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Abstract
A rational number is dyadic if it has a finite binary representation p/2k , where p is an
integer and k is a nonnegative integer. Dyadic rationals are important for numerical
computations because they have an exact representation in floating-point arithmetic
on a computer. A vector is dyadic if all its entries are dyadic rationals. We study the
problem of finding a dyadic optimal solution to a linear program, if one exists. We
show how to solve dyadic linear programs in polynomial time. We give bounds on the
size of the support of a solution as well as on the size of the denominators. We identify
properties that make the solution of dyadic linear programs possible: closure under
addition and negation, and density, and we extend the algorithmic framework beyond
the dyadic case.

Keywords Linear programming · Integer programming · Dyadic rational ·
Floating-point arithmetic · Polynomial algorithm · Dense abelian subgroup

Mathematics Subject Classification 90C05 · 90C10

1 Introduction

A rational number is dyadic if it is an integer multiple of 1
2k

for some nonnegative
integer k. Dyadic numbers are important for numerical computations because they
have a finite binary representation, and therefore they can be represented exactly on
a computer in floating-point arithmetic. When real or rational numbers are approx-
imated by dyadic numbers on a computer, approximation errors may propagate and
accumulate throughout the computations. So it is natural to ask when linear programs
have a dyadic optimal solution. More generally, the exact solution of linear programs
with rational input data has led to interesting work; we just mention here the excellent
dissertation of Espinoza [15]. In this paper we investigate a different direction.
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A vector x is dyadic if all its entries are dyadic numbers. A dyadic linear program
is an optimization problem of the form

sup
{
w�x : Ax ≤ b, x dyadic

}

where A, b, w have integral entries.
Note that we do not restrict ourselves to fixed precision; we just require a finite

number of bits in the binary representation. This is an important point as we will
see that it makes the problem tractable. On the other hand, if the vector x in the
dyadic linear program were restricted to be of the form y

2k
for an integral vector y

and a nonnegative integer k bounded above by a given value K , then the problem
would be a classical integer linear program. Indeed the problem can then be written
as 1

2K
·max

{
w�y : Ay ≤ 2K b, y integral

}
.

Some natural questions about dyadic linear programs are: When is the problem
feasible? Can we check feasibility in polynomial time? If the problem is infeasible,
can we provide a certificate of infeasibility? When does a dyadic linear program have
an optimal solution? Note that a dyadic linear program may be feasible and bounded,
but not have an optimal solution (in dimension one, sup {x : 3x ≤ 1, x dyadic} is such
an example). Can dyadic linear programs be solved in polynomial time? What is the
size of the dyadic numbers in a solution when one exists? What is the support size of
a solution? This paper addresses these questions. In particular, we show that dyadic
linear programs can be solved in polynomial time.

The interest in dyadic linear programming stems not only from the computer science
perspectivementioned above, but also frommathematics and fromoptimization. Take a
mathematical point of view:Given a prime integer p ≥ 2,we say that a rational number
is finitely p-adic if it is of the form r

pk
for some integer r and nonnegative integer k. This

concept is closely related to the notion of the p-adic numbers introduced by Hensel,
formally defined as the set of “finite-tailed" infinite series

∑+∞
i=N ai pi where N ∈ Z,

and ai ∈ Z and 0 ≤ ai < p for each i ≥ N .1 The study of p-adic numbers gives rise
to beautiful and powerful mathematics; see the excellent book by Gouvêa for more
[17]. It can be readily checked that the set of finitely p-adic numbers is the set of finite
series of the form

∑M
i=N ai pi , where M, N ∈ Z, M ≥ N , and 0 ≤ ai < p, ai ∈ Z

for all N ≤ i ≤ M , justifying our terminology.2 In this paper, we will only deal with
finitely p-adic numbers; for simplicity we refer to them as p-adic numbers throughout
the paper. Also we refer to “2-adic" as “dyadic". More generally, we say that a rational
number is [p]-adic if it is of the form r

s where r is an integer and s is a product of powers
of primes between 2 and p. These numbers appear naturally in some of the theorems in
this paper. For the optimization point of view, let us mention an intriguing conjecture
of Seymour dating back to 1975; see Schrijver [28] 79.3e. Let A be a 0,1 matrix such
that the set covering polyhedron Ax ≥ 1, x ≥ 0 has only integral vertices, where 1
denotes the vector of all 1 s. Thus the linear program min

{
c�x : Ax ≥ 1, x ≥ 0

}
has

an optimal 0,1 solution for any objective function c ∈ Z
n+. Seymour conjectured that

1 The p-adic numbers form a field extension of the rational numbers, albeit in a different way than the real
numbers.
2 The set of finitely p-adic numbers does not form a field. For instance, 3 is finitely 2-adic, but 1/3 is not.
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the dual linear program max
{
1�y : A�y ≤ c, y ≥ 0

}
always has a dyadic optimal

solution y. This conjecture is still open but is known to hold in a few important special
cases. For example, when A is the T -cut versus edge incidence matrix of a graph, an
optimal dual solution y is 1

2 -integral (Lovász [22]). Seymour’s conjecture was proved
recently in a couple of other special cases [2, 5].

Wewill show in this paper that dyadic linear programming shares aspects of classical
linear programming as well as certain aspects of integer programming. In particular,
we will show that, just like linear programs, dyadic linear programs can be solved in
polynomial time.However, when it comes to the support size of a solution, the situation
is more akin to that in integer programming. Indeed, in classical linear programming,
for a problem in standard equality form x ≥ 0, Ax = b, if it has an optimal solution,
there is a basic optimal solutionwith atmostm nonzero entries wherem is the row rank
of the constraint matrix A. For integer programs, the support size may be superlinear
in m, and a similar situation occurs for dyadic linear programs. Next, we present an
outline of the paper.

In Sect. 2, we present two key ideas that make the polynomial solution of dyadic
linear programs possible. The first ingredient is the density of the dyadic numbers in
the real line. This property enables us to convert the feasibility question for a dyadic
linear program to that of the existence of a dyadic point in an affine space. Specifically,
we show that, ifL is a dense subset of the real line closed under addition and negation,
and P is a nonempty convex set whose affine hull is rational, then P contains a point
in L

n if and only if its affine hull aff(P) does. This equivalence begs the question:
When does the affine space aff(P) contain a point in Ln?

The second key ingredient is a theorem of the alternatives. This theorem allows us
to answer the above question. Specifically, consider a matrix A ∈ Z

m×n and a vector
b ∈ Z

m . Then exactly one of the following holds: (a) Ax = b has a solution in L
n ,

or (b) there exists u ∈ R
m such that A�u ∈ Z

n and b�u /∈ L. This theorem of the
alternative is reminiscent of the so-called “integer Farkas lemma" and it can be proved
in a similar way, using the Hermite normal form of A. Because the Hermite normal
form of an integralmatrix can be found in polynomial time (Kannan andBachem [21]),
one can obtain a polynomial certificate for statements (a) or (b), whichever holds.

These two are the basic ingredients we need to check feasibility of dyadic linear
programs in polynomial time.

In Sect. 3, we present an algorithm to solve dyadic linear programs. There are
four possible outcomes for this optimization problem: (i) the problem is infeasible,
(ii) the problem is unbounded, (iii) the problem has an optimal solution, (iv) the
problem is feasible and bounded but has no optimal solution. We show how to decide
in polynomial time which of these outcomes is the correct one and, in each case, we
give a concise (polynomial size) certificate. The complexity of our algorithm is (up to
a constant factor) the same as that of solving an ordinary linear program. Our results
in this section are extended beyond the dyadic numbers to any subset L ⊆ R that is
closed under addition and negation, contains all the p-adic numbers for some prime
p, and is equipped with a membership oracle.

In Sect. 4, we focus on the size of the denominators of a solution to a feasible
dyadic linear program. In particular, we show that if Ax ≤ b, x dyadic is feasible,
where A ∈ Z

m×n and b ∈ Z
m , then there exists a 1

2k
-integral solution, where k ≤
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⌈
log2 n + (2n + 1) log2(‖A‖∞

√
n + 1)

⌉
. Here ‖A‖∞ denotes the largest absolute

value of an entry in A. Our results in this section are presented more generally for
p-adic linear programs.

In Sect. 5, we study the size of the support of a solution to a dyadic linear program.
That is, we consider the smallest number of nonzero components in a dyadic solution.
Surprisingly, the lower and upper bounds that we obtain on the smallest support size
resemble results for integer programming and are very different from the value of
the support size given by Carathéodory’s theorem for classical linear programming.
Specifically, let A ∈ Z

m×n, b ∈ Z
m and w ∈ R

n . If min{w�x : Ax = b, x ≥
0, x dyadic} has an optimal solution, then we show that it has one with support size
at most m(1 + 0.84 lnm + 1.68 ln ‖A‖∞). We give lower bounds by constructing
examples and show that they are extremal in some sense. Our results in this section
are presented more generally for integer and [p]-adic linear programs.

Section 6 provides conclusions and possible directions for future research.

2 Foundational results

In this section, we identify two results that underpinmuch of the work in the paper, and
are key to solving dyadic linear programs. The first result reduces dyadic feasibility
of a rational polyhedron to that of its affine hull, while the second result provides a
theorem of the alternatives for dyadic feasibility of a linear system of equations. We
then combine the two results to obtain a certificate of dyadic infeasibility of a rational
polyhedron. The results in this section are presented not only for the dyadic numbers,
but more generally for any subset L of R closed under addition and negation, where
sometimes we require L to be dense in R, and at other times L 
= R. Let us lay the
groundwork.

2.1 Abelian subgroups, p-adic and [p]-adic numbers

Let L ⊆ R. We say that L is closed under addition if x + y ∈ L for all x, y ∈ L,
and that L is closed under negation, or equivalently symmetric around the origin, if
−x ∈ L for all x ∈ L. Clearly, if L is closed under addition and negation, then ax ∈ L

for all a ∈ Z and x ∈ L. In particular, if L 
= ∅ then 0 ∈ L.
The condition that L ⊆ R is closed under addition and negation is equivalent to

requiring that (L,+) forms an abelian subgroup of (R,+). It can be readily checked
that for any such nonempty set, either L is dense inR, or L is of the form {ax : a ∈ Z}
for some x ∈ R. In the latter case, L is isomorphic to Z, in which case checking if a
rational polyhedron inRn contains a point in Ln is equivalent to integer programming
feasibility in dimension n.

The discussion abovemotivates us to focus on dense sets inR closed under addition
and negation.Wepresent a construction for such sets, butwefirst require a definition.A
subset S of positive integers is closed under multiplication if pq ∈ S for all p, q ∈ S.
Given such a subset, note that S is finite if and only if S ⊆ {1}.
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Lemma 2.1 Let S be an infinite set of positive integers that is closed under multipli-
cation. Let L be the set of all numbers r

s where s ∈ S and r ∈ Z. Then (L,+) is a
dense abelian subgroup of (R,+).

Proof Pick x ∈ R and ε > 0. Since S is an infinite set of positive integers, there exists
s ∈ S with s ≥ 1

ε
. Let r = �sx
, then |x − r

s | < ε. Since r
s ∈ L, it follows that L is

a dense subset of R. Since S is closed under multiplication, if r
s ,

r ′
s′ ∈ L, then their

sum rs′+r ′s
ss′ ∈ L, so L is closed under addition. Finally, if r

s ∈ L then −rs ∈ L, so L is
closed under negation. ��

Wecanuse this result to provide two important examples of dense abelian subgroups
of (R,+).

Definition 2.2 Let p ≥ 2 be a prime number. We say that a rational number is p-adic
if it is of the form r

s where s is a power of p and r ∈ Z. We say that a rational number
is [p]-adic if it is of the form r

s where s is a product of powers of primes between 2
and p, and r ∈ Z.

Observe that the set of p-adic numbers can be obtained from the construction in
Lemma 2.1 by choosing S = {pn : n ≥ 0, n ∈ Z}, while the set of [p]-adic numbers
is obtained by choosing S to consist of all positive integers with prime factors less than
or equal to p. Thus, both sets yield dense abelian subgroups of (R,+), by Lemma 2.1.
Observe further that when p = 2, the p-adic, [p]-adic, and dyadic numbers coincide.
More generally, we have the following relation between p-adic and [p]-adic sets.
Theorem 2.3 Let p ≥ 2 be an integer. Then the following are equivalent for a subset
L ⊆ R:

(1) L is the set of [p]-adic numbers,
(2) (L,+) is the abelian subgroup of (R,+) generated by the q-adic numbers for

primes q ≤ p.

Proof Denote by L1 the set L as defined by (1) and by L2 the set L as defined by (2).
We need to show L1 = L2. Note that L2 ⊆ L1 since (i) every q-adic number for a
prime q ≤ p is [p]-adic by definition, and since (ii) L1 is closed under addition and
negation by Lemma 2.1. We need to show that every point in L1 is in L2. Since L2 is
closed under addition and negation, it suffices to consider points of the form 1

Q ∈ L1

where Q ∈ Z, Q ≥ 1. As 1 ∈ L2 we may assume Q ≥ 2. Then Q =∏r
i=1 q

αi
i where

q1, . . . , qr ≤ p are distinct primes and αi ≥ 1, αi ∈ Z for all i ∈ [r ]. For all i ∈ [r ]
define, Qi := Qq−αi

i . Then Q1, . . . , Qr are relatively prime and so it follows from
Bézout’s lemma that there exist ρ1, . . . , ρr ∈ Z such that

∑r
i=1 ρi Qi = 1. Observe

that,
r∑

i=1
ρi q

−αi
i = 1

Q

r∑
i=1

ρi Qi = 1

Q
.

Each of the terms on the left hand side of the previous expression is in L2. Since L2
is closed under addition, it follows that 1

Q ∈ L2, as required. ��

123



A. Abdi et al.

2.2 Density and affine hulls

In [3, 4] we proved that a rational polyhedron contains a dyadic point if and only if its
affine hull does. This is a special case of the following more general result.

Theorem 2.4 Let (L,+) be a dense abelian subgroup of (R,+). Consider P ⊆ R
n

where (i) the relative interior of P is non-empty, and (ii) the affine hull aff(P) of P is
a translate of a rational subspace. Then P ∩ L

n 
= ∅ if and only if aff(P) ∩ L
n 
= ∅.

To prove this theorem, we need a technical lemma. To state it we need some nota-
tions. For a vector v and 1 ≤ q ≤ +∞, ‖v‖q denotes the q-norm of v. Given ε > 0 and
a vector x̄ , we write Bq(x̄, ε) for the closed q-norm ball

{
x : ‖x − x̄‖q ≤ ε

}
centered

at x̄ with radius ε.

Lemma 2.5 Let (L,+) be a dense abelian subgroup of (R,+), and let P ⊆ R
n.

Suppose that aff(P) = z + span{d1, . . . , d�} for some z ∈ R
n and d1, . . . , d� ∈ Z

n,
in particular, aff(P) is a translate of a rational subspace. Consider z′ ∈ aff(P) and
ε > 0. Then the following statements hold for any 1 ≤ q ≤ +∞:

(a) There exists ρ̄ ∈ L
n such that z + ρ̄ ∈ aff(P) ∩ Bq(z′, ε).

(b) If for some prime p, L contains all the p-adic numbers, we can find in (a) an
explicit ρ̄ that is p-adic. Namely, pick a nonnegative integer r for which

pr ≥ �max{‖d1‖q , . . . , ‖d�‖q}
ε

. (1)

Pick α ∈ R
� satisfying

z +
�∑

i=1
αi d

i = z′. (2)

Then we can choose

ρ̄ :=
�∑

i=1

�prαi

pr

di . (3)

Furthermore, for this choice of ρ̄ we have ‖pr ρ̄‖q ≤ pr (‖z′ − z‖q + ε).

Proof Given β ∈ R
� denote ρ(β) := ∑�

i=1 βi di . Then, since z′ ∈ aff(P), we have
z + ρ(α) = z′ for some α ∈ R

�. We need the claim below.

Claim z + ρ(β) ∈ Bq(z′, ε) if

|βi − αi | ≤ ε

�max{‖d1‖q , . . . , ‖d�‖q} for i = 1, . . . , �. (4)

Proof of Claim We need to show that ‖z + ρ(β)− z′‖q ≤ ε. We have,

‖z + ρ(β)− z′‖q =‖ρ(β)− ρ(α)‖q =
∥∥∥∥∥

�∑
i=1

(βi − αi )d
i

∥∥∥∥∥
q
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≤
�∑

i=1

∥∥∥(βi − αi )d
i
∥∥∥
q
=

�∑
i=1
|βi − αi | ‖di‖q ≤ ε,

where the first inequality arises from the triangle inequality and the second inequality
from (4). ��

(a) Since L is dense in R, we can pick βi ∈ L, i ∈ [�] such that (4) holds. Let
ρ̄ := ρ(β). Since L is closed under addition and negation, and since βi ∈ L and
di is integral for each i ∈ [�], we have ρ̄ ∈ L

n . By the claim, z + ρ̄ ∈ Bq(z′, ε).
Moreover, since aff(P) = z + span{d1, . . . , d�}, we have z + ρ̄ ∈ aff(P). Thus,
z + ρ̄ ∈ aff(P) ∩ Bq(z′, ε), so (a) holds.

(b) Suppose now L contains all the p-adic numbers. Pick r so that (1) holds and
for each i = 1, . . . , � let βi := �prαi 


pr . Then |βi − αi | ≤ 1
pr . Equation (1) then

implies that (4) holds. It follows from the claim that for ρ̄ := ρ(β), we have z + ρ̄ ∈
aff(P) ∩ Bq(z′, ε).

Moreover, as βi is p-adic and di is integral for each i ∈ [�], ρ̄ is p-adic. By the
triangle inequality, ‖ρ̄‖q ≤ ‖z′ − z‖q + ‖ρ̄ + z − z′‖q . Multiplying both sides by pr

yields ‖pr ρ̄‖q ≤ pr‖z′ − z‖q + pr‖ρ̄ + z − z′‖q . As ρ̄ + z ∈ Bq(z′, ε), we have
‖ρ̄ + z − z′‖q ≤ ε, so ‖pr ρ̄‖q ≤ pr (‖z′ − z‖q + ε). ��

Lemma 2.5 (b) is used in Sect. 3 for efficiently finding a dyadic point inside a
rational polyhedron. As for part (a), we will use it below to prove Theorem 2.4.

Proof of Theorem 2.4 Since P ⊆ aff(P), aff(P)∩Ln = ∅ implies P∩Ln = ∅.Assume
now that aff(P)∩Ln 
= ∅. Pick z ∈ aff(P)∩Ln . Since aff(P) is a translate of a rational
subspace by hypothesis (ii), we can express aff(P) as z + span{d1, . . . , d�} for some
vectors d1, . . . , d� ∈ Z

n . Take 1 ≤ q ≤ +∞. By hypothesis (i), there exists a q-norm
ball of B of radius ε > 0 centered at some z′ ∈ P for which aff(P) ∩ B ⊆ P . By
Lemma 2.5(a) there exists ρ̄ ∈ L

n for which z+ ρ̄ ∈ aff(P)∩ B. Since z, ρ̄ ∈ L
n and

L is closed under addition, z+ρ̄ ∈ L
n . Putting it altogether, we get that z+ρ̄ ∈ P∩Ln ,

so P ∩ L
n 
= ∅, as required. ��

Let us present an important corollary of this result. Since every non-empty convex
set has a non-empty relative interior, Theorem 2.4 implies the following.

Corollary 2.6 Let (L,+) be a dense abelian subgroup of (R,+). Consider a nonempty
convex set P, where aff(P) is a translate of a rational subspace. Then P ∩ L

n 
= ∅ if
and only if aff(P) ∩ L

n 
= ∅.
When L is the set of the dyadic numbers, and P is a polyhedron, we retrieve the

fact that a rational polyhedron contains a dyadic point if and only if its affine hull does.

2.3 Theorem of the alternatives and consequences

In light of Corollary 2.6 we are interested in characterizing when a rational affine
space contains a point in Ln . We addressed the case when L is the set of dyadic points
in [4]. Density is irrelevant in this case however, and the following general theorem
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holds; its proof is a careful adaptation of the well-known result for the case of integers
(e.g., see Theorem 1.17 in [10]). For the proof, we need a definition. A square matrix
is unimodular if it has integral entries and its determinant is ±1. Observe that if U is
unimodular then so is U−1, by Cramer’s rule for instance.

Theorem 2.7 Let (L,+) be a dense abelian subgroup of (R,+) where L 
= R. Con-
sider a matrix A ∈ Z

m×n and a vector b ∈ Z
m. Then exactly one of the following

holds:

(a) Ax = b has a solution in Ln,
(b) there exists u ∈ R

m such that A�u ∈ Z
n and b�u /∈ L.

Moreover, if (a) holds, then Ax = b has a solution in Ln ∩Q
n.

Proof Suppose (a) and (b) both hold. Then we have x̄ ∈ L
n with Ax̄ = b and therefore

u�Ax̄ = u�b. As u�A is integral and since L is closed under addition and negation,
L � u�Ax̄ = u�b, a contradiction. Assume now that (a) does not hold. We prove
that (b) holds. If Ax = b does not have a solution in Qn , then there exists u ∈ Q

m for
which u�A = 0� and u�b = 1. SinceL is a proper subset ofR, there exists p ∈ R\L.
Then after updating u := p · u, we have u�A = 0� ∈ Z

n and u�b = p /∈ L, and (b)
holds. Thus let us assume that Ax = b has a solution in Q

n . We may further assume
that the rows of A are linearly independent for otherwise we can eliminate redundant
constraints, prove (b) for the smaller system and derive the result for the original
system. We can now find a unimodular matrix U ∈ Z

n×n for which AU = (B 0)
where B is a square non-singular matrix (for example one can chooseU that converts
A into Hermite normal form, see §A for more). We claim that z̄ := B−1b /∈ L

m . For
otherwise,

x̄ := U

(
z̄
0

)
, (5)

is a solution to Ax = b. Since L is closed under addition and negation and since U is
integral, this would imply x̄ ∈ L

n , a contradiction as (a) does not hold by assumption.
Thus for some i ∈ [m] we have z̄i /∈ L. Let u = B−�ei . Then u�b = e�i B−1b =
z̄i /∈ L. Moreover, u�A = e�i B−1(B 0)U−1 ∈ Z

n since U−1 is integral as U is
unimodular. Hence, (b) holds.

Thus, exactly one of (a) and (b) holds. For the final part of the theorem, suppose
that (a) holds. Then z̄ = B−1b ∈ L

m , for otherwise the above argument shows that (b)
holds, which is not the case. Furthermore, z̄ ∈ Q

m , since b ∈ Z
m , and B is integral so

B−1 is rational. Subsequently, x̄ as defined in (5) is a solution of Ax = b in Ln ∩Q
n ,

as required. ��
Let us point out two things in Theorem 2.7. First, the only place in the proof where

the condition L 
= R is necessary is for finding the certificate u in (b) in case (a) does
not hold. Secondly, a caveat of the result is that if (a) does not hold, then we cannot
always find a certificate u in (b) that is rational. Consider for instance the case where
L contains all rationals. Then we require b�u /∈ L ⊇ Q in (b), in particular, u is not
rational. However, in this example, if (a) does not hold, then Ax = b has no solution
in Q

n either. By eliminating this possibility we can guarantee that the certificate u in
(b) is rational.
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Remark 2.8 In Theorem 2.7, if Ax = b has a solution in Q
n and has no solution in

L
n , then there exists a rational certificate u in (b).

Proof Indeed, suppose that Ax = b has a solution in Q
n . Then, proceeding as in the

proof of Theorem 2.7, we can pick u = B−�ei for (b), which is rational. ��
Given Corollary 2.6 and the second part of Theorem 2.7, we may ask the following

question. Given a dense subset L of R closed under addition and negation, and given
a rational polyhedron R which contains a point in L

n , does R necessarily contain
a point in L

n ∩ Q
n? Alas, this need not be the case. Consider for instance L :={

a
b

√
2 : a, b ∈ Z, b 
= 0

}
, and let R ⊆ R

2 be the convex hull of (1, 1) and (2, 2).

Then R ∩ L
2 
= ∅, but L2 ∩ Q

2 = (0, 0) so R ∩ L
2 ∩ Q

2 = ∅. Note that in this
example, Q ∩ L is not a dense subset of R, and this is no accident as the next result
shows.

Theorem 2.9 Let (L,+) be an abelian subgroup of (R,+) and suppose that L∩Q is
dense inR. Then a rational polyhedron contains a point in Ln if and only if it contains
a point in Ln ∩Q

n.

Proof The result is well-known when L = R. Otherwise, L 
= R. (⇐) is clear. For
(⇒), suppose we have a rational polyhedron P with P∩Ln 
= ∅. Then aff(P)∩Ln 
=
∅, so it follows from Theorem 2.7 that aff(P)∩L

n ∩Q
n 
= ∅. Since L∩Q is a dense

subset of R that is closed under addition and negation, we may apply Corollary 2.6 to
L ∩Q and P to conclude that P ∩ L

n ∩Q
n 
= ∅, as required. ��

2.4 Certificate ofL-infeasibility of a rational polyhedron

Consider a dense abelian subgroup (L,+) of (R,+), and let P be a rational polyhe-
dron. We wish to characterize when P ∩Ln 
= ∅. By Corollary 2.6, it suffices to check
if aff(P)∩Ln 
= ∅. Furthermore, since P is a rational polyhedron, aff(P) is a rational
affine space, so we can use Theorem 2.7 to characterize when aff(P) ∩ L

n 
= ∅. In
this subsection we combine these results to yield a certificate of L-infeasibility of a
rational polyhedron. We need the following technical lemma (which is also useful
later in Sect. 3).

Lemma 2.10 Let (L,+) be a dense abelian subgroup of (R,+) such that L 
= R, and
consider a polyhedron P := {x : Ax ≤ b} where A ∈ Z

m×n and b ∈ Z
m. Suppose

that
max{c�x : Ax ≤ b}, (P)

has an optimal solution of value τ , and let F := P ∩ {x : c�x = τ } be the optimal
face. Then the following statements are equivalent:

(a) F ∩ L
n = ∅.

(b) There exists ȳ, ū ∈ Q
m that satisfy the following conditions,

(i) support(ū) ⊆ support(ȳ),
(ii) ȳ is an optimal solution to the dual of (P),
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(iii) A�u ∈ Z
n and b�u /∈ L.

Morever, for ȳ satisfying (ii), we have support(ȳ) ⊆ {i ∈ [m] : rowi (A)x =
bi , for all x ∈ F}.
Proof Let I= := {i ∈ [m] : rowi (A)x = bi , for all x ∈ F} and denote, by A=x ≤ b=
the inequalities of Ax ≤ b corresponding to I=. Then, (see [10], Theorem 3.24), F =
P∩{x : A=x = b=}. Therefore, (see [10], Theorem 3.17), aff(F) = {x : A=x = b=}.
Consider the dual of (P),

min{b�y : A�y = c, y ≥ 0}. (D)

(a)⇒(b) By Corollary 2.6, aff(F) has no point in L
n . Hence, by Theorem 2.7,

there exists ū satisfying (iii) where support(ū) ⊆ I=. Since A=x = b= has a solution,
it follows from Remark 2.8 that we can choose ū ∈ Q

I= . Let x̄ and ȳ be a strictly
complementary pair of rational optimal solutions for (P) and (D). Then support(ȳ) =
I=. It follows that (i) holds.

(b)⇒(a) Let i /∈ I=. Then for some x̄ ∈ F we have rowi (A)x̄ < bi . By Com-
plementary Slackness, ȳi = 0, i.e. i /∈ support(ȳ). Hence, support(ȳ) ⊆ I=, and
the “moreover" statement holds. Furthermore, by (i) we have support(ū) ⊆ I=.
Therefore, by Theorem 2.7 and (iii), there is no point in L

n that also lies in
{x : A=x = b=} = aff(F). It follows that F ∩ L

n = ∅. ��
Theorem 2.11 Let (L,+) be a dense abelian subgroup of (R,+) such that L 
= R.
Consider a non-empty polyhedron P := {x : Ax ≤ b} where A ∈ Z

m×n and b ∈ Z
m.

Then the following are equivalent.

(a) P ∩ L
n = ∅.

(b) There exists a certificate of L-infeasibility for P, that is, a pair of vectors
ȳ, ū ∈ Q

m that satisfy the following conditions:

(i) support(ū) ⊆ support(ȳ),
(ii) ȳ ≥ 0, A� ȳ = 0, b� ȳ = 0,
(iii) A�u ∈ Z

n and b�u /∈ L.

Moreover, for ȳ satisfying (ii), we have support(ȳ) ⊆ {i ∈ [m] : rowi (A)x =
bi , for all x ∈ P}.
Proof Consider the linear program (P) defined as max{0 : Ax ≤ b} and let F = P .
Every x̄ ∈ P is an optimal solution to (P) of value 0. Therefore, condition (ii) says
that ȳ is an optimal solution to the dual of (P). The result now follows from Lemma
2.10. ��

3 Algorithms: feasibility and optimization

In this section, we present algorithms to check whether a rational polyhedron contains
a point in Ln and to optimize a linear function over a rational polyhedron restricted to
L
n where L satisfies the following three properties:
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(group) (L,+) is an abelian subgroup of (R,+),
(density) L contains all p-adic numbers for some prime p, and
(membership) we have a membership oracle for L.

Assuming the (group) property we also need to require L to be a dense subset of
the reals for otherwise we are operating within the context of integer programming
as discussed in Sect. 2.1. We want to be able to carry all computations over Q, in
particular, we insist that if a rational polyhedron contains a point in Ln then it contains
one in Ln ∩Q

n . Because of Theorem 2.9 this can be achieved by choosing L with the
property that L ∩Q is dense. A natural choice is to include all p-adic numbers in L,
i.e. imposing the (density) condition above. Note, that we will assume that we are also
given the prime value p explicitly. A membership oracle for L is a function that takes
as input x ∈ Q and returns yes if x ∈ L and no otherwise. We will present algorithms
that run in oracle polynomial time for both feasibility and optimization over polyhedra
restricted to Ln . When L is the set of p-adic, or [p]-adic numbers, our three properties
(group), (density), and (membership) hold, and we have trivial polynomial oracles.
Thus, we will be able to solve the feasibility and optimization problems for p-adic
and [p]-adic numbers in polynomial time. In particular, we can solve the problem for
dyadic numbers.

Our algorithms will rely on the existence of a number of polynomial-time subrou-
tines that we present next.

Algorithm A.
Takes as input a matrix A ∈ Q

m×n and a vector b ∈ Q
m . Returns one of the following:

(i) x̄ ∈ Q
n satisfying Ax = b, or (ii) u ∈ Q

m such that A�u = 0 and b�u 
= 0
certifying Ax = b has no solution.

Algorithm B.
Takes as input a matrix A ∈ Z

m×n and a vector b ∈ Z
m . We are also given a member-

ship oracle that describes an abelian subgroup (L,+) of (R,+). Returns one of the
following: (i) x̄ ∈ L

n ∩Q
n satisfying Ax = b, or (ii) u ∈ Q

m such that A�u = 0 and
b�u 
= 0 certifying Ax = b has no solution, or (iii) u ∈ Q

m such that A�u is integral
and u�b /∈ L certifying Ax = b has no solution in L

n .

Algorithm C.
Takes as input a matrix A ∈ Z

m×n . Returns linearly independent vectors d1, . . . , d� ∈
Z
n with the property that span{d1, . . . , d�} = {x : Ax = 0}.

Algorithm D.
Takes as input a matrix A ∈ Q

m×n and vectors b ∈ Q
m and c ∈ Q

n . Then solves the
linear program

max{c�x : Ax ≤ b}. (P)

Namely, it returns one of the following: (i) u ∈ Q
m such that A�u ≥ 0 and b�u < 0

certifying that (P) is infeasible, or (ii) x, r ∈ Q
n such that Ax ≤ b, Ar ≤ 0 and

c�r > 0 certifying that (P) is unbounded, or (iii) x ∈ Q
n , y ∈ Q

m which form a pair
of strictly complementary optimal solutions for (P) and its dual.

AlgorithmB emulates the argument in the proof of Theorem2.7.Wefirst ensure that
Ax = b has a solution using Algorithm A, and then eliminate redundant constraints.
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We then find a unimodular matrixU ∈ Z
n×n for which AU = (B 0)where B is anm-

by-m matrix and compute z̄ = B−1b. We use the membership oracle to check whether

each of z̄i ∈ L. If this is the case thenU

(
z̄
0

)
∈ L

n is a solution to Ax = b. Otherwise,

for some i ∈ [m], z̄i /∈ L and we return u = B−�ei . For Algorithm C, we eliminate
linearly dependent rows of A and find a unimodular matrix U ∈ Z

n×n for which
AU = (B 0) where B is an m-by-m matrix. Then the columns ofU corresponding to
the 0 columns of (B 0) are the required vectors di . For both algorithms, finding the
matrixU can achieved by rewriting A in Hermite normal form which can be found in
polynomial time [21]. This implies that there is an implementation of AlgorithmC that
runs in polynomial time, and an implementation of Algorithm B that runs in oracle
polynomial time.

3.1 L-Feasibility problem (LFP)

Consider a polyhedron P := {x : Ax ≤ b}. The L-Feasibility Problem (LFP) takes
as input a matrix A ∈ Z

m×n and a vector b ∈ Z
m that define the polyhedron P . We

consider L ⊆ R satisfying the (group), (density) and (membership) properties (with
p given explicitly). We then need to return (i) a point in P ∩ L

n , or (ii) a certificate
that P = ∅, or (iii) a certificate of L-infeasibility (as defined in Sect. 2.4). We will
show that there exists an oracle polynomial time algorithm to solve LFP. Note that
by Farkas’ lemma, P = ∅ if and only if there exists y ≥ 0 for which A�y = 0 and
b�y < 0; such a y is a certificate of real-infeasibility, and is the output of (ii).

3.1.1 The LFP algorithm

Here is a description of our algorithm to solve LFP.

Step 1: Find the implicit equalities of P. That is, identify the inequalities of Ax ≤ b
that hold at equality for all feasible solutions.

Consider the following primal-dual pair,

max{0 : Ax ≤ b}, (P)

min{b�y : A�y = 0, y ≥ 0}. (D)

Use Algorithm D to check whether P = ∅. If it is, return a certificate of real-
infeasibility u and stop. Otherwise, Algorithm D finds a strictly complementary pair
of optimal solutions x̄ ∈ Q

n and ȳ ∈ Q
m for (P) and (D) respectively. Since every

x ∈ P is an optimal solution to (P), strict complementarity implies that

Claim support(ȳ) = I= where I= = {i ∈ [m] : rowi (A)x = bi ∀ x ∈ P}.
Denote by A=x ≤ b= the constraints from Ax ≤ b indexed by I=. Then aff(P) =
{x : A=x = b=}.
Step 2: Find an internal description of aff(P) or certify L-infeasibility.
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Let I< = [m] \ I= and let A<x ≤ b< denote the constraints of Ax ≤ b indexed by
I<. Then use Algorithm B to either,

(i) find z ∈ aff(P) ∩ L
n ∩Q

n , or
(ii) find u= ∈ Q

m such that A=�u= is integral and b�u= /∈ L.

If (ii) occurs, then extend u= to a vector indexing the rows of A by assigning zeros
to all entries corresponding to I<, and denote the resulting vector by ū. Then observe
that ȳ, ū is a certificate of L-infeasibility, and we can stop. Otherwise we have z as
described in (i). UseAlgorithmC to find an integral basis d1, . . . , d� of {d : A=d = 0}.
It then follows that

aff(P) = z + span{d1, . . . , d�}. (6)

Step 3: Find a Euclidean ball B such that B ∩ aff(P) ⊆ P.

For each i ∈ [m] let γi := �‖ rowi (A)‖2� (γi can be computed in polynomial time on
a Turing machine, without evaluating the square-root to a high accuracy). Consider
the following linear program with variables ζ and e:

max e

subject to

A=ζ = b=

γi e + rowi (A)ζ ≤ bi (i ∈ I<) (7)

e ≤ 1.

Since e ≤ 1, (7) is not unbounded. Moreover, (7) is feasible (pick ζ ∈ P and e = 0).
Hence, we can use Algorithm D to find an optimal solution ζ = z′ ∈ Q

n , e =
ε ∈ Q of (7). By definition of I< we have ε > 0. Then z′ ∈ P and for every
i ∈ [m], 1

γi

[
bi − rowi (A)z′

]
is a lower bound on the Euclidean distance from z′ to

the hyperplane {h : rowi (A)h = bi } because γi ≥ ‖ rowi (A)‖2. This implies that
B ⊆ {x : A<x ≤ b<} where B denotes the Euclidean ball of radius ε centered at z′.
Then B ∩ aff(P) ⊆ {x : A<x ≤ b<} ∩ {x : A=x = b=} = P .

Step 4: Find a point in P ∩ L
n.

Pick

r :=
⌈
logp

(
�max{‖d1‖2, . . . , ‖d�‖2}

ε

)⌉
. (8)

Then we satisfy (1) (this is the place where we need to know the value of p explicitly).
UseAlgorithmA tofindα satisfying

∑
i∈[�] αi di = z′−z so that (2) holds. Choose ρ̄ as

in (3). It then follows fromLemma2.5 that ρ̄ is p-adic and that z+ρ̄ ∈ aff(P)∩B ⊆ P .
Finally, as z ∈ L

n∩Qn , the (group) and (density) properties imply that z+ρ̄ ∈ L
n∩Qn ,

as required.

3.1.2 The alternate LFP algorithm

We sketch out a variant of our algorithm for solving the L-feasibility problem for
polyhedra that are in standard equality form, i.e. for P := {x ≥ 0 : Ax = b}. The
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implicit equalities will be of the form Ax = b as well as x j = 0 for a subset J= ⊆ [n]
of the column indices. In particular, we have

aff(P) = {x : Ax = b, x j = 0 ∀ j ∈ J=}.

We consider the following primal-dual pair,

max{0 : Ax = b, x ≥ 0}, (P’)

min{b�y : A�y ≥ 0}. (D’)

In Step 1, we proceed as in the previous version and use Algorithm D to find a strictly
complementary pair of optimal solutions x ′ and y′ for (P’) and (D’). Then J= =
{ j ∈ [n] : col j (A)�y′ > 0} and this allows us to identify aff(P). In Step 2, we use
Algorithm C to find an integral basis {d1, . . . , d�} of {d : Ad = 0, d j = 0 ∀ j ∈ J=}.
The most notable change is for Step 3. Let J< = [n]\ J= and denote by D the column
submatrix of A indexed by columns J<. Instead of (7) we solve, the linear program
with variables e, ζ where

max e

subject to

Dζ = b

e ≤ ζ j ( j ∈ J<) (9)

e ≤ 1.

The above linear program is clearly feasible and bounded, hencewe can useAlgorithm
D to find an optimal solution ζ = z̄ and e = ε. Let z′ ∈ Q

n be obtained from z̄ by
setting entries corresponding to J= to zero. Let B = {z : ‖z′ − z‖∞ ≤ ε}, i.e. B is
the∞-norm ball of radius ε centered at z′. Then we have B ⊆ {x : x j ≥ 0 ∀ j ∈ J<}
by construction. It follows that B ∩ aff(P) ⊆ {x : x j ≥ 0 ∀ j ∈ J<} ∩ {x : Ax =
b, x j = 0 ∀ j ∈ J=} = P . Step 4 is the same as for the original algorithm, except that
while the original algorithm used the 2-norm ball B in Lemma 2.5, this version of the
algorithm uses the∞-norm ball. In particular, we need to choose r according to,

r :=
⌈
logp

(
�max{‖d1‖∞, . . . , ‖d�‖∞}

ε

)⌉
. (10)

rather than according to (8).

3.1.3 Output size and running time analysis

We refer to the algorithm described in Sect. 3.1.1 as the LFP algorithm, and the algo-
rithm described in Sect. 3.1.2 as the alternate LFP algorithm. Informally, the runtime
of our LFP algorithm is dominated by the runtime of our linear program solver, which
we call twice, once for checking feasibility of Ax ≤ b and once for solving (7).
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Note, that both linear programs have essentially the same size (with respect to many
measures), moreover, they are both using the original data A, b. Thus, checking for
L-feasibility is about at most twice as time consuming as checking for real-feasibility.
The same conclusion applies to the alternate LFP algorithm.

We will analyze the running time of the LFP algorithm and the output size of the
alternate LFP algorithm (the analysis is somewhat cleaner for that version because
of the use of∞-norms). The encoding size of an integer α is defined as size(α) :=
log2(|α| + 1).3 The encoding size of a rational r

s is defined as size
( r
s

) := size(r) +
size(s). Observe that for nonzero rationals r

s ,
r ′
s′ we have size

( r
s

) = size
( s
r

)
and that

size
(
rr ′
ss′
)
≤ size

( r
s

)+size
(
r ′
s′
)
.We consider pwhich appears in the (density) property

of the set L to be an absolute constant. For each of Algorithms A-D we can view the
input as anm′-by-n′ matrix where the largest encoding size of any entry is given by σ .
Then the runtime is bounded by a function fa , fb, fc, fd for each of algorithms A, B,
C, D where fa , fb, fc, fd are functions of m′, n′, σ . In addition, for the output, the
largest entry size is bounded by a function gb, gc, gd for each of algorithms B, C, D
where gb, gc, gd are also functions of m′, n′, σ . There exist implementations for each
algorithm where each of fa, fb, fc, fd , gb, gc, gd is a polynomial in m′, n′, σ . Note,
for Algorithm B the runtime is in terms of the number of calls to the L-oracle.

Let us now analyze the runtime.

Theorem 3.1 Consider A ∈ Z
m×n and a vector b ∈ Z

m and let σ denote the largest
size of any entry in A or b. Then the LFP algorithm has runtime

O
(
fa(n, n + 1, σ ′)+ fb(m, n + 1, σ )+ fc(m, n, σ )+ fd(m + n + 1, n + 2, σ )

)

where
σ ′ = gb(m, n + 1, σ )+ gc(m, n, σ )+ gd(m + n + 1, n + 2, σ ).

Proof The runtime of the algorithm is longest when it finds a point in P ∩ L
n so

we assume that this is the case in the analysis. Step 1. The runtime is dominated
by Algorithm D with A, b. It is in O

(
fd(m, n + 1, σ )

)
since the data A, b can be

represented as an m-by-(n+ 1) matrix. The algorithm returns x̄ and ȳ which are used
to find the implicit equalities A=x ≤ b= of Ax ≤ b. Step 2. We run Algorithm B for
the system A=x = b=. This takesO

(
fb(m, n+1, σ )

)
and we obtain z ∈ L

n∩Qn with
largest size of an entry inO

(
gb(m, n+1, σ )

)
.We thenuseAlgorithmC toget an integral

basis {d1, . . . , d�} of {d : A=d = 0}. Note that � ≤ n. This takes O
(
fc(m, n, σ )

)
and for each i ∈ [�] the largest size of an entry in di is O

(
gc(m, n, σ )

)
. Step 3. The

linear program (7) has n + 1 variables and at most m + n + 1 constraints. We run
Algorithm D to solve it. This takes O

(
fd(m + n + 1, n + 2, σ )

)
and we return z′ and

ε with largest size of an entry in O
(
gd(m + n + 1, n + 2, σ )

)
. Step 4. We solve the

system
∑

i∈[�] αi di = z′ − z using Algorithm A. Note, that z, di , z′ are outputs of
Algorithms B, C and D respectively. As � ≤ n, this takes O

(
fa(n, n + 1, σ ′)

)
for σ ′

defined as in the statement. ��
3 Note that the number of bits required to represent α on a computer is �size(α)� + 1, where we reserved
an additional bit for the sign of α. Thus, size(α) is not the true encoding size, but it is easier to work with
than �size(α)� + 1, and differs from it by only a constant.
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We close this discussion by showing that functions gb, gc, gd applied to the original
data determine the size of the solution returned by the alternate LFP algorithm.

Theorem 3.2 Consider A ∈ Z
m×n and a vector b ∈ Z

m and let σ denote the largest
size of any of an entry in A or b. Assume that P := {x ≥ 0 : Ax = b} contains a
point in Ln. Then the alternate LFP algorithm finds a point x̄ ∈ P ∩ L

n ∩Q
n with

size(‖x̄‖∞) ∈ O
(
gb(m+n, n+1, σ )+gc(m+n, n, σ )+gd(m+n+1, n+1, σ )+log(n)

)
.

Proof In Step 1, we find J= with aff(P) = {x : Ax = b, x j = 0 ∀ j ∈ J=}. Thus
aff(P) is described by a system with at most m + n constraints. In Step 2, we find
z ∈ aff(P) using Algorithm B. Hence,

size(‖z‖∞) ∈ O
(
gb(m + n, n + 1, σ )

)
. (11)

We then use Algorithm C to find an integer basis d1, . . . , d� of {d : Ad = 0, d j =
0 ∀ j ∈ J=}. Thus,

size
(
‖di‖∞

)
∈ O

(
gc(m + n, n, σ )

)
. (12)

In Step 3, we solve (9) using Algorithm D. It follows that,

size(ε) , size
(‖z′‖∞

) ∈ O
(
gd(m + n + 1, n + 1, σ )

)
. (13)

In Step 4 we pick r as in (10). Note, that � ≤ n. Therefore,

size
(
pr
) ∈ O

(
size(‖d‖∞)+ size(ε)+ size(n)

)
.

By (12) and (13) in follows in turn that,

size
(
pr
) ∈ O

(
gc(m + n, n, σ )+ gd(m + n + 1, n + 1, σ )+ log(n)

)
. (14)

In Step 4 we construct ρ̄ as described in (3). Since p = ∞, Lemma 2.5(b) implies
that for every i ∈ [n]

|pr ρ̄i | ≤ pr (|z′i − zi | + 1). (15)

Since pr ρ̄i ∈ Z it follows from (15) that size(pr ρ̄i ) ∈ O
(
size(pr ) + size(‖z‖∞) +

size
(‖z′‖∞

))
. This in turn implies,

size(‖x̄‖∞) = size(‖z + ρ̄‖∞) ∈ O
(
size
(
pr
)+ size(‖z‖∞)+ size

(‖z′‖∞
))

.

The result now follows from (11), (13) and (14). ��

3.2 L-Linear programming

Suppose that (L,+) is a dense abelian subgroup of (R,+), and consider the following
optimization problem,

sup
{
c�x : Ax ≤ b, x ∈ L

n
}

, (16)
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where A ∈ Z
m×n , b ∈ Z

m and c ∈ Z
n . We say that (16) is an L-linear program.

Trivially, the status of this optimization problem has to fall within exactly one of the
following outcomes:

(o1) it is infeasible,
(o2) it is unbounded,
(o3) it has an optimal solution,
(o4) it is feasible, bounded, but has no optimal solution.

Note that in contrast to linear programming, (o4) can occur, such as for sup{x : 3x ≤
1, x dyadic}.

3.2.1 Certificates

Here we certify each of the outcomes (o1)–(o4). We certified (o1) with a certificate
of L-infeasibility in Theorem 2.11. (o2) is similar to linear programming.

Theorem 3.3 Let (L,+) be a dense abelian subgroup of (R,+) such that Z ⊂ L.
Suppose that (16) is feasible. Then the following are equivalent:

(a) (16) is unbounded,
(b) max{c�x : Ax ≤ b} is unbounded,
(c) there exists r ∈ Z

n with Ar ≤ 0 and c�r > 0.

A certificate of unboundedness is a pair (x̄, r), where x̄ is a feasible solution to (16),
and r is from (b).

Proof Denote by (P) the linear programmax{c�x : Ax ≤ b}. Since (16) is feasible, so
is (P). For the equivalence between (b) and (c), see Proposition 3.9 in [10]. Note, that
for (c) the condition that r is rational is equivalent to the condition that r is integral
because of scaling. We show that (a) and (b) are equivalent. First if (16) is unbounded,
so is (P) since it is a relaxation of (16). Thus assume that (P) is unbounded. Then there
exists r as described in (c). Let x̄ be a feasible solution to (16) and for any λ define
x(λ) := x̄ + λr . Consider λ ∈ Z where λ ≥ 0. Then λr ∈ Z

n . By the hypothesis
L ⊃ Z, it follows that λr ∈ L

n . Since L is closed under addition and negation,
x(λ) ∈ L

n and is therefore feasible for (16). For λ → ∞ we have c�x(λ) → ∞.
Hence, (16) is unbounded. ��

We next distinguish between outcomes (o3) and (o4).

Theorem 3.4 Let (L,+) be a dense abelian subgroup of (R,+). Suppose that (16) is
feasible and bounded. Then the following are equivalent,

(a) (16) has no optimal solution,
(b) there exist x̄ ∈ R

n and ȳ, ū ∈ R
m that satisfy the following conditions,

(i) support(ū) ⊆ support(ȳ),
(ii) Ax̄ ≤ b, A� ȳ = c, ȳ ≥ 0, c� x̄ = b� ȳ,
(iii) A�ū is integral and b�ū /∈ L.

A certificate of unattainability is a triple (x̄, ȳ, ū) satisfying (i)-(iii).
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Table 1 Possible outcomes for
(P) and (D)

(o1) (o2) (o3) (o4)

(o1) ✓ ✓ ✓ ✓

(o2) ✓ ✗ ✗ ✗

(o3) ✓ ✗ ✓ ✓

(o4) ✓ ✗ ✓ ✓

Proof Note that when L = R, then neither (a) nor (b) holds. Thus, we may assume
L 
= R. Condition (ii) implies that x̄ and ȳ form a pair of primal dual solutions with
the same value, hence, ȳ is optimal for the dual of (P). Conversely, if ȳ is optimal,
then by strong duality there exists an optimal solution x̄ of (P) with c� x̄ = b� ȳ. Thus
condition (ii) simply says that ȳ is optimal for the dual. The result now follows from
Lemma 2.10. ��

We can be more specific about (o4). When (16) is feasible and bounded, then we
say that a feasible solution x̄ ∈ L

n is an ε-approximation if c� x̄ ≥ max{c�x : Ax ≤
b} − ε. The result below shows that for every ε > 0 there exists an ε-approximation.

Theorem 3.5 Let (L,+) be a dense abelian subgroup of (R,+) such that Z ⊂ L. If
(16) is feasible and bounded, then,

sup
{
c�x : Ax ≤ b, x ∈ L

n
}
= max{c�x : Ax ≤ b}.

Proof Denote by (P) the linear program max{c�x : Ax ≤ b}. Since (16) is feasible
so is (P). Since (16) is bounded, so is (P) by Theorem 3.3. It follows that (P) has an
optimal solution, say x̄ and let τ := c� x̄ . Pick ε > 0 and define Qε := {x : Ax ≤
b} ∩ {x : c�x ≥ τ − ε}. Because of x̄ , c�x ≥ τ − ε is not an implicit equality of Qε .
Therefore, {x : Ax ≤ b} and Qε have the same implicit equalities, say A=x ≤ b=.
Hence, aff({x : Ax ≤ b}) = aff(Qε) = {x : A=x = b=}. Since (16) is feasible, there
exists a solution to A=x = b= in L

n . Hence, by Corollary 2.6 there exists a point in
Qε ∩ L

n . In particular, sup{c�x : Ax ≤ b, x ∈ L
n} has a feasible solution of value

≥ τ − ε. Letting ε → 0 proves the result. ��

3.2.2 Outcomes for primal-dual pairs

Here we review the possible outcomes for a primal-dual pair of L-linear programs.
Namely, we consider the following pair of optimization problems,

sup
{
c�x : Ax ≤ b, x ∈ L

n}, (P)

inf
{
b�y : A�y = c, y ≥ 0, y ∈ L

m} (D)

where (L,+) is a dense abelian subgroup of (R,+) such thatZ ⊂ L.We observed that
each of (P) and (D) has 4 possible outcomes (o1)-(o4). In the next table we indicate the
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Table 2 Possible outcomes for
(P) and the LP relaxation of its
dual (D)

(o1) (o2) (o3)

(o1) ✓ ✓ ✓

(o2) ✓ ✗ ✗

(o3) ✗ ✗ ✓

(o4) ✗ ✗ ✓

possible pairs of outcomes for (P) and (D). The rows of thematrix indicate the possible
outcomes for (P) and the columns of the matrix indicate the possible outcomes for
(D). A check mark in the table indicates that the corresponding outcome is possible
for some choice of L, and a cross that the outcome is not possible for any choice of L.
We illustrate some of these outcomes. Consider the following dyadic linear programs,
which can easily be brought into (P)’s format:

sup{3x : 3x = 1, x ≥ 0, x dyadic}, (17)

sup{x : 3x = 1, x ≥ 0, x dyadic}, (18)

sup{x : 3x ≤ 3, x ≥ 0, x dyadic}, (19)

sup{x : 3x ≤ 1, x ≥ 0, x dyadic}. (20)

Then for (P) described as (17) and its dual (D) we have outcomes (o1) for (P) and (o3)
for (D). Similarly, (18) corresponds to row (o1) and column (o4); (19) corresponds to
row (o3) and column (o4); and (20) corresponds to row (o4) and column (o4). Note that
(17)-(20) extend more generally to any dense abelian group L that does not contain
Q (e.g., if b

a /∈ L for a, b ∈ Z≥0, a 
= 0, then replace (20) by sup{bx : ax ≤ b, x ≥
0, x ∈ L}). Table 1 is also applicable to pairs of primal-dual convex optimization
problems in conic form (although the details of their duality theory are significantly
more complicated than our setting, from this very specific and high level view, they
coincide).

We close this discussion by including a table that indicates the possible pairs of
outcomes for (P) and the LP relaxation of (D). The rows of the matrix indicate the
possible outcomes for (P) and the columns of thematrix indicate the possible outcomes
for the LP relaxation of (D).

3.2.3 Algorithm for solvingL-linear programs

We consider L satisfying the (group), (density) and (membership) properties (with
p given explicitly). Observe that L ⊃ Z and L satisfies the hypotheses of Theo-
rem 3.3, Theorem 3.4, and Theorem 3.5, that characterize possible outcomes, and
ε-approximation for L-linear programs.

We are given ε > 0, integral matrices and vectors A, b, c describing the L-linear
program (16). Then in oracle polynomial time we return one of the following, (i) a
certificate of real-infeasibility, (ii) a certificate of L-infeasibility, (iii) a certificate of
unboundedness, (iv) an optimal solution, (v) a certificate of unattainability and an
ε-approximation. Note, if we know that we have one of outcomes (o1), (o2), (o3) then
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Fig. 1 Schematic description of the L-linear program solver

it is not necessary to supply ε. A schematic representation of the algorithm is given in
Fig. 1.

First we apply the LFP algorithm to P = {x : Ax ≤ b}. If it returns a certificate
of real-infeasibility, or a certificate of L-infeasibility, we stop. Otherwise, it returns a
point x f ∈ P ∩ L

n . We then consider the linear programming relaxation,

max{c�x : Ax ≤ b}, (P)

of (16) and use Algorithm D to solve it. Note that since (16) is feasible so is (P). If
(P) is unbounded, then Algorithm D will return a rational vector r with Ar ≤ 0. After
scaling we may assume that r ∈ Z

n and x f , r is a certificate of unboundedness. Thus,
we may assume that Algorithm D returns a strictly complementary pair x� of (P) and
y� of its dual (D). Then define the face

F := P ∩ {x : c�x ≥ c�x�}.

Let I= := support(y�) and let A=x ≤ b= be the inequalities from Ax ≤ b indexed
by I=. Note that face F is obtained from P by setting some inequalities to equalities.
Furthermore, by strict complementarity, A=x = b= is the set of implicit equalities of
F . It follows that,

Claim F = P ∩ {x : A=x = b=} and aff(F) = {x : A=x = b=}.
We then apply the LFP algorithm to the system Ax ≤ b, A=x ≥ b= that defines
F . If the algorithm returns a point xd ∈ F ∩ L

n then xd is an optimal solution
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to (16) and we stop. Otherwise the LFP algorithm will return a certificate ȳ, ū of
L-infeasibility for F . Theorem 2.11 implies that support(ȳ) ⊆ I=. Then we have
support(ū) ⊆ support(ȳ) ⊆ I= = support(y�). It follows that x�, y�, ū is a certificate
of unattainability.

At this juncture we look for an ε-approximation by running the LFP algorithm for
the polyhedron,

F ′ = P ∩ {x : c�x ≥ c�x� − ε}.
Note that since A, b, c are rational, so is c�x�, so F ′ is a rational polyhedron. By
Theorem 3.5 F ′ contains a point in L

n . We use the LFP algorithm once more to find
such a point in F ′.

3.2.4 Solving linear programs versus solvingL-linear programs

Solving the L-linear program required at most two calls of the LFP procedure for
outcomes (o1)-(o3) and three calls in case of outcome (o4). Thus the running time of
our L-linear program solver is at most three times that of LFP.

We have shown that we can use a black-box algorithm that solves the L-feasibility
problem to solve L-linear programs. Moreover, our LFP algorithm leverages a linear
program solver to solve the L-feasibility problem. Thus L-linear programs can be
solved using a black-box linear program solver. Here we show the converse, namely
one may use a single call to a black-box algorithm for solving L-linear programs,
to solve linear feasibility problems over rationals, i.e., finding a rational point in a
polyhedron (which in turn is sufficient for solving linear programs).

Suppose we are given A ∈ Z
m×n of full row rank and b ∈ Z

m and want to find
x ∈ Q

n such that Ax = b, x ≥ 0 or prove that no such x exists. We are given an
L-linear program solver that works for a specific set L where L satisfies our (group),
(density), and (membership) conditions. Note that we do not get to choose L, it could
be for instance that L is the set of p-adic numbers for p = 282,589,933 − 1 (which
happens to be prime). We feed the L-linear program solver the optimization problem:

inf
{
t : Ax + bt = b, x ≥ 0, t ≥ 0, x ∈ L

n, t ∈ L
}
, (21)

and we pick ε := 2−2 size(A,b).
Note that with x̄ := 0, t̄ := 1, (x̄, t̄) ∈ L

n+1 makes a feasible solution for (21).
Since (21) is not unbounded (t ≥ 0 for all feasible solutions), the only possible
outcomes are (o3) and (o4). In case of (o3), the L-linear program solver returns a
feasible solution (x̄, t̄) of (21) with the smallest possible t̄ . If t̄ = 0 then x̄ ∈ Q

n≥0
such that Ax̄ = b. If t̄ > 0 then Theorem 3.5 proves that the LP relaxation of (21) has
optimal value t̄ > 0, in particular Ax = b, x ≥ 0 is infeasible. In the case of outcome
(o4), the solver returns a certificate of unattainability and an ε-approximation (x̄, t̄). If
t̄ > ε then again Theorem 3.5 proves that the LP relaxation of (21) has optimal value
t̄ > 0, and Ax = b, x ≥ 0 is infeasible. Otherwise, t̄ ≤ ε. Since t̄ ≤ 2−2 size(A,b),
every extreme point of

{
(x, t) ∈ R

n+1 : Ax + bt = b, x ≥ 0, t ≥ 0
}
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whose objective value is less than or equal to t̄ must have t̄ = 0. Such an extreme point
exists (and is guaranteed to be rational due to integrality of A and b), and can be found
in strongly polynomial time (i.e., the number of elementary arithmetic operations
is bounded above by a polynomial function of n only), starting with (x̄, t̄) (see, for
instance, [24] and [31, Section 4.3]). The “x-part” of such an extreme point is a rational
solution of Ax = b, x ≥ 0.

One of the complexity measures of our algorithms and analyses is based on the
radius of the largest Euclidean ball contained in some polyhedra. Similar complexity
measures have been used before in analyzing the complexity of algorithms based on the
ellipsoid method as well as interior-point algorithms for linear programs in particular,
and convex optimization problems in general. We will remark on the primal-dual
version. Consider the primal-dual pair of LPs where A is m-by-n:

min
{
c�x : Ax = b, x ≥ 0

}
and max

{
b�y : A�y + s = c, s ≥ 0

}
.

Suppose that both are feasible. Let [B, N ] denote the strict complementarity partition
of [n] for this primal-dual pair. One then defines

rP (A, b, c) := min
j∈B
{
max

{
x j : ABxB = b, xB ≥ 0

}}
,

rD(A, b, c) := min
j∈N

{
max

{
s j : A�B y = cB, A�N y + sN = cN , sN ≥ 0

}}
,

r(A, b, c) := min {rP (A, b, c), rD(A, b, c)} .

There are polynomial time algorithms for linear programs whose complexity are
bounded above by a polynomial function of n and log(1/r(A, b, c)) [25, 33] (assum-
ing suitable feasible start, or one can apply the approach to a homogeneous self-dual
reformulation, see [19, 34], the reformulation would change r though). Note that
rP (A, b, c) is essentially the radius we used in our approach for problems in standard
equality form. rD(A, b, c) would also correspond to the radius we used for problems
in inequality form, provided the columns of A are scaled so that they are all approx-
imately of unit norm. In this latter case, r(A, b, c) would also be relevant for our
analysis when we are interested in finding solutions for primal-dual pair of L-linear
programs.

4 Bounding the fractionality of dyadic solutions

Given a dyadic linear program Ax ≤ b, x dyadic that is feasible, for some A ∈ Z
m×n

and b ∈ Z
m , can we find a solution whose denominators are “small"? In this section,

we prove that if the program is feasible, then there exists a 1
2k
-integral solution, where

k ≤ ⌈log2 n + (2n + 1) log2(‖A‖∞
√
n + 1)

⌉
. In doing so, we take an integer linear

programming perspective towards dyadic linear programs, in contrast to the linear
programming approach taken in the previous sections. The results in this section are
presented more generally for the p-adic numbers for any prime p ≥ 2.
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A hierarchy of integer linear programs. Let p be a prime, and

L :=
{

a
p� : a, � ∈ Z, � ≥ 0

}
the set of p-adic numbers. Consider the L-linear pro-

gram:
sup{c�x : Ax ≤ b, x is p-adic}, (p-LP)

where A ∈ Z
m×n, b ∈ Z

m, c ∈ Z
n . For each integer k ≥ 0, consider the following

restriction of (p-LP):

max{c�x : Ax ≤ b, x is 1/pk-integral}, (p-LPk)

where we replaced sup by max because every element of the domain is isolated. In
fact, (p-LPk) is equivalent to the ILP max{c�z : Az ≤ pkb, z ∈ Z

n}, in the sense that
if x is a feasible solution to (p-LPk) of value α, then pkx is a feasible solution to the
ILP of value pkα, and if z is a feasible solution to the ILP of value β, then 1

pk
z is a

feasible solution to (p-LPk) of value 1
pk

β.
Denote by sup(p-LP) the supremum value of (p-LP); if the L-LP is infeasible then

sup(p-LP) := −∞, and if it is unbounded then sup(p-LP) := +∞.4 Similarly, we
define opt(p-LPk) for each integer k ≥ 0. Clearly we have the following chain of
inequalities:

opt(p-LP0) ≤ opt(p-LP1) ≤ opt(p-LP2) ≤ · · · ≤ sup(p-LP) (22)

where any value in the chain may be finite or ±∞. In fact, we have the following
theorem, thereby justifying our integer linear programming perspective.

Theorem 4.1 limk→∞ opt(p-LPk) = sup(p-LP). In fact, opt(p-LPk) = sup(p-LP)

for sufficiently large k, unless sup(p-LP) is finite and not attained by any feasible
solution to (p-LP).

Proof There are three cases:

1. If sup(p-LP) = −∞, then clearly, opt(p-LPk) = sup(p-LP) for all k ≥ 0.
2. If sup(p-LP) = +∞, then the linear relaxation of (p-LP) is also unbounded, so

there is an extreme ray r ∈ R
n of the polyhedron {x : Ax ≤ b} such that c�r > 0.

Given that A, b have integral entries, we may assume that r is integral. Let x̄ be
any feasible solution to (p-LP). Then x̄ is 1/pN -integral for some integer N ≥ 0.
It can be readily checked that (x̄ + t · r : t = 0, 1, 2, . . .) is an infinite sequence
of feasible solutions to (p-LPk) of arbitrarily large objective value, for any integer
k ≥ N . Subsequently, opt(p-LPk) = +∞ for all k ≥ N .

3. Otherwise, sup(p-LP) is finite. The inequalities in (22), togetherwith theMonotone
Convergent Theorem from Real Analysis, imply that limk→∞ opt(p-LPk) exists.
In fact, the sequence must converge to sup(p-LP) as we argue below.

(a) If the optimal value of (p-LP) is attained, sayby x̄ that is 1/pN -integral for some
integer N ≥ 0, then x̄ is an optimal solution to (p-LPN ), so opt(p-LPN ) =

4 Observe that when sup(p-LP) is finite, then sup(p-LP) = max{c�x : Ax ≤ b} by Theorem 3.5. This
equality, however, is not the focus in this section.
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sup(p-LP). Subsequently, it follows from (22) that opt(p-LPk) = sup(p-LP)

for all k ≥ N .
(b) Otherwise, sup(p-LP) is finite but the optimal value is not attained by any

feasible solution. In this case, by definition, there exists a sequence of feasi-
ble solutions (x̄ i : i ≥ 1) to (p-LP) such that limi→∞ c� x̄ i = sup(p-LP).
Observe that each x̄ i is feasible solution to (p-LPk) for some sufficiently large
k. Subsequently,

sup(p-LP) = lim
i→∞ c� x̄ i ≤ lim

k→∞ opt(p-LPk) ≤ sup(p-LP)

where the last inequality follows from (22). Equality must hold throughout, so
we have limk→∞ opt(p-LPk) = sup(p-LP), as required.

��
Given the theorem above, a natural question is for how small of a k canwe guarantee

opt(p-LPk) = sup(p-LP)? By switching to an equivalent model, for the sake of
convenience, we may instead ask: given that (p-LP) is feasible, what is the smallest
integer k such that (p-LPk) is feasible? In what follows, we provide a polynomial
upper bound on the size of the smallest k.5 For more on gcd(A), see Appendix A.

Lemma 4.2 Let A be an m × n integer matrix of full row rank, and let (B 0) be the
Hermite normal form of A, where B is a square matrix. Then for all b ∈ Z

m and
k ∈ Z+, the following statements are equivalent:

i. Ax = b has a 1/pk-integral solution,
ii. B−1b is 1/pk-integral.

Moreover, if Ax = b has a 1/pκ -integral solution, and κ ≥ 0 is the smallest such
integer, then pκ divides gcd(A).

Proof LetU be a unimodular matrix such that AU = (B 0) is in Hermite normal form,
where B is a square matrix. Let I , J be the sets of column labels of B, 0 in (B 0).
Observe that {x : Ax = b} = {Uz : zI = B−1b, z J free}. SinceU is unimodular,U−1
is integral, so Uz is 1/pk-integral if and only if z = U−1(Uz) is 1/pk-integral. This
implies that Ax = b has a 1/pk-integral solution if, and only if, B−1b is 1/pk-integral,
so (i) and (ii) are equivalent.

Suppose now that Ax = b has a 1/pκ -integral solution, and κ is the smallest such
integer. If κ = 0, then pκ = 1, so we are done. Otherwise, κ ≥ 1. It follows from our
choice of κ that B−1b is not 1/pκ−1-integral but it is 1/pκ -integral. On the other hand,
by Cramer’s rule, B−1b is 1/ det(B)-integral, so pκ | det(B). Since det(B) = gcd(A),
it follows that pκ divides gcd(A), as required. ��

Given the system Ax = b above, we can use the algorithm of Kannan and
Bachem [21] to compute the Hermite normal form in strongly polynomial time.

5 Note that this statement has no bearing on the time complexity of solving (p-LPk ). Given a fixed integer
k ≥ 0 (possibly k = 0), (p-LPk ) is NP-hard as its decision version is NP-complete (Given A, b and k ≥ 0,
does Ax ≤ b have a 1/pk-integral solution?) (see [7], Chapter 2).

123



Dyadic linear programming and extensions

The state-of-the-art can be found in Storjohann’s PhD thesis, giving an algorithm
with running time complexity nmω, where ω ∈ (2, 2.376) is the matrix multipli-
cation exponent, and the absolute value of each entry of B,U is bounded above by
m(
√
m‖A‖∞)2m ([30], Chapter 6). Either of these leads to a strongly polynomial time

algorithm for finding κ , or certifying that it does not exist.
Moving forward, for A ∈ Z

m×n , define

ξp(A, b) := min{k ∈ Z+ : Ax ≤ b has a 1/pk-integral solution} ∀ b ∈ Z
m

ξp(A) := max
{
ξp(A, b) : b ∈ Z

m s.t. Ax ≤ b has a p-adic solution
}
.

Thus, for any b ∈ Z
m such that Ax ≤ b has a p-adic solution, there is a 1/pk-integral

solution for k = ξp(A). In what follows, we provide an upper bound on ξp(A) that
depends only polynomially on n and the encoding size of A.

Theorem 4.3 ξp(A) ≤ ⌈logp n + (2n + 1) logp(‖A‖∞
√
n + 1)

⌉
for all A ∈ Z

m×n.

Proof Let P := {x : Ax ≤ b}. We need to prove that for some k ≤ RHS, P contains
a 1/pk-integral point. We shall apply Lemma 2.5.

Denote by A=x ≤ b= the subsystem comprised of all implicit equalities of Ax ≤ b,
and by A<x ≤ b< the subsystem for the other inequalities. Let F := {x : A=x = b=},
which is the affine hull of P .

Recall that B∞(x, ε) ⊆ R
n is the ∞-norm closed ball of radius ε centered at x .

Let ε̃ := max
{
ε : ∃ x ∈ P s.t. B∞(x, ε) ∩ F ⊆ P

}
, and let B̃ be an∞-norm closed

ball of radius ε̃ such that B̃ ∩ F ⊆ P .
Finally, let κ := min{k : F contains a 1/pk-integral point}. Let z be a 1/pκ -

integral point in F . Let � := nullity(A=), and let d1, . . . , d� ∈ Z
n be a basis for

ker(A=). Note that F = z + span{d1, . . . , d�}.

Claim 1 P contains a 1/pk-integral point for all k≥max

{
κ,

⌈
logp

(
�max{‖d1‖∞,...,‖d�‖∞}

ε̃

)⌉}
.

Proof of Claim If k ≥ logp
(

�max{‖d1‖∞,...,‖d�‖∞}
ε̃

)
, there exists a 1/pk-integral ρ̄ ∈ R

n

such that z + ρ̄ ∈ P , by Lemma 2.5. Moreover, if k ≥ κ and z is 1/pκ -integral, it
follows that z + ρ̄ is 1/pk-integral; z + ρ̄ is the desired point (which in fact belongs
to B̃). ��

It therefore suffices to upper bound κ , logp(maxi ‖di‖∞) and − logp(ε̃).

Claim 2 pκ divides gcd(A=). In particular, κ ≤ (n − �) logp(‖A=‖∞
√
n − �).

Proof of Claim Note that rank(A=) = n − �. Let A′x = b′ be a system of n − �

linearly independent constraints of A=x = b=. Observe that {x : A′x = b′} =
{x : A=x = b=}. It follows from Lemma 4.2 that pκ divides gcd(A′) which in turn
divides every subdeterminant of A′ of order n − �. By repeating this argument for
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every choice of A′, we obtain that pκ divides every subdeterminant of A= of order
n− �, so pκ divides gcd(A=). By Hadamard’s inequality (see Appendix A for more),
gcd(A=) ≤ (‖A=‖∞

√
n − �)n−�, so κ ≤ (n − �) logp(‖A=‖∞

√
n − �).

Claim 3 We may choose d1, . . . , d� such that logp(maxi ‖di‖∞) ≤ (n − �) logp
(‖A=‖∞

√
n − �).

Proof of Claim Let A′ be a rowsubmatrix of A= comprisedofn−� linearly independent
rows. Observe that A′, A= have the same kernel. Let A′′ be a square nonsingular
column submatrix of A′. Denote by I and J the sets of column labels of A′ inside and
outside A′′, respectively. Note that |J | = �. For each j ∈ J , the j th column of A′ can
be expressed as a unique linear combination of the columns of A′′. Subsequently one
obtains � vectors in ker(A′), say c j ∈ R

n, j ∈ J , where each c j has only one nonzero
entry in J , namely in the j th position. To elaborate, c j is the difference between the j th

column of A′, and the unique linear combination of the columns of A′′. In particular,
c j , j ∈ J are linearly independent and therefore form a basis of ker(A′). By applying
Cramer’s rule, we see that for all j ∈ J , i ∈ I , we have c ji = ± det(B)

det(A′′) where B is

obtained from A′′ by swapping out the i th column for the j th column of A′. The desired
vectors d1, . . . , d� may be picked as det(A′′) · c j , j ∈ J . Note that maxi ‖di‖∞ is at
most the absolute value of the maximum subdeterminant of A′ of order n − �. Thus,
by Hadamard’s inequality, maxi ‖di‖∞ ≤ (‖A′‖∞

√
n − �)n−�, thereby proving the

claim. ��
Claim 4 ε̃ ≥ 1

|M|maxi (|A<|1)i where M is a minor of
(
A= 0
A< 1

)
, and |A<| is obtained

from A< by replacing every entry with its absolute value. In particular, − logp(ε̃) ≤
(n + 1) logp(‖A‖∞

√
n + 1)+ logp(n‖A<‖∞).

Proof of Claim Consider the LP max{t : A=x = b=, A<x + t1 ≤ b<}. Let (x̃, t̃) be
a basic optimal solution to the LP. Our choice of A<x ≤ b< immediately implies
that t̃ > 0, and so because A, b have integral entries, it follows from Cramer’s rule
that t̃ ≥ 1

|M| where M is a minor of
(
A= 0
A< 1

)
. Let ε := t̃

maxi (|A<|1)i . We claim that
B∞(x̃, ε) ∩ F ⊆ P . To this end, pick a point x ∈ F such that ‖x − x̃‖∞ ≤ ε. Then

A<(x − x̃) ≤ |A<(x − x̃)| ≤ |A<||x − x̃ | ≤ ε|A<|1 ≤ t̃1 ≤ b< − A< x̃,

so A<x ≤ b<, implying that x ∈ P . Thus, B∞(x̃, ε) ∩ F ⊆ P . By definition, we
must have ε̃ ≥ ε, and since ε ≥ 1

|M|maxi (|A<|1)i , we get that ε̃ ≥ 1
|M|maxi (|A<|1)i . The

inequality− logp(ε̃) ≤ (n+ 1) logp(‖A‖∞
√
n + 1)+ logp(n‖A<‖∞) follows by an

application of Hadamard’s inequality. ��
Observe that our upper bounds on κ and logp(maxi ‖di‖∞) are matching, thus we

may ignore κ when applying Claim 1. Putting the claims together, we see that for
some integer k ≥ 0 satisfying

k ≤
⌈
logp �+ logp(max

i
‖di‖∞)− logp(ε̃)

⌉
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≤
⌈
logp n + (2n + 1) logp(‖A‖∞

√
n + 1)

⌉
,

P contains a 1/pk-integral point, thereby proving the theorem. ��
Corollary 4.4 Fix a matrix A ∈ Z

m×n. Suppose p is a sufficiently large prime number.
Then the following statements hold:

a. For any b ∈ Z
m, if Ax = b has a p-adic solution, then it has an integral solution.

b. For any b ∈ Z
m, if Ax ≤ b has a p-adic solution, then it has a 1/p-integral

solution. That is, lim p→∞ ξp(A) ≤ 1.

Proof (a) Suppose p is a prime number such that p > gcd(A), and that for some
b ∈ Z

m , Ax = b has a p-adic solution. Let κ be the smallest integer k ≥ 0 such that
Ax = b has a 1/pκ -integral solution. It then follows fromLemma4.2 that pκ | gcd(A).
Since p > gcd(A), it follows that κ = 0. Thus, Ax = b has an integral solution.

(b) We know from Theorem 4.3 that ξp(A) ≤ ⌈
logp n + (2n + 1) logp(‖A‖∞√

n + 1)
⌉
. Given a fixed A, the RHS approaches 1 as p tends to∞, implying in turn

that lim p→∞ ξp(A) ≤ 1, as required.

Another consequence of Theorem 4.3 is the following, bringing this section to an
end.

Corollary 4.5 Let A ∈ Z
m×n. Given a feasible dyadic linear program Ax ≤

b, x dyadic, for some b ∈ Z
m, there exists a 1

2k
-integral solution where k ≤⌈

log2 n + (2n + 1) log2(‖A‖∞
√
n + 1)

⌉
. ��

5 Bounding the support size of dyadic solutions

Take A ∈ Z
m×n and b ∈ Z

m . Given a dyadic linear program of the form Ax = b, x ≥
0 and dyadic, that is feasible, does there exist a solutionwith a small number of nonzero
entries? We have placed dyadic linear program as a problem on the spectrum between
LP and ILP, so let us give a brief overview of the state-of-the-art for the two extremes.

For the case of real solutions to Ax = b, x ≥ 0, we have the upper bound of m
on the support size of a solution, given by Carathéodory’s famous theorem. In fact,
the same guarantee holds for an optimal solution to the standard equality form LP
min{w�x : Ax = b, x ≥ 0}, for any w ∈ R

n for which there is a finite optimum.
For the case of integral solutions to Ax = b, x ≥ 0, a “Carathéodory-type" upper

bound of 2m log2(4m‖A‖∞) on the size of the support was first established in [14] by
making an elegant use of the Pigeonhole Principle. This bound was later improved to
2m log2(2

√
m‖A‖∞) in [6] by the use of Siegel’s Lemma, a tool from the Geometry

of Numbers, which we shall later see and prove in this section. In fact, the latter also
obtained the same guarantee for an optimal solution to min{w�x : Ax = b, x ≥
0 and integral}, for any w ∈ R

n for which there is a finite optimum.
A natural first step for studying both extremes, as well as dyadic linear program, is

to obtain guarantees for the system of linear equations Ax = b, with the appropriate
restriction on the domain of x . Observe that the guarantees above carry over in a
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black-box fashion to this setting, by simply transforming Ax = b to [A − A]( yz
) =

b,
( y
z
) ≥ 0 with the substitution formula x = y − z.

With this context in mind, let us now move on to the spectrum between LP and
ILP. In the previous section, for the sake of transparency but also generality, we pro-
vided guarantees not just for dyadic linear programs but more generally p-adic linear
programs, for any prime p ≥ 2. In this section, for the same reasons, we will provide
guarantees for a different extension of dyadic linear programs, as explained below.

For every integer k ≥ 1, denote by pk the kth prime number. Recall from Sect. 2
that a rational number is [pk]-adic if it is of the form a

b where a ∈ Z and b is a product
of primes in [pk]. Note that a rational number is [2]-adic if and only if it is dyadic. Let
p0 := 1. We also deal with [p0]-adic numbers, which are precisely the integers.6 The
guarantees we provide in this section will apply more generally to optimal solutions
to the following [pk]-adic linear program, for any integer k ≥ 0:

min{w�x : Ax = b, x ≥ 0 and [pk]-adic}. (23)

Observe that for k = 0 we recover integer linear programming, for k = 1 dyadic linear
programming, and for k = ∞ linear programming. Our bounds are given exactly but
indirectly in terms of ‘proxy’ functions (see §5.4 for clarification on this), and also
loosely but directly as a function of pk , m, and the maximum absolute value ‖A‖∞
of an entry of A; none of the bounds however depend on n. Along the way, we shall
also provide improved and tight guarantees for solutions to

Ax = b, x [pk]-adic. (24)

5.1 Examples where every solution has full support

Let us present instances of (23) and (24) where every solution has full support. The
example below is inspired by [11].

Example 5.1 Let q1, . . . , qn be distinct primes such that qi ≥ pk+1 for all i ∈ [n].
Let Q := q1q2 · · · qn and A :=

(
Q
q1

Q
q2
· · · Q

qn

)
∈ R

1×n . Then the system Ax =
1, x [pk]-adic is feasible, and every solution has full support.

One can extend this example to onewith an arbitrary numberm of rows, by replacing
Ax = 1 by (A ⊗ I )y = 1, where ⊗ denotes the Kronecker product, I the m-by-m
identity matrix, and 1 the all-ones m-dimensional column vector.

Proof We only prove the first statement, and leave the easy verification of the second
statement to the reader. Since the entries of A have GCD 1, it follows from Bézout’s
Lemma that Ax = 1 has an integral, thus [pk]-adic solution. This proves feasibility
of the system Ax = 1, x [pk]-adic. Now let x̄ be a feasible solution. Suppose for a
contradiction that x̄ does not have full support, say x̄n = 0. For each i ∈ [n−1], write
x̄i = ai

bi
where ai , bi ∈ Z and bi is a product of primes in [pk]. Let B be the least

6 Note that the [p0]-adic numbers are discrete as opposed to the [pk ]-adic numbers for k ≥ 1 which form
a dense set. However, discreteness will be irrelevant in this section.
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common multiple of bi , i ∈ [n − 1], which is also a product of primes in [pk]. Then
we have the identity

n−1∑
i=1

A1i
ai B

bi
= B.

By construction, the GCD of A1i , i ∈ [n − 1] is qn . Since each ai B
bi

, i ∈ [n − 1] is an
integer, it therefore follows from the identity above that qn | B, a contradiction since
qn is a prime outside [pk] while B is a product of primes in [pk]. ��

This example can naively be extended to the inequality case.

Example 5.2 Let A be thematrix fromExample 5.1. Take a resigning As of A, obtained
by negating some entries of A, such that Asx = 1, x ≥ 0 has an integral solution.
It can be readily checked that Asx = 1, x ≥ 0, x [pk]-adic, is feasible, and every
solution has full support. Once again, this example can be extended to one with an
arbitrary number m of rows: (As ⊗ I )y = 1, y ≥ 0, y [pk]-adic.

For k = 0, there is another interesting example, which also appears in [14].

Example 5.3 Let A := (1 2 22 · · · 2n−1) ∈ R
1×n . Consider the integer linear program

min
{
1�x : Ax = 2n − 1, x ≥ 0 and integral

}
.

Then x = 1 is the unique optimal solution, which in particular has full support. As
before, this example can readily be extended to one with an arbitrary number m of
rows:

min
{
1�y : (A ⊗ I )y = (2n − 1) · 1, y ≥ 0 and integral

}
.

Proof We only verify the first statement, and leave the proof of the second statement
to the reader. Clearly, x� = 1 is a feasible solution to the integer linear program. Take
another feasible solution x̄ . Let i ∈ [n] be the largest index such that x̄i > 1. Since x̄
is integral and nonnegative, and Ax̄ = 2n − 1, it follows that i < n. We now change x̄
by updating x̄i := x̄i − 2 and x̄i+1 := x̄i+1 + 1; note that this change reduces 1� x̄ by
1. By repeatedly applying this operation, we obtain the solution x� = 1 to the integer
linear program. This procedure proves in particular that x� = 1 is the unique optimal
solution to the integer linear program. ��

5.2 From full support solutions to large prime factors

In this section, we pave the way for obtaining an upper bound on the support size for
(23), and an even better bound for (24). The gap between these two bounds is due to
the following lemma.

Lemma 5.4 Let A ∈ Z
m×n, b ∈ Z

m, w ∈ R
n, and take an integer k ≥ 0. Then the

following statements hold:
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1. Suppose Ax = b, x [pk]-adic, is feasible, and every solution has full support.
Then for every integral solution x̄ to Ax = 0, every nonzero entry has a prime
factor greater than or equal to pk+1.

2. Suppose min{w�x : Ax = b, x ≥ 0, x [pk]-adic} has an optimal solution, and
every optimal solution has full support. Then for every nonzero integral solution
x̄ to Ax = 0, there exists some nonzero entry with a prime factor greater than or
equal to pk+1.

Proof (1) Let x̄ be a nonzero integral vector such that Ax̄ = 0. Suppose for a contra-
diction that for some index i , x̄i 
= 0 and every prime factor of x̄i is at most pk . Let x1

be a [pk]-adic solution to Ax = b. By the hypothesis, x1 has full support, so x1i 
= 0.

Let x2 := x1− x1i
x̄i
x̄ , which is another solution to Ax = b. Since every prime factor of

x̄i belongs to {p1, . . . , pk}, it follows that x2 is another [pk]-adic solution to Ax = b,
one whose support excludes i , a contradiction to our hypothesis.

(2) is similar to (1), except that in order to ensure x2 remains nonnegative given
the nonnegativity of x1, we would need the prime factors of every nonzero entry of
x̄ to be less than pk+1. Let us elaborate. Let x̄ be a nonzero integral vector such that
Ax̄ = 0.

First, we prove that w� x̄ = 0. Suppose otherwise. Let x� be an optimal solution
to min{w�x : Ax = b, x ≥ 0, x is [pk]-adic}. By assumption, x� has full support,
implying in turn that for a sufficiently small and [pk]-adic ε > 0, both x� ± ε x̄ are
feasible solutions to the [pk]-adic linear program. However, since w� x̄ 
= 0, one of
x� ± ε x̄ would have a strictly smaller objective value than x�, thereby contradicting
the optimality of x�. Thus, w� x̄ = 0.

Secondly, we prove that some nonzero entry of x̄ has a prime factor greater than or
equal to pk+1. Suppose otherwise. We shall use x̄ to construct an optimal solution to
min{w�x : Ax = b, x ≥ 0, x is [pk]-adic}without full support, thereby contradicting
the hypothesis. To this end, let x1 be anoptimal solution to the [pk ]-adic linear program.
By the hypothesis, x1 has full support. Choose

i ∈ arg min
j∈[n]

{
x1j
x̄ j
: x̄ j 
= 0

}
.

Let x2 := x1 − x1i
x̄i
x̄ . Our choice of i ensures that x2 is defined and nonnegative.

Since every prime factor of x̄i belongs to {p1, . . . , pk} by the contrary assumption,
x2 is [pk]-adic. Thus, since w� x̄ = 0, it follows that x2 is another optimal solution
to min{w�x : Ax = b, x ≥ 0, x is [pk]-adic}, one whose support excludes i , a
contradiction to our hypothesis. ��

5.3 Large prime factors: examples and analysis

It may not be clear how to find examples that satisfies the conclusions of Lemma 5.4
parts (1) and (2). Let us present two examples, both of which we will prove to be
extremal in a sense. Throughout the subsection we assume that k ∈ Z≥0.
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Example 5.5 Let q1, . . . , qn be distinct primes such that qi ≥ pk+1 for all i ∈ [n].
Let Q := q1q2 · · · qn and A :=

(
Q
q1

Q
q2
· · · Q

qn

)
∈ R

1×n . It can be readily checked

that for any integral solution x̄ to Ax = 0, and for each i ∈ [n], we have qi | x̄i , so
if x̄i 
= 0 then x̄i has a prime factor greater than or equal to pk+1. Thus the 1-by-n
matrix A satisfies the conclusion of Lemma 5.4 (1).

First, notice that the example above comes from Example 5.1, indicating that its
essence is captured by Lemma 5.4 (1). Secondly, note that in the example above,
the entries of the row vector A are “large" with respect to the GCD of its entries.
More precisely, the size of every entry divided by the GCD of the entries, is at least
pk+1 pk+2 · · · pk+n−1. In Lemma 5.6 below, we prove this bound more generally for
a full-row-rank matrix with m rows, where the notions of the “size of an entry" and
the “GCD of the entries" have been replaced by “a nonzero order-m minor" and the
“GCD of order-m minors". The argument is inspired by a similar one in [13].

Lemma 5.6 Let A be an m-by-n integral matrix of full row rank, where for every
integral solution x̄ to Ax = 0, if x̄i 
= 0 then xi has a prime factor greater than or
equal to pk+1. Then for every subset I ⊆ [n] of size m such that det(A[m]×I ) 
= 0 we
have

| det(A[m]×I )|
gcd(A)

≥
{
pn−mk+1 if n < 2m

pmk+1 p
m
k+2 · · · pmk+� n

m 
−1 p
n−m� n

m 

k+� n

m 
 otherwise.

Moreover, there is a subset J ⊆ [n] of size m such that det(A[m]×J ) 
= 0, and

| det(A[m]×J )|
gcd(A)

≥
{
pn−mk+2 if n < 2m

pmk+2 p
m
k+3 · · · pmk+� n

m 
 p
n−m� n

m 

k+� n

m 
+1 otherwise.

Proof Let U be an n × n unimodular matrix such that AU = (B 0), where B is
an m × m matrix. (For instance, U can be the unimodular matrix that brings A into
Hermite normal form after some elementary unimodular columnoperations.)Weknow
that gcd(A) = | det(B)|. Let (U1U2) be the partition ofU into two column submatrices
such that AU1 = B and AU2 = 0. Observe that the n−m columns ofU2 form a basis
for ker(A). In fact, sinceU is a unimodular matrix, the columns ofU2 form a basis for
the lattice L := ker(A) ∩ Z

n , that is, {U2y : y ∈ R
n−m} ∩ Z

n = {U2y : y ∈ Z
n−m}.

Given that L = L , it follows that gcd(U2) = [L : L] = 1 (see Appendix A for more).
Given a prime number p, we say that p divides a row of U2 if it divides every entry

of the row.

Claim 1 Every row of U2 is divisible by a prime greater than or equal to pk+1.

Proof of Claim Let g ∈ Z≥1 be the GCD of the entries of a nonzero row of U2, say
row i . Then there exists a y ∈ Z

n−m such that (U2y)i = g. Since x := U2y ∈ L , our
key assumption implies that every nonzero entry of x , and in particular xi = g, has a
prime factor greater than or equal to pk+1, as claimed. ��
Claim 2 Every prime number p divides at most m rows of U2.
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Proof of Claim Suppose otherwise, that is, for some prime number p, there is a subset
J ⊆ [n] of row indices ofU2 such that each row ofU2 with an index in J is divisible by
p, and |J | ≥ m+ 1. Every (n−m)-by-(n−m) submatrix ofU2 contains a row index
from J , therefore its determinant is divisible by p. This implies that p | gcd(U2),
which is a contradiction since gcd(U2) = 1. ��

Denote by I1, I2 the set of column labels of U1,U2, respectively. Then |I1| = m
and |I2| = n − m.

Claim 3 For every subset I ⊆ [n] of size m such that det(UI×I2
) 
= 0, we have

| det(UI×I2
)| ≥

{
pn−mk+1 if n < 2m

pmk+1 p
m
k+2 · · · pmk+� n

m 
−1 p
n−m� n

m 

k+� n

m 
 otherwise.

Moreover, there is a subset J ⊆ [n] of size m such that det(UJ×I2
) 
= 0, and

| det(UJ×I2
)| ≥

{
pn−mk+2 if n < 2m

pmk+2 p
m
k+3 · · · pmk+� n

m 
 p
n−m� n

m 

k+� n

m 
+1 otherwise.

Here, Ī , J̄ refer to the complements of I , J , respectively.

Proof of Claim Take a subset I ⊆ [n] of sizem such that det(UI×I2
) 
= 0. By Claim 1,

every row of UI×I2
is divisible by a prime in P := {pk+1, pk+2, . . .}. On the other

hand, by Claim 2, every prime in P divides at most min{|I |,m} = min{n−m,m} rows
of UI×I2

. These two facts immediately imply the first inequality. To get the second,
stronger inequality, it suffices to choose J := I such that it includes the indices of
all the rows of U2 divisible by pk+1 (of which there are at most m by Claim 2), and
det(UJ×I2

) 
= 0. This can be done by using the fact that gcd(U2) = 1, so there exists
a minor of U2 of order n − m that is not divisible by pk+1; this will be precisely
det(UJ×I2

). ��
Claim 4 For every subset I ⊆ [n] of size m, we have | det(A[m]×I )| = gcd(A) ·
| det(UI×I2

)|.
Proof of Claim It follows from A = (B 0)U−1 that A[m]×I = (B 0)(U−1)[n]×I =
B · (U−1)I1×I . Subsequently,

| det(A[m]×I )| = | det(B)| · | det((U−1)I1×I )| = gcd(A) · | det((U−1)I1×I )|.

The right-hand side term can be rewritten in terms of the adjugate adj(U ) ofU . Observe
that adj(U ) = det(U ) ·U−1, so U−1 = ±adj(U ) because U is unimodular. Thus,

| det((U−1)I1×I )| = | det(adj(U )I1×I )| = | det(UĪ×I2)|·| det(U )|m−1 = | det(UĪ×I2)|

where the second equality follows from Jacobi’s Theorem on the adjugate matrix (see
Appendix A for more), and the last equality from the unimodularity ofU . Combining
the two lines of equalities above yields the claim. ��
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The lemma readily follows from Claims 3 and 4. ��
Next, let us present an example that satisfies the conclusion of Lemma 5.4 (2).

Example 5.7 Let A :=
(
1 pk+1 p2k+1 · · · pn−1k+1

)
∈ R

1×n . It can be readily checked

that for any nonzero integral solution x̄ to Ax = 0, the smallest index i ∈ [n] such
that x̄i 
= 0 satisfies pk+1 | x̄i . Thus the 1-by-n matrix A satisfies the conclusion of
Lemma 5.4 (2).

First, notice that this example is the same as the feasible region of Example 5.3
for k = 0, indicating that in this case the essence of the example is captured by
Lemma 5.4 (2). Secondly, in the example above, the row vector A has small entries as
well as large, however its 2-norm is “large" relative to the GCD of its entries. More
precisely, the 2-norm of the row vector divided by the GCD of the entries, is equal to√

p2nk+1−1
p2k+1−1

; the latter is sandwiched between pn−1k+1 and
√
1+ 1

p2k+1−1
· pn−1k+1 . In Lemma

5.8 below, known as Siegel’s Lemma, we prove the lower bound more generally for a
full-row-rank matrix with m rows, where the “2-norm of the row vector" is replaced
by “them-dimensional volume of the parallelepiped generated by the rows of A", and
as before, the “GCD of the entries" is replaced by the “GCD of order-m minors".

Lemma 5.8 (Siegel’s Lemma, see [9]) Consider a linear system Ax = 0, where A ∈
Z
m×n has full row rank, and let � ≥ 1. Suppose for every nonzero integral solution x̄

to Ax = 0, ‖x̄‖∞ ≥ �. Then
√
det(AA�)/ gcd(A) ≥ �n−m.

Proof Consider the lattice L := {A�y : y ∈ Z
m} and its orthogonal complement

lattice L⊥ := {x ∈ Z
n : Ax = 0}. By assumption, the convex set Q := {x : ‖x‖∞ <

�}∩ {x : Ax = 0}, which is symmetric about the origin, contains no nonzero vector of
the lattice L⊥. Wemay therefore applyMinkowski’s First Theorem to upper bound the
(n − m)-dimensional volume of Q (see Appendix A for more). The theorem implies
that voln−m(Q) ≤ 2n−m det(L⊥). On the one hand, 1

2� · Q is an (n−m)-dimensional
affine slice of the unit hypercube {x : ‖x‖∞ < 1

2 } going through the origin, so by
Vaaler [32], voln−m( 1

2� Q) ≥ 1, implying in turn that voln−m(Q) ≥ (2�)n−m . On the
other hand, given that L := {A�y : y ∈ R

m} ∩ Z
n ⊇ L , we have

det(L⊥) = det(L) = det(L)

[L : L] =
det(L)

gcd(A�)
=
√
det(AA�)

gcd(A)

(see Appendix A for more). Putting everything together we obtain the desired inequal-
ity. ��

5.4 Proxy and direct upper bounds on the support size

Weobtain the following exact upper bound on the support size of solutions to [pk]-adic
linear systems and [pk]-adic linear programs. Note that the upper bounds are provided
indirectly by suitable proxy functions of the input size.
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Theorem 5.9 Let A ∈ Z
m×n, b ∈ Z

m, and w ∈ R
n. Then the following statements

hold for every integer k ≥ 0:

1. If Ax = b, x [pk]-adic, is feasible, then it has a solution with support size at most
n′, where for some full-row-rank m′-by-n′ submatrix A′ of A, we have

�m′(A
′) ≥

⎧⎪⎨
⎪⎩

p
n′
m′ −1
k+2 if n′ < 2m′

pk+2 pk+3 · · · pk+� n′
m′ 


p
n′
m′ −� n′

m′ 

k+� n′

m′ 
+1
otherwise,

where �m′(A′) is the m′th root of the maximum absolute value of an order-m′
minor of A′.

2. If min{w�x : Ax = b, x ≥ 0, x [pk]-adic} has an optimal solution, then it has
an optimal solution with support size at most n′, where for some full-row-rank
m′-by-n′ submatrix A′ of A, we have

(√
det(A′A′�)

gcd(A′)

) 1
m′
≥ p

n′
m′ −1
k+1 .

Proof (1) Let x� be a solution to Ax = b, x [pk]-adic, with minimum support size.
After moving to a submatrix of A, and the corresponding subvector of b, if necessary,
we may assume that x� has full support, and A′ = A has full row rank; thusm′ = m ≤
n = n′. By Lemma 5.4 (1), for every integral solution x̄ to Ax = 0, every nonzero
entry of x̄ has a prime factor greater than or equal to pk+1. Thus, by Lemma 5.6, A
has an m-by-m submatrix B such that

| det(B)| ≥
{
pn−mk+2 if n < 2m

pmk+2 p
m
k+3 · · · pmk+� n

m 
 p
n−m� n

m 

k+� n

m 
+1 otherwise.

Taking the mth of both sides, and taking advantage of the inequality �m(A) ≥
| det(B)|1/m by definition, we obtain (1).

(2) Let x� be an optimal solution to min{w�x : Ax = b, x ≥ 0, x [pk]-adic}
with minimum support size. After moving to a submatrix of A, and the corresponding
subvectors of w and b, if necessary, we may assume that x� has full support, and
A′ = A has full row rank; thus m′ = m ≤ n = n′. By Lemma 5.4 (2), for every
nonzero integral solution x̄ to Ax = 0, there exists a nonzero entry with a prime factor
greater than or equal to pk+1, so in particular ‖x̄‖∞ ≥ pk+1. It therefore follows from
Siegel’s Lemma that √

det(AA�)

gcd(A)
≥ pn−mk+1 ,

proving (2). ��
Observe that for fixed A, both bounds above guarantee that n′

m′ → 1 as pk →∞,
thereby matching Carathéodory’s bounds for the support size of solutions to linear
systems, and optimal solutions to linear programs.
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We can use the theorem above, along with Hadamard’s inequality, to provide loose
but direct upper bounds on the support size of solutions.

Theorem 5.10 Let A ∈ Z
m×n, b ∈ Z

m, and w ∈ R
n. Then the following statements

hold for every integer k ≥ 0:

1. If Ax = b, x [pk]-adic, is feasible, then it has a solution with support size at most
n′, where for some 1 ≤ m′ ≤ m and r = � n′m′ 
, the following holds: if r ≥ 7 and

ln(
√
m′‖A‖∞) ≥ e, then

r ≤ 1+ 2(1+ e)

e

ln(
√
m′‖A‖∞)

ln ln(
√
m′‖A‖∞)

.

2. If min{w�x : Ax = b, x ≥ 0, x [pk]-adic} has an optimal solution, then it has
an optimal solution with support size at most n′, where for some 1 ≤ m′ ≤ m and
r = n′

m′ , we have

r ≤

⎧
⎪⎪⎨
⎪⎪⎩

1+ ln (m′‖A‖2∞)/(2 ln pk+1 − 1) for all k ≥ 0,

max

{
4‖A‖2∞

m′ , 1+ log2 ‖A‖∞ + log2(m
′‖A‖∞) · 1+log2 ‖A‖∞

1+2 log2 ‖A‖∞
}

if k = 0.

Proof (1) For some full-row-rank m′-by-n′ submatrix A′ of A, the inequality of The-
orem 5.9 (1) holds. We may assume that A′ = A, m′ = m and n′ = n. Let r := � nm 
.
If r < 7 then there is nothing to prove. Otherwise, r ≥ 7. Then by Theorem 5.9 (1)
we have

�m(A) ≥
r−1∏
i=1

(pk+2+i−1)≥
r−1∏

i=1+
⌈
r−2
2

⌉
(pk+2 + i − 1) ≥

(
pk+2 +

⌈
r − 2

2

⌉)⌈ r−1
2

⌉

.

For the third inequality above, we used the equality
⌈ r−1

2

⌉ + ⌈ r−22
⌉ = r − 1. On

the other hand, by Hadamard’s inequality,
√
m‖A‖∞ ≥ �m(A). Combining this

inequality with the one above, and then taking the natural logarithm, we obtain

⌈
r − 1

2

⌉
ln

(
pk+2 +

⌈
r − 2

2

⌉)
≤ ln(

√
m‖A‖∞).

Let λ := r−1
2 and μ := ln(

√
m‖A‖∞). Then the inequality above implies that

λ ln(λ) ≤ μ. Note that since r ≥ 7 > 1+ 2e, we have λ > e.

Claim 1 For λ,μ ≥ e, we have λ ≤ 1+e
e · μ

ln(μ)
.

Proof of Claim Let ν := λ ln(λ). Then for λ ≥ e,

ν

ln(ν)
= λ ln(λ)

ln(λ)+ ln ln(λ)
≥ λ ln(λ)

(1+ 1/e) ln(λ)
= e

1+ e
λ
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where the middle inequality holds because ln ln(λ) ≤ 1
e ln(λ) for all λ ≥ e. Since the

function 2t
ln(t) is increasing on t ∈ [e,∞), and μ ≥ ν ≥ e, it follows that 1+e

e · μ
ln(μ)

≥
1+e
e · ν

ln(ν)
, so the claim follows. ��

Claim 1 proves the inequality of (1).
(2) For some full-row-rank m′-by-n′ submatrix A′ of A, the inequality of Theorem

5.9 (2) holds. We may assume that A′ = A, m′ = m and n′ = n. Thus, we have that

√
det(AA�) ≥ pn−mk+1 .

Suppose a1, . . . , am ∈ Z
n are the rows of A, viewed as column vectors. By

Hadamard’s inequality,

√
det(AA�) ≤

√√√√
m∏
i=1
‖Aai‖2 ≤

√√√√
m∏
i=1

(
√
m
√
n‖A‖2∞) ≤ (√n‖A‖∞

)m
.

Combining the inequalities above, and then taking logarithms base pk+1, we obtain

n ≤ m + m logpk+1
(√

n‖A‖∞
)
. (25)

Let f , g : R≥1 → R≥0 be the functions defined as g(x) = x + x logpk+1 ‖A‖∞ and
f (x) := logpk+1 x . Then (25) may be rewritten as n ≤ g(m)+ m

2 f (n). Observe that
f is an increasing function.

Claim 2 The following inequalities hold:

a. f (g(m)+ m
2 f (n)) ≤ f (g(m))+ m

2 ln(pk+1)g(m)
f (n),

b. for k = 0, if n ≥ 4‖A‖2∞, then f (g(m)+ m
2 f (n)) ≤ f (g(m))+ m

2g(m)
f (n).

Proof of Claim To see the inequalities, note that logpk+1(x + y) = logpk+1(x) +
logpk+1(1 + y

x ) ≤ logpk+1(x) + 1
ln(pk+1)

y
x for all x, y over which the LHS and RHS

are defined. Thus,

f
(
g(m)+ m

2
f (n)

)
= logpk+1

(
g(m)+ m

2
f (n)

)
≤ logpk+1 g(m)+ m · f (n)

2 ln(pk+1)g(m)

thereby proving (a). When k = 0 (i.e. pk+1 = 2), we can replace logpk+1(1 + y
x ) ≤

1
ln(pk+1)

y
x by the improved inequality logpk+1(1 + y

x ) ≤ y
x as long as y

x ≥ 1. Thus,
after repeating the above argument with this improved inequality, we obtain (b). ��

Subsequently,

n ≤ g(m)+ m

2
f (n) ≤ g(m)+ m

2
f
(
g(m)+ m

2
f (n)

)
since f is increasing

≤ g(m)+ m

2
f (g(m))+ m

2

m

2 ln(pk+1)g(m)
f (n)
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by part (a) of Claim 2

...

≤ g(m)+ m

2
f (g(m))

∞∑
t=0

(
m

2 ln(pk+1)g(m)

)t

= g(m)+ m

2
f (g(m)) · 2 ln(pk+1)g(m)

2 ln(pk+1)g(m)− m
.

Substituting for g(m) and f (g(m)), and dividing both sides bym, we get the following
inequality:

n

m
≤ 1+ logpk+1 ‖A‖∞ +

1

2
logpk+1(m + m logpk+1 ‖A‖∞)

· 1+ logpk+1 ‖A‖∞
1+ logpk+1 ‖A‖∞ − 1

2 ln(pk+1)

≤ 1+ logpk+1 ‖A‖∞ +
(
logpk+1 m +

logpk+1 ‖A‖∞
ln(pk+1)

)

· 1+ logpk+1 ‖A‖∞
2+ 2 logpk+1 ‖A‖∞ − 1

ln(pk+1)

≤ 1+ logpk+1 ‖A‖∞ +
(
logpk+1 m +

logpk+1 ‖A‖∞
ln(pk+1)

)
· 1

2− 1
ln(pk+1)

= 1+ lnm + 2 ln ‖A‖∞
2 ln pk+1 − 1

.

Assume now that k = 0. We need to prove another upper bound on n
m . If n < 4‖A‖2∞,

then n
m <

4‖A‖2∞
m , so we are done. Otherwise, n ≥ 4‖A‖2∞. We then use part (b)

instead of part (a) of Claim 2 in the inequalities above, and obtain

n ≤ g(m)+ m

2
f (g(m)) · 2g(m)

2g(m)− m
.

Substituting for g(m) and f (g(m)), and dividing both sides bym, we get the following
inequality:

n

m
≤ 1+ log2 ‖A‖∞ +

1

2
log2(m + m log2 ‖A‖∞) · 1+ log2 ‖A‖∞

1+ log2 ‖A‖∞ − 1
2

≤ 1+ log2 ‖A‖∞ +
(
log2 m + log2 ‖A‖∞

) · 1+ log2 ‖A‖∞
1+ 2 log2 ‖A‖∞

,

as required. ��
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Let us mention a few notable cases. First, the upper bound of Theorem 5.10 (1)
for k = 0 is interesting in its own right, and was recently obtained in [13] (their
upper bound is given in terms of big O notation, in contrast to our bound). Secondly,
for k = 0, thanks to an improved asymptotic analysis, the upper bound of Theorem
5.10 (2) gives a minor improvement over the guarantee of 2m log2(2

√
m‖A‖∞) in [6].

Thirdly, for k = 0 and ‖A‖∞ = 1, the upper bound of Theorem 5.10 (2) simplifies to
the following.

Corollary 5.11 Let A ∈ {0,±1}m×n, b ∈ Z
m. If min{w�x : Ax = b, x ≥ 0, x ∈ Z

n}
has an optimal solution, then it has one with support size at most m(1 + log2 m) ≈
m(1+ 1.45 lnm). ��

Finally, for dyadic linear programs, we obtain the following, bringing this subsec-
tion to an end.

Corollary 5.12 Let A ∈ Z
m×n, b ∈ Z

m and w ∈ R
n. If min{w�x : Ax = b, x ≥

0, x dyadic} has an optimal solution, then it has one with support size at most m(1+
ln(m‖A‖2∞)/(2 ln 3− 1)) ≈ m(1+ 0.84 lnm + 1.68 ln ‖A‖∞). ��

5.5 Examples revisited

Example 5.1 revisited Consider the example (A⊗ I )y = 1, y [pk]-adic with mn vari-
ables and m equations. Let qi := pk+i for i ∈ [n]. Observe that

�m(A ⊗ I ) = Q

q1
= pk+2 pk+3 · · · pk+n .

Observe that the RHS is precisely the lower bound provided by Theorem 5.9 (1). This
shows that (a) this example is extremal, and (b) the lower bound given on �m by
Theorem 5.9 (1) cannot be improved in the case when the number of variables is a
multiple of m.

Example 5.2 revisited Consider the example min{0 : (As ⊗ I )y = 1, y ≥
0, y [pk]-adic} with mn variables and m equations. Let qi := pk+i for i ∈ [n].
Let B := As ⊗ I and consider the inequality of Theorem 5.9 (2). The LHS is

(√
det(BB�)

gcd(B)

)1/m

=
√√√√

n∑
i=1

(
Q

qi

)2

≥pk+1 · · · pk+n−1√n

while the RHS is pn−1k+1 , so there is a multiplicative gap of at least

pk+2
pk+1

· · · pk+n−1
pk+1

√
n

between the LHS and RHS for this example.
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Example 5.3 revisited For this example we have k = 0. Consider the integer linear
program

min
{
1�y : (A ⊗ I )y = (2n − 1) · 1, y ≥ 0 and integral

}
.

Let B := A ⊗ I and consider the inequality of Theorem 5.9 (2). The LHS is

(√
det(BB�)

gcd(B)

)1/m

=
√√√√

n∑
i=1

(
2i−1

)2=
√
4n − 1

3
=
√
4

3

(
1− 1

4n

)
· 2n−1

∈
[
2n−1,

√
4

3
· 2n−1

)

while the RHS is 2n−1, so there is a constant multiplicative gap of at most
√
4/3

between the LHS and RHS for this example. This shows that (a) this example is
extremal up to the constant factor, and (b) the lower bound given in Theorem 5.9 (2)
cannot be improved beyond this constant factor, in the case when k = 0.

6 Concluding remarks and future research

In this paper, we studied dyadic linear programming and its extension to L-linear
programming, where (L,+) is a dense abelian subgroup of (R,+). Two important
extensions were p-adic and [p]-adic linear programs, for a prime p.

We laid the foundation forL-linear programming by characterizing feasibility, stat-
ing optimality conditions, classifying all the possible outcomes and providing concise
certificates in each case. A distinguishing feature was that unlike linear programs, an
L-linear program may have an optimal value that is converged to but never attained
within the feasible region.

We proved that under mild assumptions on L, namely that L comes with a mem-
bership oracle and contains all p-adic numbers for some explicitly given prime p, an
L-linear program can be solved in polynomial time. In fact, we established a constant
factor equivalence between the running times of solving an L-linear program and a
linear program, with blackbox reductions going in either direction.

Going beyond the blackbox reductions, ifwe are given deeper access to an algorithm
for solving LPs which is guaranteed to find strictly complementary solutions (when
the instance has an optimal solution), we can modify such an algorithm in part by
inserting our subroutines in suitable places so that the LP algorithm is run only once
(with these inserted subroutines) to solve the corresponding L-linear program. Such
modifications can be particularly straightforward for the two-phase algorithms for LPs
(as one can follow the analysis in Sect. 3 to see how to modify the LP algorithm).

Our blackbox approach can also be useful in solving L-convex programs. For a
special class of convex optimization problems at hand, if we are able to compute
affine hulls (of the feasible region and the optimal face) and obtain rational represen-
tations for them (when possible) then, we can solve the L-convex program using the
approach in Sect. 3. We do not need the convex programming instance to satisfy strict
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complementarity, but we would require the convex optimization algorithm to com-
pute rational vectors (when they exist) in the relative interiors of the corresponding
sets. Limits of sequences of solutions generated by many interior-point algorithms for
convex optimization lie in the relative interiors of the corresponding sets.

An irony of our polynomial algorithm, and even some of the foundational results,
is that even though we set to solve an L-linear program, the numbers encountered
throughout may in fact fall outside L. For instance, in the theorem of the alternatives,
Theorem 2.7, the non-existence certificate u must inevitably be outside L. That said,
the algorithm does successfully characterize and solve the various outcomes of an
L-linear program, and provides the first step for finding a polynomial algorithmwhere
all the numbers involved in the computations belong to L.

Given Ax ≤ b, x p-adic, that is feasible, what is the smallest k ∈ Z≥0 such that
there is a 1/pk-integral solution? While determining k is NP-hard, we provided upper
bounds on k that are polynomial in n and the encoding size of A. A particular case
of interest comes from combinatorial optimization. Given a graph G = (V , E) and a
nonempty set T ⊆ V of even size, a T -join is an edge set whose odd-degree vertices
coincides with T . It is known that the fractional T -join packing problem

max
{
1�y :

∑
(yJ : J � e) ≤ 1 ∀e ∈ E; yJ ≥ 0 ∀T-joins J

}

has an optimal solution that is dyadic, i.e., 1
2k
-integral for some integer k ≥ 0 [5].

The proof provides no upper bound guarantee on k. That said, it has been conjectured
by Seymour that k ≤ 2 ([12], Conjecture 2.15, also see Schrijver [28] 79.3e). An
upper bound of k ≤ c log(|E |) for some universal constant c, also remains open. The
conjecture of Seymour combinedwith our approach in the currentmanuscript, suggests
a study of classes of linear programs with integral data such that for every integral
objective function vector, the primal has a 1

2k1
-integral optimal solution (whenever it

has an optimal solution) and the dual has a 1
2k2

-integral optimal solution, for some
fixed pair of nonegative integers k1 and k2. Seymour’s conjecture above corresponds
to the special case k1 := 0, k2 := 2.

Given a [p]-adic linear program min{w�x : Ax = b, x ≥ 0, x [p]-adic} that has
an optimal solution, where A hasm rows, we provided upper bound guarantees on the
support size of an optimal solution, where the bound depended polynomially on m, p
and the encoding size of A. A helpful twist in this case was extending the notion of
[p]-adic numbers to include the case of p = 1, by declaring the [1]-adic numbers as
the integers. As such, we obtained a spectrum of guarantees ranging from ILPs (p = 1)
on the one end, passing through dyadic linear programs (p = 2), and reaching LPs
(p = ∞) on the other and matching Carathéodory’s bound. Along the way, we also
provided tight upper bounds on the support size of a solution to a feasible [p]-adic
linear system of the form Ax = b, x [p]-adic.

While our upper bound guarantees for [p]-adic linear programs are tight for the
two ends of the spectrum, p = 1 (Example 5.3) and p = ∞, there remains a gap
between our best lower bound (Example 5.2) and our upper bound for 2 ≤ p < ∞,
as discussed in Sect. 5.5. We believe that due to the density of the feasible region for
p ≥ 2, the upper bounds in this case should look more like the upper bounds for
[p]-adic linear systems.
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In the special case of ‖A‖∞ = 1, the best lower bound on the support size of an
optimal solution to a [p]-adic linear program that we can show is at most O(m), while
our upper bound is O(m lnm). Closing the gap in this case remains an intriguing
open question. An important special case comes in the dyadic (p = 2) case from
the fractional T -join packing problem mentioned above. By developing a column
generation technique for solving dyadic linear programs, and by leveraging tools from
matching theory, we achieve a matching upper bound of O(m) (note m = |E | in this
case) [1].

We have used the size of the input, in particular ln ‖A‖∞ to state our results (for
bounds on computational complexity aswell as support size bounds etc.). However, for
specially structured instances, there are better complexity measures, capturing more
intrinsic properties of the instance. This typically yields tighter and more insightful
bounds. Thus, it would be fruitful to pursue this direction in future research.

Let a1, . . . , an ∈ Z
m . The set {a1, . . . , an} is a dyadic generating set for a cone

(DGSC) if every integral vector in the conic hull of the vectors can be expressed as
a dyadic conic combination of the vectors. This notion was coined and studied in
our first work on dyadic linear programming [4]. Given a DGSC {a1, . . . , an} and an
integral vector b in the conic hull, we know that b can be expressed as a dyadic conic
combination of the vectors.What is the fewest number k of nonzero coefficients in such
a representation? While Corollary 5.12 gives an upper bound of O(m ln(m‖A‖2∞))

on k, we conjecture that there is a O(m) upper bound on k. The rationale behind
this comes from the observation that a DGSC may be viewed as the dyadic analogue
of Hilbert bases for integer linear programming [16] for which the analogous upper
bound guarantee is 2m − 2 [29].

Finally, we propose a weakening of a known conjecture. A matrix A ∈ {0, 1}m×n
is ideal if the set covering linear program min{c�x : Ax ≥ 1, x ≥ 0} has an integral
optimal solution for all c ∈ Z

n≥0. Seymour conjectures that the dual linear program
max{1�y : A�y ≤ c, y ≥ 0} has a dyadic optimal solution for all c ∈ Z

n≥0 (see
Schrijver [28] 79.3e). We propose the following weakening of this conjecture.

Conjecture 6.1 Let A ∈ {0, 1}m×n be an ideal matrix, and for some c ∈ Z
n≥0, let

τc := min{c�x : Ax ≥ 1, x ≥ 0}. Let p be the largest prime in [τc]. Then max{1�y :
A�y ≤ c, y ≥ 0} has a [p]-adic optimal solution.

This conjecture has been verified for the clutter of dijoins of a digraph ([20], The-
orem 2.13).

A Primer on lattices and determinants

Generallywe follow [8, 23, 26] as reference texts on lattices, inequalities, and equalities
in linear algebra, respectively. More specifically, we use the following specific results
in the paper.

Hermite normal form. Let A ∈ Z
m×n be a matrix of full row rank. Then A can

be brought into Hermite normal form by means of elementary unimodular column
operations. In particular, there exists an n-by-n unimodular matrixU such that AU =
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(B 0), where B is a non-singular m-by-m matrix, and 0 is an m-by-(n − m) matrix
with zero entries. See ([10], Section 1.5.2) or ([27], Chapter 4) for more details.

Matrix GCD. Denote by gcd(A) the greatest common divisor (GCD) of all order-
m minors of A. This quantity can be found as follows. First, bring A into Hermite
normal form after applying elementary unimodular column operations, say we obtain
(B 0)where B is a square matrix. Then gcd(A) = gcd(B) = | det(B)|, where the first
equality can be readily checked by the reader, and the second one follows immediately
from definition.

Lattice “closure" and index. Let L be anm-dimensional lattice contained in Zn , and
let L := aff(L) ∩ Z

n . Clearly, L is a lattice containing L . Observe that within the
affine hull of L , and confined to the integers, L is the maximal lattice containing L .
It is known that L can be partitioned into a number of integral linear translations of
L; this number is denoted as the index [L : L] ∈ Z≥1. Thus, L = L if and only if
[L : L] = 1.

Lattice determinant and orthogonal complement. The determinant of L , denoted
det(L), is the m-dimensional volume of its fundamental parallelepiped. The inverse
of det(L) may be used to measure the “density" of L: the smaller the determi-
nant, the larger the density. It is known that det(L) = [L : L] det(L) (see [23],
Proposition 1.1.5 (4)). The orthogonal complement of L is the lattice L⊥ :={
y ∈ Z

n : y�x = 0 ∀ x ∈ L
}
. It can be readily checked that L⊥ has index 1, that

is, L⊥ = L⊥. It is known that det(L⊥) = det(L) (see [23], Proposition 1.9.8).

Lattice formulas. Let C ∈ Z
n×m be a matrix with m linearly independent columns,

and consider the lattice L := {Cy : y ∈ Z
m} ⊆ Z

n . Let us find det(L), L, [L : L]
and L⊥ in terms of C . First, the fundamental parallelepiped of L is {Cλ : 0 ≤ λ < 1},
whose m-dimensional volume is det(L). Subsequently, it can be readily checked that
det(L)2 is the Gram determinant of the columns of C , that is, det(L) = √det(C�C).
It can be readily seen that L = {Cy : y ∈ R

m} ∩ Z
n . By turning C� into Her-

mite normal form after applying elementary unimodular column operations, it can be
shown that [L : L] = gcd(C) (see [23], Proposition 1.1.5 (4)). Finally, observe that
L⊥ = {x ∈ Z

n : C�x = 0
}
. By combining the equalities provided thus far, we see

that det(L⊥) = √det(C�C)/ gcd(C).

Lattice-free sets. Observe that P := {Cλ : −1 < λ < 1} is lattice-free, that is, P
contains no nonzero vector from the lattice L . The set P is the union of 2m reflections of
the fundamental parallelepiped of L , whose relative interiors are pairwise disjoint, so
volm(P) = 2m det(L). Observe further that P is a convex set that is symmetric about
the origin. An important result of Minkowski from the Geometry of Numbers states
that among all such sets which are lattice-free, P reaches themaximumm-dimensional
volume.

Minkowski’s First Theorem (see [23], Theorem 2.7.1) Let L ⊆ Z
n be an m-

dimensional lattice. Let C be a convex set that is symmetric about the origin. If
C ∩ L = {0}, then volm(C) ≤ 2m det(L).
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Hadamard’s inequality. Let B ∈ Z
m×m be a matrix with columns b1, . . . , bm .

Observe that | det(B)| is the volumeof the parallelepipedwith sides b1, . . . , bm , imply-
ing in turn the well-known Hadamard inequality, stating that | det(B)| ≤∏m

i=1 ‖bi‖2
([18], see [8], Chapter 2, §11). Subsequently, since ‖bi‖2 ≤ √

m‖bi‖∞ for each
i ∈ [m], it follows that | det(B)|1/m ≤ √m‖B‖∞.

Minors of the adjugate matrix. Let U be an n-by-n matrix. The adjugate of U ,
denoted adj(U ), is an n-by-n matrix such thatUadj(U ) = det(U )I . For all i, j ∈ [n],
adj(U ) j i is defined as a cofactor of U , namely, it is (−1)i+ j times the determinant
of the submatrix of U obtained after removing row i and column j . An extension of
this identity attributed to Jacobi expresses every minor of adj(U ) as a cofactor of the
original matrix U .

Jacobi’s Theorem (see [26], Theorem 2.5.2) Let U be an n-by-n matrix, and m ∈ [n−
1]. For row labels I ⊆ [n] and column labels J ⊆ [n] of U such that |I | = |J | = m,
we have

det(adj(U )J×I ) = sgn(σ ) det(UI×J ) det(U )m−1.

whereσ : [n] → [n] is the permutationdefinedasσ(ik) = jk for all k ∈ [n], for the fol-
lowing labelling of the rows and columns ofU: the rows/columns ofUI×J are labelled
{i1, . . . , im}/{ j1, . . . , jm} from top to bottom/left to right, and the rows/columns of
UI×J are labelled {im+1, . . . , in}/{ jm+1, . . . , jn} from top to bottom/left to right.
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