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Homomorphisms from Functional Equations: The Goldie Equa-
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Abstract. This first of three sequels to Homomorphisms from Functional equations: The
Goldie equation (Ostaszewski in Aequationes Math 90:427–448, 2016) by the second author—
the second of the resulting quartet—starts from the Goldie functional equation arising in the
general regular variation of our joint paper (Bingham et al. in J Math Anal Appl 483:123610,
2020). We extend the work there in two directions. First, we algebraicize the theory, by sys-
tematic use of certain groups—the Popa groups arising in earlier work by Popa, and their
relatives the Javor groups . Secondly, we extend from the original context on the real line
to multi-dimensional (or infinite-dimensional) settings.
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1. Introduction

The Goldie functional equation (GFE) in its simplest form, involving as un-
knowns a primary function K called a kernel and an auxiliary g, both con-
tinuous, reads

K(x + y) = K(x) + g(x)K(y). (GFE)

We encounter a more general version of (GFE) below, a special case of a
Levi–Civita equation. The real-valued version above is closely related to the
better-known Go�ląb-Schinzel functional equation

η(x + yη(x)) = η(x)η(y), (GS)

It emerged most clearly in [10] in the investigation of functions of regular vari-
ation, where (GFE) is key—see §2 below, that that equation is best studied by
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reference to Popa groups. These involve a group structure on R first introduced
by Popa [28], defined by the binary operation

x ◦ y := x + yη(x),

which enables (GS) to be restated as homomorphy of G+
η (R) := {x : η(x) > 0}

with the multiplicative group of positive reals. Its generalization below to R
d,

has
η(x) ≡ 1 + ρ(x)

with ρ(.) linear on R
d. With the induced Euclidean topology, Gρ(Rd) = G

+
1+ρ(.)

(Rd) is an open subspace of Rd, so by the argument in Hewitt and Ross ([21,
15.18]), for λd Lebesgue measure, the Popa Haar-measure on Gρ(Rd) is (as in
[10]) proportional to

λd(dx)
1 + ρ(x)

.

This enables the identification of Fourier transforms, for instance for Gρ(R)
with ρ ∈ (0,∞),

f̂(γ) =
∫
Gρ

f(u)γ(u−1
ρ )(1 + ρ)

du

1 + ρu
(γ ∈ R),

where the characters take the form u �→ eiγ log(1+ρu) with γ ∈ R and u−1
ρ

denotes inversion in the group Gρ(R).
It was noticed in [27], again in the context of R, that (GFE) itself can be

equivalently formulated as a homomorphy between a pair of Popa groups on
R.

In this paper we develop radial properties of multivariate Popa groups in
order to characterize Popa homomorphisms—homomorphisms between Popa
groups.

Regular variation in one dimension (widely used in analysis, probability
and elsewhere—cf. [3]) explores the ramifications of limiting relations such as

f(λx)/f(x) → K(λ) ≡ λγ (Kar×)

or its additive variant, more thematic here:

f(x + u) − f(x) → K(u) ≡ κu (Kar+)

([5, Ch. 1]), and

[f(x + u) − f(x)]/h(x) → K(u) ≡ (uγ − 1)/γ (BKdH)

(Bojanić & Karamata, de Haan, ([5, Ch. 3])). Beurling regular variation simi-
larly explores the ramifications of relations such as

ϕ(x + tϕ(x))/ϕ(x) → 1 or η(t) (Beu)
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([5, § 2.11]) and [26]. The underlying Popa structure lies disguised in the limit
function η(t), which takes the form 1 + γt for t > −1/γ.

For background and applications, see the standard work [5] and e.g. [6–
11], [2–4]. Both theory and applications prompt the need to work in higher
dimensions, finite or infinite. This is the ultimate motivation for the present
paper.

2. The multivariate Goldie functional equation

For X a real topological vector space, write 〈u〉X for the linear span of u ∈
X (to be differentiated from the use of 〈u〉ρ below for ρ in the dual of X).
Following [26] call a function ϕ : X → R self-equivarying over X, ϕ ∈ SEX , if
for each u ∈ X both ϕ(tu) = O(t) and

ϕ(tu + vϕ(tu))/ϕ(tu) → ηϕ
u (v) (v ∈ 〈u〉X , t → ∞)

locally uniformly in v. This appeals to the underlying uniformity structure on
X generated by the neighbourhoods of the origin. As in [26] (by restriction to
the linear span 〈u〉X) the limit function η = ηϕ

u satisfies (GS) for x, y ∈ 〈u〉X .
When the limit function ηu is continuous, one of the forms it may take is

ηu(x) = 1 + ρux (x ∈ 〈u〉X)

for some ρu ∈ R, the alternative form being η(x) = max{1 + ρux, 0}. A closer
inspection of the proof in [26] shows that in fact the restriction x, y ∈ 〈u〉X

placed on (GS) above is unneccessary. Consequently, one may apply the Bril-
louët–Dhombres–Brzdęk theorem ([14, Prop. 3]), ([15, Th. 4]), on the contin-
uous solutions of (GS) with η : X → R, to infer that η here takes the form

η(x) = 1 + ρ(x) (x ∈ X),

for some continuous linear functional ρ : X → R, the alternative form be-
ing η(x) = max{1 + ρ(x), 0}. On this matter, see also [1,14,15]; cf. [18,19],
the former cited in detail below. (For the same conclusion under assumptions
such as radial continuity, or Christensen measurability, see [16,22,23] under
boundedness on a non-meagre set.)

Below we study the implications of replacing ρu in ηu by a continuous linear
function ρ(x). For this we now need to extend the definition of general regular
variation [10] from the real line to a multivariate setting. For real topological
vector spaces X,Y, a function f : X → Y is ϕ-regularly varying for ϕ ∈ SEX

relative to the (auxiliary) norming function h : X → R if the kernel function
K below is well defined for all x ∈ X by

K(x) := lim
t→∞[f(tx + xϕ(tx)) − f(tx)]/h(tx) (x ∈ X). (GRV )
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For later use, we note the underlying radial dependence: for u ∈ X put

Ku(x) := lim
s→∞[f(su + xϕ(su)) − f(su)]/h(su) (x ∈ 〈u〉X).

Writing x = ξu with ξ > 0 and s := tξ > 0,

K(x) = K(ξu) = lim
t→∞ f(tξu + xϕ(tξu)) − f(tξu)]/h(tξu)

= lim
s→∞ f(su + xϕ(su)) − f(su)]/h(su) = Ku(x).

So here Ku = K|〈u〉X , as K(ξu) = Ku(ξu).
We work radially: above with half-lines (0,∞) and below with those of the

form (−1/ρ,∞) for ρ > 0 (on 〈u〉X with context determining u) and (−∞,∞)
when ρ = 0, see [10]. Proposition 1 below identifies the emergence of functional
equations satisfied by the kernel function K : X → Y and by its other auxiliary
g defined below. The latter, once ηϕ is identified in the continuous context (for
which see again [26]), as above, yields a multivariate form of (GS). Given
the natural association of the auxiliary to the Goldie equation, its defining
multiplicative equation has ‘dual citizenship’, being both a special case of
GFE (take logarithms!) and a partially pexiderized variant of (GS), for which
see [17,22].

Proposition 1. Let h and ϕ ∈ SEX be such that the limit

g(x) := lim
t→∞ h(tx + xϕ(tx))/h(tx) (x ∈ X)

exists. Then the kernel K : X → Y in (GRV ) satisfies the Goldie functional
equation:

K(x + ηϕ(x)y) = K(x) + g(x)K(y) (GFE)

for y ∈ 〈x〉X . Furthermore, g satisfies (GFE) in the alternative form

g(x + ηϕ(x)y) = g(x)g(y) (y ∈ 〈x〉X). (GS/GFE×)

Proof. Fix x and y. Writing s = sx := t + ϕ(tx), so that sx = tx + xϕ(tx),

f(tx + (x + y)ϕ(tx)) − f(tx)
h(tx)

=
f(sx + y[ϕ(tx)/ϕ(sx)]ϕ(sx)) − f(sx)

h(sx)
· h(tx + xϕ(tx))

h(tx)

+
f(tx + xϕ(tx)) − f(tx)

h(tx)
.

Here ϕ(sx)/ϕ(tx) = ϕ(tx + xϕ(tx))/ϕ(tx) → η(x). Passage to the limit yields
(GFE), since ϕ(tx) = O(t). The final assertion is similar but simpler. �

We will achieve a characterization of the kernel function K by identifying
the dependence between the different radial restrictions K|〈u〉X .
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3. Popa–Javor circle groups and their radial subgroups

For a real topological vector space X and a continuous linear function ρ : X →
R, the associated function

ϕ(x) = ηρ(x) := 1 + ρ(x)

satisfies (GS), as may be routinely checked. The associated circle operation
◦ρ :

x ◦ρ y = x + yϕ(x) = x + y + ρ(x)y
(which gives for ρ(x) = I(x) ≡ x and X = R the circle operation of ring
theory: cf. ([24, II.3]), ([20, 3.1]), and ([27, §2.1]) for the historical background)
is due to Popa in 1965 on the line and by Javor in 1968 in a vector space
([25,28], cf. [9]). It is associative, as noted in [25]. As in [10] we need the open
sets

Gρ = Gρ(X) := {x ∈ X : ηρ(x) = 1 + ρ(x) > 0}.

Note that if x, y ∈ Gρ, then x ◦ρ y ∈ Gρ, as

ηρ(x ◦ρ y) = ηρ(x)ηρ(y) > 0.

Definition. We refer to

G
∗
ρ = G

∗
ρ(X) := {x ∈ X : ηρ(x) 
= 0}

as the Javor group since, as Javor [25] shows, the set is a group under ◦ρ. The
Javor result remains true under the additional restriction ηρ(y) > 0, as we are
about to verify in Theorem J below. Thus, likewise, we refer to

Gρ = Gρ(X) := {x ∈ X : ηρ(x) > 0}
as a Popa group under ◦ρ.

Theorem J (after Javor [25]). For X a topological vector space and ρ : X → R

a continuous linear function, (Gρ(X), ◦ρ) is a group.

Proof. This is routine, and one argues just as in [25], but must additionally
check preservation of the positivity of ηρ on Gρ. Here 0 ∈ Gρ and is the neutral
element; the inverse of x ∈ Gρ is x−1

ρ := −x/(1 + ρ(x)), which is in Gρ since
1 = ηρ(0) = ηρ(x)ηρ(x−1

ρ ), so that ηρ(x−1
ρ ) > 0. �

Definitions. 1. For u ∈ Gρ(X), put

〈u〉ρ := 〈u〉X ∩ Gρ(X) = {tu : ηρ(tu) = 1 + tρ(u) > 0, t ∈ R}.

(If ρ(u) 
= 0, then 〈u〉ρ = {tu : t > −1/ρ(u)}, which is a half-line in 〈u〉X ;
otherwise 〈u〉ρ = 〈u〉X . Note that Gρ(X) is an affine half-space in X.)

Given the context, the notation 〈u〉ρ will not clash with that of 〈u〉X .
2. For K with domain Gρ(X) we will write Ku = K|〈u〉ρ. (This too will not
clash with the radial notation of §2.)
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Lemma. The one-dimensional subgroup 〈u〉ρ is an abelian subgroup of Gρ(X)
isomorphic with Gρ(u)(R).

Proof. We check closure under multiplication and inversion. For s, t ∈ R, as
before ϕ(su ◦ρ tu) = ϕ(su)ϕ(tu) > 0; also, writing r(tu) for the ρ -inverse,
ϕ(r(tu)) > 0 for ϕ(tu) > 0, as 1 = ϕ(0) = ϕ(tu ◦ρ r(tu)) = ϕ(tu)ϕ(r(tu)).
Further, since

su ◦ρ tu = su + tu + stρ(u)u = (s ◦ρ(u) t)u,

the operation ◦ρ is abelian on 〈u〉ρ. �

Remark. Despite the lemma above, unless ρ ≡ 0 or X = R, the group Gρ(X)
itself is non-abelian. (In the commutative case, except when X = R, one may
select x 
= 0 with ρ(x) = 0; then xρ(y) = yρ(x) = 0 and so ρ(y) = 0 for all y.)
We return to this matter in detail in Theorem 2 below.

Definition. Say that a subgroup H of Gρ(X) is radial if H ⊆ 〈u〉ρ for some
u ∈ H.

Theorem 1 below concerns radial subgroups. The assumption there on Σ is
effectively that all its radial subgroups are closed and dense in themselves. Key
to the proof is the observation that if 1+ρ(u) < 0, then a fortiori 1+ρ(−u) =
1 − ρ(u) > 0, i.e. if u /∈ 〈u〉ρ, then its negative −u ∈ 〈u〉ρ and likewise its
Gρ(X)-inverse (−u)−1

ρ ∈ 〈u〉ρ.

Theorem 1. Radial subgroups of Popa groups are Popa. That is, for Σ a sub-
group of Gρ(X) with 〈u〉ρ ⊆ Σ for each u ∈ Σ :

Σ = Gρ(〈Σ〉X).

Proof. With 〈Σ〉 the linear span, Σ ⊆ Gρ(〈Σ〉X) follows from Σ ⊆ 〈Σ〉X , as Σ
and Gρ(〈Σ〉X) are subgroups of Gρ(X).

For the converse, we first show that αx + βy ∈ Σ for x, y ∈ Σ and scalars
α, β whenever αx + βy ∈ Gρ(〈Σ〉X). First, notice that one at least of αx, βy
is in Σ. Otherwise, 1 + ρ(αx) < 0, as x ∈ Σ and αx ∈ 〈x〉X\Σ, and likewise
1 + ρ(βy) < 0. Summing,

2 + ρ(αx) + ρ(βy) < 0.

But αx + βy ∈ Gρ(X), so

0 < 1 + ρ(αx + βy) = 1 + ρ(αx) + ρ(βy) < −1,

a contradiction. We proceed by cases.
Case 1. Both u := αx and v := βy are in Σ. Here

αx + βy = u + v = u ◦ρ [v/(1 + ρ(u))] ∈ Σ;

indeed, by assumption 1 + ρ(u)) > 0 and 1 + ρ(u + v) > 0, so by linearity

1 + ρ(v/(1 + ρ(u))) = [1 + ρ(u + v)]/(1 + ρ(u)) > 0,



Homomorphisms from Functional Equations

and so v/(1 + ρ(u)) ∈ 〈v〉ρ ⊆ Σ.

Case 2. One of u := αx, v =: βy is not in Σ (‘off the half-line 〈x〉ρ or 〈y〉ρ’).
By commutativity of addition, without loss of generality (briefly: w.l.o.g.)

v /∈ Σ. Then −v ∈ Σ. As Σ is a subgroup, (−v)−1 = v/(1 − ρ(v)) ∈ Σ and,
setting

δ := (1 − ρ(v))/[1 + ρ(u)],
αx + βy = u + v = u ◦ρ δ(−v)−1 = u + δv[1 + ρ(u)]/(1 − ρ(v)) ∈ Σ.

Indeed, δ(−v)−1 = δv/(1−ρ(v)) ∈ 〈v〉ρ ⊆ Σ, since by assumption 1+ρ(u)) > 0
and 1 + ρ(u + v) > 0, so

1 + ρ(δ(−v)−1) = 1 + ρ

(
v

1 + ρ(u)

)
=

1 + ρ(u + v)
1 + ρ(u)

> 0.

Thus in all the possible cases αx + βy ∈ Σ for x, y ∈ Σ with αx + βy ∈
Gρ(〈Σ〉X).

Next we proceed by induction, with what has just been established as the
base step, to show that for all n ≥ 2, if α1u1+α2u2+· · ·+αnun ∈ Gρ(〈Σ〉X), for
u1, u2, . . . , un ∈ Σ and scalars α1, α2, . . . , αn, then α1u1 +α2u2 + · · ·+αnun ∈
Σ.

Assuming the above for n, we pass to the case of u1, u2, . . . , un+1 ∈ Σ and
scalars α1, α2, . . . , αn+1 with α1u1 + α2u2 + · · · + αn+1un+1 ∈ Gρ(〈Σ〉X).

Again as a preliminary, notice that, by permuting the subscripts as neces-
sary, w.l.o.g. x := α1u1+· · ·+αnun ∈ Gρ(〈Σ〉X); otherwise, for j = 1, . . . , n+1

1 + ρ
(∑

i�=j
αiui

)
< 0,

and again as above, on summing, this leads to the contradiction

0 < n[1 + ρ(α1u1 + α2u2 + · · · + αn+1un+1)] < −1.

So we suppose w.l.o.g. that α1u1 + α2u2 + · · · + αnun ∈ Gρ(〈Σ〉X); by the
inductive hypothesis, x := α1u1 + α2u2 + · · · + αnun ∈ Σ. Take y := un+1 ∈ Σ
and apply the base case n = 2 to x and y. Then, since w := α1u1+α2u2+ · · ·+
αn+1un+1 = x + αn+1y ∈ Gρ(〈Σ〉X), w ∈ Σ. This completes the induction,
showing Gρ(〈Σ〉X) ⊆ Σ. �

In view of the role in quantifier weakening of countable subgroups dense in
themselves [8,10], we note in passing that the proof above may be relativized
to the subfield of rational scalars to give (with 〈·〉Q below the rational linear
span):

Theorem 1Q. For Σ a countable subgroup of Gρ(X) with 〈u〉Qρ ⊆ Σ for each
u ∈ Σ, if ρ(Σ) ⊆ Q :

Σ = Gρ(〈Σ〉Q).
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4. Abelian dichotomy and homomorphisms

Our first result here, Theorem 2, allows us to characterize in Theorems 4A and
4B homomorphisms between Popa groups in vector spaces. We recall that

η1(t) := 1 + t (t ∈ R+ := (0,∞))

takes G1(R)
η1→ (R+,×), isomorphically. For the next result note that

ηρ(x) = η1(ρ(x)) = 1 + ρ(x).

In the case of X = R, where ρ(x) ≡ ρx, this reduces to

1 + ρx.

We think of our first result here as expressing an abelian dichotomy. Below
◦I refers to ◦ρ when ρ = I, the identity map on R, as in the ‘circle operation’
(above).

Theorem 2. A commutative subgroup Σ of Gρ(X) is either
(i) a subspace of the null space N (ρ), so a subgroup of (X,+), or
(ii) for some u ∈ Σ a subgroup of 〈u〉ρ isomorphic under ρ to a subgroup of

G1(R) :
ρ(x ◦ρ y) = ρ(x) ◦I ρ(y).

Thus the image of Σ under ηρ is a subgroup of (R+,×).

Proof. Either ρ(z) = 0 for each z ∈ Σ, in which case Σ is a subgroup of (X,+),
or else there is z ∈ Σ\{0} with ρ(z) 
= 0 (since ρ(0) = 0). In this case take
u = uρ(z) := z/ρ(z) 
= 0. Then ρ(u) = 1 so u ∈ Σ, and for all x ∈ Σ by
commutativity x = ρ(u)x = ρ(x)u, i.e. Σ is contained in the linear span 〈u〉X

and so in 〈u〉ρ. So the operation ◦ρ on Σ takes the form

x ◦ρ y = ρ(x)u + ρ(y)u + ρ(ρ(x)u)ρ(y)u.

But x ◦ρ y = ρ(x ◦ρ y)u, so as u 
= 0 the asserted isomorphism follows from

ρ(x ◦ρ y)u = [ρ(x) + ρ(y) + ρ(x)ρ(y)]u.

In turn this implies

ηρ(x ◦ρ y) = 1 + ρ(x ◦ρ y) = (1 + ρ(x))(1 + ρ(y)) = ηρ(x)ηρ(y),

i.e. ηρ is a homomorphism into (R+,×). �

Before we pass to a study of radial behaviours in §5, we recall the following
result ([27, Prop. A]), [17] (cf. ([10, Th. 3])) for the context Gρ(R) with ρ(x) =
ρx. To accommodate alternative forms of (GFE), the matrix includes the
multiplicative group (R+,×) as ρ = ∞; for a derivation via a passage to the
limit see [10], but note that

ρx + ρy + ρxρy = [ρx · ρy](1 + o(ρ)) (x, y ∈ R+, ρ → ∞).
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Theorem BO. Take ψ : Gρ(R+) → Gσ(R) a homomorphism with ρ, σ ∈ [0,∞].
Then the lifting Ψ : R → R of ψ to R defined by the canonical isomorphisms
log, exp, {ηρ : ρ > 0} is bounded above on Gρ iff Ψ is bounded above on R,
in which case Ψ and ψ are continuous. Then for some κ ∈ R one has ψ(t) as
below:

Popa parameter σ = 0 σ ∈ (0,∞) σ = ∞
ρ = 0 κt η−1

σ (eσκt) eκt

ρ ∈ (0,∞) log ηρ(t)κ/ρ η−1
σ (ηρ(t)σκ/ρ) ηρ(t)κ/ρ

ρ = ∞ log tκ η−1
σ (tσκ) tκ

After linear transformation, all the cases reduce to some variant (mixing
additive or multiplicative structures) of the Cauchy functional equation. (The
parameters are devised to achieve continuity across cells, see [10].)

We next show how this theorem is related to the current context of (GFE).
As a preliminary we note a result of Chudziak in which ◦ρ is applied to all
of X, so in practice to Javor groups—i.e. without restriction to Gρ(X). We
thus think of this as a Javor Homomorphism Theorem. We repeat Chudziak’s
proof, amending it to the range context of Gσ(Y ).

Theorem Ch ([18, Th. 1]). Let X,Y be real topological vector spaces and K :
X → Gσ(Y ) a continuous function satisfying

K(x ◦ρ y) = K(x) ◦σ K(y) (x, y ∈ X)

with ρ 
= 0. Then for any u with ρ(u) = 1 there are constants κ = κ(u), τ =
σ(K(u)), and continuous Au : X → Gσ(Y ) satisfying

Au(x + y) = Au(x) ◦σ Au(y) (x, y ∈ X) (A)

(so with abelian range) such that

K(x) =
{

Au(x) + [1 + σ(Au(x))][(1 + ρ(x))τκ − 1]K(u)/τ, τ 
= 0,
K(u) log(1 + ρ(x))/ log 2, τ = 0.

Proof. Take any u ∈ X with ρ(u) = 1 and set

Au(x) := K (x − ρ(x)u) , μu(t) := K((t − 1)u).

The former is continuous and satisfies (A). To see this, take vi = xi − ρ(xi)u;
then v1 + v2 = v1 ◦ρ v2, since ρ(vi) = ρ(xi) − ρ(xi)ρ(u) = 0 and ◦ρ reduces to
addition on the kernel of ρ. Now, by linearity of ρ,

v1 ◦ρ v2 = v1 + v2 = x1 + x2 − ρ(x1 + x2)u.
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So

Au(x1 + x2) = K (x1 + x2 − ρ(x1 + x2)u) = K(v1 ◦ρ v2)
= K(v1) ◦σ K(v2)
= K (x1 − ρ(x1)u) ◦σ K (x2 − ρ(x2)u)
= Au(x1) ◦σ Au(x2).

Hence Au has image an abelian subgroup of Gσ(Y ).
The other mapping is an isomorphism between (R+,×) and a subgroup of

Gσ(Y ) with
μu(st) = μu(s) ◦σ μu(t).

This last follows via ρ(u) = 1 from the identity

(st − 1)u = (s − 1)u + [1 + ρ((s − 1)u)](t − 1)u.

Now the image subgroup under μu, being abelian, is a subgroup of 〈K(u)〉σ

by Theorem 2, so isomorphic to a subgroup of Gτ (R) for τ := σ(K(u)) ∈ R.
Thus μu is an isomorphism from (R+,×) = G∞(R) to Gτ (R), for τ = σ(K(u)),
and by Theorem BO for some κ = κ(u)

μu(t) = η−1
σ(K(u))(t

σ(K(u))κ(u))K(u).

So, as ρ([x − ρ(x)u]) = 0,

K(x) = K([x − ρ(x)u]) ◦ρ ρ(x)u) = Au(x) ◦σ K(ρ(x)u)
= Au(x) ◦σ μu(1 + ρ(x)).

For σ(K(u)) = 0 the above result should be amended to its limiting value as
τ → 0, namely K([x−ρ(x)u])+K(u) log(1+ρ(x))/ log 2 (since κ(u) = 1/ log 2).
�

Remark. As the proof shows, in Theorem Ch. one fixes u with ρ(u) = 1,
obtaining constants κ = κ(u), and τ = τ(u) := σ(K(u)). The case τ = 0 is
then best approached using L’Hospital’s rule so that, for x = u, identity of
both sides of the representation of K yields

1 = lim
τ→0

2τκ(u) − 1
τ

= κ(u) log 2.

5. Radial behaviours

Our next two results help establish in §6 Theorems 4A and 4B two not entirely
dissimilar representations for the Popa groups, including the case ρ ≡ 0, from
which the form of Au above may be deduced in view of equation (A) in Th.
Ch. Our first result concerns radial behaviour outside N (ρ).

Theorem 3A. For real topological vector spaces X,Y , if K : Gρ(X) → Gσ(Y )
is continuous and satisfies
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K(x ◦ρ y) = K(x) ◦σ K(y) (x, y ∈ Gρ(X)), (K)

then, for x with ρ(x) 
= 0 and σ(K(x)) 
= 0, there is κ = κ(x) ∈ R \{0} with

K(z) = η−1
σ (ηρ(z)σ(K(x))κ) (z ∈ 〈x〉ρ).

Moreover, the index γ(x) := σ(K(x))κ(x) is then continuous and extends to
satisfy the equation

γ(a ◦ρ b) = γ(a) + γ(b) (a, b ∈ Gρ(X)).

Proof. For x as above, take u = uρ(x) 
= 0 and v = uσ(K(x)) 
= 0, both well-
defined as ρ(x) and σ(K(x)) are non-zero (also u ∈ 〈x〉ρ and v ∈ 〈K(x)〉σ, as
ρ(u) = σ(v) = 1). The restriction Ku = K|〈u〉ρ yields a continuous homomor-
phism into Gσ(Y ). As 〈u〉ρ is an abelian group under ◦ρ, its image under Ku is
an abelian subgroup of Gσ(Y ). So, as in Theorem 2, it is a non-trivial subgroup
of 〈v〉σ. As noted, ρ(u) = σ(v) = 1, so we have the following isomorphisms:

〈u〉ρ
ρ→ G1(R)

η1→ (R+,×),

〈v〉σ
σ→ G1(R)

η1→ (R+,×)

(writing ρ, σ = for ρ|〈u〉 and σ|〈v〉) with 〈.〉 here short for 〈.〉R), which combine
to give

k(t) := η1σKuρ−1η−1
1 (t) = ησKuη−1

ρ (t)
as a non-trivial homomorphism of (R+,×) into itself:

k(st) = k(s)k(t).

Solving this Cauchy equation for a non-constant continuous k yields

k(t) ≡ tγ (t ∈ R+),

for some γ = γ(u) ∈ R\{0}; so k is bijective. Write γ = γ(u) = σ(K(u))κ(u),
then, as asserted (abbreviating the symbols),

Ku(z) = η−1
σ kηρ(z) = η−1

σ (ηρ(z)σκ)

= σ−1(η−1
1 (1 + ρ(z))σκ)) (z ∈ 〈u〉ρ).

In particular, Ku is injective. As u 
= 0, 0 
= K(u) ∈ 〈v〉σ, so K(u) = sv for
some s 
= 0. Hence σ(K(u)) = sσ(v) = s 
= 0. Since σ(tK(u)) = tσ(K(u)),

K(z) = Ku(z) = [((1 + ρ(z))σ(K(u))κ(u) − 1)/σ(K(u))]K(u) (z ∈ 〈u〉ρ).

Here ρ(z) = t for z = tu, as ρ(u) = 1 by choice. Taking z = u gives

(2σ(K(u))κ(u) − 1)/σ(K(u)) = 1 : κ(u) = log(1 + σ(K(u))/[σ(K(u)) log 2],

and so γ(u) := σ(K(u))κ(u) is continuous and satisfies the equation

γ(a ◦ρ b) = γ(a) + γ(b) (a, b ∈ Gρ(X)).
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Indeed, write α = K(a), β = K(b); then as K(a ◦ρ b) = α ◦σ β, by linearity of
σ

log(1 + σ(K(a ◦ρ b)) = log(1 + σ(α + β + σ(α)β))
= log(1 + σ(α) + σ(β) + σ(a)σ(β))
= log(1 + σ(α)) + log(1 + σ(β)).

For σ(K(x)) = 0, the map 〈v〉σ(v)
ησ→ (R+,×) above must be interpreted as

exponential. A routine adjustment of the argument yields

K(z) = Ku(z) = K(u) log(1 + ρ(z))/ log 2 (z ∈ 〈u〉ρ),

justifying hereafter a L’Hospital convention (of taking limits σ(K(u)) → 0 in
the ‘generic’ formula). �

We consider now the case ρ(x) = 0, which turns out as expected, despite
Theorem 2 being of no help here. This complement to Theorem 3A thus de-
scribes radial behaviour inside N (ρ). A more detailed analysis, including the
case ρ(u) = 1, along the lines followed here, is to be found in ([12, Th. 3.1])
and again in a Banach algebra context in [BinO8].

Theorem 3B. Let X,Y be real topological vector spaces. If K : Gρ(X) →
Gσ(Y ) is continuous and satisfies (K), then for any u 
= 0 with ρ(u) = 0

K(〈u〉ρ) ⊆ 〈K(u)〉σ ∼ Gσ(K(u))(R),

with ∼ denoting isomorphism,and there is a function λu : (R,+) → Gσ(K(u))(R)
satisfying

K(ξu) = λu(ξ)K(u) (ξ ∈ R).
Moreover, if K(u) 
= 0, then for some constant κ = κ(u)

λu(t) =
{

(eσ(K(u))κ(u)t − 1)/σ(K(u)), σ(K(u)) 
= 0,
t, σ(K(u)) = 0,

for t ∈ R, so that λu is an isomorphism.

Proof. As ρ(u) = 0, ξu + ξu = ξu ◦ρ ξu. Notice that

K(2u) = K(u) + K(u) + σ(K(u))K(u) = (2 + σ(K(u))K(u).

By induction,
K(nu) = an(u)K(u) ∈ 〈K(u)〉Y ,

where a1 = 1 and an = an(u), for n = 1, 2, . . . , solves

an+1 = 1 + (1 + σ(K(u))an,

since
K(u + nu) = K(u) + anK(u)(1 + σ(K(u)).

Suppose w.l.o.g. σ(K(u)) 
= 0, the case σ(K(u)) = 0 being similar, but simpler
(with an = n). So

an = ((1 + σ(K(u))n − 1)/σ(K(u)) 
= 0 (n = 1, 2, . . .).
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Replacing u by u/n and then rearranging gives

K(u) = K(nu/n) = an(u/n)K(u/n) : K(u/n) = an(u/n)−1K(u) ∈ 〈K(u)〉Y .

So

K(mu/n) = am(u/n)K(u/n) = am(u/n)an(u/n)−1K(u)

=
((1 + σ(K(u/n))m − 1)/σ(K(u/n)
((1 + σ(K(u/n))n − 1)/σ(K(u/n)

K(u)

=
((1 + σ(K(u/n))m − 1)
((1 + σ(K(u/n))n − 1)

K(u) ∈ 〈K(u)〉Y .

By continuity of K (and of scalar multiplication), this implies that K(ξu) ∈
〈K(u)〉Y for any ξ ∈ R. So we may uniquely define λ(s) = λu(s) via

K(su) = λu(s)K(u).

(In the case σ(K(u)) = 0 with an = n, K(mu/n) = (m/n)K(u), so that
K(su) = sK(u).) Then, as ρ(u) = 0,

λ(ξ + η)K(u) = K((ξ + η)u) = K(ξu ◦ρ ηu) = K(ξu) + K(ηu) + σ(K(ξu))K(ηu)
= K(ξu) + K(ηu) + σ(λ(ξ)K(u))λ(η)K(u)
= λ(ξ)K(u) + λ(η)K(u) + λ(ξ)λ(η)σ(K(u))K(u)
= [λ(ξ) + λ(η) + λ(ξ)λ(η)σ(K(u))]K(u).

So if K(u) 
= 0

λu(ξ + η) = λu(ξ) + λu(η) + λu(ξ)λu(η)σ(K(u)) = λu(ξ) ◦σ(K(u)) λu(η).

Thus λu : (R,+) → Gσ(K(u))(R). By Theorem BO, with τ = σ(K(u)) for some
κ = κ(u)

λu(t) =
{

(eτκ(u)t − 1)/τ, if σ(K(u)) 
= 0,
κ(u)t = t, if σ(K(u)) = 0.

�

Corollary 1. In Theorem 3B, if ρ(u) = 0 and K(u) 
= 0, then either
(i) σ(K(u)) = 0 and κ(u) = 1, or
(ii) σ(K(u)) > 0, κ(u) = log[1 + σ(K(u))]/σ(K(u)) and the index γ(u) :=

σ(K(u))κ(u) is additive on N (ρ):

γ(u + v) = γ(u) + γ(v) (u, v ∈ N (ρ)).

Proof. As ρ(u) = 0, the notation in the proof above is valid, so λu(1) = 1,
as 0 
= K(u) = λu(1)K(u). If σ(K(u)) = 0, then κ(u) = 1, by Theorem 3B.
Otherwise,

(eσ(K(u))κ(u) − 1)/σ(K(u)) = 1 : κ(u) = log(1 + σ(K(u)))/σ(K(u)),

and, as γ(u) = log(1 + σ(K(u))), the concluding argument is as in Theorem
3A (with ◦ρ = + on N (ρ)). �
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6. Homomorphism dichotomy

The paired Theorems 4A and 4B below, our main contribution, amalgamate
the earlier radial results according to the two forms identified by Theorem
2 that an abelian Popa subgroup may take (see below). Theorem 4A covers
σ ≡ 0 as N (σ) = Gσ(Y ) = Y, whereas ρ ≡ 0 may occur in the context of
either theorem. Relative to Theorem Ch., new here is Theorem 4B exhibiting
an additional source of regular variation.

We begin by noting that, since ◦ρ on N (ρ) is addition, N (ρ) is an abelian
subgroup of Gρ(X) and so

Σ := K(N (ρ)),

as a homeomorph, is also an abelian subgroup of Gσ(Y ). By Theorem 2 there
are now two cases to consider, differing only in their treatment of radial be-
haviour (in or out of N (ρ)). The former is our First Popa Homomorphism
Theorem which follows.

Theorem 4A. Let X,Y be real topological vector spaces and K : Gρ(X) →
Gσ(Y ) a continuous function K satisfying (K) with

K(N (ρ)) ⊆ N (σ).

Then:
K|N (ρ) is linear, and either

(i) K is linear, or
(ii) for any u with ρ(u) = 1, πu(x) := x − ρ(x)u is the projection onto N (ρ)
parallel to u and

K(x) =
{

K(πu(x)) + K(u)[(1 + ρ(x))log(1+τ)/ log 2 − 1]/τ, τ 
= 0,
K(πu(x)) + K(u) log(1 + ρ(x))/ log 2, τ = 0,

for τ = σ(K(u)). In particular, x �→ K(πu(x)) is linear.

Proof. If ρ ≡ 0, then K(X) = K(N (ρ)) ⊆ N (σ). Here σ(K(x)) = 0 for all x
so, since ◦σ = + on N (σ), K is linear.

Otherwise, fix u ∈ X with ρ(u) = 1. Then x �→ πu(x) = x − ρ(x)u is a
(linear) projection onto N (ρ) and, since ρ(x − ρ(x)u) = 0,

x = (x − ρ(x)u) ◦ρ ρ(x)u.

(So Gρ(X) is generated by N (ρ) and any u /∈ N (ρ).)
By assumption σ(πu(x)) = 0 and as K|N (ρ) is linear

K(x) = K(πu(x)) ◦σ K(ρ(x)u) = K(πu(x)) + K(ρ(x)u).

If τ := σ(K(u)) 
= 0, then by Theorem 3A

K(ρ(x)u) = [(1 + ρ(x))log(1+τ)/ log 2 − 1]K(u)/τ.
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Now consider u, v ∈ Gρ(X) with ρ(u) = 1 = ρ(v). As v − u ∈ N (ρ), also
σ(K(v − u)) = 0 and also

v = (v − u) + u = (v − u) ◦ρ u.

Moreover, as σ(K(v − u)) = 0,

K(v) = K(v − u) ◦σ K(u) = K(v − u) + K(u) : K(v − u) = K(v) − K(u).

So, by linearity of σ,

0 = σ(K(v − u)) = σ(K(v)) − σ(K(u)) : σ(K(v)) = σ(K(u)) = τ.

Thus also
K(ρ(x)v) = [(1 + ρ(x))log(1+τ)/ log 2 − 1]K(v)/τ.

If τ := σ(K(u)) = 0, then as in Theorem 3A,

K(ρ(x)u) = K(u) log(1 + ρ(x))/ log 2,

again justifying the L’Hospital convention in force (the formula follows from
the main case taking limits as τ → 0). �

We pass to the remaining case, our Second Popa Homomorphism Theorem.

Theorem 4B. Let X,Y be real topological vector spaces and K : Gρ(X) →
Gσ(Y ) a continuous function K satisfying (K) with

K(N (ρ)) = 〈K(w)〉σ

for some w with ρ(w) = 0 and σ(K(w)) = 1. Then
(i) V0 := N (ρ) ∩ K−1(N (σ)) is a vector subspace and K0 = K|V0 = 0;
(ii) for any subspace V1 � w complementary to V0 in N (ρ), and any u ∈ X
with ρ(u) = 1, there is a linear map κw : V1 → R such that for τ = σ(K(u))

K(x) =

⎧⎪⎪⎨
⎪⎪⎩

[eκw(π1(x)) − 1]K(w)+
eκw(π1(x))[(1 + ρ(x))log(1+τ)/ log 2 − 1]K(u)/τ, τ 
= 0,

[eκw(π1(x)) − 1]K(w)+
eκw(π1(x))K(u) log(1 + ρ(x))/ log 2, τ = 0,

where πi denotes projection from X onto Vi, and σ(K(π1(x))) 
= 0 unless
π1(x) = 0.

(The final term in each case is excluded when there are no u ∈ X with
ρ(u) = 1.)

Proof. The assumption on K here is taken in an initially more convenient
form: K(N (ρ)) ⊆ 〈w〉σ, for some w ∈ Σ = K(N (ρ)), and of course w.l.o.g.
σ(w) 
= 0, as otherwise this case is covered by Theorem 4A.

To begin with V0 := N (ρ) ∩ K−1(N (σ)) is a subgroup of Gρ(X), as K is
a homomorphism. Similarly as in Theorem 4A, we work with a linear map,
namely K0 := K|V0, as we claim V0 to be a subspace of N (ρ). (Then V0 =
G0(V0).)
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The claim follows by linearity of σ and Theorem 3B. Indeed, if ρ(x) =
ρ(y) = 0 and σ(K(x)) = σ(K(y)) = 0, then K(αx) = λx(α)K(x) and K(βy) =
λy(β)K(y), and since N (ρ) is a vector subspace on which + agrees with ◦ρ :

K(αx + βy) = K(αx ◦ρ βy)
= λx(α)K(x) + λy(β)K(y) + λx(α)λy(β)σ(K(x))K(y)
= λx(α)K(x) + λy(β)K(y),

as σ(K(x)) = 0. So

σ(K(αx + βy)) = λx(α)σ(K(x)) + λy(β)σ(K(y)) = 0.

Hence V0 is a subspace of N (ρ) and K0 : V0 → N (σ) is linear with K0(V0) ⊆
N (σ), as in Theorem 4A. Hence K0 = 0; indeed, for v0 ∈ V0, as V0 ⊆ N (ρ)
there is λ0 with K(v0) = λ0w ∈ N (σ) and so 0 = σ(λ0w) = λ0σ(w) and as
σ(w) 
= 0 we have λ0 = 0. That is, K0 = 0.

Since K(N (ρ)) ⊆ N (σ) does not hold, choose in N (ρ) a subspace V1 com-
plementary to V0, and let πi : X → Vi denote projection onto Vi. For v ∈ N (ρ)
and vi = πi(v) ∈ Vi, as K(v0) ∈ N (σ),

K(v) = K(π0(v) ◦ρ π1(v)) = K(π0(v)) ◦σ K(π1(v)) = K0(π0(v)) + K(π1(v)).
(V 0)

Here K0 ◦ π0 is linear and σ(K(v1)) 
= 0 unless v1 = 0. Recalling that V1 is
a subgroup of Gρ(X), re-write the result of Theorem 3B as K(v1) = λw(v1)w
with λw : V1 → Gσ(w)(R) and

λw(v1 + v′
1) = λw(v1) ◦σ(w) λw(v′

1) (v1, v′
1 ∈ V1).

With w fixed, λw is continuous (as K is), with 1 + σ(w)λw(v1) > 0.
So, as in Theorem 4A, for v ∈ V1 and some κ = κw(v)

K(tv) = λw(tv)w = σ(w)−1[eσ(w)κw(v)t − 1]w (t ∈ R).

Taking t = 1 gives

σ(w)κw(v) = log[1 + σ(w)λw(v)].

As λw is continuous, so is κw : V1 → R (as σ(w) 
= 0). However, as in Theorem
2 but with σ(w) fixed, κw is additive and so by continuity linear on V1. So, as
tκw(v) = κw(tv),

K(v) = σ(w)−1[eσ(w)κw(v) − 1]w (v ∈ V1). (V 1)

For x ∈ X take vi := πi(x) ∈ Vi and v := v0 + v1. If ρ is not identically zero,
again fix u ∈ X with ρ(u) = 1, and then x �→ πu(x) = x − ρ(x)u is again
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(linear) projection onto N (ρ). If ρ ≡ 0, set u below to 0. Then, whether or not
ρ ≡ 0, as ρ(x − ρ(x)u) = 0,

x = v0 + v1 + ρ(x)u = v ◦ρ ρ(x)u.

So, as σ(K(v0)) = 0 and ρ(ρ(x)u) = ρ(x)ρ(u) = ρ(x),with τ = σ(K(u)) 
= 0

K(x) = K(v) ◦σ K(ρ(x)u) = K(v) ◦σ η−1
σ(K(u))(ηρ(ρ(x)u)κ),

here with κ = log(1 + τ)/ log 2, which we expand as

K(v0) + K(v1) + [1 + σ(K(v0 + v1))][(1 + ρ(x))log(1+τ)/ log 2 − 1]K(u)/τ

= K0(π0(v)) + K(π1(v)) + [1 + σ(K(v1))][(1 + ρ(x))log(1+τ)/ log 2 − 1]K(u)/τ :

K(x) = K0(π0(x)) + [eσ(w)κw(π1(x)) − 1]w/σ(w)

+[1 + σ(K(π1(x)))][(1 + ρ(x))log(1+σ(K(u)))/ log 2 − 1]K(u)/σ(K(u)).

Here K0 = 0, as above. Finally, (V 1) and linearity of σ yields via (V 0) that

1 + σ(K(π1(x))) = eσ(w)κw(π1(x)).

For v1 
= 0, σ(K(v1)) 
= 0, as otherwise v1 ∈ N (ρ) ∩ K−1(N (σ)) = V0,
contradicting complementarity of V1.

Here σ(w/σ(w)) = 1. Finally, as w ∈ Σ = K(N (ρ)), we replace w by K(w)
with ρ(w) = 0 and σ(K(w)) = 1. If τ = σ(K(u)) = 0, then, as in Theorem
4A, the final term is to be interpreted by the L’Hospital convention (limiting
value as τ = σ(K(u)) → 0). We thus have:

K(x) = K0(π0(x)) + [eκw(π1(x)) − 1]K(w)

+eκw(π1(x))K(u)[(1 + ρ(x))log(1+τ)/ log 2 − 1]/τ,

where τ = σ(K(u)) and again K0 = 0.

If ρ ≡ 0, then u = 0 so that K(u) = 0, and the final term vanishes. �

Remark. We close with the final dénoument, which is the connection between
(GFE) and Popa groups. Theorems 4A and 4B are used in [12] to characterize,
for X,Y real topological vector spaces, the continuous solutions K : Gρ(X) →
Y of (GFE) as homomorphisms between Popa groups Gρ(X) and Gσ(Y ) for
some σ. For an inkling of the context, notice that for K : Gρ(X) → Y as in
Prop. 2.1, under the strong assumption that K is injective, a linear σ : Y → R

can readily be deduced yielding

K(u ◦ρ v) = K(u) + g(u)K(v) = K(u) ◦σ K(v),

so that K is a Popa homomorphism (cf. [27, Th. 1]). We relax the strong
assumption in [12].
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[22] Jab�lońska, E.: Continuous on rays solutions of an equation of the Go�la̧b–Schinzel type.

J. Math. Anal. Appl. 375, 223–229 (2011)
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