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Abstract: We investigate the appearance of the square of a Hamilton cycle in the
model of randomly perturbed graphs, which is, for a given α ∈ (0, 1), the union of any
n-vertex graph with minimum degree αn and the binomial random graph G(n, p). This
is known when α > 1/2, and we determine the exact perturbed threshold probability
in all the remaining cases, i.e., for each α ≤ 1/2. Our result has implications on the
perturbed threshold for 2-universality, where we also fully address all open cases.

1 Introduction

Our goal is to completely settle the question when the square of a Hamilton cycle appears
in randomly perturbed graphs. Given a graph H and a non-negative integer m ∈ N, the
m-th power Hm of H is the graph on vertex set V (H) in which two vertices are adjacent
if and only if their distance in H is at most m. As randomly perturbed graphs interpolate
between random graph theory and extremal graph theory, before stating our results, we
recall what is already known in these two fields on the containment problem for Cm

n , the
m-th power of a cycle on n vertices.

We start with the binomial random graph G(n, p). Since the expected number of
copies of Cm

n in G(n, p) is 1
2(n − 1)!pnm, the threshold for the appearance of a copy of

Cm
n is at least n−1/m. For m = 1, a famous result by Pósa [16] shows that the threshold

for the containment of a Hamilton cycle is n−1 log n. For m ≥ 3 a more general result
of Riordan [17], that is proved using the second moment method, gives that n−1/m is
indeed the threshold. The case of the square is more subtle: applications of the second
moment method for p = Θ(n−1/2) were not successful and variants of the absorption
technique only gave the threshold within a polylog-term. It was only recently proved by
Kahn, Narayanan, and Park [12] that also in this case the lower bound from above is
the truth.

Let us now turn to minimum degree conditions in dense graph. Given 0 ≤ α ≤ 1,
let Gα be any n-vertex graph with minimum degree δ(Gα) ≥ αn. For fixed m ∈ N,
we are interested in conditions on α that guarantee the containment of Cm

n in any such
graph Gα. The case m = 1 is Dirac’s theorem [8]: α ≥ 1/2 suffices and is best possible.
For larger values of m, it was conjectured by Pósa that α ≥ 2/3 suffices when m = 2,
and this conjecture was further generalised by Seymour to all m with α ≥ m

m+1 . The
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conjecture is tight and was solved for all m by Komlós, Sarközy, and Szemerédi [13] for
large enough n (depending on m).

One question that recently obtained quite some attention is how many random edges
need to be added to any graph Gα with α ≥ m

m+1 to guarantee the containment of an
even larger power of a Hamilton cycle. We formalise this question and state related
results for the model of randomly perturbed graphs, which was introduced by Bohman,
Frieze, and Martin [5] and allows to investigate how containment properties change if
random edges are added. A randomly perturbed graph Gα∪G(n, p) is the graph obtained
by adding to a deterministic graph Gα on n vertices with minimum degree at least αn a
random graph graph G(n, p) on the same vertex set.

Definition 1 (perturbed threshold) Let m > 0 be an integer and let α ∈ (0, 1). The
perturbed threshold for the containment of the m-th power of a Hamilton cycle is p̂ =
p̂(n, α,m) if there exist constants C and c (depending onm and α) such that the following
holds. For any p ≥ Cp̂ and for any sequence of graphs Gn with δ(Gn) ≥ αn we have
limn→∞ P

(
Cm
n ⊆ Gn ∪G(n, p)

)
= 1, and for any p ≤ cp̂ there exists a sequence of graphs

Gn with δ(Gn) ≥ αn such that limn→∞ P
(
Cm
n ⊆ Gn ∪G(n, p)

)
= 0.

Bohman, Frieze, and Martin studied when Hamilton cycles appear in randomly per-
turbed graphs. They showed in [5] that for any α ∈ (0, 1/2), there is a constant C such
that a.a.s. for any n-vertex graph Gα, the perturbed graph Gα ∪G(n, p) is Hamiltonian,
provided p ≥ C/n. Moreover, this condition on p is optimal as the graph Kαn,(1−α)n has
minimum degree αn and misses a linear number of edges to be Hamiltonian. Therefore,
using the notation of Definition 1, they showed that p̂(n, α, 1) = n−1 for any α ∈ (0, 1/2).
For higher powers of Hamilton cycles, one of the first results was obtained in [6], which

showed that for any α ∈ (0, 1) there exists η > 0 such that p̂(n, α,m) ≤ n−1/m−η, and
asked for the optimal η.

In the range α ∈ (1/2, 2/3), Bennett, Dudek, and Frieze [4] showed that p̂(n, α, 2) ≤
n−2/3(log n)1/3. This was improved and generalised by Dudek, Reiher, Ruciński, and
Schacht [9]. They showed that for α ∈ ( m

m+1 ,
m+1
m+2), not only Gα contains the m-th

power of a Hamilton cycle, but adding a linear number of random edges suffices to get
the (m+1)-st power, that is, p̂(n, α,m+1) = n−1. Nenadov and Trujić [14] then proved
that in fact, with α in the same range, this suffices for the (2m + 1)-st power and thus
p̂(n, α, 2m + 1) = n−1. They also conjectured that p̂(n, m

m+1 , 2m + 1) = n−1 log n for

α = m
m+1 . When α > 1/2, even higher powers have been studied by Antoniuk, Dudek,

Reiher, Ruciński, and Schacht [3], who proved that in many cases the threshold is guided
by the largest clique required from G(n, p).

Observe that the exact results obtained so far all deal with the range α ∈ (1/2, 1)
and already [3] asked for similar exact results for the case α ∈ (0, 1/2] and, in particular,
for m = 2. We give the first optimal results on the perturbed threshold of the square of
a Hamilton cycles for α ∈ (0, 1/2], answering the questions from [3] in a strong from.

Theorem 2 We have

p̂(n, α, 2) =

{
n−1 for α ∈ (13 ,

2
3) ,

n−1 log n for α = 1
3 .

Note that our result allows α ∈ (1/2, 1/3), but this was already covered in [9].
Theorem 2 has immediate consequences for the 2-universality of randomly perturbed
graphs, that is, the containment of all graphs of maximum degree two. Indeed, it is easy
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to see that the square of the Hamilton cycle on n vertices contains each n-vertex graph
with maximum degree two as a subgraph. This significantly strengthens one of our results
from [7] on the containment of a triangle factor under the same conditions, and is optimal
(see the discussion after Theorems 1.3 and 2.2 in [7]). The threshold for 2-universality in
randomly perturbed graphs was studied in [15], which showed that for α ∈ (0, 1/3) the

perturbed threshold is n−2/3. In G(n, p) alone, Ferber, Kronenberg, and Luh [10] showed

that the threshold is n−2/3(log n)1/3. Moreover, Aigner and Brandt [1] showed that for
α ≥ 2/3, the graph Gα is already 2-universal. Thus, our Theorem 2, together with these
results, fully solves the question for 2-universality in randomly perturbed graphs.

When α gets smaller than 1/3, the thresholds for the square of a Hamilton cycle and
that for 2-universality behave differently, as in the former case we need to increase the
probability to ensure that we can find many copies of the square of a short path (see
also the beginning of Section 2). However, we are still able to determine precisely the
perturbed threshold for the square of a Hamilton cycle for all remaining α.

Theorem 3 For any integer k ≥ 2 we have

p̂(n, α, 2) =

{
n−(k−1)/(2k−3) for α ∈ ( 1

k+1 ,
1
k ) ,

n−(k−1)/(2k−3)(log n)1/(2k−3) for α = 1
k+1 .

Observe that Theorem 2 is a direct consequence of Theorem 3 and [9]. In the next
section we provide an overview of the proof of this result and also explain what is the
intuition behind the probabilities appearing there. Our theorem shows that the perturbed
threshold p̂(n, α, 2), regarded as a function of α, exhibits countable many jumps at
α = 2/3 and α = 1/k for each integer k ≥ 2. Moreover for α tending to zero (i.e. for

k tending to infinity), p̂(n, α, 2) tends to n−1/2, which is precisely the threshold for the
square of a Hamilton cycle in G(n, p) alone as discussed above.

It would be interesting to investigate larger powers of Hamilton cycles for α ≤ 1/2.
A natural candidate to start with is the third power of a Hamilton cycle, for α ≥ 1/4

and p ≥ Cn−1/2. However, this seems to be a more challenging problem, as it requires
working with the square of a Hamilton cycle in G(n, p) at the threshold of appearance.

2 Proof overview

In this section we will sketch the proof of Theorem 3. We start with some notation,
discuss the idea of our embedding strategy and explain how this leads to the threshold
probabilities given in Theorem 3. We then turn to the arguments for the lower bound
on p̂(n, α, 2), and afterwards split the upper bound into two theorems depending on the
structure of the dense graph Gα.

Let F be the square of a path P 2
k with vertices v1, v2, . . . , vk and edges vivj , 1 ≤

|i − j| ≤ 2. We call (v1, v2) the start-tuple of F and (vk−1, vk) the end-tuple of F . We
also refer to vi as the i-th vertex of F . Given k ≥ 2, α, p ∈ [0, 1], and any n-vertex
graph G with minimum degree αn, we want to find the square of a Hamilton cycle C2

n

in the graph G ∪ G(n, p). We now describe a decomposition of the edges of the square
of a long path or a cycle into deterministic edges (to be embedded to G) and random
edges (to be embedded to G(n, p)) that we will use in our proof(s). We would like vertex
disjoint copies F1, . . . , Ft of the square of a path on k vertices P 2

k in the random graph
G(n, p) such that the following holds. For each i = 1, . . . , t − 1, if we denote by (xi, yi)
and (ui, wi) the start-tuple and end-tuple of Fi, then wixi+1 is also an edge in G(n, p).
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Moreover, there exist t− 1 additional vertices v1, . . . , vt−1 such that, for i = 1, . . . , t− 1,
all four edges viui, viwi, vixi+1, viyi+1 are edges in G. This gives the square of a path on
t(k + 1) − 1 vertices with edges of G ∪ G(n, p). Note that by requiring the edge wtx1
from G(n, p) and adding another vertex vt joined to ut, wt, x1, y1 in G, we get the square
of a cycle on t(k + 1) vertices. In order to find C2

n and for some technical reasons, our
proof(s) will allow some of F1, . . . , Ft to be the squares of paths of different lengths.

This decomposition already justifies the probabilities that appear in Theorem 3.
Indeed, n−(k−1)/(2k−3) is the threshold in G(n, p) for a linear number of copies of P 2

k (by

a standard application of Janson’s inequality), while n−(k−1)/(2k−3)(log n)1/(2k−3) is the
threshold in G(n, p) for the existence of a P 2

k -factor (this follows from a general result of
Johannson, Kahn, and Vu [11]).

2.1 Lower bounds

For any α ∈ (0, 1/2), let Hα be the complete bipartite n-vertex graph with vertex classes
A and B of size αn and (1 − α)n, respectively. We start with a sketch for the lower
bound on p̂(n, α, 2) for α ∈ ( 1

k+1 ,
1
k ). We want to argue that for some constant c ∈ (0, 1)

depending on α and p ≤ cn−(k−1)/(2k−3) a.a.s. Hα ∪ G(n, p) does not contain C2
n. In B

there are a.a.s. at most 2cn copies of P 2
k (by an upper tail bound on the distribution of

small subgraphs [18]) and at most o(n) copies of P 2
k+1 (by the first moment method). On

the other hand, in any embedding of C2
n into Hα∪G(n, p), an α-fraction of the vertices is

mapped into A and, because of the bound on the number of P 2
k+1 in B, two such vertices

can only rarely be of distance more than k + 1. From this it follows that there are at
least 1−αk

2 n copies of P 2
k in B, which is a contradiction if c < 1−αk

4 .

We argue similarly for the lower bound of p̂(n, 1
k+1 , 2). We show that with p ≤

1
2n

−(k−1)/(2k−3)(log n)1/(2k−3) a.a.s. H1/(k+1) ∪ G(n, p) does not contain C2
n. Indeed, in

this regime with c = 1
2k , a.a.s. (by the first moment method) at least n1−2c vertices from

B are not contained in any copy of P 2
k within B and B contains at most n1−c copies

of P 2
k+1. Therefore, in any embedding of C2

n, the distance between two vertices mapped

into A can only n1−c often be larger thank k + 1, but exactly one in k + 1 vertices is
mapped into A. This implies that all but n1−c vertices from B are contained in a copy
of P 2

k within B, which gives a contradiction.

2.2 Stability

In turns out that the additional (log n)1/(2k−3)-term in p̂(n, 1
k+1 , 2) is only necessary if

the deterministic graph G is really close to H1/(k+1). The next definition formalises what
we mean by close.

Definition 4 For α, β > 0 we say that an n-vertex graph G is (α, β)-stable if there exists
a partition of V (G) into two sets A and B of size |A| = (α± β)n and |B| = (1−α± β)n
such that the minimum degree of the bipartite subgraph G[A,B] of G induced by A and
B is at least 1

4αn, all but at most βn vertices from A have degree at least |B| − βn into
B, all but at most βn vertices from B have degree at least |A| − βn into A, and G[B]
contains at most βn2 edges.

We can prove the following stability version for the upper bound on p̂(n, 1
k+1 , 2) in

Theorem 3.
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Theorem 5 For every k ≥ 2 and every 0 < β < 1
6k , there exists γ > 0 and C > 0

such that the following holds. Let G be any n-vertex graph with minimum degree at least
( 1
k+1 − γ)n that is not ( 1

k+1 , β)-stable. Then a.a.s. G ∪G(n, p) contains the square of a

Hamilton cycle, provided that p ≥ Cn−(k−1)/(2k−3).

Only when the graph G is stable we need the (log n)1/(2k−3)-term. This case is treated
by the following theorem.

Theorem 6 For every k ≥ 2 there exists β > 0 and C > 0 such that the following
holds. Let G be any n-vertex graph with minimum degree at least 1

k+1n that is ( 1
k+1 , β)-

stable. Then a.a.s. G ∪ G(n, p) contains the square of a Hamilton cycle, provided that

p ≥ Cn−(k−1)/(2k−3)(log n)1/(2k−3).

We sketch the ideas for the proof of these two theorems in the following two subsec-
tions. Together with the lower bounds, Theorem 5 and 6 imply Theorem 3.

2.3 Extremal case

We now sketch the proof of Theorem 6. Suppose that G is an n-vertex ( 1
k+1 , β)-stable

graph, and let p ≥ C(log n)1/(2k−3)n−(k−1)/(2k−3). From the stability we get a partition
A ∪ B of V (G) as in Definition 4. We would like to embed copies Fi of P

2
k into B and

vertices vi into A, as described in the decomposition above. However this is only possible
if |B| = k|A| and, therefore, we first embed squares of short paths of different lengths
to ensure this is the case. Moreover, we cover similarly all vertices in A and B that do
not have high degree to the other part. Then we cover the remaining vertices in B with
copies of P 2

k , which is possible by [11] with our p. We let F be the set of the copies
of squares of paths that we obtain during these steps and for each F ∈ F , denote its
start-tuple by (xF , yF ) and its end-tuple by (uF , wF ).

To turn this into an embedding of the square of a Hamilton cycle, we now reveal
additional edges of G(n, p) and encode this in an auxiliary directed graph T on vertex
set F as follows. There is a directed edge (F, F ′) if and only if the edge wFxF ′ appears
in G(n, p). It is easy to see that all directed edges in T are revealed with probability p
independently of all the others and, therefore, with [2], we can find a directed Hamilton

cycle
−→
C in T . We finally match to each edge (F, F ′) of

−→
C a vertex v ∈ A not yet covered

by any F ∈ F such that uF , wF , xF ′ , yF ′ are all neighbours of v in the graph G. Owing to
the minimum degree conditions, this easily follows from Hall’s matching theorem. Thus
we get the square of a Hamilton cycle, as desired.

2.4 Non-extremal case.

We now turn to the proof of Theorem 5. Assume that G is not ( 1
1+k , β)-stable and

let p ≥ Cn−(k−1)/(2k−3). After applying the regularity lemma to G, with the help of a
variant of [7, Lemma 4.4] is not hard to show that the reduced graph R can be vertex-
partitioned into copies of stars K1,k and matching edges K1,1, such that there are not too
many stars. We would like to cover each such star and matching edge with the square
of a Hamilton path, and then connect these paths to get the square of a Hamilton cycle.
However since we do not have an additional log-term in p, we need the centre cluster of
each star to be larger than the other clusters. Moreover, to ensure that we can connect
the Hamilton paths, we need to setup some connections between the stars and matching
edges in advance.
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Therefore, we first remove some vertices from the leaf cluster of each star to make
it unbalanced and ensure that all pairs are super-regular. We then label the stars and
matching edges arbitrarily as S1, . . . , Ss and for i = 1, . . . , s find the square of a short
path, that we denote by Qi, with start- and end-tuple in leaf clusters of Si and Si+1

(where indices are modulo s). We let V0 be the sets of vertices not any more contained
in any of the stars or matching edges. We cover V0 by appending its vertices to the
paths Qi. Here we use that any vertex v ∈ V0 has degree at least ( 1

k+1 − α)n in G and,
as we do not have too many stars, v has also many neighbours in some clusters which
are not centres of stars. This is crucial to ensure that in each star the centre cluster from
each star remains large enough in comparison to the leaf clusters.

Then, for any star Si, we connect the end-tuple of Qi−1 with the start-tuple of Qi

while covering all vertices in all clusters of Si. We emphasise again that, since our p
does not have log-terms, this is only possible since each centre cluster is larger than the
leaf-clusters and so we do not need to cover all vertices in the leaf clusters with copies
of P 2

k . For any matching edge Si, we split its clusters and obtain two stars K1,k that also
allow us to connect Qi−1 to Qi and covering all vertices of Si, as before. This gives the
square of a Hamilton cycle in G ∪G(n, p) we wanted.

References

[1] M. Aigner and A. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math.
Soc. (2) 48 (1993), no. 1, 39–51.

[2] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings,
J. Comput. System Sci. 18 (1979), no. 2, 155–193.
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