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The Goldie Equation: III. Homomorphisms from functional equa-
tions

N. H. Bingham and A. J. Ostaszewski

Abstract. This is the second of three sequels to (Ostaszewski in Aequat Math 90:427–448,
2016)—the third of the resulting quartet—concerning the real-valued continuous solutions
of the multivariate Goldie functional equation (GFE) below of Levi–Civita type. Following
on from the preceding paper (Bingham and Ostaszewski in Homomorphisms from Func-
tional Equations: II. The Goldie Equation, arXiv:1910.05816), in which these solutions are
described explicitly, here we characterize (GFE) as expressing homomorphy (in all but some
exceptional “improper” cases) between multivariate Popa groups, defined and characterized
earlier in the sequence. The group operation involves a form of affine addition (with local
scalar acceleration) similar to the circle operation of ring theory. We show the affine action in
(GFE) may be replaced by a general continuous acceleration yielding a functional equation
(GGE) which it emerges has the same solution structure as (GFE). The final member of
the sequence (Bingham and Ostaszewski, The Go�ląb–Schinzel and Goldie functional equa-
tions in Banach algebras, arXiv:2105.07794) considers the richer framework of a Banach
algebra which allows vectorial acceleration, giving the closest possible similarity to the circle
operation.

Mathematics Subject Classification. 26A03, 26A12, 33B99, 39B22, 62G32.

1. Introduction

We begin by recalling the classic Go�ląb–Schinzel equation

η(x + η(x)y) = η(x)η(y) (x, y ∈ X) (GS)

for X = R. Interpreted in the context of a real topological vector space X,
the continuous solutions of (GS) are in one of the following two forms, both
generalizing those for X = R. One is

η(x) = 1 + ρ(x) (x ∈ X),

for some continuous linear functional ρ : X → R. The other is

η(x) = max{1 + ρ(x), 0} (x ∈ X).
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(This is the Brillouët–Dhombres–Brzdęk theorem [17, Prop. 3], [18, Th. 4]; cf.
[19].) Significantly for us, the latter form is non-negative. We assume hence-
forth that ρ �= 0.

Next, recall from algebra the circle operation of ring theory (see e.g. Jacob-
son [Jac1951], II.3), which in a ring identifies the elements which have inverses,
and so form a group:

a ◦ b:=a + b − ab.

Analogously, a Popa group on a real topological vector space X is obtained
from a given ρ ∈ X∗, a continuous linear map ρ : X → R, by defining

u ◦ρ v:=u + v + ρ(u)v = u + ηρ(u)v,

where

ηρ(u):=1 + ρ(u). (ηρ)

This equips

G
+(X) = Gρ(X):={x ∈ X : ηρ(x) > 0}

with a group structure. (Below the notation G
+(X) is useful whenever context

dictates that ηρ or some similar function, such as h below, is to be positive.) Its
significance for (GS) was first recognized by Popa [36]. Its explanatory power
as a fundamental tool in the study of regular variation is witnessed in several
papers (both joint [6–11] and separate [32–35]) and especially in combination
with shift-compactness – see [14] and the survey [15]; cf. [5].

We recall the associated Goldie functional equation, originally of (univari-
ate) regular variation [7] for the pair (K, g):

K(u ◦ρ v) = K(u) + g(u)K(v) (u, v ∈ Gρ(X)), (GFE)

where now with g : X → R+:=[0,∞), K : Gρ(X) → Y, for Y again a real
topological vector space, and with both functions continuous.

Given the pair, K is called the kernel, g the (outer) auxiliary function
of the kernel, following usage in regular variation theory, where this equation
plays a key role, see e.g. [12]. It is helpful to view g as an action imparting
local acceleration to the action of addition. The equation is a special case of
the Levi-Civita functional equation [30], [38, Ch. 5] (for the wider literature,
see [2, Ch. 14, 15]), usually studied on semi-groups (cf. [39]). We shall also
study the generalized Goldie equation for the triple (K,h, g), now with inner
and outer auxiliaries:

K(u + h(u)v) = K(u) + g(u)K(v) (u, v ∈ G
+(X)), (GGE)

with g, h : X → [0,∞), K : X → Y and all three continuous with

G
+(X) = G

+
h (X):={x ∈ X : h(x) > 0},
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using analogous notation. It emerges in Lemma 8.1 that h here may be replaced
by g (i.e. briefly, that G

+
h (X) = G

+
g (X)).

When ρ ∈ X∗ is fixed, (GGE) reduces to (GFE) for u, v ∈ Gρ(X) when

h(u) = ηρ(u) = 1 + ρ(u).

For fixed ρ ∈ X∗,K : Gρ(X) → Y and a given continuous linear map
σ : Y → R, take g(u) = gσ(u), for u ∈ Gρ(X), where

gσ(u):=ησ(K(u)) = 1 + σ(K(u)). (gσ)

Then (GFE) for (K, g) reduces to the Popa homomorphism [9] from Gρ(X)
to Gσ(Y ) :

K(u ◦ρ v) = K(u) ◦σ K(v) (= K(u) + K(v) + σ(K(u))K(v)).

Main Theorems. These are as follows:
(i) The first is Theorem 7.2, asserting that a continuous solution (K, g) of
the Goldie equation (GFE) defined on a Popa group Gρ(X) of a (topological
vector) space with values in a space Y is a homomorphy into a Popa group
Gσ(Y ) (with σ defined by g so that g = gσ), unless the range R(K) collapses
to the image of the null space of ρ, K(N (ρ)).
(ii) The second is Theorem 8.1, asserting that a continuous solution (K,h, g)
of the generalized equation (GGE) is a homomorphy between Gρ and Gσ with
ρ and σ defined respectively by h and g; thus (GGE) reduces to (GFE).

Key to the two results is Theorem 3.1, which asserts that in each case the
kernel K maps any vector u in its domain radially to its multiple λ(u)u and
further identifies the linking function λ(.).
Notational convention: Throughout below, X,Y are fixed real topological vec-
tor spaces; ρ ∈ X∗ may either be given in advance, or specifically constructed.
For given ρ ∈ X∗, we say that the pair (K, g) satisfies (GFE) to mean that
g : X → R+:=[0,∞), K : Gρ(X) → Y, with both functions continuous, and
that (GFE) is satisfied by the pair (K, g). Always, ‘(GFE)’ will imply the
presence of a given ρ ∈ X∗ and the corresponding domain-restriction to Gρ(X).

Likewise, we say that the triple (K,h, g) satisfies (GGE) to mean that
g, h : X → R+, K : X → Y, with all three functions continuous and that the
relation (GGE) is satisfied by the triple (K,h, g). In Sect. 8 it is shown that
this implies that the inner auxiliary h is given by (ηρ) above for some ρ.

For (fixed ρ ∈ X∗ and) a given pair (K, g) satisfying (GFE) the existence
theorem, Theorem 7.2 below, asserts that, unless the range R(K) collapses
to K(N (ρ)), there exists a unique linear σ = σg : Y → R with g = gσ as
in (gσ) above, which is continuous provided the range K(Gρ(X)) is a closed
complemented subspace of Y (see §7). The argument is involved and begins
by establishing necessary and sufficient conditions on any such g : X → R+

that there exists a linear σ : Y → R with g = gσ as above. In an interme-
diate step (see Proposition 7.1A and 7.1B) we deduce that, unless the range
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R(K) collapses to K(N (ρ)), such a σ always exists and is unique, so that we
may refer to it as σg, and that this σg is continuous provided K(Gρ(X)) is
a closed complemented subspace of Y. The result thus extends to continuous
functions on arbitrary linear domains the one-dimensional homomorphy first
recognized in [34, Th. 1].

It emerges that intersections of the null spaces of various additive maps on
X are of central significance. So, given g : X → R+, we put for x ∈ G

+
g (X)

γ(x):= log g(x),

and for additive α : Gρ(X) → R we write

N (α):={x ∈ X : α(x) = 0}, N ∗(α):=N (α) ∩ N (ρ);

of particular interest here is

N ∗(γ):=N (γ) ∩ N (ρ) = {x : g(x) = 1} ∩ N (ρ).

So we begin in Sect. 2 with a study of the auxiliary function g corresponding
to a given pair (K, g) satisfying (GFE), leading us to Theorem 2.1, which
we view as establishing an index (cf. [11]). Section 3, prompted by the radial
properties of Popa homomorphisms established in [12], asserts in Theorem
3.1 analogous radiality properties of (GFE) kernels. The proof is delayed to
Sect. 5, after establishing in Sect. 4 the density of sets canonically modelling
the rationals m/n by appropriate ‘steering’ of m-fold g- or h-actions applied
to u/n and computing related limits. This radiality implies (Corollary 6.2)
that any kernel K : Gρ(X) → Y satisfies a dichotomy involving the null spaces
N (ρ) and N (α) for α : Gρ(X) → R an arbitrary additive map. The dichotomy
concerning the two null spaces arises because two hyperplanes passing through
the origin (representing the two null spaces) have intersection either with co-
dimension 1, when they coincide, or 2 otherwise.

In Sect. 7 we induce a Popa group structure on the range space Y and
prove our first main result, Theorem 7.2, on the existence of an appropriate
functional σ ∈ Y ∗ for transforming the right-hand side of (GFE) into the
circle operation associated with Gσ(Y ). Section 8 is devoted to establishing a
reduction to (GFE) of the more general Goldie functional equation (GGE)
above, wherein the accelerated summation u + h(u)v on the left-hand side of
(GGE) replaces the Popa operation u ◦ρ v. The argument of Sect. 8 relies on
radial behaviours and on reducing a known ‘pexiderised variant’ 1 of (GS) to
(GS) itself, with a resulting tetrachotomy of possible Popa homomorphisms in
any direction u ∈ X; the latter foursome can be interpreted as arising from the
binary split into the vanishing or non-vanishing of Gateaux derivatives (along
the radial direction u) of h and g, whose existence follows from h satisfying
(GS) and g satisfying the pexiderized equation (PGS) (see Sect. 8). For the

1 That is, additional function symbols replace instances in the functional equation (GS) of
the function symbol of primary interest.
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convenience of the reader we have chosen occasionally to omit simple routine
checks, acknowledging as much; however, all such steps have been verified by
us in the earlier arXiv publication.

2. Auxiliary functions: multiplicative property

We learn from Lemma 2.1 that the auxiliary function g of a kernel is ρ -
multiplicative in the sense of (M) below, and so the corresponding γ = log g
(see above) is ρ-additive. When context permits we omit the prefix.

Lemma 2.1 (cf. [9], [37, Prop. 5.8]). If (K, g) satisfies (GFE) and K is non-
zero, then g is ρ-multiplicative:

g(u ◦ρ v) = g(u)g(v) (u, v ∈ Gρ(X)), (M)

and so γ = log g is ρ-additive:

γ(u ◦ρ v) = γ(u) + γ(v) (u, v ∈ Gρ(X)). (A)

Fix u �= 0. For t ∈ R, if g(tu) �= 1 except at t = 0, then g(tu) takes one of
two forms:

g(tu) =
{

(1 + tρ(u))γ(u)/ log(1+ρ(u)), ρ(u) > 0,
eγ(u)t, ρ(u) = 0.

Proof. To deduce (M) use the two ways to associate the three variables in
K(u ◦ρ v ◦ρ w); we omit the routine details. Put gu(t):=g(tu); then
gu : Gρ(u)(R) → R+ and satisfies (M) on the real line. This case is covered
by established results, e.g. [9] or Th. BO below, yielding for some κ(u)

gu(t) = (1 + ρ(u)t)κ(u)/ρ(u),

whence the cited formulas. �

Remark. In §3 below we encounter the link function λ, and with it λu, in terms
of which we will be able to write, in view of Theorem 3.1,

Ku(tu):=λu(t)K(u). (K)

Then, for K(u) �= 0,

λu(s ◦ρ t) = λu(s) + g(su)λu(t)

whence, from the context of the reals in [9], Ku(tu) is proportional to one of
the two forms {

[(1 + tρ(u))γ(u) − 1], if ρ(u) > 0,
[eγ(u)t − 1], if ρ(u) = 0.

This is implied by Lemma 6.1, itself a corollary of Theorem 2.1 below.
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The radial case gu of Lemma 2.1 shows that we need not restrict to scalars.
We can further describe g(x) explicitly by studying its associated index γ(x),
to borrow a term from extreme-value theory (EVT), for which see e.g. [11],
[25, p. 295]. Below we distinguish between linearity (in the sense of vectors
and scalars), which γ exhibits only on N (ρ), and its more general property of
ρ-additivity. To see the difference note that, for distinct u and w with ρ(u) = 1
and ρ(w) = 1 (so that w − u ∈ N (ρ)), taking x = tw in the first display in
Theorem 2.1 below gives

g(tw) = g(x) = etγ(w−u)(1 + t)γ(u)/ log 2 = (1 + t)γ(w)/ log 2 :

etγ(w−u) = (1 + t)[γ(w)−γ(u)]/ log 2.

We thus think of the following result as an Index theorem.

Theorem 2.1. For (K, g) satisfying (GFE), the auxiliary function g is ρ -
multiplicative and its index ρ-additive.

So, as in Lemma 2.1, for any u with ρ(u) = 1,

g(x) = eγ(x−ρ(x)u)(1 + ρ(x))γ(u)/ log 2 (x ∈ Gρ(X)),

where, for γ = log g,

α(x):=γ(x − ρ(x)u)

is linear and α(u) = 0.
Conversely, for any α : Gρ(X) → R additive and β a real parameter, the

following function is multiplicative (satisfies (M)):

ḡ(x) = ḡα,β(x):=eα(x)(1 + ρ(x))β .

Proof. By Lemma 2.1, γ satisfies (A). So γ : Gρ(X) → G0(R) = (R,+). Here
γ(N (ρ)) ⊆ R = N (0). By a theorem of Chudziak [22, Th. 1] as amended in
[12, Th. Ch., Th. 4A], for any u with ρ(u) = 1,

γ(x) = γ(x − ρ(x)u) + [γ(u)/ log 2] log[(1 + ρ(x))],

g(x) = eγ(x−ρ(x)u)(1 + ρ(x))γ(u)/ log 2.

Then, taking x = tu ,

g(tu) = (1 + t)γ(u)/ log 2,

as by linearity ρ(tu) = t. For w with ρ(w) > 0, take u = w/ρ(w). Then

g(tw) = g(tρ(w)u) = (1 + tρ(w))γ(u)/ log 2.

On the other hand, for w with ρ(w) = 0,

g(tw) = eγ(w)t.

Given the form of ḡ, it is routine to check that (M) holds; we omit the details.
�
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Lemma 2.2. For continuous (K, g) satisfying (GFE) and γ = log g,N (γ) is a
subgroup of Gρ(X), and N ∗(γ) is both a vector subspace and a Gρ(X)-subgroup
of N (ρ).

Proof. By Lemma 2.1, γ is additive on Gρ(X) and so linear on N (γ), by
continuity of γ. The remaining assertions are clear. �

3. Radiality

We write 〈v〉 for the linear span of a vector v, in X or Y . For u ∈ Gρ(X), we
write

〈u〉ρ:=〈u〉 ∩ Gρ(X) = {tu : t ∈ R, 1 + ρ(tu) > 0}.

Our main result here and our later tool is Theorem 3.1 below. This asserts
radiality, the property that the kernel function maps the points along 〈u〉 to
points along 〈K(u)〉, and, furthermore, specifies precisely the linkage between
the originating vector tu and its image K(tu) = λu(t)K(u), as in (K). The
dependence is uniform, through one and the same link function λ (below) but
with its continuously varying parameters referring to what we term informally
the growth rates (below) of the two auxiliaries along u at the origin. We use
either the notation λ(t; r, θ) which identifies the parameters explicitly, or λu

when the parameters are implied by the direction u.
To state it in a form adequate to cover both (GFE) and (GGE), we need

several definitions and a lemma. Notice that (GGE) implies that

K(h(0)v) = K(0) + g(0)K(v),

so if h(0) = 0 and g(0) �= 0, the map K is trivial; similarly, if g(0) = 0
and h(0) �= 0, since Theorem 3.1 below asserts that K(tv) = λ(t)K(v) for
some monotone function λ (strictly monotone if K(v) �= 0). Thus without
loss of generality (briefly, w.l.o.g.) we standardize the auxiliary functions in
(GGE), by taking h(0) = g(0) = 1. This then coincides with the corresponding
conditions for (GFE) in Theorem 2.1. It now easily follows that K(0) = 0,
since

K(0) = K(0 + h(0)0) = K(0) + g(0)K(0).

Definition. 1. Following Th. 2.1 above, taking as parameters r � 0, θ ∈ R, the
standard multiplicative radial function gr,θ(t) is defined for t > −1/r (the
latter interpreted for r = 0 as −∞) by

gr,θ(t):=
{

(1 + tr)θ/r, if r > 0,
eθt, if r = 0.

Thus gr,θ is Gateaux differentiable at t = 0. This definition blends two possible
instances of the function ḡ of Theorem 2.1 consistently with the L’Hospital
convention (as g0,θ = limr↘0 gr,θ), constantly applied below implicitly.
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2. Taking again as parameters r � 0 and θ ∈ R, we define below the function
λ(t; r, θ) for t > −1/r (where for r = 0, we interpret −1/r as −∞), which we
call the Popa link function on account of its role in Theorem 3.1 below:

λ(t) = λ(t; r, θ) :=

⎧⎪⎪⎨
⎪⎪⎩

[(1 + rt)θ/r − 1]/[(1 + r)θ/r − 1], if r > 0, θ �= 0,
ln(1 + rt)/ ln(1 + r), if r > 0, θ = 0,
(etθ − 1)/(eθ − 1), if r = 0, θ �= 0,

t, if r = θ ∈ {0,±∞}.
(†)

This function first arises in the context of (GFE) as a map Gr(R) → R

with parameters r, θ and where λ satisfies an analogous equation (GFEλ)
below. But as it plays an equivalent role in (GGE), it is convenient to derive
its properties in the more general setting. Its key elementary properties are
summarized in the following lemma; see also Lemma 8.4.

Lemma 3.1. For r ∈ [0,∞), θ ∈ R, the Popa link function λ is separately
continuous in t and in its parameters, with λ(0) = 0 and λ(1) = 1, and satisfies
the equation

λ(s ◦r t) = λ(s) + gr,θ(s)λ(t) (s, t ∈ Gr(R)), (GFEλ)

equivalently

λ(s ◦r t) = λ(s) ◦σ λ(t), for σ = gr,θ(1) − 1.

Except for r = θ = 0, the equation λ(t) = t has a unique solution t = 1.

Proof. Routine: we omit the details. �

The main result of this section is Theorem 3.1 below, asserting the radiality
property of the kernel function in (GFE) and (GGE) that, for some scalar
function λ = λu which we determine,

K(su) = λ(s)K(u) for s � 0.

It is convenient to use notation bringing together some arguments common to
g and h. Put

δn(u) :=δg
n = g(u/n) − 1, or δh

n = h(u/n) − 1,

γg(u) := limn nδg
n(u), and γh(u) = limn nδg

n(u),

whenever these limits exists, possibly ±∞.

In the context h(u) = 1 + ρ(u) of (GFE), we obtain nδh
n = ρ(u), so that

γh(u) = ρ(u). Recall from §2 that γ = log g; here g(su) = eγ(su) gives γg(u) =
γ(u), motivating the common notation.
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Theorem 3.1. If (K,h, g) satisfies (GGE) with K, g, h continuous and

nδg
n(u) → γg(u) ∈ R and nδh

n → γh(u) ∈ R,

then for u with K(u) �= 0

K

(
eγh(u)t − 1

γh(u)
u

)
=

eγg(u)t − 1
eγg(u) − 1

K

(
etγh(u) − 1

γh(u)
u

)
.

In particular, if γg(u) = γh(u), then

K(tu) = tK(u) (t ∈ R).

This applies also if one or other limit is infinity, both then being equal. Fur-
thermore, the usual L’Hospital convention applies when either of the limits
γg(u), γh(u) is zero. Thus

K(tu) = λu(t)K(u) for λu(t):=λ(t; γh(u), γg(u)). (Rad)

In particular, K is Gateaux differentiable in direction u:

K ′(tu) = λ′
u(t)K(u),

and the function λu satisfies a corresponding scalar (GGE):

λu(s + h(su)t) = λu(s) + gγg(u),γh(u)(su)λu(t).

The proof, based on Lemma 4.1 below, must be delayed until after a series
of limit calculations ending in Proposition 4.3. These rest only on the assump-
tion that g and h are continuous. A stronger assumption (invoking Gateaux
differentiability of g and h at 0) allows a much shorter proof, directly from
Lemma 4.1; see §9.4 (Appendix) in the arXiv version.

We will refer informally to the limits γg(u) and γh(u) above as the growth
rates of g and h.

4. Density preliminaries for Theorem 3.1

The general approach of using a dense set to identify an unknown function is
familiar (see [1, Ch. 2, Ch. 6]), although here it is more involved, in view of
only a latent group structure (cf. [37]). Our first step is Lemma 4.1 for which
we need a definition. This is phrased with a view to generalizations beyond
real-valued functions, allowing for (GFE) to be interpreted also in a Banach
algebra setting, cf. [13].

Definition. The polynomials and rational polynomials (in the indeterminate
x) ℘n and [℘m/℘n] for m,n ∈ N are defined by:

℘m(x):=1 + x + ... + xm−1, [℘m/℘n](x):=℘m(x)/℘n(x).

So ℘m(1) = m, and so [℘m/℘n](1) = m/n, and also ℘m(t) = (tm − 1)(t − 1)−1

when t − 1 is invertible.
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Lemma 4.1. If (K,h, g) satisfies (GGE), then for u with K(u) �= 0 :

K(℘m(h(u/n))u/n) = ℘m(g(u/n))K(u/n), (∗)

K(℘m(h(u/n))u/n) = [℘m/℘n](g(u/n))K(℘n(h(u/n))u/n). (∗∗)

Proof. For x, y ∈ X, and z an indeterminate ranging over either R (as here)
or a unital commutative Banach algebra A (as in [13]), put

x ◦z y:=x + yz.

Starting from u and v:=K(u), we define a pair of sequences of ‘powers’, by
iterating the operation ◦z for respectively z = h(u) and z = g(u). These
iterates are defined inductively:

un+1
h = u ◦h(u) un

h, vn+1
g = v ◦g(u) vn

g , with u1
h = u, v1

g = v.

Then, for n � 1,

K(un+1
h ) = K(u) + g(u)K(un

h) = K(u)n+1
g = vn+1

g . (∗ ∗ ∗)

Motivated by the case

K(u2
h) = K([1 + h(u)]u) = K(u) + g(u)K(u) = [1 + g(u)]K(u),

the recurrence (∗ ∗ ∗) justifies associating with the iterates above sequences of
‘coefficients’ (gn(.)), (hn(.)), by writing

vn
g = gn(u)K(u), un

h = hn(u)u : K(hn(u)u) = gn(u)K(u).

Solving appropriate recurrences arising from (∗∗∗) for the iterations un+1
h =

u ◦h un
h and vn+1

g = v ◦g vn
g gives

un
h = hn(u)u, and vn

g = gn(u)K(u),

where

hn(u):=℘n(h(u))=

{
h(u)n−1
h(u)−1 , h(u) �= 1,

n, h(u) = 1,

gn(u):=℘n(g(u))=

{
g(u)n−1
g(u)−1 , g(u) �= 1,

n, g(u) = 1.

Note that gm(u/n) �= 0, since g(u/n)m = 1 implies gm(u/n) = m/n. Re-
placing n by m and u by u/n yields (∗) above. Hence

K(hm(u/n)u/n) = gm(u/n)K(u/n) = gm(u/n)gn(u/n)−1K(hn(u/n)u/n),

giving (∗∗) above. �
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By Lemma 4.1 above for any m,n ∈ N

K(hm(u/n)u/n) = gm(u/n)K(u/n).

Taking m = kn and, separately, m = k̄n gives

K(uhkn(u/n)/n) = gkn(u/n)K(u/n) and K(uhk̄n(u/n)/n) = gk̄n(u/n)K(u/n).

Eliminating K(u/n) gives, as gk̄n(u/n) �= 0 (see above),

K(uhkn(u/n)/n) = gkn(u/n)gk̄n(u/n)−1K(uhk̄n(u/n)/n).

We will deduce the radiality property from this equation by studying the sets

Qg:={gkn(u/n) : n ∈ N, k > 0}, Qh:={hkn(u/n) : n ∈ N, k > 0},

which it emerges are dense in [0,∞). The terms in both sets take the form

qn(k):=
(1 + δn)kn − 1

nδn
> 0,

where respectively, as above,

δn = δg
n = g(u/n) − 1, or δh

n = h(u/n) − 1,

both of which tend to 0 (by the continuity of g and h at 0). We put

Q:={qn(k) : n ∈ N, k > 0}.

Writing m = kn and noting that for δn �= 0

(1 + δn)m − 1
nδn

=
m

n
+

δn

n
cm
2 + ... +

δm−1
n

n
,

we may again use the L’Hospital convention to interpret qn(k) as m/n = k
whenever δn = 0. In Proposition 4.1 below, we show that Q is dense in [0,∞)
when the sequence nδn is convergent. See the Remark immediately below for
the significance of this assumption in terms of differentiability. The proof of
density is achieved by identifying

(k):= lim
n→∞ qn(k),

which emerges as a simple increasing continuous injection for k > 0. This gives
an immediate way of steering qn(k) into approaching any point s of [0,∞) by
use of the inverse function k(s) of (k). We call k(s) a steering function.

If nδn is divergent to ±∞, the proof for Proposition 4.2 offers a more
complicated steering function for approaching through Q all the points s of
[0,∞).

By taking limits relative to an appropriate subset N′
u ⊆ N, we may arrange

that each of the sequences {nδg
n}n∈N′

u
and {nδh

n}n∈N′
u

is either convergent or
divergent. There is thus no loss of generality in assuming below that N

′ =
N. We apply these results in Proposition 4.3 to prove the promised radiality
property of continuous solutions (K, g, h) of the (GGE), and as corollaries
compute the forms that the radial link function may take.
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Remark. For g, h the auxiliaries of the Goldie equation with g(0) = h(0) =
1, the case(s) under Proposition 4.1 below corresponds to a differentiability
assumption. Thus, for example,

g(u/n) = 1 + δn,

g′(0) = lim
n→∞

g(u/n) − 1
1/n

= lim
n

nδn = γg(u),

g(tu) = 1 + tγg(u) + o(t).

Proposition 4.1. Assume δn → 0 with γ:= limn nδn ∈ R. Then

(k) := lim
n

qn(k) =
ekγ − 1

γ
, with steering provided by

k(s) :=
log(1 + sγ)

γ
.

The case γ = 0 falls under the L’Hospital convention as (k) = k with inverse
k(s) = s. Given these assumptions, Q is dense in R+.

Remarks. The case γ = 0 requires separate proof. Since (k) is a (non-constant)
continuous function of k, its range is an interval J, and so the set Q is dense
in J.

Proof of Proposition 4.1. Put γn:=nδn.

Case 1. γn → γ �= 0. Here

qn(k):=
(1 + γn

n )kn − 1
γn

→ (k):=
ekγ − 1

γ
= k +

1
2
γk2 + ....

So (0+) = 0 and ′(k) = ekγ > 0. Hence {(k) : k � 0} = [0,∞), so that
{qn(k) : n, k > 0} forms a dense set.

Case 2. γn = nδn → 0. Expanding log(1 + t) around t = 0 gives

log(1 + t) = t
1

1 + d(t)
,

for some d(t) between 0 and t. Take t = δn, so that d(δn) → 0, and put

kn:=
k

1 + d(δn)
→ k, and tn:=kn log(1 + δn).

Then

tn = nδnkn.

Likewise expanding exp(t) around t = 0 :

exp(t) = 1 + tep(t),
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for some p(t) between 0 and t, gives

qn(k) =
(1 + δn)kn − 1

nδn
=

exp(kn log(1 + δn)) − 1
nδn

=
tnep(tn)

nδn
= knep(tn) → ke0 = k,

since nδnkn → 0. That is,

(k) = k,

as asserted, and again Q is dense in [0,∞). �
Proposition 4.2. Assume δn → 0 with limn nδn = ±∞. Then Q is dense in
[0,∞) and the steering functions

kn(s) :=
log(1 + snδn)
n log(1 + δn)

secure a sequence in Q approaching s.

Proof. In view of the denominator oddness in δn, it suffices to consider the
case when nδn → +∞. Furthermore, it suffices to consider the density of

q̄n(k) =
(1 + δn)kn

nδn
,

since under the current assumptions

q̄n(k) − qn(k) =
1

nδn
→ 0.

We put

rk(n) = log q̄n(k) = kn log(1 + δn) − log(nδn),

which reduces the density consideration of Q in [0,∞) to that of Q̄:={rk(n) :
n ∈ N, k > 0} in R. For any r ∈ R, consider any n with r+log nδn > 0. Solving
r = rk(n) for k gives a steering function

k = κn(r):=
(r + log nδn)
n log(1 + δn)

> 0.

That is, any r ∈ R is achieved as being exactly rk(n) ∈ Q̄ for any n by the
choice k = κn(r) > 0, since

rk(n) = log q̄n(κn(r)) =
(r + log nδn)
n log(1 + δn)

n log(1 + δn) − log(nδn) = r.

Furthermore, as κn(r) is increasing in r, setting r′:=r + 1/n, with n large
enough so that r′ + log nδn > 0, gives κn(r′) > 0 and

rn(κn(r′) − rn(κn(r)) = (κn(r′) − κn(r))n log(1 + δn)

=
(r′ − r)

n log(1 + δn)
n log(1 + δn) =

1
n

→ 0.
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It now follows that any r ∈ R is achieved as a limit of points rk(n) by taking
k = κn(r+1/n) with n large enough. Hence Q̄ is dense in R, and so Q is dense
in R+. In particular, for s > 0 and

r = log
(

s +
1

nδn

)
,

we have

log
(

s +
1

nδn

)
= log q̄n(κn(r)) : s = q̄n(κn(r)) − 1

nδn
= qn(κn(r)).

Putting

kn(s):=κn

(
log

(
s +

1
nδn

))
=

log(s + 1
nδn

) + log nδn

n log(1 + δn)
=

log(snδn + 1)
n log(1 + δn)

provides steering of the sequence qn(kn(s)) in Q to the limit s. �

Remark. Above, kn(r) → 0 as n → ∞. To see this, note that n log(1 + δn) is
asymptotic to nδn to first order (cf. Case 2 in Proposition 4.1).

Proposition 4.3 is the next step in identifying the radiality property ex-
plicitly, by reference to a function which we temporarily denote by λ̄u(s) and
which we subsequently show in Corollary. 4.1 below to be the link function
λu(s) of Sect. 3.

Proposition 4.3. For continuous (K,h, g) solving (GGE), such that nδg
n and

nδh
n are each either convergent or divergent sequences, if K(u) �= 0, then there

exists λ̄u(s) � 0 defined for s > 0 with

K(su) = λ̄u(s)K(u).

Proof. Fix u with K(u) �= 0. By Lemma 4.1,

K(hm(u/n)u/n) = gm(u/n)K(u/n).

Recall that

δn = g(u/n) − 1 = δg
n resp. h(u/n) − 1 = δh

n

gives rise to

qg
n(k) = gkn(u/n)/n, resp. qh

n(k) = hkn(u/n)/n.

Taking m = kn and separately m = k̄n gives

K(uhkn(u/n)/n) = gkn(u/n)K(u/n),

K(uhk̄n(u/n)/n) = gk̄n(u/n)K(u/n),

and so

K(uhkn(u/n)/n) = gkn(u/n)K(u/n) = gkn(u/n)gk̄n(u/n)−1K(uhk̄n(u/n)/n).
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Applying one or other of Propositions 4.1 and 4.2 and taking the relevant
steering functions, write k = k(s) (resp. kn(s)) with hkn(u/n)/n → s > 0, and
likewise write k̄ (resp. k̄n(1)) with hk̄n(u/n)/n → 1. By continuity of K,

K(su) = lim
n

K(uhkn(u/n)/n) and K(u) = lim
n

K(uhk̄n(u/n)/n).

So

K(su) = λ̄u(s)K(u),

where the limit

λ̄u(s):= lim
n

gkn(u/n)gk̄n(u/n)−1 = lim
n

qg
n(k)qg

n(k̄)−1

exists, as K(u) �= 0. Indeed, qg
n(k)qg

n(k̄)−1 remain bounded over n, other-
wise K(su) is undefined. So limn∈M qg

n(k)qg
n(k̄)−1 is identical for each infinite

M ⊆ N.
Note that

qg
n(k)qg

n(k̄)−1 =

⎧⎪⎨
⎪⎩

g(u/n)kn−1

g(u/n)k̄n−1
, g(u/n) �= 1,

k
k̄
, g(u/n) = 1. �

Conclusions from density considerations
Our next result recovers from Proposition 4.1 (i.e. the two cases lim nδn

zero or not) all the defining clauses of the link function of Lemma 3.1, giving
explicit form to the radiality result in Proposition 4.3.

Corollary 4.1. For continuous (K,h, g) solving (GGE) and u with K(u) �= 0,
if nδh

n → γh = γh(u) ∈ R and nδg
n → γg = γg(u) ∈ R, then

λ̄u(s) =

⎧⎪⎪⎨
⎪⎪⎩

[(1 + sγh)γg/γh − 1]/[(1 + γh)γg/γh − 1], if γg �= 0 and γh �= 0,
(esγg − 1)/(eγg − 1), if γg �= 0 and γh = 0,

log(1 + sγh)/ log(1 + γh), if γg = 0 and γh �= 0,
s, if γh = 0 = γg,

so that generally if γh = γg, then

λ̄u(s) = s.

In all these cases λ̄u(s) = λ(s; γh(u), γg(u)) and is differentiable.

Proof. We argue by cases. Henceforth we omit the overbar to lighten the no-
tation, as no misunderstanding can arise. First suppose γg �= 0 and γh �= 0. As
above (1 + δh

n)n → eγh and (1 + δg
n)n → eγg and when as in Proposition 4.3

k, k̄ are constants, we use logarithmic steering:

kh = kh(s) =
1
γh

log(1 + sγh) and k̄h = kh(1) =
1
γh

log(1 + γh).
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So, as γg �= 0,

λu(s) = limn
qg
n(kh)

qg
n(k̄h)

=
ekh(s)γg − 1
ek̄h(1)γg − 1

=
(1 + sγh)γg/γh − 1
(1 + γh)γg/γh − 1

,

as required. Likewise, if γg �= 0 and γh = 0, then

λu(s) =
ekh(s)γg − 1
ek̄h(1)γg − 1

=
esγg − 1
eγg − 1

,

giving the second case.
As in Proposition 4.1 Case 2,

qn(k) =
(1 + δn)kn − 1

nδn
=

exp(kn log(1 + δn)) − 1
nδn

=
tnep(tn)

nδn
= knep(tn) → ke0 = k.

So suppose now that γh �= 0 but γg = 0. To compute λ we need a combination
of kh with δg

n. Here with tgn:=khn log(1 + δg
n)

qg
n(kg) =

(1 + δg
n)kgn − 1
nδg

n
=

exp(khn log(1 + δg
n)) − 1

nδg
n

=
tgnep(tgn)

nδg
n

= kgep(tgn) → kge0 = kg.

Similarly, with tgn = nδg
nkh

n

exp(khn log(1 + δg
n)) − 1 = nδg

nkh
nep(tgn),

kh
n:=kh/(1 + d(δn)) =

log(1 + sγ)/γ

1 + d(δn)
→ kh = log(1 + sγh)/γh.

From here,

λu(s):= lim
n

(1 + δg
n)kn − 1

(1 + δg
n)k̄n − 1

=
nδg

nkh
nep(tgn)

nδg
nk̄h

nep(t̄gn)
=

kh(s)ep(tgn)

kh(1)ep(t̄gn)
→ log(1 + sγh)

log(1 + γh)
,

as tgn → 0, since nδg
n → γg = 0 here.

Finally, suppose γh = γg = 0. Then kh(s) = s and we have

λu(s) = s,

as required in the last case. �

We now consider the cases in which one of the sequences is divergent.
For these, it is helpful in the context of (GGE), and hence also of (GFE),
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to note that differentiability at 0 of K in direction u for h(u) �= 0 implies
differentiability of K elsewhere along u, as the following shows.

K(u + h(u)tu) − K(u) = g(u)K(tu),

K(u + h(u)tu) − K(u)
th(u)

=
g(u)
h(u)

K(tu) − K(0)
t

.

Given this observation, the connection between g and h in (GGE) is such that
either one of them is differentiable at the origin iff the other is. Indeed, from

K([t + h(tu)]u) = K(tu + h(tu)u) = K(tu) + g(tu)K(u),

it follows, after subtracting K(u) from each side (and since K(0) = 0), that

K((t + h(tu))u) − K(h(0)u)
(t + h(tu) − 1)

· t + (h(tu) − 1)
t

=
K(tu) − K(0)

t
+

(g(tu) − 1)
t

K(u),

for all small enough t > 0. Given radiality and so differentiability of Ku estab-
lished in Cor. 4.1, the preceding equation also yields, for non-zero K(u),

λ′
u(1) ·

(
1 + lim

t→0

(h(tu) − 1)
t

)
= λ′

u(0) + lim
t→0

(g(tu) − 1)
t

,

implying, since λ′
u > 0, that nδh

n → ∞ iff nδg
n → ∞, as is borne out below.

Corollary 4.2. For continuous (K,h, g) solving (GGE) and u with K(u) �= 0,

nδg
n → ∞ iff nδh

n → ∞,

and then for s > 0

λu(s) = s.

Thus λu is differentiable in all cases and so Ku is differentiable.

Proof. First we suppose that nδh
n → ∞. Here, according to Proposition 4.2,

steering through Q towards s > 0 is provided by

kh
n(s):=

log(1 + snδh
n)

n log(1 + δh
n)

.

So

log q̄n(kh
n(s)) =

log
(
s + 1

nδh
n

)
+ log nδh

n

n log(1 + δh
n)

n log(1 + δh
n) − log(nδh

n)

= log
(

s +
1

nδh
n

)
:

q̄n(kh
n(s)) = s +

1
nδh

n

.
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We now consider that

(1 + δg
n)kn − 1
nδg

n
= qg

n(kh
n) = q̄g

n(kh
n) − 1

nδg
n

=
(

s +
1

nδh
n

)
− 1

nδg
n
.

Hence, with k for kh(s) and k̄ for kh(1),

λ(s) = lim
n

qg
n(k)

qg
n(k̄)

= lim
n

(1 + δg
n)kn − 1

(1 + δg
n)k̄n − 1

= lim
n

nδg
n

(
s + 1

nδh
n

)
− 1

nδg
n

(
1 + 1

nδh
n

)
− 1

= lim
n

(
s + 1

nδh
n

)
− 1/(nδg

n)(
1 + 1

nδh
n

)
− 1/(nδg

n)
.

So, provided γg �= 1, we conclude that since nδh
n → +∞,

λu(s) =
γgs − 1
γg − 1

or s, according as nδg
n → γg ∈ R or nδg

n → ∞.

Taking s �= 1, Proposition 4.3 implies that the case nδg
n → γg = 1 cannot arise

as K(u) �= 0 yields the finiteness of λu(s) > 0. We ‘park this case’ temporarily,
but will eventually show that also nδg

n → γg ∈ R cannot occur.
Now suppose that nδh

n → γh ∈ R but nδg
n → +∞. Taking

kh(s) =
log(1 + sγh)

γh

gives

λu(s) = lim
n

qg
n(kh)

qg
n(k̄h)

= lim
n

q̄g
n(kh)

q̄g
n(k̄h)

= lim
n

(1 + δg
n)kn

(1 + δg
n)k̄n

.

So again, since λu(s) > 0 as K(u) �= 0,

log λu(s) =
(

log(1 + sγb)/(1 + γb)
γb

)
n log(1 + δg

n).

Here the RHS is divergent, since as above

n log(1 + δg
n) =

nδg
n

1 + d(δg
n)

→ ∞.

Again, by Proposition 4.3, this case cannot arise.
But now that all forms of λu(s) are known, we see that λu is differentiable

and, by the radiality property, so is Ku.

It now follows that in the ‘parked case’ with nδh
n → +∞ and nδg

n → γg ∈ R,
in fact g is differentiable at 0. So by our initial observations in the introductory
paragraph, h is differentiable at 0, contrary to nδh

n → +∞. That is, the first
case stated in the parked case does not in fact arise. �
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Remark. The case nδh
n → γh but nδg

n → +∞ above, ruled out by Proposition
4.3, is also ruled out by the fact that h and K being differentiable implies g is
differentiable.

Our next result addresses the partially pexiderized (GS) functional equa-
tion below, whose solution we will need later.

g(su + h(su)tu) = g(su)g(tu).

For g > 0, taking κ(tu) = log g(tu) gives rise to a special case of (GGE)
identified below (with κ replacing K).

Proposition 4.4. For continuous (K,h, g) solving (GGE), the kernel K is dif-
ferentiable along u for h(u) > 0, K(u) �= 0 and is strictly increasing along u.
Hence if K(u) = 0, and h(su) > 0 with s > 0, then

K(su) = 0, i.e. K(su) = λu(s)K(u) with λu(s) ≡ 0.

Furthermore, if either auxiliary generates a Popa binary operation along u,
then so does the other.

In particular, continuous solutions of the equation

κ(a + h(a)b) = κ(a) + κ(b) for a, b ∈ 〈u〉
have h(tu) ≡ (1 + tρ)u for some ρ ∈ R.

Proof. The first statement follows from Corollaries 4.1 and 4.2 and Proposition
4.3. Suppose that K(u) = 0. We claim that K(su) = 0 for all s > 0. Suppose
not and that K(ru) �= 0 for some r > 0. Then with s = r−1

0 = K(u) = K(sru) = λru(r−1)K(ru) �= 0.

Since by Corollaries 4.1 and 4.2, λru(r−1) > 0, this is a contradiction. So
K(ru) = 0 for all r > 0.

Putting U = K(u), V = K(v),H = hK−1 and G = gK−1,

K(u + h(u)v) = K(u) + g(u)K(v),

U + H(U)V = K−1[U + G(U)V ].

Suppose h(u) = 1 + ρu. Then, as u + h(u)v = u + v + ρuv is commutative in
u, v,

K(u ◦ρ v) = K(u) + g(u)K(v) = K(v) + g(v)K(u),

(g(u) − 1)K(v) = K(u)(g(v) − 1),

K(v)/(g(v) − 1) = K(u)/(g(u) − 1) = c, say,

g(u) = 1 + cK(u),

G(x) = g(K−1(x)) = 1 + cx.
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Conversely, suppose G(U) = 1+cU. Then as above U +G(U)V = U +V +cUV,
so

U + H(U)V = K−1[U + G(U)V ] = V + H(V )U,

(H(U) − 1)V = (H(V ) − 1)U,

(H(U) − 1)/U = (H(V ) − 1)/V = ρ, say,

H(U) = 1 + ρU.

In either case commutativity implies that the auxiliary on the other side of
the equation generates a binary group operation.

The final assertion arises by a specialization of (GGE) to g(x) ≡ 1, per-
mitted by Proposition 4.3. �

Corollary 4.3. (i) For s, t > 0,

λsu(t) = λu(st)/λu(s) and λ′
su(t) = λ′

u(st)s/λu(s).

(ii) For u with h(u) > 0 and h(−u) > 0,

K(−u) = −g(−u)λu(1/h(−u))K(u).

Proof. (i) As for the first assertion, λu(st) = λsu(t)λu(s), this holds, since

K(tsu) = λu(st)K(u) = λsu(t)K(su) = λsu(t)λu(s)K(u), for s, t � 0.

The second assertion follows from Proposition 4.4 by differentiation with re-
spect to t.

(ii) This is immediate from

0 = K(−u + h(−u)u/h(−u)) = K(−u) + g(−u)K(u/h(−u)).

�

5. Proof of Theorem 3.1

Fix u and t. Recall from Proposition 4.3 that

K(uhkn(u/n)/n) = gkn(u/n)gk̄n(u/n)−1K(uhk̄n(u/n)/n).

Again as in Proposition 4.3 with k = t, k̄ = 1 and integers m(n) with
m(n)/n → t writing γ(u) for γg(u), as in Proposition 4.1 and Proposition
4.2,

g(u/n)tn − 1
g(u/n) − 1

→ etγ(u) − 1
γ(u)

and
g(u/n)m(n) − 1

g(u/n)n − 1
→ etγ(u) − 1

eγ(u) − 1
,

appropriately interpreted for γ = 0. Similarly for h, and writing ρ(u) for γh(u),

h(u/n)tn − 1
h(u/n) − 1

→ etρ(u) − 1
ρ(u)

.
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By continuity of K, these limit relations lead to the first claims of Theorem
3.1, that

K

(
etρ(u) − 1

ρ(u)
u

)
=

etγ(u) − 1
eγ(u) − 1

K

(
etρ(u) − 1

ρ(u)

)
.

To proceed further, reparametrize the coefficient of u by taking s:=(etρ(u) −
1)/ρ(u) and let s = μ = μ(u):=(eρ(u) − 1)/ρ(u) correspond to t = 1. Solving
for t in terms of s gives etρ(u) = (1 + sρ(u)) and so

K(su) =
(1 + ρ(u)s)γ(u)/ρ(u) − 1

eγ(u) − 1
K(μu) : K(u) =

(1 + ρ(u))γ(u)/ρ(u) − 1
eγ(u) − 1

K(μu),

the latter by specializing the former to s = 1. After cross-substitution,

K(su) =
(1 + sρ(u))γ(u)/ρ(u) − 1
(1 + ρ(u))γ(u)/ρ(u) − 1

K(u) = λu(s, ρ(u), γ(u))K(u).

Here if γ(u) = ρ(u), then K(su) = sK(u) and then {u : K(su) = sK(u)} =
{u : γ(u) = ρ(u)} is a linear subspace. �

6. Shuffling and switching

The defining formula (†) (Sect. 3, Definition 2) of the link function involves
all the standard homomorphisms between different scalar Popa groups, i.e.
Popa groups on R with (ηρ) in Sect. 1 specialized to ρ(t) = rt for r, t ∈ R,
so between Gr and Gθ for r, θ ∈ [0,∞]. These are summarized in the table
below for Gr = Gr(R) and Gθ = Gθ(R), reproduced for convenience from [12]
Theorem BO (cf. [9,10,34]).

Popa parameter θ = 0 θ ∈ (0,∞) θ = ∞
r = 0 κt η−1

θ (eθκt) eκt

r ∈ (0,∞) log ηr(t)κ/r η−1
θ (ηr(t)θκ/r) ηr(t)κ/r

r = ∞ log tκ η−1
θ (tθκ) tκ

Theorem 3.1 may now be interpreted as a shuffling, via the link function,
of these Popa homomorphisms. Explicitly, Theorem 3.1 may be read as saying
(see Corollary 6.1 below) that for a given pair (K, g) satisfying (GFE), the
kernel K induces a map between the canonical scalar Popa homomorphisms.

Corollary 6.1. For (K, g) satisfying (GFE), γ = log g, and fixed u ∈ X, with
ρ(u) > 0 and γ(u) = 1, put

a(u):=eρ(u) − 1.

Then:
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(i) The map a : Gρ(X) → Gι(R) is additive, for ι(t):=t (t ∈ R); equivalently,
with

b(u):= log(1 + a(u)),

b is linear on Gρ(X) :

a(u + v) = a(u) ◦ι a(v), b(u + v) = b(u) + b(v).

(ii) Put c(u):=γ(u)/ρ(u); then, up to the constant factor η−1
a(u)(ηa(u)(1)c(u))

below and with ∼ denoting isomorphism,

Ku : 〈u〉ρ ∼ Ga(u)(R) → 〈K(u)〉a(u)

induces a map Ga(u)(R) → Ga(u)(R) :

η−1
a(u)(ηa(u)(1)c(u)) · K(su) = η−1

a(u)(ηa(u)(s)c(u))K(u).

So again

K(〈u〉ρ) ⊆ 〈K(u)〉Y .

(iii) Taking, for any w ∈ Gρ(X) and b ∈ R,

bK(w):=ec(w) log[1+ρ(w)] − 1, ψb(t)=η−1
b (et log[1+b]),

the kernel function K induces a map between homomorphisms Gρ(w)(R) →
GbK(w)(R) :

K(ψρ(w)(t)w) =
{

ψbK(w)(t)K(w), c(w) �= 0,
tK(w), c(w) = 0.

Proof. (i) Since ρ is additive, by definition of a :

(1 + a(u))(1 + a(v)) = eρ(u)+ρ(v) = eρ(u+v) = 1 + a(u + v) :

a(u + v) = a(u) + a(v) + a(u)a(v) = a(u) ◦1 a(v) :

b(u) + b(v) = log(1 + a(u))(1 + a(v)) = log(1 + a(u + v)) = b(u + v).

(ii) For hu(t) = 1 + tρ(u) with h′
u(t) ≡ ρ(u), take w = w(u):=(eρ(u) −

1)u/ρ(u) ∈ 〈u〉ρ (as ρ(w) > 0). By homogeneity of directional derivatives,

ρ(w(u)) = eρ(u) − 1, γ(w(u)) = (eρ(u) − 1)γ(u)/ρ(u) = ρ(w(u))γ(u)/ρ(u) :

c(u):=γ(u)/ρ(u) = γ(w(u))/ρ(w(u)) = c(w(u)).

The operation ◦ρ on 〈w〉ρ is the same as ◦a(u) on R, since ρ(w(u)) =
eρ(u) − 1 = a(u) : indeed,

sw ◦ρ tw = sw + tw + stwρ(w) = [s + t + sta(u)]w = [s ◦a(u) t]w.

As α:=a(u) �= 0, we may write ηα(s):=1 + a(u)s, and put

t =
log ηα(s)
log ηα(1)

=
log[1 + s(eρ(u) − 1)]

ρ(u)
: s =

eρ(u)t − 1
eρ(u) − 1

.
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As a(u):=eρ(u) − 1 and c(u):=γ(u)/ρ(u), as in Theorem 3.1, with w for w(u) :

K(sw(u)) =
eγ(u)t − 1
eγ(u) − 1

K(w) =
ηα(s)c(u) − 1
ηα(1)c(u) − 1

K(w)

=
[ηα(s)c(u) − 1]/α

[ηα(1)c(u) − 1]/α
K(w) =

η−1
α (ηα(s)c(u))

η−1
α (ηα(1)c(u))

K(w(u)).

(iii) With w(u) as in (ii) above,

ρ(w(u)) = eρ(u) − 1(= a(u)) : ρ(u) = log[1 + ρ(w(u))] :

log[1 + bK(w)] = ρ(u) : bK(w):=elog[1+ρ(w(u))] − 1.

Substitution into the formula (Rad) of Theorem 3.1 yields the assertion. �

As a further corollary of Theorem 3.1, we now have the following radial
version of a familiar result (see e.g. [4, Proof of Lemma 3.2.1], [7, Th. 1(ii)],
[16, (2.2)], [3]), here written as result on switching between tu and u. (We will
encounter a skeletal version within the proof of Corollary 6.2 below.)

Lemma 6.1. For (K, g) satisfying (GFE) with K(u) �= 0 and with g �= 1 on
〈u〉ρ except at 0 :

(g(tu) − 1)K(u) = (g(u) − 1)K(tu) (tu ∈ Gρ(X)),

that is,

(g(x) − 1)K(u) = (g(u) − 1)K(x) (x ∈ 〈u〉ρ).

Proof. Here u �= 0 (since K(0) = 0, by (GFE)). As 〈u〉ρ is abelian ([12, §3
Lemma]),

K(su ◦ρ tu) = K(su) + g(su)K(tu) = K(tu) + g(tu)K(su).

As K(u) �= 0 and g(su) �= 1 for s �= 0, Theorem 3.1 yields

K(tu) = λu(t)K(u), (R)

whence

K(tu)[g(su) − 1] = [g(tu) − 1]K(su) : λu(t)/[g(tu) − 1] = λu(s)/[g(su) − 1].

So this is constant, say k(u). Hence

[g(tu) − 1]K(u) = k(u)λu(t)K(u) = k(u)K(tu),

again using (R). Take t = 1; then

[g(u) − 1]K(u) = k(u)K(u) : [g(u) − 1] = k(u).

�

Lemma 6.2 secures the non-triviality of the radial function gu(t):=g(tu).

Lemma 6.2. For g continuous satisfying (M), if g(u) �= 1 and ρ(u) = 1, then
g(tu) �= 1 for t �= 0.
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Proof. From Lemma 2.1, γ:= log g satisfies (GFE) in the simpler additive form
(A). So Theorem 3.1 here yields

γ

(
et − 1
e − 1

u

)
=

eγ(u)t − 1
eγ(u) − 1

γ(u),

as γ(u) �= 0. So for t �= 0, γ(tu) �= 0, and so g(tu) �= 1. �

Theorem 7.1 and Corollary 6.2 below will immediately imply our first main
result, Theorem 7.2 below, on the existence of σg. As noted in the Introduction,
the dichotomy below concerning two null spaces arises because two hyperplanes
passing through the origin (representing the pair of null spaces of interest)
have intersection with co-dimension 1, when coincident, but co-dimension 2
otherwise.

Corollary 6.2. Suppose (K, g) satisfies (GFE), so that for some α : Gρ(X) →
R additive, β ∈ R , g is characterized in Theorem 2.1 as having the form

g(x) = ḡα,β(x):=eα(x)(1 + ρ(x))β .

Then the restriction of the kernel K|N (ρ) is linear on N ∗(α) = N (α) ∩ {x :
ḡ(x) = 1}. Furthermore, either

N (ρ) = N (α) (N=
A )

holds, or else K|N ∗(α) = 0, and then

K(N (ρ)) = 〈K(v)〉 for some v ∈ N (ρ)\N (α). (N=
B )

Proof. Since N=
A holds and

ḡ(x) = eα(x)(1 + ρ(x))β ,

g|N ∗(α) ≡ 1 (as ρ(x) = 0 here), and so additivity of K on N ∗(α) and hence
(by continuity) its linearity is immediate. If N (ρ) = N (α), then K|N (ρ) is
linear. Otherwise N ∗(α) is of co-dimension 1 in the subspace N (ρ) (see e.g.
[24, 3.5.1]). In particular, we may choose and fix v2 ∈ N (ρ)\N (α). Now take
v1 ∈ N ∗(α) arbitrarily. Then as v1, v2 ∈ N (ρ) by commutativity and (GFE) :

K(v2) + eα(v2)K(v1) = K(v1 + v2) = K(v1) + eα(v1)K(v2),

K(v1)[eα(v2) − 1] = K(v2)[eα(v1) − 1] = 0 (as eα(v1) = 1):

K(v1) = 0 (as eα(v2) �= 1).

That is, K|N ∗(α) = 0, and, by Theorem 3.1, K(N (ρ)) = 〈K(v2)〉. �
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7. Inducing a Popa structure in Y from (GFE)

We now turn our attention to inducing a Popa-group structure on Y from a
pair (K, g) satisfying (GFE). Recall that 〈Σ〉 denotes the linear span of Σ.

Our first main result, Theorem 7.2 below, is motivated by attempting an
operation on the image K(X) utilizing a solution (K, g) of the (GFE) via:

y ◦ y′ = y + g(x)y′ for some x with y = K(x),

which faces an obstruction, unless K(x1) = K(x2) implies g(x1) = g(x2), i.e.
g(x1 − x2) = 1. This is resolved in the following

Theorem 7.1. For (K, g) satisfying (GFE) with g �= 1, there exists σ : Y → R

such that g = gσ iff one of the following two conditions holds:

N (ρ) ⊆ N (γ), (NA)

for γ = log g together with the range condition

R(K) �= K(N (ρ)),

or

K(N (ρ)) ⊆ 〈K(u)〉 for some u with g(u) �= 1. (NB)

Then σ is uniquely determined on K(X).

Proof. We first establish necessity. We suppose the pair (K, g) satisfies (GFE)
with g = gσ for some continuous linear σ : Y → R. The result follows from the
Abelian Dichotomy of [12, §6] that either

(i) K(N (ρ)) ⊆ N (σ). or
(ii) K(N (ρ)) ⊆ 〈K(u)〉σ for some u ∈ X with σ(K(u)) �= 0.

In case (i),

σ(K(u)) = 0 for u ∈ N (ρ),

so that, for such u, g(u) = 1, i.e. γ(u) = 0. Thus N (ρ) ⊆ N (γ) and so
(NA) holds. Furthermore, if the range condition were to fail, then R(K) =
K(N (ρ)) ⊆ N (σ), implying that σ(K(x)) = 0 for all x, i.e. that g = 1 and

K(x ◦ρ y) = K(x) + K(y).

Otherwise (ii) holds, i.e. K(N (ρ)) ⊆ 〈K(u)〉σ for some u ∈ X with σ(K(u)) �=
0, so in particular with gσ(u) �= 1, and a fortiori (NB) holds.

Note that (NB) needs no subscript on 〈K(u)〉 as K|N (ρ)) is linear, so
K(N (ρ)) is a subspace of Y. This completes the proof of necessity. �

The converse direction requires the construction of σ from g, so is quite
involved. Theorem 7.2 below asserts uniqueness and sufficiency, with the latter
following from Proposition 7.1A and 7.1B, our next results. This will involve
complemented subspaces. We note that in the context of Y a Banach space,
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algebraically complementary spaces are topologically complementary [24, Th.
13.1]. See also [31]. We recall our blanket assumption that ρ �= 0.

Proposition 7.1A. If (K, g) satisfies both (GFE) with g �= 1 and also (NA),
that is,

N (ρ) ⊆ N (γ),

for γ = log g (on G
∗(X)), then a necessary and sufficient condition that g = gσ

for some linear σ : Y → R is the range condition

R(K) �= K(N (ρ)).

In this case σ is continuous provided K(N (γ)) is closed and complemented.

Proof. Here K|N (ρ) is linear, and so K(N (ρ)) is a vector subspace of Y.
Suppose first that R(K) �= K(N (ρ)). Then there is u ∈ X with K(u) /∈

K(N (ρ)). So K(u) �= 0 and ρ(u) �= 0, so that g(u) �= 1. Without loss of
generality we may assume that ρ(u) = 1. Indeed, by Theorem 3.1, K(u/ρ(u)) =
λu(ρ(u)−1)K(u), and so K(u/ρ(u)) /∈ K(N (ρ)) by linearity of K|N (ρ).

Step 1. We first prove the result under the assumption that Y = 〈K(X)〉,
the span here being assumed a closed subspace.

We begin by defining a continuous linear map σ by setting:

σ(y):=
{

0, y ∈ K(N (ρ)),
t(g(u) − 1), y = tK(u). (σA)

The two clauses are thus mutually exclusive and so

σK(x) = g(x) − 1 (Eq)

certainly holds for the one vector x = u.
We first decompose K into summands and likewise g into factors, by pro-

jecting along 〈u〉. On these we act with σ, as σ has non-zero effect only on the
K-image 〈u〉. Thereafter we reassemble the components.

As ρ(x − ρ(x)u) = 0 and g(x − ρ(x)u) = 1,

K(x) = K([x − ρ(x)u] ◦ρ ρ(x)u) = K(x − ρ(x)u) + K(ρ(x)u).

Since x − ρ(x)u ∈ N (ρ) and as σ = 0 on K(N (ρ)) and σ is linear, applying σ
gives

σK(x) = σK(ρ(x)u). (A1)

As K(u) �= 0 and g(u) �= 1 we may put (by Theorem 3.1)

K(ρ(x)u) = λw(ρ(x))K(u). (A2)
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Here λw is defined by the formula of Theorem 3.1. By (A1) and applying σ to
(A2),

σK(x) = σK(ρ(x)u) = λw(ρ(x))σK(u) = λw(ρ(x))[g(u) − 1]. (A3)

This completes the action on the K side.
We decompose g similarly by (M), as N (ρ) = N (γ) :

g(x) = g(x − ρ(x)u) · g(ρ(x)u) : g(x) = g(ρ(x)u). (A4)

Here again ρ(x − ρ(x)u) = 0, so (x − ρ(x)u) ◦ρ ρ(x)u = x.
We now act on the g side.
By Lemma 6.2 on non-triviality, gu(tu) �= 0 for t �= 0, so we may apply

Lemma 6.1 (on switching). So

(g(ρ(x)u) − 1)K(u) = K(ρ(x)u)[g(u) − 1]

= [g(u) − 1]λw(ρ(x))K(u) (from (A2)),

(g(ρ(x)u) − 1)[g(u) − 1] = λw(ρ(x))[g(u) − 1]2 (apply σ and (σA)):

(g(ρ(x)u) − 1) = λw(ρ(x))[g(u) − 1] (cancelling), (A5)

as g(u) − 1 �= 0.
We now reassemble the components. Combining, (A5) with (A4) and (A3)

gives

(g(x) − 1) = λw(ρ(x))[g(u) − 1] = σ(K(ρ(x)u)) = σK(x).

So (Eq) holds for all vectors x ∈ X. This completes the reassembly.
Step 2. If Y �= 〈K(X)〉, choose in Y a subspace Z complementary to 〈K(X)〉

and define σ as above on 〈K(X)〉; then extend by taking σ = 0 on Z.
We turn to the converse and suppose now that g = gσ for some linear

σ : Y → R. We show that (σA) holds for some u ∈ X, from which the range
condition will follow. By (GFE), σ(y) = g(x)−1 whenever y = K(x). Further,
as (NA) holds, g(x) = 1 for x ∈ N (ρ) and so, since

K(x) + K(x) = K(x) + g(x)K(x) = K(x ◦ρ x) = K(x) + K(x) + σ(K(x))K(x),

we conclude that

σ(K(x)) = 0,

whether or not K(x) = 0. That is, σ(y) = 0 for y ∈ K(N (ρ)), as in the first
clause of (σA).

Since g �= 1 there is u ∈ X with g(u) �= 1. By (NA), ρ(u) �= 0. The kernel
N (ρ) is of co-dimension 1 in the space X, so that X is the span of u and N (ρ).
The assumption g = gσ with σ linear now gives for t �= 0

σ(K(u)) = g(u)) − 1 �= 0 : σ(tK(u))) = t(g(u) − 1),
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as in the second clause of (σA). As the two clauses are exclusive, K(u) /∈
K(N (ρ)). �

Since, as above, the kernel N (ρ) is of co-dimension 1 in the space X, it
seems natural to view the condition

R(K) = K(N (ρ))

as a type of degeneracy which we will refer to here (only) as yielding improper
solutions of (GFE).

An improper example where R(K) = K(N (ρ)) is given by taking X =
Y = R

2, ρ(x) = x1 and g(x) = 1 + x1 and K(x) = (0, x2) for x = (x1, x2).
Then (GFE) is satisfied, since

K(x ◦ρ y) = (0, x2) + (1 + x1)(0, y2).

Here N (ρ) = {x : x1 = 0} = N (γ), so that R(K) = K(N (ρ)) = N (ρ), and
the contradiction that σ(0, x2) = x1 follows from the condition

x2 + (1 + x1)y2 = x2 + (1 + σ(0, x2))y2.

In the case (NA) Proposition 7.1A above shows that all but the improper
solutions of (GFE) are homomorphies. In the alternative case (NB) all solu-
tions of (GFE) are homomorphies, as we now show.

Proposition 7.1B. If (K, g) satisfies (GFE) and (NB), that is,

K(N (ρ)) ⊆ 〈K(w)〉Y ,

for some w ∈ N (ρ), then g = gσ for some linear σ : Y → R which is
continuous, provided K(N ∗(γ)) is closed complemented.

Proof. Here V0:=N ∗(γ) = N (γ) ∩ N (ρ) is a subgroup of Gρ(X), as

K(x + y) = K(x ◦ρ y) = K(x) + g(x)K(y) = K(x) + K(y),

and so K|V0 is a homomorphism from Gρ(X) to Y . Since V0 is a subspace of
N (ρ), we copy the argument of Proposition 7.1A working with the linear map
K|V0 with V0 ⊆ N (γ) as a replacement for K|N (ρ); so if g = gσ is to hold,
then K|V0 : V0 → N (σ).

In N (ρ) choose a subspace V1 complementary to V0, and let πi : X → Vi

denote projection onto Vi. Notice that for any v ∈ N (ρ), as π0(v) ∈ N (ρ) and
π0(v) ∈ N (γ)

K(v) = K(π0(v) ◦ρ π1(v)) = K(π0(v)) + g(π0(v))K(π1(v))

= K(π0(v)) + K(π1(v)).

Fix a non-zero v1 ∈ V1 ⊆ N (ρ); then V1 = 〈v1〉, since by Lemma 2.1 γ =
log g is linear on N (ρ) and so N ∗(γ) either equals N (ρ) or has co-dimension 1 in
N (ρ). We can see this directly as follows. Since v1 /∈ V0, γ(v1) �= 0, so replacing
v1 by v1/γ(v1), w.l.o.g. γ(v1) = 1. For any z ∈ N (ρ), z − γ(z)v1 ∈ N (γ), as

γ(z − γ(z)v1) = γ(z) − γ(z) = 0.
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Likewise, for such z, as ρ(v1) = 0,

ρ(z − γ(z)v1) = ρ(z) − γ(z)ρ(v1) = 0 − 0 = 0,

i.e. v0:=z − γ(z)v1 ∈ V0 and so

z = v0 + γ(z)v1, i.e. N (ρ) = V0 + 〈v1〉.
If ρ is not identically zero, again fix u ∈ X with ρ(u) = 1. Then x �→

πu(x) = x−ρ(x)u is again (linear) projection onto N (ρ). If ρ ≡ 0, set u below
to 0. Whether or not ρ ≡ 0, as ρ(x − ρ(x)u) = 0 take z:=x − ρ(x)u ∈ N (ρ);
then for some v0 ∈ V0 and some scalar α

x = v0 + αv1 + ρ(x)u = v ◦ρ ρ(x)u.

So w.l.o.g. provided K(v1) �= 0 �= K(u)

Y = 〈K(V0),K(v1),K(u)〉.
We first show that these “generators” are distinct. Recall that g(v1) �= 1 as

v1 /∈ V0 and that for some w with K(w) �= 0

K(N (ρ)) = K(V0 + 〈v1〉) ⊆ 〈K(w)〉Y .

Suppose first that K(u) = K(v) for some v ∈ V0 + 〈v1〉. Then, as K(u) =
K(v) ∈ 〈K(w)〉Y and K(w) �= 0,

K(u) = λw(u)K(w) = λw(v)K(w).

So, since λw is montonic,

u = v ∈ N (ρ),

contradicting that ρ(u) = 1.
Next suppose that K(v1) = K(v0), for some v0 ∈ V0. Then, since −v0+v1 =

−v0 ◦ρ v1 and g(v0) = 1,

0 = −K(v0) + g(v0)K(v1) = K(−v0 + v1)

= K(v1) − g(v1)K(v0) = K(v1) − g(v1)K(v1)

= (1 − g(v1))K(v1).

So K(v1) = 0, a contradiction.
So the following defines a continuous linear map σ : Y → R:

σ(y) =

⎧⎨
⎩

0, y ∈ K(V0),
t(g(v1) − 1), y = tK(v1),
t(g(u) − 1), y = tK(u).

(σB)

So (Eq) holds for the two vectors x = v1 and x = u.
As with (A1) in Proposition 7.1A, via Lemma 6.1 (on switching),

σK(ρ(x)u) = g(ρ(x)u) − 1, (B1)
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σK(αv1) = g(αv1) − 1. (B2)

Since vi are in N (ρ),

K(x) = K(v0 + αv1 + ρ(x)u)

= K(v0) + K(αv1) + g(αv1)K(ρ(x)u).

Using (σB) and applying σ gives

σK(x) = 0 + [g(αv1) − 1] + g(αv1)[g(ρ(x)u) − 1] (by (B2) and (B1))

= [g(αv1) − 1] − g(αv1) + g(αv1)g(ρ(x)u)

= g(v0)g(αv1)g(ρ(x)u) − 1

= g(x) − 1.

If Y �= 〈K(V0),K(v1),K(u)〉, this span being assumed a closed subspace,
choose in Y a subspace Z complementary to 〈K(V0),K(v1),K(u)〉, and define
σ as above on 〈K(V0),K(v1),K(u)〉; then extend by taking σ = 0 on Z. �

In Lemma 7.1 below we refer to the defining equation (gσ) in §1.

Lemma 7.1. If (K, g) satisfies (GFE) non-trivially, then g is uniquely deter-
mined by K. In particular, if gσ = g = gτ , then σ = τ on K(X). Furthermore,

σ(K(u ◦ρ v)) = σ(K(u)) ◦ι σ(K(v)) (ι(t) ≡ t).

Proof. For given K, suppose both (K, g) and (K,h) satisfy (GFE). As K is
non-trivial, we fix v ∈ X with K(v) �= 0. Then for arbitrary u ∈ X

K(u) + h(u)K(v) = K(u ◦ρ v) = K(u) + g(u)K(v),

so g(u) = h(u). So if gτ = g = gσ, then

σ(K(u)) = gσ(u) − 1 = gτ (u) − 1 = τ(K(u)),

as claimed. Checking the final assertion is routine and omitted here. �

We may now pass to the key existence theorem, our first Main Theorem.

Theorem 7.2. If (K, g) satisfies (GFE), then, unless R(K) = K(N (ρ)), there
is a unique linear map σ : Y → R such that

σ(K(x)) + 1 = g(x) (x ∈ X).

The map σ is continuous, provided K has closed complemented range.

Proof. By Corollary 6.2, one of (N=
A ) or (N=

B ) holds, and so either Proposition
7.1A or 7.1B implies the existence of σ, and its continuity conditional on K
having closed range. Its uniqueness is assured by Lemma 7.1. �
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8. The generalized Goldie equation

This section is devoted to demonstrating in Theorem 8.1 below that (GGE)
is reducible to (GFE). Our main tool is Theorem 3.1, and we will also use
Theorem 2.1 (the Index Theorem). For (GGE) to conform with our study of
(GFE), we assume here that, just like ηρ, the non-negative inner auxiliary
h : X → [0,∞) preserves positivity on G

+
h (X):={x ∈ X : h(x) > 0} :

h(u + h(u)v) > 0 for u, v ∈ G
+
h (X).

This assumption prompts the question of for which continuous functions h : X →
[0,∞) does the binary operation x ◦h y:=x + h(x)y preserve positivity, i.e.

h(x), h(y) > 0 =⇒ h(x + h(x)y) > 0.

It emerges that strengthening =⇒ above to ⇐⇒ yields Chudziak’s theorem,
that h satisfies (GS) (i.e. h = ηρ for some ρ). For details see [21] (cf. [23]). Our
hypothesis is thus weaker; however, this preservation combined with (GGE)
yields some similar connections with (GS) below.

We will need to know the connection between the null spaces of the inner
and outer auxiliaries. Recall that K(0) = 0.

Lemma 8.1. If (K, g, h) satisfies (GGE) and K(w) �= 0 for some w, then

g(x) = 0 ⇐⇒ h(x) = 0 (x ∈ X),

so that

G
+
h (X):={x ∈ X : h(x) > 0} = G

+(X) = G
+
g (X):={x ∈ X : g(x) > 0}.

Proof. If h(a) = 0, then g(a) = 0, since K(w) �= 0 and

K(a) = K(a + h(a)w) = K(a) + g(a)K(w).

If one had g(a) = 0 but h(a) �= 0, then, for any x, taking b:=h(a)−1(x − a)
gives

K(a) = K(a) + g(a)K(b) = K(a + h(a)b) = K(x).

Hence K is constant. But K(0) = 0, so K(w) = 0, a contradiction. �

Our first result identifies a known partially ‘pexiderized’ variant of the
Go�ląb–Schinzel equation, (PGS) below, studied in [20,26]; see [27] for a fully
pexiderized equation (cf. [28]). The gist of the matter is in Proposition 4.4 and
the solution is given by

hu(t):=
{

1 + rt, for r �= 0, and then: gu = gr,θ = (1 + rt)θ/r;
1, for r = 0, and then: gu = g0,θ = eθt.

Here gu(t) = g(tu) and hu(t) = h(tu). The next proposition links the behaviour
of the two auxiliary functions g, h via the linking function λw. Motivated by
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the notation 〈u〉ρ in Popa groups, but now in the context of a Javor group,
we write for u ∈ X

〈u〉h = G
+
h (X) ∩ Lin{u}.

Proposition 8.1. For (K,h, g) satisfying (GGE) and for each w ∈ X with
K(w) �= 0, and u ∈ G

+(X),

λw

(
h(a + h(a)b)

h(a)h(b)

)
=

g(a + h(a)b)
g(a)g(b)

(a, b ∈ G
+
h (X)).

In particular, if the auxiliary hu satisfies the Go�ląb–Schinzel equation, then gu

satisfies a partially pexiderized Go�ląb–Schinzel equation:

g(a + h(a)b) = g(a)g(b) (a, b ∈ 〈u〉h). (PGS)

So g = gγ(u),ρ(u) (for some appropriate parameters), and conversely if g has
this form, then g satisfies (PGS) for hu = 1 + ρ(u).

Proof. We approach the action of K on

a + h(a)b + h(a + h(a)b)h(a)h(b)w

in two ways. For the approach to be valid we need h(a+h(a)b) > 0, which comes
from the assumed preservation of positivity (cf. Lemma 8.1). We consider the
two sides of the equality

K(a + h(a)b + h(a + h(a)b)h(a)h(b)w)
= K(a + h(a)b) + g(a + h(a)b)K(h(a)h(b)w).

Here, with LHS for left-hand side etc.,

LHS = K(a + h(a)[b + h(a + h(a)b)h(b)w])

= K(a) + g(a)K(b + h(b)h(a + h(a)b)w)

= K(a) + g(a)[K(b) + g(b)K(h(a + h(a)b)w)

= K(a) + g(a)K(b) + g(a)g(b)K(h(a + h(a)b)w);

RHS = K(a) + g(a)K(b) + g(a + h(a)b)K(h(a)h(b)w).

Cancelling common terms on the two sides gives, in view of g(a)g(b) �= 0, that

g(a)g(b)K(h(a + h(a)b)w) = g(a + h(a)b)K(h(a)h(b)w) :

K

(
h(a + h(a)b)

h(a)h(b)
w

)
=

g(a + h(a)b)
g(a)g(b)

K(w),

on replacing w appropriately (since h(a)h(b) �= 0). Now for K(w) �= 0, apply
Theorem 3.1. So if h satisfies (GS), then g satisfies (PGS). �

Corollary 8.1. If (K,h, g) satisfies (GGE), then either K is linear and g|〈w〉h =
h|〈w〉h for each w, or h satisfies (GS) and g satisfies (PGS).
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Before deducing this result we need to characterize the ‘contour behaviour’
of the link functions λu(t) in response to parameter changes.

We recall that when the kernel function is non-zero at u (i.e. K(u) �= 0 )
the link function λu(t) is either the identity function id(t) = t, or for some
r > 0 λu(t) = ϕ(rt)/ϕ(r), where ϕ(x) takes one of three contour types, the
exponential, logarithmic, or power-c, all with domain parameter r :

ϕ(x):=ex − 1 : λu(t) = (ert − 1)/(er − 1),
ϕ(x):=1 + log x : λu(t) = log(1 + rt)/ log(1 + r),

ϕ(x):=(1 + x)c − 1 : λu(t) = [(1 + rt)c − 1]/[(1 + r)c − 1].

These are strictly monotone in t and either convex or concave shaped. In the
power-c type convexity arises for c > 1 and (like the exponential) is separated
from its concave inverse function by the linear variant λu(t) = t arising from
c = 1.

Indeed, it is enough to note the relevant second derivative, ϕ′′(rt), which
according to type is

r2ert, −r2(1 + rt)−2, r2c(c − 1)(1 + rt)c−2.

Lemma 8.2. For any point (x, y) in the positive quadrant other than (1, 1),
there is at most one curve λu in any of the three contour types with λu(x) = y.

Proof. For s > 0 and u with K(u) �= 0 as above, recall Corollary 4.3(i):

λsu(t) = λu(st)/λu(s).

From here it follows that scaling the vector u by s > 0 does not alter the
contour type of the link function λsu but merely scales its domain parameter
from r to sr. Indeed, given the tabulation above, this follows from:

λu(st)/λu(s) =
ϕ(rst)
ϕ(r)

/
ϕ(rs)
ϕ(r)

=
ϕ(rst)
ϕ(rs)

.

The contours all have (1, 1) as fixed point, but on each side of t = 1 the
curves of any one type are strictly monotone in the domain parameter r, as
some routine calculus readily shows (Lemma 8.4 below). For example, the
exponential type curves decrease with r to the left of t = 1 and increase with
r to the right of t = 1.

Hence for any point (x, y) in the positive quadrant other than (1, 1) there
is at most one curve λu in each type with λu(x) = y. �

Proof of Corollary 8.1. We apply Lemma 8.2 and consider w with K(w) �= 0.
By Proposition 8.1, for all s > 0 and a, b ∈ G

+
h (X) = {x : h(x) > 0}, since

K(sw) = λw(s)K(w) �= 0,

λsw

(
h(a + h(a)b)

h(a)h(b)

)
=

g(a + h(a)b)
g(a)g(b)

= λw

(
h(a + h(a)b)

h(a)h(b)

)
:
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λsw

(
h(a + h(a)b)

h(a)h(b)

)
= λw

(
h(a + h(a)b)

h(a)h(b)

)
. (∗)

In the case when λw(t) ≡ t this last equation holds, no matter the value of s,
since also λsw(t) ≡ t. But that is a very special case, which leads to a linear
K. To begin with, K is homogeneous, i.e. for all t > 0 and all w in G

h
+(X)

K(tw) = tK(w).

But in this case g = h on 〈w〉h. Indeed, for s, t > 0,

sK(w) + gw(s)tK(w) = K(sw + hw(s)tw) = (s + hw(s)t)K(w).

This implies that K is additive and so linear (by homogeneity):

K(a + b) = K

(
a + h(a)

b

h(a)

)
= K(a) +

g(a)
h(a)

K(b) = K(a) + K(b).

Here h may be arbitrary with g = h on each ray 〈w〉h.
So suppose now that for some w we have λw �= id. Then for s > 0 all the

curves λsw are of one contour type differing only in their domain parameter.
So (∗) contradicts Lemma 8.2 in that there may be at most one contour in any
contour type passing through a point unless that point is (1, 1). Hence

h(a + h(a)b)
h(a)h(b)

= 1 =
g(a + h(a)b)

g(a)g(b)
.

It now follows that h satisfies the (GS) equation and g satisfies the pexiderized
variant (PGS). �

We need a further (folk-lore) result.2

Lemma 8.3. For ρ homogeneous on Gρ(X), if ηρ(u) = 1+ ρ(u) satisfies (GS),
then ρ is linear on Gρ(X).

Proof. Fix u, v ∈ G
+
h (X) and consider α, β with t=:ηρ(αu) = 1 + ρ(αu) > 0

and ηρ(βu) > 0. Then

ρ(αu + βv) = ηρ(αu + ηρ(αu)βv/t) − 1 = (1 + ρ(αu))(1 + ρ(βv/t)) − 1

= ρ(αu) + (1 + ρ(αu))ρ(βv/t) = αρ(u) + tρ(βv/t)

= αρ(u) + βρ(v).

�

Our second Main Theorem is formally a corollary of earlier results.

2 Recalled by Prof Chudziak at the 20th ICFE.



Homomorphisms from functional equations

Theorem 8.1. Suppose X is a normed vector space and (K,h, g) satisfies (GGE)
with K non-trivial (i.e. there is w ∈ X with K(w) �= 0). Then either K is lin-
ear or else, for some continuous linear ρ,

h(su) = 1 + sρ(u) (s > 0, u /∈ N (K)).

In particular, (K, g) satisfies (GFE) and so, for any u with ρ(u) = 1,

g(x) = eα(x)(1 + ρ(x))β (x ∈ Gρ(X)),

where, for γ = log g,

α(x):=γ(x − ρ(x)u) (x ∈ Gρ(X))

is linear and α(u) = 0 and β = γ(u)/ log 2. Thus there are four cases:

hu(s) = gu(s) = 1, ρ(u) = γ(u) = 0,
h(su) = 1, g(su) = esγ(u), ρ(u) = 0 and γ(u) �= 0,

hu(s) = 1 + sρ(u), gu(s) = 1, ρ(u) �= 0 and γ(u) = 0,
hu(s) = 1 + sρ(u), gu(s) = (1 + sρ(u))(γ/ρ), γ(u) �= 0 �= ρ(u).

The form of K may be read off from [12, Th 4A, 4B].

Proof. By Corollary 5.1, hu(s) = 1 + sρ(u) = h(su) = hsu(1) = 1 + ρ(su),
so that ρ(u) is homogeneous. By Lemma 8.3, ρ is linear and by assumption
continuous. Hence the equation (GGE) has the form (GFE), i.e.

K(u ◦ρ v) = K(u) + g(u)K(v).

The remaining assertions follow from Theorem 2.1 (the Index Theorem). �

The four cases above can also be reached from Theorem 3.1 by four direct
but laborious computations using Proposition 4.4. Theorem 7.2 puts these last
conclusions into perspective, since (GFE) above reduces to a homomorphism
between Gρ(X) and Gσ(Y ) for some σ, unless the range condition is violated.
Recall from [12, Th.2] that, being abelian, K(N (ρ)) is either included in N (σ)
(the NA-case of Theorem 7.1 with N (ρ) ⊆ N (γ)) or lies along a radius in Y
(the NB-case). In the first case, by [12, Th 4A], K exhibits linear and power
types of behaviour (the latter only if ρ(u) = 1 for some u, the behaviour
becoming logarithmic in the limit when σ(K(u)) = 0). Otherwise, by [12, Th
4B], K exhibits exponential and power type behaviour (the latter, again if
ρ(u) = 1 for some u, becoming logarithmic when σ(K(u)) = 0).

We close by verifying how the λu(t; r) contour rises or falls as the domain
parameter r rises, according to contour type, and according to which side of
t = 1; it is here at t = 1 where behaviour reverses (cf. λu(t) � er(t−1), using a
large r approximation). The calculations check for monotonicity with a simple
scheme based on the form λ(t) = ϕ(rt)/ϕ(r).

Lemma 8.4. (a) Consider λu(t; r) = ϕ(rt)/ϕ(r) with ϕ(x) = ex − 1. Then:
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i) for 0 < t < 1 the λ contours fall as r rises: if 0 < r < R, then

λ(t;R) < λ(t; r);

ii) by reciprocation, at any s > 1, if 0 < r < R, then

λ(s; r) < λ(t;R);

iii) by inversion, the results in (i) and (ii) are reversed for ϕ(x) = log(1+x).
(b) Consider λu(t; r) = ϕ(rt)/ϕ(r) with ϕ(x) = (1 + x)c − 1 and c < 1.

Then:
i) for 0 < t < 1 the λ contours fall as r rises: if 0 < r < R, then

λ(t;R) < λ(t; r);

ii) by reciprocation, at any s > 1, if 0 < r < R, then

λ(s; r) < λ(t;R);

iii) by inversion, the results in (i) and (ii) are reversed for c > 1.

Proof. We begin by computing that
∂

∂r

(
ϕ(rt)
ϕ(r)

)
=

tϕ′(rt)ϕ(r) − ϕ(rt)ϕ′(r)
ϕ(r)2

=
ϕ(rt)ϕ(r)

ϕ(r)2

(
t
ϕ′(rt)
ϕ(rt)

− ϕ′(r)
ϕ(r)

)
,

∂

∂r

(
ϕ′(rt)
ϕ(rt)

)
=

tϕ′′(rt)ϕ(rt) − tϕ′(rt)ϕ′(rt)
ϕ(rt)2

.

(a) (i) As ϕ′ = ϕ′′ = ex, we have for 0 < t < 1

tert(ert − 1) − tertert = −tert < 0 :
∂

∂r

(
t
ϕ′(rt)
ϕ(rt)

)
< 0.

Since rt < r for 0 < t < 1, we have

t
ϕ′(rt)
ϕ(rt)

<
ϕ′(r)
ϕ(r)

, so
∂

∂r

(
ϕ(rt)
ϕ(r)

)
< 0 :

ϕ(rt)
ϕ(r)

is decreasing in r.

Hence, if 0 < r < R and 0 < t < 1, then

ϕ(rt)/ϕ(r) > ϕ(Rt)/ϕ(R).

(ii) With 0 < t < 1, note that ϕ(r)/ϕ(rt) is increasing in r > 0. Writing
ρ = rt and s = 1/t > 1, we see that ϕ(ρs)/ϕ(ρ) is increasing in ρ (t being
fixed.)

(iii) The final assertion follows because y = ϕ(x) = ex − 1 has inverse
x = log(1 + y).

(b) Here ϕ′ = c(1 + x)c−1 and ϕ′′ = c(c − 1)(1 + x)c−2, so for c, t < 1

tϕ′′(rt)ϕ(rt) − ϕ′(rt)ϕ′(rt)= tc(c−1)(1+rt)c−2[(1+rt)c−1] − c2(1+rt)2c−2 < 0,

since (1 + rt) > 1. This leads to (i) and (ii), exactly as in (a).
(iii) Since y = ϕc(x) = (1+x)c−1 has as inverse x = ϕ1/c(y) = (1+y)1/c−1,

the assertion (iii) now follows from (i) and (ii) with reversal. �
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tion. Aequationes Math. 89, 1293–1310 (2015)

[8] Bingham, N.H., Ostaszewski, A.J.: Beurling moving averages and approximate homo-
morphisms. Indag. Math. 27, 601–633 (2016)

[9] Bingham, N.H., Ostaszewski, A.J.: General regular variation, Popa groups and quanti-
fier weakening. J. Math. Anal. Appl. 483, 123610 (2020)

[10] Bingham, N.H., Ostaszewski, A.J.: Sequential regular variation: extensions of Kendall’s
theorem. Quart. J. Math. 714, 1171–1200 (2020). arXiv:1901.07060

[11] Bingham, N. H., Ostaszewski, A. J.: Extremes and regular variation. A lifetime of
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