof of Markov’s inequality, the first equality follows from
θ̂OLS − θ = Op

(
n− 1/2

)
and Assumptions A1–A2, and the second equality follows from a similar argument to (A.6).

Furthermore, as δn→0, we obtain

sup
|t− s|≤δn

E
⃒
⃒gn,t − gn,s

⃒
⃒2 = n1/3 sup

|t− s|≤δn
E
[{
Û(Y,W)

2
− τ0(xL)

}2
I[xL ,xL+|t− s|q*

n]
(X)
]

= n1/3 sup
|t− s|≤δn

E
[[

ε2 + {τ0(X) − τ0(xL)}2]
· I[xL ,xL+|t− s|q*

n]
(X)
]
+ op(δn)

= Op(δn) = op(1).

(A.8)

By (A.5)–(A.8), we can apply van der Vaart (2000, Theorem 19.28), which implies for each K ∈ (0,∞),

Zan1(t)→
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
ε (xL)fX(xL)c*

√

W tinl∞[0,K]. (A.9)

Analysis of Zbn1(t). Observe that

Zbn1(t) = n2/3E
[{

τ0(xL) − U2}I[xL ,xL+t(q*
n − xL)]

(X)
]
+ n2/3E

[(
U2 − Û(Y,W)

2)
I[xL ,xL+t(q*

n − xL)]
(X)
]

= n2/3
∫ xL+t(q*

n − xL)

xL

{
τ0(xL) − τ0

(
F− 1(F(x))

)}
dF(x) + op(1)

= n2/3
∫ F(xL+t(q*

n − xL))

F(xL)

{
τ0(xL) − τ0

(
F− 1(v)

)}
dv+ op(1)

= − n2/3
∫ F(xL+t(q*

n − xL))

F(xL)
τʹ

0(xL)
{
F− 1(v) − F− 1(F(xL))

}
dv+ op(1)

= − n2/3
∫ F(xL+t(q*

n − xL))

F(xL)
τʹ

0(xL)
v − F(xL)
fX(xL)

dv+ op(1)

= − n2/3τʹ
0(xL)

{
F
(
xL + t

(
q*
n − xL

))
− F(xL)

}2

2fX(xL)
+ op(1)

= − τʹ
0(xL)

t2(c*)
2

2
fX(xL) + op(1) (A.10)

holds uniformly over t ∈ [0,K], where the second equality follows from E
[{
U2 − Û(Y,W)

2}
· I[xL ,xL+t(q*

n − xL)](X)
]
= op

(
n− 2/3), the third

equality follows from a change of variables v = F(x), the fourth equality follows from a Taylor expansion, the fifth equality follows
from F− 1(v) − xL = 1

fX(xL) (v − F(xL))+ o(v − F(xL)), the sixth equality follows from evaluating the integral, and the last equality follows

from a Taylor expansion and c* = limn→∞n1/3( q*
n − xL

)
.

Analysis of Zcn1(t). By Kim and Pollard (1990, Maximal inequality 3.1),

E

[

sup
t∈[0,K]

⃒
⃒Fn
(
xL + t

(
q*
n − xL

))
− F
(
xL + t

(
q*
n − xL

))⃒
⃒

]

≤ n− 1/2J
̅̅̅̅̅̅̅̅̅

PG2
n

√

holds for some constant J ∈ (0,∞). Here Gn is the envelope of the set of indicator functions, thus PG2
n ≤ 1. As a result,

Zcn1(t) ≤ n1/3n− 1/2mJ
̅̅̅̅̅̅̅̅̅

PG2
n

√

= o(1), (A.11)

uniformly over t ∈ [0,K].
Analysis of Zdn1(t). A Taylor expansion yields

Zdn1(t) = n1/3mF
(
xL + t

(
q*
n − xL

))
= m · t · fX(xL)c* + o(1), (A.12)

uniformly over t ∈ [0,K], for every K < ∞.
Combining (A.9)–(A.12), it holds that for each 0 < K < ∞,

Zn1(t)→
d Z1(t) :=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
ε (xL)fX(xL)c*

√

W t − τʹ
0(xL)

t2(c*)
2

2
fX(xL) +m · t · fX(xL)c*inl∞[0,K]. (A.13)

We now verify the conditions of the argmax continuous mapping theorem (Kim and Pollard, 1990). Note that for each t ∕= s,
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Var(Z1(s) − Z1(t)) = σ2
ε (xL)fX(xL)c

*|t − s| ∕= 0.

By Kim and Pollard (1990), the process t→Z1(t) achieves its maximum a.s. at a unique point. Consider extended versions of Zn1 and Z1

to the real line:

Z̃n1(t) =
{
Zn1(t), t ≥ 0
t t < 0, Z̃1(t) =

{
Z1(t), t ≥ 0
t t < 0.

It holds Z̃n1(t)→
d Z̃1(t), and the similar argument to Lemma SM.2.1 (ii) in Babii and Kumar (2023) yields that the maximum of Z̃n1(t) is

uniformly tight. Therefore, by Kim and Pollard (1990, Theorem 2.7),

P
(
n1/3{τ̂

(
q*
n
)
− τ0(xL)

}
≤ m

)
→P
([

argmax
t≥0

Z1(t)
]

≥ 1
)

= P

([

argmax
t≥0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
ε (xL)

c*fX(xL)

√

W t − τʹ
0(xL)

t2c*

2
+mt

]

≥ 1

)

= P

([

DL
[0,∞)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
ε (xL)

c*fX(xL)

√

W t + τʹ
0(xL)

t2c*

2

)

(1)

]

≤ m

)

,

where the second equality follows from the switch relation and symmetry of the process W t. Thus, we have

n1/3{τ̂
(
q*
n
)
− τ0(xL)

}
→
d DL

[0,∞)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

ε (xL)
c*fX(xL)

√

W t + τʹ
0(xL)

t2c*

2

)

(1), (A.14)

which also implies

n1/3{τ̂
(
q*
n
)
− τ0

(
q*
n
)}

→

d
DL

[0,∞)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
ε (xL)

c*fX(xL)

√

W t + τʹ
0(xL)

t2c*

2

)

(1) − lim
n→∞

n1/3{τ0
(
q*
n
)
− τ0(xL)

}

∼
dDL

[0,∞)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
ε (xL)

c*fX(xL)

√

W t + τʹ
0(xL)

t2c*

2
− τʹ

0(xL)c
*t

)

(1), (A.15)

where the distribution relation follows from the fact that the DL
[0,∞) is a linear operator for a linear function of t.

Finally, we analyze n1/3{τ̂(qn) − τ0(qn)}. Recall qn is the
(
n− 1/3)-th sample quantile of X. Assumption A3 guarantees qn − q*

n =

Op
(
n− 1/2) = op

(
n− 1/3), which also implies plimn→∞n1/3(qn − xL) = limn→∞n1/3( q*

n − xL
)
= c*. Thus, the same argument for (A.14) can

be applied to show that the result in (A.14) holds true even if we replace q*
n with qn. Therefore, the conclusion follows.

A.2. Proof of Theorem 1

By the definitions of the estimators, it holds that

̅̅̅
n

√
(θ̂ − θ) =

(
1
n
∑

i:xi>qn

σ̂ − 2
i WiWʹ

i

)− 1(
1̅
̅̅
n

√
∑

i:xi>qn

σ̂ − 2
i WiUi

)

,

̅̅̅
n

√
(θ̂IGLS − θ) =

(
1
n
∑n

i=1
σ− 2
i WiWʹ

i

)− 1(
1̅
̅̅
n

√
∑n

i=1
σ− 2
i WiUi

)

.

Thus it is sufficient for the conclusion to show

T1 :=
1̅
̅̅
n

√
∑

i:xi>qn

σ̂ − 2
i WiUi −

1̅
̅̅
n

√
∑n

i=1
σ− 2
i WiUi →

p 0,

T2 :=
1
n
∑

i:xi>qn

σ̂ − 2
i WiWʹ

i −
1
n
∑n

i=1
σ− 2
i WiWʹ

i →
p 0.

A.2.1. The concentration of T1
Decompose
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T1 =
1̅
̅̅
n

√
∑

i:xi>qn

(
σ̂ − 2
i − σ− 2

i
)
WiUi −

1̅
̅̅
n

√
∑

i:xi≤qn

σ− 2
i WiUi ≕ T11 − T12.

We first consider T12. For any h ∈ {1 : dim(W)}, let Wh
i and Th

12 be the hth element ofWi and T12, respectively. Note that E
[
Th

12

⃒
⃒qn
]
=

0 by E[U|W] = 0. Also we have Var
(
Th

12

⃒
⃒qn
)
→
p 0. To see this, decompose

Var
(
Th

12

⃒
⃒qn
)
= Ih − n · (IIh)2

,

where Ih = 1
n E
[( ∑n

i=1I{Xi ≤ qn}σ− 2
i Wh

i Ui
)2
⃒
⃒
⃒qn
]

and IIh = E
[
I{Xi ≤ qn}σ− 2

i Wh
i Ui
⃒
⃒qn
]
. For Ih, note that

Ih =
1
n
E

⎡

⎣E

⎡

⎣

(
∑n

i=1
I{Xi ≤ qn}σ− 2

i Wh
i Ui

)2 ⃒⃒
⃒
⃒
⃒
W

⎤

⎦

⃒
⃒
⃒
⃒
⃒
⃒
qn

⎤

⎦

= E
[
E
[(

I{Xi ≤ qn}σ− 2
i Wh

i Ui
)2
⃒
⃒
⃒W
]⃒
⃒
⃒qn
]
= E

[
I{X ≤ qn}σ− 2(X)

(
Wh)2

⃒
⃒
⃒qn
]

≤ R2σ− 2(xL)E[I{X ≤ qn}|qn]→
p 0,

where W = (W1,…,Wn )́ . The first equality follows from the law of iterated expectation and the fact that qn is a function of W, the

second equality follows from E[U|W] = 0 and {Ui}
n
i=1 being iid, the third equality follows because conditional on W, I{Xi ≤

qn}
(
σ− 2
i Wh

i
)2 is treated as fixed, the inequality follows from Assumptions A1 and A2, and the convergence follows from qn →

p xL. For IIh,
note that

IIh = E
[
I{Xi ≤ qn}σ− 2

i Wh
i E[Ui|W]

⃒
⃒qn
]
= 0,

where the first equality follows from the law of iterated expectation and the fact that qn is a function of W, and the second equality
follows from E[Ui|W] = E[Ui|Wi] = 0. Since E

[
Th12
⃒
⃒qn
]
= 0 and Var

(
Th12
⃒
⃒qn
)
→
p 0 hold for every h, we can conclude that T12 →

p 0.
To proceed, we will utilize Lemma 3 below. Its proof can be found at the end of Appendix A.2. Recall that earlier in this appendix,

we relabel σ2( · ) as τ0( · ), and τ̂ is used to denote the isotonic estimator of σ2( · ). Additionally, with some abuse of notation, we use wh
to denote the hth element of vector w.

Lemma 3. Under Assumptions A1–A3,

(i) ‖τ̂‖∞ = Op(logn),

(ii) ‖τ̂ − τ0‖
2
2,P = Op

(
(logn)2n− 2/3

)
,

(iii) E
[
‖Gn‖F n

]
≤ Aν

2 holds for any constants A > 0 and ν > 0, and all sufficiently large n, where F n is the function class defined as

F n =

⎧
⎪⎪⎨

⎪⎪⎩

fn(w, u) = I{x > qn}
(

1
τ(x) −

1
τ0(x)

)

whu :

τ ≥ 0is monotone increasing onX ,

‖τ‖∞ ≤ Clogn,  ‖τ − τ0‖
2
2,P ≤ Crn,

I{x > qn}/τ(x) ≤ 1/K0, h ∈ {1 : dim(w)}


⎫
⎪⎪⎬

⎪⎪⎭

, (A.16)

with C and K0 being some positive constants, and rn = (logn)2n− 2/3. Now we focus on T11. Since the proof is similar, we only present the
proof for the hth element of T11, i.e., for any constant A > 0,

P{|Gn f̂ | ≥ A}→0, (A.17)

where f̂ (w,u) = I{x > qn}
(

1
τ̂(x)

− 1
τ0(x)

)

whu. To this end, we set τ0(xL) = C0 = 2K0 > 0. It holds that for any A > 0 and ν > 0, there

exists a positive constant C such that

P{|Gn f̂ | ≥ A} ≤ P
{

|Gn f̂ | ≥ A,  ‖τ̂‖∞ ≤ Clogn,  ‖τ̂ − τ0‖
2
2,P ≤ Crn, 

I{x > qn}
τ̂(x) ≤

1
K0

}

+
ν
2

≤
E
[
‖Gn‖F n

]

A
+

ν
2
≤ ν,

(A.18)

for all sufficiently large n, where the first inequality follows from Lemmas 1 and 3 (i)-(ii), and the fact that τ̂ is monotone increasing (so
that the lower bound at the truncation point is the uniform lower bound). Specifically, for any ν > 0, we can find C > 0 and a positive

integer n0 such that for any integer n > n0, it holds that (a) P{‖τ̂‖∞ > Clogn} < ν
6, (b) P

{
‖τ̂ − τ0‖

2
2,P > Crn

}
< ν

6, and (c) P
{

I{x>qn}
τ̂(x)

>

1
K0

}

< ν
6. Parts (a) and (b) are ensured by Lemma 3(i) and (ii), respectively; part (c) is guaranteed by Lemma 1. As a result, P

(

{‖τ̂‖∞ >
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Clogn}or
{
‖τ̂ − τ0‖

2
2,P > Crn

}
or
{

I{x>qn}
τ̂(x)

> 1
K0

})

< ν
2. In the case of limx↓xL

dσ2(x)
dx = 0, part (c) remains valid since τ̂(x) will converge to τ0

at a faster rate (the
̅̅̅
n

√
-rate), then the first inequality of (A.18) holds without invoking Lemma 1.

The second inequality of (A.18) follows from Markov’s inequality and the definition of F n, which is given by (A.16). The last
inequality follows from Lemma 3(iii). Since ν can be arbitrarily small, we obtain (A.17) and the conclusion follows.

A.2.2. Proof of T2 = op(1)
Note that

T2 =
1
n
∑

i:xi>qn

σ̂ − 2
i WiWʹ

i −
1
n
∑n

i=1
σ− 2
i WiWʹ

i

=
1
n
∑

i:xi>qn

(
σ̂ − 2
i − σ− 2

i
)
WiWʹ

i −
1
n
∑

i:xi≤qn

σ− 2
i WiWʹ

i

≕ T21 − T22.

First, we have T22 →
p 0 since qn →

p xL. For T21, let sn be the
(
1 − n− 1/3)-th sample quantile of {Xi}

n
i=1. By employing arguments similar to

those in the proof of Lemma 1, we have σ̂2
(sn) − σ2(sn) = Op

(
n− 1/3). Using reasoning akin to, yet simpler than, those in the proof of

Lemma 1, we can establish that for any x ∈ (qn,sn), it holds that σ̂2
(x) − σ2(x) =Op

(
n− 1/3). Combining the aforementioned results with

the monotonicity of both σ̂2
( · ) and σ2( · ), we can conclude that supx∈[qn ,sn ]

⃒
⃒σ̂2

(x) − σ2(x)
⃒
⃒ = Op

(
n− 1/3), i.e., σ̂2

(x) is uniformly
consistent within trimmed domain [qn, sn] (the proof here resembles the one given for the Glivenko–Cantelli Theorem regarding the
uniform consistency of the empirical distribution function; see, for example, the proof of Theorem 19.1 in van der Vaart (2000).
Therefore, we have

T21 =
1
n
∑

i:qn<xi<sn

(
σ̂ − 2
i − σ− 2

i
)
WiWʹ

i +
1
n
∑

i:xi≥sn

(
σ̂ − 2
i − σ− 2

i
)
WiWʹ

i = op(1), (A.19)

where the second equality follows from the preceding argument, |sn − xU| = Op
(
n− 1/3), and Lemma 3(i). Combining T22 →

p 0 and

(A.19), we have T2 →
p 0.

A.2.3. Proof of Lemma 3(i)
The min–max formula of the isotonic regression says

min
1≤k≤n

∑k

j=1
Û

2
j

k
≤ τ̂(x) ≤ max

1≤k≤n

∑n

j=k
Û

2
j

n − k+ 1
,

for each x ∈ X , which implies min1≤j≤n Û
2
j ≤ τ̂(x) ≤ max1≤j≤nÛ

2
j for each x ∈ X . Thus, it is sufficient for the conclusion to show that

max
1≤j≤n

Û
2
j = Op(logn). (A.20)

Observe that

max
1≤j≤n

Û
2
j ≤ max

1≤j≤n
U2
j + 2Rk‖θ̂OLS − θ‖∞max1≤j≤n

⃒
⃒Uj
⃒
⃒+ R2k2‖θ̂OLS − θ‖

2
∞.

From BDJ (2019, eq. (7.11) on p. 3297), Assumption A2 guarantees max1≤j≤nU2
j = Op(logn). Since θ̂OLS is the OLS estimator, it holds

that ‖θ̂OLS − θ‖∞ = Op
(
n− 1/2). By (A.2), we also have max1≤j≤n

⃒
⃒Uj
⃒
⃒ = Op(logn). Combining these results with Assumption A1, we have

(A.20).

A.2.4. Proof of Lemma 3(ii)
The proof is based on that of Proposition 4 of BGH (p. 8 of BGH-supp). Recall that τ̂( · ) is the solution of

minτ∈{all monotone functions}
∑n

j=1

{
Û

2
j − τ

(
Xj
)}2

, or equivalently

max
τ∈{all monotone functions}

∑n

j=1

{
2Û

2
j τ
(
Xj
)
− τ
(
Xj
)}

. (A.21)

On the other hand, τ0( · ) is the solution of minτ∈{all monotone functions}E
[{
U2 − τ(X)

}2
]
, or equivalently
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max
τ∈{all monotone functions}

E
[
2U2τ(X) − τ(X)2]

. (A.22)

By (A.21), it holds

∑n

j=1

{
2Û

2
j τ̂
(
Xj
)
− τ̂
(
Xj
)2
}
≥
∑n

j=1

{
2Û

2
j τ0
(
Xj
)
− τ0

(
Xj
)2
}
,

or equivalently (by plugging in Ûj = Uj − Wʹ
j(θ̂OLS − θ)),

∑n

j=1

{
2U2

j τ̂
(
Xj
)
− τ̂
(
Xj
)2
}
+ 2

∑n

j=1

(
− 2UjWʹ

j(θ̂OLS − θ) +
{
Wʹ

j(θ̂OLS − θ)
}2){

τ̂
(
Xj
)
− τ0

(
Xj
)}

≥
∑n

j=1

{
2U2

j τ0
(
Xj
)
− τ0

(
Xj
)2
}
.

(A.23)

Define d2
2(τ1, τ2) = − E

[
2τ1τ2 − τ2

1 − τ2
2
]
. Note that for any monotone function τ,

E
[
2U2τ(X) − τ(X)2]

− E
[
2U2τ0(X) − τ0(X)2]

= E
[
2E
[
U2|X]τ(X) − τ(X)2

− 2E
[
U2
⃒
⃒X
]
τ0(X) + τ0(X)2]

= E
[
2τ0(X)τ(X) − τ(X)2

− τ0(X)2]
= − d2

2(τ, τ0),

(A.24)

where the first equality follows from the law of iterated expectation, the second equality follows from the definition τ0(x) = E
[
U2
⃒
⃒X =

x
]
, and the last equality follows from the definition of d2

2( ·, · ).
Define

gτ(u, x) =
{
2u2τ(x) − τ(x)2}

−
{
2u2τ0(x) − τ0(x)2}

,

Rn =
2
n
∑n

j=1

(
− 2UjWʹ

j(θ̂OLS − θ) +
{
Wʹ

j(θ̂OLS − θ)
}2){

τ̂
(
Xj
)
− τ0

(
Xj
)}

.

From (A.23) and (A.24), it holds
∫

gτ̂(u, x)d(Pn − P)(u, x) + Rn ≥ d2
2(τ̂, τ0). (A.25)

Note that Rn is bounded as

|Rn| ≤

⃒
⃒
⃒
⃒
⃒
− (θ̂OLS − θ)ʹ

4
n
∑n

j=1
WjUj

{
τ̂
(
Xj
)
− τ0

(
Xj
)}
⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒

2
n
∑n

j=1

{
Wʹ

j(θ̂OLS − θ)
}2{

τ̂
(
Xj
)
− τ0

(
Xj
)}
⃒
⃒
⃒
⃒
⃒
.

The second term is of order Op(n− 1logn) (because θ̂OLS − θ = Op
(
n− 1/2

)
and Lemma 3(i)). By similar arguments in p.22 of BGH-supp

and in the proof of Lemma 3(i), the first term is of order Op
(
n− 1(logn)2).

Then

Rn = Op
(
n− 1(logn)2)

. (A.26)

Thus, for some constants C,K > 0 and a shrinking sequence ϵn, set inclusion relationships yield

P
(
d2

2(τ̂, τ0) ≥ ϵ2
n
)
= P

(

d2(τ̂, τ0) ≥ ϵn, 
∫

gτ̂(u, x)d(Pn − P)(u, x) + Rn ≥ d2
2(τ̂, τ0)

)

≤ P

⎛

⎜
⎝

d2(τ̂, τ0) ≥ ϵn,  |Rn| ≤ Cn− 1(logn)2
,  ‖τ̂‖∞ ≤ Klogn

∫

gτ̂(u, x)d(Pn − P)(u, x) + Rn − d2
2(τ̂, τ0) ≥ 0

⎞

⎟
⎠

+P
(
|Rn| > Cn− 1(logn)2)

+ P(‖τ̂‖∞ > Klogn)
≕ P1 + P2 + P3,

where the first equality follows from (A.25). For P2 and P3, (A.26) and Lemma 3(i) imply that we can choose C and K to make these
terms arbitrarily small. Thus, we focus on the first term P1.

Now let

T = {τ : τis positive and monotone increasing onX ,  ‖τ‖∞ ≤ Klogn},
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G =
{
gτ(u, x) =

{
2u2τ(x) − τ(x)2}

−
{
2u2τ0(x) − τ0(x)2}

:  τ ∈ T
}
,

G v = {g ∈ G : d2(τ, τ0) ≤ v}.

Set inclusion relationships and Markov’s inequality yield

P1 ≤ P

(

sup
τ∈T ,d2(τ,τ0)≥ϵn

{∫

gτ(u, x)d(Pn − P)(u, x) − d2
2(τ, τ0)

}

≥ − Cn− 1(logn)2

)

≤
∑∞

s=0
P

(

sup
τ∈T ,2sϵn≤d2(τ,τ0)≤2s+1ϵn

̅̅̅
n

√
{∫

gτ(u, x)d(Pn − P)(u, x)
}

≥
̅̅̅
n

√ (
22sϵ2

n − Cn− 1(logn)2)
)

≤
∑∞

s=0
P
(
‖Gng‖G 2s+1ϵn

≥
̅̅̅
n

√ (
22sϵ2

n − Cn− 1(logn)2)
)

≤
∑∞

s=0
E
[
‖Gng‖G 2s+1ϵn

]
/
{ ̅̅̅

n
√ (

22sϵ2
n − Cn− 1(logn)2)}

.

For a sufficiently large constant C̃ > 0, the sequence ϵ2
n := C̃(logn)2n−

2
3 dominates Cn− 1(logn)2, so it holds

̅̅̅
n

√ (
22sϵ2

n − Cn− 1(logn)2
)

=
̅̅̅
n

√
22sϵ2

n(1+ o(1)). Therefore, the standard result for the L2-convergence of the isotonic estimator under Assumption A2 (e.g., pp. 8–11
in BGH-supp) implies that the last term can be made arbitrarily small by appropriately selecting C̃. Thus, the proof is concluded.

A.2.5. Proof of Lemma 3(iii)
We show E

[
‖Gn‖F n

]
≤ Aν

2 by using van der Vaart and Wellner (1996, Lemma 3.4.3). First we introduce some notation for this part.
Let N[](ε,F , ‖ · ‖) be the ε-bracketing number of the function class F under the norm ‖ · ‖, HB(ε,F , ‖ · ‖) = logN[](ε,F , ‖ · ‖) be the

entropy, Jn(δ,F ,‖ · ‖) =
∫ δ

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + HB(ε,F , ‖ · ‖)

√
dε, and ‖f‖B,P =

(
2E
[
e|f | − |f | − 1

])1/2 be the Bernstein norm.

Lemma 3.4.3 in van der Vaart and Wellner (1996): Let F be a class of measurable functions such that ‖f‖2
B,P ≤ δ for every f in F .

Then

E[‖Gn‖F ]≲Jn
(
δ,F , ‖ · ‖B,P

){
1 + Jn

(
δ,F , ‖ · ‖B,P

)/( ̅̅̅
n

√
δ2)}.

To apply this lemma, we need to computeHB

(
ϵ, F̃ n, ‖ · ‖B,P

)
and

⃦
⃦
⃦f̃
⃦
⃦
⃦

2

B,P
, where F̃ n =

{
f̃ = D− 1f : f ∈ F n

}
, the function class F n is

defined below in (A.27), and the constant D > 0 will be chosen later to guarantee that the Bernstein norm of f̃ is finite. Moreover, let us
define the following function class:

T I ,K1 = {τmonotone non-decreasing on the intervalI and0 < τ < K1}.

Assumption A2 implies that there exist positive constants, C and C, such that 0 < C < τ0 < C < ∞. Also let

F n =

{

fn(w, u) = I{x > qn}
(

1
τ(x) −

1
τ0(x)

)

whu :
 τ ∈ T X ,K1 ,  ‖τ − τ0‖

2
2,P ≤ v2,

I{x > qn}/τ(x) ≤ 1/K0, h ∈ {1 : dim(w)}

}

, (A.27)

where wh is the hth component of vector w. We set 2K0 = C, K1 = K2logn, and v = K3(logn)n− 1/3 for some constants K2,K3 > 0.
Consider ϵ-brackets

(
τL, τU

)
under the L2(P)-norm for the functions in T I ,K1 . According to van der Vaart and Wellner (1996,

Theorem 2.7.5), there exists some constant Cʹ > 0 such that

HB
(
ϵ,T X ,K1 , ‖ · ‖2,P

)
≤
CʹK1

ϵ
, for eachϵ ∈ (0,K1). (A.28)

Without loss of generality, we can choose those bracket functions that satisfy I{x > qn}/τL(x) ≤ 1/K0.6 Define

fL(w, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I{x > qn}
(

1
τU(x) −

1
τ0(x)

)

whu ifwhu ≥ 0,

I{x > qn}
(

1
τL(x) −

1
τ0(x)

)

whu ifwhu < 0,

6 By definition (A.27), the τ( · ) associated to F n must satisfy I{x > qn}/τ(x) ≤ 1/K0. Since T X ,K1 is a class of monotone increasing function, any
ϵ-brackets of T X ,K1 can be modified to be a ϵ-bracket of the “F n-subset” of T X ,K1 , satisfying I{x > qn}/τ(x) ≤ 1/K0 by leveling-up certain part of
lower bounds functions τL, without changing the bracket numbers, and the size of each modified bracket can only be smaller.
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fU(w, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I{x > qn}
(

1
τL(x) −

1
τ0(x)

)

whu ifwhu ≥ 0,

I{x > qn}
(

1
τU(x) −

1
τ0(x)

)

whu ifwhu < 0.

Note that
(
fL, fU

)
is a bracket of f ∈ F n for every qn ∈ [xL,xU].

Now we compute the bracket size of
(
f̃
L
, f̃

U)
:=
(
D− 1fL,D− 1fU

)
with respect to the Bernstein norm. Note that

⃦
⃦
⃦f̃

U
− f̃

L⃦⃦
⃦

2

B,P
=
⃦
⃦D− 1fU − D− 1fL

⃦
⃦2
B,P

≤ 2
∑∞

k=2

1
k!Dk

∫

W ×R

⃒
⃒
⃒
⃒
τU(x) − τL(x)

τL(x)τU(x) whu
⃒
⃒
⃒
⃒

k

dP(w, u)

≤ 2
∑∞

k=2

1
k!Dk

{
Rkk!Mk− 2

0 a0(2K1)
k− 2

K2k
0

⃦
⃦τU − τL

⃦
⃦2

2,P

}

≤ 2a0

(
R
DK2

0

)2
∑∞

k=0

(
2RM0K1

DK2
0

)k

ϵ2,

where the first inequality follows from the definition of ‖ · ‖2
B,P and I{x > qn} ≤ 1, the second inequality follows from Assumption A2

(where we can choose a0,M0 > 1) and I{x>qn}
τL(x) ≤ 1

K0
. Thus, by setting D = 4M0RK1/K2

0, we obtain
⃦
⃦
⃦f̃

U
− f̃

L⃦⃦
⃦

2

B,P
≤ a0

4M2
0K

2
1
ϵ2, which implies

⃦
⃦
⃦f̃

U
− f̃

L⃦⃦
⃦
B,P

≤ K̃ϵ,

for K̃ =
a1/2

0
2M0K1

. Note that
(
f̃
L
, f̃

U)
is: (a) a set of brackets in F̃ n, (b) one-to-one induced by (τL,τU, an ϵ-bracket in T X ,K1 with the entropy

HB
(
ϵ,T X ,K1 ,‖ · ‖2,P

)
, and (c)

⃦
⃦
⃦f̃

U
− f̃

L⃦⃦
⃦
B,P

≤ K̃ϵ. Based on these facts, (A.28) yields

HB

(
K̃ϵ, F̃ n, ‖ · ‖B,P

)
≤ HB

(
ϵ,T X ,K1 , ‖ · ‖2,P

)
≤
CʹK1

ϵ
,

which implies (by a change-of-variable argument)

HB

(
ϵ, F̃ n, ‖ · ‖B,P

)
≤
K̃CʹK1

ϵ
=
B̃
ϵ
, forB̃ =

Cʹa1/2
0

2M0
. (A.29)

We now characterize the Bernstein norm of f̃ ,

⃦
⃦
⃦f̃
⃦
⃦
⃦

2

B,P
≤ 2

∑∞

k=2

1
k!Dk

∫

W ×R

⃒
⃒
⃒
⃒
τ(x) − τ0(x)

τ(x)τ0(x)
whu

⃒
⃒
⃒
⃒

k

dP(w, u)

≤ 2
∑∞

k=2

1
k!Dk

{
Rkk!Mk− 2

0 a0(2K1)
k− 2

K2k
0

‖τ − τ0‖
2
2,P

}

≤ 2a0

(
R
DK2

0

)2
∑∞

k=0

(
2RM0K1

DK2
0

)k

v2 ≤
a0

4M2
0

1
K2

1
v2,

where the second inequality follows from I{x>qn}
τ(x) ≤ 1

K0
, and the third inequality follows from (A.27) and some rearrangements. Then, we

have

⃦
⃦
⃦f̃
⃦
⃦
⃦
B,P

≤
Bv
K1

, forB =
a1/2

0

2M0
. (A.30)

Combining (A.29) and (A.30), van der Vaart and Wellner (1996, Lemma 3.4.3) implies

E
[
‖Gn‖F̃ n

]
≲Jn
(
BK− 1

1 v
)
(

1 +
Jn
(
BK− 1

1 v
)

̅̅̅
n

√
B2v2

/
K2

1

)

,

where Jn( · ) is the abbreviation of Jn
(
·, F̃ n,‖ · ‖B,P

)
. By the arguments used in the proof of Proposition 7.9 of BDJ, it holds

Jn
(
BK− 1

1 v
)
≤ BK− 1

1 v+ 2B̃
1/2

B1/2K− 1/2
1 v1/2≲B1K− 1/2

1 v1/2,

for some B1 > 0 and sufficiently small v. This implies
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E
[
‖Gn‖ ˜F n

]
≲B1K− 1/2

1 v1/2

(

1 + K2
1
B1K− 1/2

1 v1/2
̅̅̅
n

√
B2v2

)

≲B1K− 1/2
1 v1/2

(

1 +
B2K3/2

1̅̅̅
n

√
v3/2

)

,

for some B2 > 0. By the definition of the class F̃ n =
{
f̃ = D− 1f : f ∈ F n

}
, it follows that

E
[
‖Gn‖F n

]
= D · E

[
‖Gn‖F̃ n

]
≲DB1K− 1/2

1 v1/2

(

1 +
B2K3/2

1̅̅̅
n

√
v3/2

)

≲B3K− 2
0 K1/2

1 v1/2

(

1 +
B2K3/2

1̅̅̅
n

√
v3/2

)

,

for some B3 > 0. The conclusion follows by observing that with v = K3(logn)n− 1/3, K1 = K2logn, and all sufficiently large n, we have

E
[
‖Gn‖F n

]
≲C3(logn)n− 1/6(1 + C4)≲

Aν
2
,

where C3 = B3K− 2
0 K1/2

2 K1/2
3 and C4 = B2(K2/K3)

3/2.

Appendix B. Proof of lemma and theorem in Section 3

Notation. To avoid heavy notations, some of them are used in Appendix A but redefined here. Define τη(a) = E
[
σ2(Xʹη0)

⃒
⃒Xʹη = a

]

and τη0 (a) = τ0(a) (note that τ0(xʹη0) = σ2(x́ η0)). Let τ̂η = τ̂η(xʹη) be the isotonic estimator obtained by (3.3) for a given η, W be the

support of W := (1,Xʹ, Zʹ)́ , Fn(t) = 1
n
∑n

i=1I
{
Xʹ
i η̂ ≤ t

}
, and Mn(t) = 1

n
∑n

i=1 Û
2
i I
{
Xʹ
i η̂ ≤ t

}
.

B.1. Proof of Lemma 2

The main part of the proof is similar to that of Lemma 1. Recall that q*
n is the

(
n− 1/3)-th population quantile of (Xʹη0) and qn is the

(
n− 1/3)-th sample quantile of

{
Xʹ
i η̂
}n
i=1 with η̂ estimated by (3.4). To proceed, we use the following lemma:

Lemma 4. Under Assumptions M1–M6, it holds

(i) η̂ − η0 = Op
(
n− 1/2),

(ii) τη̂(a) − τ0(a) = Op
(
n− 1/2) for each a, and ‖τη̂ − τ0‖2,P = Op

(
n− 1/2).

The proof of this lemma is in Appendix B.3. Based on Lemma 4(i), Assumptions M2–M3, and properties of the sample quantile, we
obtain qn − q*

n = Op
(
n− 1/2) = op

(
n− 1/3), which implies c* = limn→∞n1/3( q*

n − xL
)
= plimn→∞n1/3(qn − xL) < ∞. By Assumption M2,

Lemma 4(ii), and similar arguments in Appendix A.1, we have

n1/3{τ̂ η̂(qn) − τ0(qn)} = n1/3{τ̂ η̂(qn) − τη̂(qn)} + op(1)

= n1/3[{τ̂ η̂(qn) − τη̂(xL)} − {τη̂(qn) − τ0(xL)}] + op(1)
→

d
DL

[0,∞)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
ε (xL)

c*fX(xL)

√

W t + τʹ
0(xL)

t2c*

2

)

(1) − plim
n→∞

n1/3{τ0(qn)

− τ0(xL)}∼dDL
[0,∞)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

ε (xL)
c*fX(xL)

√

W t + τʹ
0(xL)

t2c*

2

)

(1) − lim
n→∞

n1/3
{

τ0
(
q*
n
)
− τ0(xL)

}
∼dDL

[0,∞)

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

ε (xL)
c*fX(xL)

√

W t + τʹ
0(xL)

t2c*

2
− τʹ

0(xL)c*t

)

(1),

where the first and second equalities follow from Lemma 4(ii), the convergence follows from a similar argument to (A.15), the first
distribution relation follows from Lemma 4(ii), Assumption M2(iv), and q*

n − qn = op
(
n− 1/3), and the second distribution relation

follows from the fact that the DL
[0,∞) is a linear operator for a linear function of t.

B.2. Proof of Theorem 2

Similar to Theorem 1, it is sufficient for the conclusion to prove the following lemma.

Lemma 5. Under Assumptions M1–M6, it holds

(i) ‖τ̂η‖∞ = Op(logn) uniformly over η ∈ B (η0,δ0),

(ii) ‖τ̂ η̂ − τ0‖
2
2,P = Op

(
(logn)2n− 2/3

)
,

(iii) E
[
‖Gn‖F n

]
≤ Aν

2 holds for any constants A > 0 and ν > 0, and all sufficiently large n, where F n is the function class defined as
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F n =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fn(w, u) = I{xʹη > qn}
(

1
τ(xʹη) −

1
τη(xʹη)

)

whu :

τ ≥ 0is monotone increasing onIη,
‖τ‖∞ ≤ Clogn,  ‖τ − τη‖

2
2,P ≤ Crn,

I(xʹη > qn)/τ(xʹη) ≤ 1/K0,

h ∈ {1 : dim(w)}



⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

with C and K0 being some positive constants, and rn = (logn)2n− 2/3.

B.2.1. Proof of Lemma 5(i)

The proof is adapted from BDJ (2019, eq. (7.11) on p.3297). For fixed η, let
{
Û

2
η,i

}n

i=1
be a permutation of

{
Û

2
j

}n

j=1
, which is

arranged according to the monotonically ordered series
{
Xʹ
iη
}n
i=1. The min–max formula of the isotonic regression says

min
1≤k≤n

∑k

i=1
Û

2
η,i

k
≤ τ̂η(xʹη) ≤ max

1≤k≤n

∑n

i=k
Û

2
η,i

n − k+ 1
,

for each x ∈ X and η ∈ B (η0, δ0), which implies min1≤j≤n Û
2
j ≤ τ̂η(xʹη) ≤ max1≤j≤nÛ

2
j for each x ∈ X . Thus, it is sufficient for the

conclusion to show that

max
1≤j≤n

Û
2
j = Op(logn). (B.1)

Observe that

max
1≤j≤n

Û
2
j ≤ max

1≤j≤n
U2
j + 2Rk‖θ̂OLS − θ‖∞max1≤j≤n

⃒
⃒Uj
⃒
⃒+ R2k2‖θ̂OLS − θ‖

2
∞,

where k is the dimension of θ. From Lemma 7.1 of BDJ, Assumption M2 guarantees max1≤j≤nU2
j = Op(logn). By the same reasoning for

the proof of Lemma 3, we havemax1≤j≤n
⃒
⃒Uj
⃒
⃒ = Op(logn) and ‖θ̂OLS − θ‖∞ =Op

(
n− 1/2). Thus, we have ‖τ̂η‖∞ =Op(logn). Since different

η only changes the permutation
{
Û

2
η,i

}n

i=1
but not max1≤j≤nÛ

2
j , we have ‖τ̂η‖∞ = Op(logn) uniformly over η ∈ B (η0,δ0).

B.2.2. Proof of Lemma 5(ii)
The main part of the proof is similar to those of Lemma 3 (ii) and Proposition 4 of BGH-supp. Define

gη,τ(u, x) =
{
2u2τ(xʹη) − τ(xʹη)2}

−
{
2u2τη(xʹη) − τη(xʹη)2}

,

Rn,η =
2
n
∑n

j=1

(
− 2UjWj(θ̂OLS − θ) +

{
Wj(θ̂OLS − θ)

}2)
{

τ̂η

(
Xʹ
jη
)
− τη

(
Xʹ
jη
)}

,

d2
2(τ1, τ2) = − E

[
2τ1τ2 − τ2

1 − τ2
2
]
,

Following reasoning similar to that presented for (A.21)–(A.26), we have for some C and K,

P

(

sup
η∈B (η0 ,δ0)

d2
2(τ̂η, τη) ≥ ϵ2

n

)

≤ P

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sup
η∈B (η0 ,δ0)

d2(τ̂η, τη) ≥ ϵn,  sup
η∈B (η0 ,δ0)

‖τ̂η‖∞ ≤ Klogn,

sup
η∈B (η0 ,δ0)

∫

gη,τ̂(u, x)d(Pn − P)(u, x) + Rn,η − d2
2(τ̂η, τη) ≥ 0,

sup
η∈B (η0 ,δ0)

⃒
⃒Rn,η

⃒
⃒ ≤ Cn− 1(logn)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+P
( ⃒
⃒Rn,η

⃒
⃒ > Cn− 1(logn)2)

+ P

(

sup
η∈B (η0 ,δ0)

‖τ̂η‖∞ > Klogn

)

≕ P1 + P2 + P3.

Lemma 5(i) implies P3→0, and P2→0 follows from similar arguments for (A.26). For P1, we define

T = {τ : τis positive and monotone increasing function onIη,  ‖τ‖∞ ≤ Klogn},
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G =
{
g(x, u) =

{
2u2τ(xʹη) − τ(xʹη)2}

−
{
2u2τη(xʹη) − τη(xʹη)2}

:  τ ∈ T
}
,

G v = {g ∈ G : d2(τ, τη) ≤ v},

for each η ∈ B (η0,δ0). By similar arguments for Lemma 3(ii) and Proposition 4 of BGH-supp, we can obtain

P1 ≤
∑∞

s=0
E
[
‖Gng‖G 2s+1ϵn

]
/
{ ̅̅̅

n
√

22sϵ2
n − Cn− 1/2(logn)2}

,

and

sup
η∈B (η0 ,δ0)

∫

{τ̂η(xʹη) − τη(xʹη)}2dF(x) = Op
(
(logn)2n− 2/3). (B.2)

By combining (B.2), Lemma 4, and the triangle inequality, we obtain ‖τ̂ η̂ − τ0‖
2
2,P = Op

(
(logn)2n− 2/3

)
.

Proof of Lemma 5(iii)
To avoid heavy notation, we use the same notation as in the proof of Lemma 3(iii), but some notation is redefined here. Let

T I ,K1 = {τmonotone non-decreasing on some intervalI and0 < τ < K1}.

Assumption M2 guarantees 0 < C < τ0 < C < ∞. Similar to the proof of Lemma 3(iii), we calculate HB

(
ϵ, F̃ , ‖ · ‖B,P

)
and

⃦
⃦
⃦f̃
⃦
⃦
⃦

2

B,P
, with

F̃ =
{
f̃ = D− 1f : f ∈ F

}
, where the constant D > 0 is determined later. Define I*η =

(
aL, aU

)
with aL = infx∈X ,η∈B (η0 ,δ0)x́ η and aU =

supx∈X ,η∈B (η0 ,δ0)xʹη. Define

F n =

⎧
⎪⎪⎨

⎪⎪⎩

fn(w, u) = I{xʹη > qn}
(

1
τ(xʹη) −

1
τη(xʹη)

)

whu :

τ ∈ T I*η ,K1
, η ∈ B (η0, δ0),

 ‖τ − τ0‖
2
2,P ≤ v2, h ∈ {1 : dim(w)},

I(xʹη > qn)/τ(x) ≤ 1/K0

⎫
⎪⎪⎬

⎪⎪⎭

,

where wh is the hth component of w. We set 2K0 = C, K1 = K2logn, and v = K3(logn)n− 1/3 for some positive constants K2 and K3.
By van der Vaart and Wellner (1996, Theorem 2.7.5), it holds for each ϵ ∈ (0,K1),

HB
(
ϵ,T I*η ,K1

, ‖ · ‖P
)
≤
CʹK1

ϵ
.

Similarly to the univariate case, we can choose those bracket functions
(
τL, τU

)
, which satisfy I{xʹη > qn}/τL(x́ η) ≤ 1/K0. Then, we

define

fL(w, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I{xʹη > qn}
(

1
τU(xʹη) −

1
τη(xʹη)

)

whu ifwhu ≥ 0,

I{xʹη > qn}
(

1
τL(xʹη) −

1
τη(xʹη)

)

whu ifwhu < 0,

fU(w, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I{xʹη > qn}
(

1
τL(xʹη) −

1
τη(xʹη)

)

whu ifwhu ≥ 0,

I{xʹη > qn}
(

1
τU(xʹη) −

1
τη(xʹη)

)

whu ifwhu < 0.

Note that
(
fL, fU

)
is a bracket for f ∈ F n. The bracket size is

⃦
⃦
⃦f̃

U
− f̃

L⃦⃦
⃦

2

B,P
=
⃦
⃦D− 1fU − D− 1fL

⃦
⃦2
B,P

= 2
∑∞

k=2

1
k!Dk

∫

W ×R

I{xʹη > qn}
⃒
⃒
⃒
⃒

(
1

τL(xʹη) −
1

τU(xʹη)

)

whu
⃒
⃒
⃒
⃒

k

dP(w, u)

≤ 2
∑∞

k=2

1
k!Dk

{
Rkk!Mk− 2

0 a0(2K1)
k− 2

K2k
0

⃦
⃦τU − τL

⃦
⃦2
P

}

≤ 2a0

(
R
DK2

0

)2
∑∞

k=0

(
2RM0K1

DK2
0

)k

ϵ2,
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where the first inequality follows from Assumption M2 (where we can choose a0,M0 > 1) and I{xʹη>qn}
τL(xʹη) ≤ 1

K0
. Setting D = 4M0RK1/K2

0

yields
⃦
⃦
⃦f̃

U
− f̃

L⃦⃦
⃦
B,P

≤ K̃ϵ for K̃ =
a1/2

0
2M0K1

, and thus

HB

(
ϵ, F̃ , ‖ · ‖B,P

)
≤
B̃
ϵ
, forB̃ =

C2a1/2
0

2M0
. (B.3)

Now we compute the Bernstein norm of f̃ :

⃦
⃦
⃦f̃
⃦
⃦
⃦

2

B,P
= 2

∑∞

k=2

1
k!Dk

∫

W ×R

I{xʹη > qn}
⃒
⃒
⃒
⃒

(
1

τ(xʹη) −
1

τη(xʹη)

)

whu
⃒
⃒
⃒
⃒

k

dP(w, u)

≤ 2
∑∞

k=2

1
k!Dk

{
Rkk!Mk− 2

0 a0(2K1)
k− 2

K2k
0

‖τ − τ0‖
2
P

}

≤ 2a0

(
R
DK2

0

)2
∑∞

k=0

(
2RM0K1

DK2
0

)k

v2 ≤
a0

4M2
0

1
K2

1
v2,

where the first inequality follows from I{xʹη>qn}
τ(xʹη) ≤ 1

K0
. This implies

⃦
⃦
⃦f̃
⃦
⃦
⃦
B,P

≤ B
v
K1

, forB =
a1/2

0

2M0
. (B.4)

Combining (B.3) and (B.4), the remaining steps are the same as those in the proof of Lemma 3(iii).

B.3. Proof of Lemma 4

Recall for fixed η, we first obtain τ̂η = argminτ∈M
1
n
∑n

i=1
{
Û

2
i − τ

(
Xʹ
iη
)}2

and then obtain η̂ by η̂ = argmin
η

⃦
⃦
⃦
⃦

1
n
∑n

i=1X
ʹ
i
{
Û

2
i − τ̂η

(
Xʹ
iη
)}
⃦
⃦
⃦
⃦

2
.

We denote E[X|Xʹη = x́ η] by E[X|xʹη]. The proof is similar to the ones in BGH and Balabdaoui and Groeneboom (2021) except that we

need to handle the influence of the estimated dependent variables Û
2
i .

The proof of consistency of η̂ is similar to pp. 16–17 of BGH-supp. By a similar argument in Balabdaoui and Groeneboom (2021,
Lemma 3.2), under Assumptions M1–M3, we have

1
n
∑n

i=1
Xʹ
i
{
Û

2
i − τ̂η

(
Xʹ
iη
)}

=
1
n
∑n

i=1

(
Xi − E

[
X
⃒
⃒Xʹ

iη
]){

Û
2
i − τη

(
Xʹ
iη
)}

+ op
(
n− 1/2),

for each η, where we also use (B.2). Thus, it holds
⃦
⃦
⃦
⃦
⃦

1
n
∑n

i=1
Xi
{
Û

2
i − τ̂ η̂

(
Xʹ
i η̂
)}
⃦
⃦
⃦
⃦
⃦
= min

η

⃦
⃦
⃦
⃦
⃦

1
n
∑n

i=1
Xi
{
Û

2
i − τ̂η

(
Xʹ
iη
)}
⃦
⃦
⃦
⃦
⃦

≤ min
η

⃦
⃦
⃦
⃦
⃦

1
n
∑n

i=1

(
Xi − E

[
X
⃒
⃒Xʹ

iη
]){

Û
2
i − τη

(
Xʹ
iη
)}

+ op
(
n− 1/2)

⃦
⃦
⃦
⃦
⃦
.

The leading term inside the norm ‖ · ‖ of the last expression does not depend on the potentially non-smooth τ̂η; it is a smooth function of

η. Thus, under standard conditions for the method of moments, we have minη

⃦
⃦
⃦
⃦

1
n
∑n

i=1
(
Xi − E

[
Xi
⃒
⃒Xʹ

iη
]){

Û
2
i − τη

(
Xʹ
iη
)}
⃦
⃦
⃦
⃦ = 0, and

op
(
n− 1/2) =

1
n
∑n

i=1
Xi
{
Û

2
i − τ̂ η̂

(
Xʹ
i η̂
)}

=
1
n
∑n

i=1

(
Xi − E

[
X
⃒
⃒Xʹ

i η̂
]){

Û
2
i − τ̂ η̂

(
Xʹ
i η̂
)}

+ op
(
n− 1/2 + (η̂ − η)

)

=

∫

(x − E[X|xʹη̂])
{
û2

− τ0(xʹη0)
}
d(Pn − P)(x, û)

+

∫

(x − E[X|xʹη̂])
{
û2

− τη̂(xʹη̂)
}
dP(x, û) + op

(
n− 1/2 + (η̂ − η)

)

≕ I + II + op
(
n− 1/2 + (η̂ − η)

)
,

(B.5)

where the second equality follows from similar arguments to pp. 18–20 of BGH-supp and (B.2), and the third equality follows from a
similar argument in pp. 21–23 of BGH-supp.

Let Û(w, u) = u − wʹ(θ̂OLS − θ) and

Y. Arai et al. Journal of Econometrics 246 (2024) 105899 

25 



ê(w, u) := Û(w, u)2
− u2 = − 2wʹ(θ̂OLS − θ)u+ {wʹ(θ̂OLS − θ)}2

. (B.6)

For I, we have

I =
∫

(x − E[X|xʹη̂])
{
u2 + ê(w, u) − τ0(xʹη0)

}
d(Pn − P)(w, u)

=

∫

(x − E[X|xʹη0])
{
u2 − τ0(xʹη0)

}
d(Pn − P)(x, u)

+

∫

(x − E[X|xʹη̂])ê(w, u)d(Pn − P)(w, u) + op
(
n− 1/2)

=

∫

(x − E[X|xʹη0])
{
u2 − τ0(xʹη0)

}
d(Pn − P)(x, u) + op

(
n− 1/2),

(B.7)

where the second equality follows from p.21 of BGH-supp, and the third equality follows from the facts that (a) θ̂OLS − θ = Op
(
n− 1/2),

(b) ê(w, u) is a parametric function of w and u in a changing class indexed by θ̂OLS (see (B.6)), so its ϵ-entropy is of order log(1/ϵ) ≤ 1/ϵ
(see, e.g., Example 19.7 of van der Vaart and Wellner, 1996), and (c) similar arguments in pp. 22–23 of BGH-supp. By Lemma 17 of
BGH-supp we have

τη(xʹη) = τ0(xʹη0) + (η − η0)(x − E[X|Xʹη0 = xʹη0])τʹ
0(x

ʹη0) + op(η − η0). (B.8)

For II, observe that

II =
∫

(x − E[X|xʹη̂])
{
u2 − τη̂(xʹη̂)

}
dP(x, u) +

∫

(x − E[X|xʹη̂])ê(w, u)dP(w, u)

=

{∫

(x − E[X|xʹη0])(x − E[X|Xʹη0 = xʹη0])τʹ
0(x

ʹη0)dP(x)
}

(η̂ − η0)

+

∫

(x − E[X|xʹη̂])ê(w, u)dP(w, u) + op(η̂ − η0)

=

{∫

(x − E[X|xʹη0])(x − E[X|xʹη0])τʹ
0(x

ʹη0)dP(x)
}

(η̂ − η0) + Op
(
n− 1/2)+ op(η̂ − η0)

= B(η̂ − η0) + Op
(
n− 1/2)+ op(η̂ − η0),

(B.9)

where the third equality follows from (B.8) and (E[X|xʹη̂] − E[X|xʹη0])(η̂ − η0) = op(η̂ − η0), the fourth equality follows from θ̂OLS− θ =

Op
(
n− 1/2) and the definition of B in Assumption M6.
Combining (B.5), (B.7), and (B.9), we have

η̂ − η0 = B−

∫

(x − E[X|xʹη0])
{
u2 − τ0(xʹη0)

}
d(Pn − P)(x, u) + Op

(
n− 1/2)+ op

(
n− 1/2 + (η̂ − η)

)
,

where B− is the Moore–Penrose inverse of B (see p.17 of BGH for more details). Therefore, we have η̂ − η0 = Op
(
n− 1/2). This result,

combined with (B.8) and Assumptions M1 and M2, implies τη̂(a) − τ0(a) = Op
(
n− 1/2) and ‖τη̂ − τ0‖2,P = Op

(
n− 1/2).
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