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Abstract: We consider optimal designs for clinical trials when response variance depends on treatment
and covariates are included in the response model. These designs are generalizations of Neyman
allocation, and commonly employed in personalized medicine where external covariates linearly
affect the response. Very often, these designs aim at maximizing the amount of information gathered
but fail to assure ethical requirements. We analyze compound optimal designs that maximize a
criterion weighting the amount of information and the reward of allocating the patients to the most
effective/least risky treatment. We develop a general representation for static (a priori) allocation
and propose a semidefinite programming (SDP) formulation to support their numerical computation.
This setup is extended assuming the variance and the parameters of the response of all treatments
are unknown and an adaptive sequential optimal design scheme is implemented and used for
demonstration. Purely information theoretic designs for the same allocation have been addressed
elsewhere, and we use them to support the techniques applied to compound designs.

Keywords: compound optimal designs; Neyman allocation; covariates; information–regret designs;
Parkinson’s disease

MSC: 62K05, 90C22

1. Introduction

This paper investigates methods for optimizing experimental designs in clinical trials,
focusing on maximizing the information needed to predict responses to various treatments
while considering ethical constraints relevant to personalized medicine. We extend existing
approaches by addressing the challenge of patient allocation to treatments, aiming to bal-
ance statistical efficiency with the ethical imperative of minimizing the risk of administering
suboptimal treatments to new patients. Our interest in personalized medicine leads to
the modeling of patient–treatment interactions. Consequently, there is generally no single
best treatment; the optimal choice depends on the patient’s covariates. Common patient
covariates, also known as prognostic factors, include age, sex, prior illnesses, and baseline
status on various indicators such as depression and susceptibility to certain conditions.
These covariates may be represented by continuous metrics or discrete scales. Despite the
differences in their nature, the challenge of optimally allocating patients remains a general
problem, regardless of the type of covariates involved.
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The main challenges in optimally allocating patients to effective treatments in clinical
trials are (i) patient heterogeneity: variability among patients makes it difficult to predict
individual responses to different treatments; (ii) ethical considerations: ensuring equitable
access to potentially effective treatments for all participants while maintaining scientific
rigor; (iii) bias and randomization: proper randomization is essential to avoid skewed
results and the effects of uncontrolled factors, so as to ensure accurate assessments of
treatment effectiveness; (iv) treatment effectiveness: identifying the most effective treatment
for various patient subgroups can be challenging; (v) sample size and power: determining
appropriate sample sizes is crucial for detecting meaningful differences between treatments;
and (vi) dynamic changes in patient status: variations in patients’ conditions over time can
affect treatment effectiveness and influence trial conclusions [1]. In this study, we focus on
points (ii) through (vi) and examine methods to address these challenges.

The problem of prescribing optimal designs in clinical trials is formalized as the
maximization of a compound optimal design criterion that balances the information gained
from the trial with the goal of maximizing patient outcomes by allocating them to the
most effective treatments. While the first component of the objective function, related to
statistical information, was discussed in Duarte and Atkinson [2], the second component
addresses ethical concerns.

Typically, clinical trials are designed to either (i) maximize the information that en-
hances statistical inference about the response models; or (ii) satisfy ethical requirements by
ensuring each patient is allocated to the most effective treatment as that becomes evident.
These objectives often conflict with each other, leading to the formulation of an optimal
allocation problem that may (i) maximize the information gained while imposing an upper
limit on regret arising from allocation of patients to treatments which are not the best for
them; or (ii) minimize regret while constraining the amount of information obtained, typi-
cally measured by a suitable convex function of the Fisher information matrix (FIM). When
both objectives are convex (or concave), they can be combined using a linear combination
with a Lagrange coefficient. This approach facilitates a balanced compromise between the
incremental gain in information and the ethical considerations associated with treatment
allocation [3,4].

In this paper, we consider the standard model commonly used in clinical trials, as
described by Rosenberger and Lachin [5]. This model for the expected response to a given
treatment includes a linear component to account for the effects of prognostic factors, or
covariates, along with an additive constant representing the treatment effect [6]. The coeffi-
cients that link the covariates to the response for each treatment are either known a priori
or can be sequentially estimated by fitting previous responses using least-squares methods.
The response is assumed to follow a normal distribution, with each treatment associated
with a distinct level of observational noise variance, which may be known beforehand
or estimated from trial data. Such dependence of response variance on treatment is an
extension of the standard model of Rosenberger and Lachin [5]. A second extension of the
standard model is the existence of patient–treatment interactions.

Hu et al. [7] proposed a general family of covariate-adaptive, response-adaptive
designs and derived the asymptotic properties of optimal allocation schemes. Addition-
ally, Atkinson [8] presented optimal experimental designs for regression models—those
with covariates—specifically when there are two treatments with differing variances. In
this setup, a single normal response model is applied to all subjects. An up-to-date review
of this topic can be found in Sverdlov et al. [9].

The use of compound criteria to identify sequential optimal designs is an area of
active research, with the primary goal of reconciling the two key objectives of maximizing
information and addressing ethical considerations. To incorporate ethical concerns into the
optimal design criterion, a method based on randomly reinforced urn designs was applied,
as detailed in May and Flournoy [10]. In a similar vein, Antognini and Giovagnoli [11]
explored problems without covariates, integrating standardized information and ethical
measures into the optimality criterion. Their approach dynamically adjusts the weight on
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the two components based on the observed outcomes. Sverdlov et al. [12] examined re-
sponses related to time-to-event data, also without covariates. Furthermore, Metelkina and
Pronzato [13] proposed a covariate-adaptive sequential allocation strategy that converges
to the optimum, demonstrating the equivalence of this approach to penalized designs.

The numerical computation of compound designs that incorporate ethical considerations
poses significant challenges, often hindering their practical application. In many cases, the
computational complexity of these designs makes their implementation in real-world settings
challenging. Consequently, decision makers (such as physicians and other agents) often opt
for simpler methods that offer greater interpretability and can be more easily integrated
into suitable information systems [14]. This paper addresses this issue by introducing a
semidefinite programming formulation to derive asymptotic designs, along with a sequential
allocation algorithm suited for real-world scenarios where prior knowledge is limited and
the model parameters and response variance are extracted from individuals’ responses.

Our approach automates the computation of standardized compound designs by using
the D-optimality criterion to measure information and quantifying rewards based on the
expected response. The framework assumes known treatment variances and determines the
optimal (continuous) designs for patient allocation across treatments. The information compo-
nent in our compound designs is grounded in the Neyman allocation method, incorporating
covariates as previously explored in Duarte and Atkinson [2]. The ethics-based component is
represented by the reward of the response, which is determined by the expectation calculated
over a finitely large patient sample. When employing sequential designs, this expectation
can also be iteratively approximated using a finite sample with known response values.

Further, we also address the more common scenario where treatment response vari-
ances and coefficients are initially unknown. In this case, we propose a sequential optimal
design framework that updates the model after each patient response is obtained, subse-
quently allocating the next patient to the treatment that maximizes the compound objective.

This paper introduces three key innovations: (i) the development of a framework that
enables the computation of compound designs incorporating standardized information
measures and regret components; (ii) the formulation of semidefinite programming (SDP)
methods to generalize the numerical computation of these designs; and (iii) the creation of
an adaptive optimal allocation scheme that updates both the models for the responses and
response variances in real time.

The paper is organized as follows. Section 2 provides the background and introduces
the notation used for the problem formulation. Section 3 outlines the problem of optimal
allocation using the compound-standardized information–regret (I-R) criterion. Section 4
presents the semidefinite programming (SDP) formulations designed to systematically
address the problem; the construction of normalization values for computing normalized
regret is detailed in Appendix A. Section 5 describes the algorithm for determining optimal
sequential allocation designs, which is illustrated with an example. In Section 6, we apply
the proposed methodologies to a real-world case, specifically focusing on the optimal
allocation of Parkinson’s disease patients to two alternative care treatments. Finally, in
Section 7, we conclude with a brief discussion of our results.

2. Notation and Background

This section establishes the nomenclature and fundamental background used in the
subsequent sections.

In our notation, boldface lowercase letters represent vectors, boldface capital letters
represent continuous domains, blackboard bold capital letters denote discrete domains, and
capital letters are used for matrices. Finite sets with ι elements are compactly represented
by JιK ≡ {1, . . . , ι}. The transpose operation of a matrix or vector is denoted by “T”. The
determinant of a matrix is represented by det(•), and the trace is denoted by tr(•). The
nomenclature used throughout the paper is provided at the end.

Let k ∈ JKK denote the covariates in the linear response model, i ∈ JIK represent the
treatments, and j ∈ JJK indicate the levels each factor can have in the experiment. Here,
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K, I, and J denote the number of covariates, treatments, and factor levels in the response
model, respectively.

When i ∈ {1, 2} (indicating two treatments) and there are k covariates, the response
model is given by

η1(x, θθθ) = α1 + β1,1x1 + β1,2x2 + · · ·+ β1,KxK, var(η1) = σ2
1 , (1a)

η2(x, θθθ) = α2 + β2,1x1 + β2,2x2 + · · ·+ β2,KxK, var(η2) = σ2
2 , (1b)

where x = (x1, x2, . . . , xK) ∈ X ⊂ RK is the vector of covariates, X denotes the design space
which contains all possible values of x, θθθ represents the set of parameters to be estimated
(including all α’s and β’s), and Θ ⊂ Rnθ is the domain of these parameters, with nθ being
the total number of parameters across all treatment models. The models ηi(x, θθθ), for i ∈ J2K,
represent the expected responses, each characterized by an error term with variance var(ηi).
The pth realization of x characterizing the pth patient is represented as xp.

The allocation is optimized to maximize the information extracted from patients’
responses while considering the predictions from the model. Our goal is to determine the
allocation of individuals to treatment 1 for estimating the parameters (α1, β1,1, . . . , β1,K)

T,
and to treatment 2 for estimating the parameters of the second treatment model. In
approximate optimal designs, w represents the fraction of individuals allocated to treatment
1, while 1− w denotes the fraction allocated to treatment 2. This yields the design matrix

ξ =

(
w 1− w
1 2

)
.

Here, the upper row of ξ indicates the fraction allocated to each treatment, while the
lower row denotes the treatment number itself. In cases where the number of individuals
is small and an exact design is required, rounding procedures can be used to determine the
allocation, as described in Pukelsheim and Rieder [15].

Let τ = σ2
2 /σ2

1 , and without loss of generality, let σ2
1 = 1. Consequently, the Fisher

information matrix (FIM) for the experimental design ξ is a 2(K + 1)× 2(K + 1) diagonal
matrix given by Atkinson [8]:

M(ξ) =


w 0 · · · 0 0
0 1−w

τ · · · 0 0
...

...
. . .

...
...

0 0 · · · w 0
0 0 · · · 0 1−w

τ

. (2)

3. Standardized Compound Designs

In this section, we formulate standardized compound designs that balance information
measurement criteria with regret. The response models for all treatments are continuous
and exhibit linear dependence on K covariates. Moreover, the variances of the treatment
responses are known a priori. Our goal is to establish a general conceptual framework for
determining continuous optimal information–regret (I-R) designs, characterized by the
fraction of patients allocated to each treatment.

We focus on the computation of I-R designs, which aim to reconcile the objectives
of allocating individuals to the most promising treatments while optimizing parameter
estimation efficiency across different response groups; see Hu et al. [7], Antognini and
Giovagnoli [11], Metelkina and Pronzato [13]. In most applications, responses are either
binary or follow a standard linear model. For both types, it is rational to evaluate allocation
procedures based on the proportion of patients receiving the most effective treatment.
However, in the presence of patient–treatment interactions, there is generally no single
best treatment; the optimal choice depends on the patient’s covariates. If the responses are
significantly different, the choice of treatment is crucial. Conversely, if the responses are
similar, the advantage of one treatment over another is minimal. Thus, we use the expected
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response value based on previous allocations as our indicator for correct allocation. This
approach represents an innovation compared to earlier methods.

This problem is particularly relevant as it mirrors the sequential allocation of individu-
als in clinical trials. It exploits prior information—characterized by both continuous and
discrete covariates known a priori—to refine allocation strategies in later stages. Practically,
optimization strategies offer significant advantages over pure randomization techniques,
as discussed in Bertsimas et al. [16], Kallus [17].

In this context, we integrate standardized D-optimality, which quantifies the informa-
tion content, with standardized regret, which measures the expected loss associated with
not selecting the optimal treatment—the one corresponding to the highest response.

We first consider the information criterion. Assume the covariates xk for k ∈ JKK
are discrete, taking values in {−1,+1}. Consequently, the design space is defined as
X ≡ {−1,+1}K. Let θθθ denote the set of parameters to be estimated, including the vectors ααα
and βββ in Equation (1). In this simplified configuration, we consider categorical covariates
with two levels: −1 (lower) and +1 (upper). According to the bound on the determinant
of a Hadamard matrix [18,19], extreme observations provide the most information for the
D-optimality criterion in first-order models.

We emphasize that using these limited support points for the designs helps reduce
the computational burden when demonstrating the properties of our designs in a non-
sequential context and provides valuable asymptotic allocations. In the application to
constructing sequential clinical trials discussed in Section 5, covariate values are sampled
from continuous distributions.

The criterion used for information-theoretical analysis in this work is D-optimality.
This approach aims to maximize the determinant of the matrix M(ξ), or equivalently,
the 1/[2(K + 1)] power of the determinant, which represents the geometric mean of the
diagonal elements of matrix B, as described in Duarte and Atkinson [2] (Equation 3.d).

To address our objective of integrating criteria that measure different aspects—specifically,
the information content in the allocation and the regret associated with individual treat-
ment assignments—we use standardized criteria, as detailed by Dette [20]. Hence, the
information criterion we seek to maximize is given by

Ψ(ξ, θθθ) =

(
det[M(ξ, θθθ)]

det[M(ξ∗, θθθ)]

)1/nθ

(3a)

M(ξ, θθθ) =
I

∑
i=1

wiM(ηi, θθθ) (3b)

M(ηi, θθθ) =

(
∂ηi(x, θθθ)

∂θθθ

)T(∂ηi(x, θθθ)

∂θθθ

)
, (3c)

where M(ηi, θθθ) represents the Fisher information matrix (FIM) for treatment i, and ξ∗

denotes the optimal allocation when D-optimality is the sole criterion. For simplicity, we
assume the models ηi(•) are linear in parameters, which makes the matrices M(ηi, θθθ)
independent of θθθ. The explicit inclusion of θθθ in the definition of Ψ(ξ, θθθ) serves two main
purposes: (i) it clarifies the dependency on the number of parameters; and (ii) it aligns the
functional with the regret representation, which does depend on θθθ.

We now introduce the regret criterion. The objective is to assign an individual, denoted
as individual m + 1, who is characterized by covariate values xm+1, to the treatment that
maximizes the expected response. For simplicity, we assume that higher response values
are preferred, although the opposite preference could also be applied.

To align this criterion with the information criterion, it is necessary to normalize
the responses to fall within the range [0, 1]. To achieve this normalization, we need to
evaluate all I treatments and, for each treatment, consider all possible covariate values in
Ωm ≡ {x}m

1 . Here, Ωm includes the m previous vectors of covariates that have already been
allocated. Assuming perfect knowledge of the parameters θθθ for all models, let
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ymax
Ωm

= max
i∈JIK

max
x∈Ωm

ηi(x, θθθ)

denote the maximum response value achieved by the treatment that yields the highest
response. Specifically, ymax

Ωm
represents the highest value of the response over all models

i ∈ JIK and covariate values x ∈ Ωm, obtained using model (1).
Conversely, the minimum response is denoted by ymin

Ωm
, which satisfies

ymin
Ωm

= min
i∈JIK

min
x∈Ωm

ηi(x, θθθ).

Let
∆ = ymax

Ωm
− ymin

Ωm
(4)

denote the difference in response expectations between the “optimal” and “least favorable”
treatments for x ∈ Ωm. Each of these values can be computed using the mixed-integer
linear programming (MILP) procedure detailed in Appendix A. The parameter ∆ ensures
compatibility between the standardized regret and the standardized information criteria.
To complete the scaling, we also need to determine the minimum response achieved
(i.e., the baseline), denoted as

δmin = ymin
Ωm

.

These problems determine the maximum (or minimum) response of a set of discrete
points, considering the full set of response models. This approach is used to systematically
find the extrema of possibly nonlinear or even discontinuous response models. We rely on
a branch-and-cut large-scale solver [21], which ensures solvability even for larger numbers
of discrete points and response models.

We now turn to the design of experiments. In the clinical trials motivating our work,
the choice of covariate vector x is not under our control. Each patient p arrives with
a predetermined covariate vector. The central design question is determining the most
suitable treatment for each patient.

The optimal treatment allocation for the pth individual is given by the treatment imax
p ,

which is defined as
imax
p = arg max

i∈JIK
ηi(xp, θθθ),

where ηi(xp, θθθ) represents the response of treatment i given the covariate vector xp and the
parameter vector θθθ.

In this context, regret measures the cost associated with not selecting the most effective
treatment, as described by Rosenberger and Sverdlov [22]. When comparing different allo-
cation strategies for I treatments across m individuals with known covariate information,
regret is quantified as the average difference between the expected outcomes of the optimal
allocation policy and those of an alternative policy.

Specifically, the non-standardized average regret, denoted as Γns, is defined as

Γns
m (ξ, θθθ) =

1
m

m

∑
j=1

[
ymax

Ωm
− ηℓ(j)(xj, θθθ)

]
, (5)

where ymax
Ωm

is the maximum expected response achievable across all treatments given the
covariate information available, and ηℓ(j)(xj, θθθ) is the response of the treatment actually
assigned to the jth individual. Here, ℓℓℓ denotes a vector, where ℓ(j) specifies the treatment
assigned to the jth individual.

The scale factor used to normalize the average regret to the unit interval, ∆, remains
constant for optimal designs when the model coefficients of treatments are known. How-
ever, it must be re-estimated in sequential allocation schemes as new data become available.
Given that

ymax
Ωm

= ∆ + δmin,
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the standardized average regret, referred to as “regret” (without superscript) in the follow-
ing sections, is given by

Γm(ξ, θθθ) =
Γns

m (ξ, θθθ) + δmin

∆
.

Alternatively, Γm(ξ, θθθ) can be expressed as

Γm(ξ, θθθ) = 1− 1
m

m

∑
j=1

ηℓ(j)(xj, θθθ)− δmin

∆
, (6)

where ηℓ(j)(xj, θθθ) represents the response of the treatment assigned to the jth individual.
Minimizing regret in the allocation process corresponds to selecting the treatment that

maximizes the following objective function (up to constant terms):

max
w

[−Γm(ξ, θθθ)] ≡ max
i∈JIK

1
m

m

∑
j=1

ηℓ(j)=i(xj, θθθ)− δmin

∆
,

where w ∈ RI denotes the vector of proportions of patients allocated to each treatment,
subject to the constraint ∑I

i=1 wi = 1.
Let mi (with mi < m) denote the number of subjects previously assigned to treatment

i. Consequently, we have

1
m

I

∑
i=1

m

∑
j=1

ηℓ(j)=i(xj, θθθ)− δmin

∆
=

I

∑
i=1

wiEm

(
ηi(x, θθθ)− δmin

∆

)
, (7)

where Em

(
ηi(x,θθθ)−δmin

∆

)
represents the expectation of the standardized loss for the mi indi-

viduals previously allocated to treatment i. For a detailed derivation of Equation (7), refer
to Appendix B.

The I-R-optimality criterion is formulated by integrating the information-theoretic
criterion from Equation (3) with the regret criterion from Equation (7). The I-R-optimal
design seeks to address the following optimization problem:

max
w∈[0,1]I

(1− γ) Ψ(ξ, θθθ)− γ Γm(ξ, θθθ)

which is equivalently expressed as

max
w∈[0,1]I

(1− γ)

(
det[M(ξ, θθθ)]

det[M(ξ∗, θθθ)]

)1/nθ

+ γ
n

∑
i=1

wi Em

(
ηi(x, θθθ)− δmin

∆

)
, (8a)

s.t.
I

∑
i=1

wi = 1 (8b)

where γ ∈ [0, 1] represents the relative weight assigned to the regret criterion, which is
determined in advance. In practice, the decision maker selects this parameter to reflect the
relative importance of ethical considerations versus inferential accuracy when developing
response models for both groups. For instance, if γ is set to 0.95, it suggests that ethical
concerns are given 19 times more significance than the information criterion. This high
value of γ is typically used in scenarios where patients are well-informed, and the priority
is to minimize regret by allocating them to the treatment with the least potential regret.

Problem (8) is formulated similarly to (Metelkina and Pronzato [13], Equation 2.9) and
can also be represented as a semidefinite program. However, it is important to note that
the multiplicative compound criterion proposed by Hu et al. [7] cannot be expressed in
semidefinite form due to the lack of semidefinite representability of the functions involved.
Additionally, when γ = 0, the I-R-optimality criterion simplifies to D-optimality, as dis-
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cussed in (Duarte and Atkinson [2], §4). On the other hand, when γ = 1, the criterion aligns
with concepts from multi-armed bandit theory, such as those explored by Villar et al. [23].

4. Optimal I-R Designs via SDP

We now present a formulation to address problem (8) using semidefinite programming.
Solving this problem via SDP involves several key steps: (i) determining the value of
det[M(ξ∗, θθθ)] in Equation (3a), which can be precomputed using the procedure outlined
in (Duarte and Atkinson [2], A1.a–A1.e). This corresponds to calculating the determinant
for the optimal design when the objective is the D-optimality criterion. (ii) Estimating the
average response of each treatment, a process that relies on the parameter vector θθθ derived
from previous allocations and is inherently subject to noise. (iii) Computing the quantities
ymin

Ωm
, ymax

Ωm
, ∆, and δmin, as obtained from Equations (4), (A1) and (A2). (iv) Incorporating

the weight γ, as specified by the user.
In practical terms, this design can be interpreted as an approximate, infinite-size

local design intended to estimate a specific parameter vector θθθ. The primary goal of this
formulation is to establish an asymptotic framework for resolving local designs within
sequential procedures, as outlined by Pocock [24]. The formulation is presented below.

max
ξ,B,t

(1− γ)
t

{det[M(ξ∗, θθθ)]}1/[2(K+1)]
+ γ

I

∑
i=1

wi Em

(
ηi(x, θθθ)− δmin

∆

)
(9a)

s.t.
(

M(ξ, θθθ) BT

B diag(B)

)
⪰ 04(K+1) (9b)

t ≤
2(K+1)

∏
ȷ=1

B1/[2(K+1)]
ȷ,ȷ (9c)

I

∑
i=1

wi = 1 (9d)

0 ≤ wi ≤ 1, i ∈ JIK. (9e)

Here, B is a lower triangular matrix of size 2(K + 1)× 2(K + 1), Bȷ,ȷ, ȷ ∈ J2(K + 1)K the
diagonal elements of B, and t the hypograph of the determinant function.

To illustrate the application of Problem (9), consider a scenario similar to the one
presented in Section 4 of Duarte and Atkinson [2]. In this setup, there are two treat-
ments and two covariates (denoted as x1 and x2), each with two levels. The design
space is defined as X ≡ {−1,+1}2. The local parameter values θθθ for treatment 1 are
(α1, β1,1, β1,2) = (0.5, 0.2, 0.4), and for treatment 2 they are (α2, β2,1, β2,2) = (1.0, 0.8, 1.0).
By solving programs (A1) and (A2), we obtain the following values: ymin

Ωm
= δmin = −0.8,

ymax
Ωm

= 2.8, and ∆ = 3.6. The expected values for each model are Em[η1(x, θθθ)] = 0.5 and
Em[η2(x, θθθ)] = 1.0, respectively. This setup demonstrates that the second treatment has
a significantly higher expected value, making it the preferable choice to minimize regret.
However, it is crucial to recognize that decision making is also influenced by the uncertainty
in the responses, as quantified by τ, which in turn impacts the information-based criterion.

We systematically vary the parameter τ to conduct a comparative analysis between
I-R-optimal designs and purely information-theoretical designs, as presented in Duarte
and Atkinson [2]. For each value of τ, we use the optimal det[M(ξ∗, θθθ)] values from Table 1
in Duarte and Atkinson [2], which were derived for the case K = 2. Additionally, we
explore different values of γ in the set {0.90, 0.95} to assess the impact of the weighting
parameter, where a higher γ emphasizes the importance of regret in the allocation process.

The performance of these designs depends on the values of x. In our calculations, we
assume an equal occurrence of each x value, resulting in balanced 2K experiments for each
treatment. The corresponding results are presented in Table 1 (the third and fifth columns)
and align well with our expected trends. To simplify the interpretation of the results, we
denote w1 as the proportion of individuals allocated to the first treatment, with w2 = 1−w1
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representing the proportion allocated to the second treatment. “Opt” refers to the objective
function value at convergence. As anticipated, for treatment 1, which has a lower expected
response, a smaller fraction of individuals is allocated. The weights consistently remain
below a half, reflecting the allocations observed in purely information-theoretical designs,
specifically those based on the D-optimality criterion, as shown in Table 1 of Duarte and
Atkinson [2]. As expected, the fraction of patients allocated to treatment 1 decreases with
increasing γ, illustrating the growing influence of the ethical component in decision making.
The optimum decreases as τ increases, with this effect being more pronounced for smaller
values of γ. This reduction in the optimum with increasing τ results from heightened
uncertainty, which consequently diminishes the amount of information gathered from the
experimental plan (see Table 1 in Duarte and Atkinson [2] for an analysis based solely on
information-based allocation). To evaluate the influence of γ on the optimum, we must first
consider the allocation driven purely by regret minimization. In this case, the allocation
is minimally affected by τ, as individuals are primarily assigned to the treatment with
the higher expected response (treatment 2), regardless of its variance. As γ decreases, the
standardized information component in Ψ(ξ, θθθ) (see Equation (8a)) becomes more critical,
and its reduction less pronounced than the decrease in the standardized regret.

Table 1. I-R-optimal designs for model (1) (including two treatments, two covariates and xk ∈
{−1,+1}, k ∈ JKK, and w2 = 1− w1).

σ2
1 σ2

2

I-R-Opt. Design † I-R-Opt. Design ‡

w1 Opt w1 Opt

1.0000 0.2000 0.1548 0.5046 0.2941 0.5392
1.0000 0.4000 0.1067 0.4929 0.2417 0.5085
1.0000 0.6000 0.0833 0.4882 0.2093 0.4950
1.0000 0.8000 0.0690 0.4856 0.1864 0.4871
1.0000 1.0000 0.0593 0.4839 0.1689 0.4819
1.0000 1.2500 0.0507 0.4824 0.1519 0.4773
1.0000 1.6667 0.0412 0.4809 0.1310 0.4722
1.0000 2.5000 0.0304 0.4793 0.1043 0.4665
1.0000 5.0000 0.0178 0.4774 0.0672 0.4597

† γ = 0.95; ‡ γ = 0.90.

To apply the results presented in Table 1 effectively in practical scenarios, researchers
should follow these steps:

(i) Use the given values of σ2
1 and σ2

2 to compute τ;
(ii) Set the value of γ;
(iii) Find the corresponding value of w for the compound optimality criterion based on τ

from step (i);
(iv) Allocate ⌈Nwi⌉ individuals to each treatment i.

5. Sequential Optimal Design Based on the I-R Rule

We now investigate the optimal sequential design based on the I-R rule, as represented
by (9). Our approach is consistent with sequential allocation algorithms similar to those
used by Atkinson [6] and Atkinson [25]. Specifically, (i) the values of the variances and
coefficients within the response models for all treatments, denoted as θθθ, are unknown;
(ii) the value of det[M(ξ∗, θθθ)] is determined in advance by solving the D-optimal design
problem; (iii) the weighting parameter γ remains fixed throughout the analysis; and (iv) we
have information about the underlying distributions of the covariates.

Without loss of generality, we assume that the covariates are uniformly distributed
within the range [−1,+1] (i.e., xk ∼ U [−1,+1] for k ∈ JKK). Additionally, the response
noise is modeled as a normal distribution with mean zero and standard deviation σi for
treatment i ∈ JIK. While these σi values are initially unknown, estimates of them are
updated iteratively as each patient is allocated and their response is recorded. The updated
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estimates, denoted as si for i ∈ JIK, represent the residual mean square errors from the fitted
models for the I treatments and reflect the effectiveness of the iterative fitting procedure
in capturing the noise in the responses. For I = 2, the estimate τ̂ is given by τ̂ = s2

2/s2
1.

As in previous sections, I represents the number of treatments, and p ∈ JPK indexes
the patients enrolled in the trial. The covariate xk denotes an individual covariate, and
xp ≡ {xk,p : k ∈ JKK} represents the vector of covariates for patient p.

In the context of sequential treatment allocation, we have access to the covariates and
allocations for the initial p patients, forming a matrix Gp that includes both allocations
and explanatory variables. For patient p + 1, who has a vector xp+1 of covariates, when
treatment i is assigned, the combined vector of allocation and explanatory variables for this
patient is represented as gi,p+1 for i ∈ JIK.

Previous work on optimal experimental designs, particularly those focusing on infor-
mation criteria (e.g., Atkinson [6] and (Smith [26], §10)), has shown that minimizing the
variance of the estimate after p + 1 observations can be achieved by selecting the treatment
for which the sensitivity function reaches its maximum value. This approach corresponds
to a specific case of optimal design theory aimed at reducing the variance of a single param-
eter estimate within a model with multiple nuisance parameters, known as Ds-optimality.
For more details, refer to (Atkinson et al. [27], §10.3) for the case with s = 1. However, in
our approach, which uses a compound (convex) criterion, we take a different approach.
Specifically, we compute the value of Equation (8) for each available treatment for patient
p + 1. We then allocate the patient to the treatment that maximizes the overall performance
according to this criterion.

In the sequential development of designs, especially when employing linear response
models and information criteria, calculating the sensitivity function is a straightforward
task as it directly depends on the information matrix and can be readily computed for each
proposed treatment allocation. However, for I-R-optimal designs, this process requires
an alternative approach due to the complexity of establishing the sensitivity function for
the regret component. To circumvent this challenge, we adopt a different strategy. We
compute the metric that represents the compound criterion for I distinct scenarios, each one
constructed by considering the allocation of patient p + 1 to a different treatment i ∈ JIK.
In other words, we evaluate v[ξ(p+1)

i ] given by

v[ξ(p+1)
i ] = (1− γ)

(
det[M(ξ, θθθ)]

det[M(ξ∗, θθθ)]

)1/nθ

+ γ
I

∑
i=1

wi Em

(
ηi(x, θθθ)− δmin

∆

)
, i ∈ JIK (10)

which represents the I-R performance of the design ξ constructed after treatments have
been allocated to p individuals (with the superscript denoting the number of individuals
with available information), and treatment i is assigned to patient p + 1. Here, the subscript
aids in tracking the provisional treatment allocation for subject p + 1.

To calculate the design ξ
(p+1)
i , several steps are required. First, we need to update

the weights, w, and their corresponding Fisher information matrices (FIMs) following the
tentative allocation of treatment i to subject p + 1. Additionally, we must compute the
metrics v[ξ(p+1)

i ] for each treatment i. The updates involve the following:

1. Parameter estimates: Recalculate θ̂θθ, the estimates of s2
1 and s2

2, and so τ̂, based on the
available data;

2. Updated metrics: Reconstruct δ̂min and ∆̂ using the responses from the p individuals,
whose treatment allocations and responses are known;

3. Weights vector: Recalculate the vector of weights, where wi = pi/p represents the
fraction of individuals allocated to each treatment.

Once these updates are complete, we compute the normalized ratios as follows:

πi =
v[ξ(p+1)

i ]

∑I
j=1 v[ξ(p+1)

j ]
, i ∈ JIK. (11)
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To determine the allocation, we use the following rule:{
Allocate patient p + 1 to treatment 1 if π1 ≥ 0.5,
Allocate patient p + 1 to treatment 2 otherwise.

(12)

This rule dictates that patient p + 1 will be allocated to treatment 1 if the ratio π1 is greater
than or equal to 0.5, and to treatment 2 otherwise.

In the context of tentatively allocating treatment i to subject p + 1, we predict the
response of this subject using the ith treatment model from Equation (1), denoted as
ηi(xp+1, θθθ). Here, θθθ is estimated based on data from the first pi individuals who were
allocated to this specific treatment. The predicted response is then used to update two
key elements:

1. Parameter estimates: Recalculate θ̂θθ for the model associated with the treatment being
considered for allocation;

2. Metrics update: Update δ̂min and ∆̂ based on the new response information.

Additionally, the experimental design itself is updated. This involves recalculating the
weights using the formula

w(p+1)
i =

pi + 1
p + 1

, i ∈ JIK,

where pi represents the number of patients previously allocated to treatment i. The updated
design is denoted as ξ(p+1). The treatment for subject p + 1 is then selected based on the
one that maximizes the objective function.

This procedure is repeated iteratively for a total of P individuals, where P can be
predetermined or adjusted based on ongoing trial results using a specified criterion. To
assess the properties of our procedure for a given value of P, we use simulations. To
minimize the impact of randomness, we replicate the entire procedure ns times. Algorithm 1
outlines the treatment allocation process.

Initially, k + 1 individuals are allocated to each treatment to ensure a non-singular
Fisher information matrix (FIM). Parameter estimates for the model are derived from the
responses of these 2(K + 1) individuals. The procedure is then systematically repeated until
the allocation of the Pth individual. After each new patient is admitted, their covariates
are considered in the decision-making process to optimize treatment allocation. Once the
response is available, it is integrated into the dataset, prompting updates to the model
parameters, the FIM, and the expectation estimates. In the algorithm 1i,j is an indicator
variable with value 1 if the jth individual is allocated to treatment i and 0 otherwise.

Algorithm 2 systematically outlines the procedure for sequential allocation based on
the proposed I-R criterion. To illustrate the mechanics of the procedure, we consider the
allocation of the pth individual. The implementation requires the following quantities:

(i) The number of competing treatments, denoted as I;
(ii) The number of covariates, denoted as K;
(iii) The vector of covariates for the pth individual, denoted as xp;
(iv) The Fisher information matrices (FIMs) for each treatment, and the global FIM after

allocating the (p− 1)th individual, denoted asM(p−1)(ξ);

(v) The estimates of θ̂θθ
(p−1)

;

(vi) The values of ∆(p−1), δ
(p−1)
min , γ, and det[M(ξ∗, θθθ)];

(vii) The estimated error variances for all treatments, denoted as σ̂2
i , obtained after allocat-

ing the (p− 1)th individual.

This iterative process is applied to all individuals, p ∈ JPK, as they enter the trial.
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Algorithm 1 Algorithm to randomize the allocation (k = 2).

procedure RANDOMIZEALLOCATION(I, ns, k, γ, det[M(ξ∗, θθθ))
Allocate 2(K + 1) individuals to both treatments (w = 1/2)
j← 2(K + 1)

Construct θ̂θθ
(j)

, δ̂min, ∆̂
for m = 1 to ns do ▷ sampling loop

for j = 2(K + 1) + 1 to P do ▷ individuals loop
for i = 1 to k do ▷ treatments loop

Allocate j individual to treatment i
Update w(j+1), ξ

(j+1)
i from w(j) and ξ

(j)
i

Update M(ξ
(j+1)
i )

Update Em

[
(ηi(x, θθθ(j))− δ̂min)/∆̂

]
Compute v[ξ(j+1)

i ] with xj+1 using (10)
end for
π1 ← v[ξ(j+1)

1 ]/ ∑I
i=1 v[ξ(j+1)

i ]
Allocate j applying rule (12)
Update the set of responses obtained from treatment i

Update θ̂θθ
(j+1)

, s(j+1)
i , i ∈ J2K and τ̂ via LS

Update δ̂min and ∆̂
Update w(j+1) (w(j+1)

i ← ∑
j
m=1 1i,j/j)

W(m,j+1) ← w(j+1), j ∈ JIK
end for

end for
Ens [w

(j)]← ∑ns
m=1 W(m,j)/ns, j ∈ JPK

end procedure

Algorithm 2 Allocation of the pth individual.

procedure ALLOCATEINDIVIDUAL(Input: I, K, xp ,M(p−1)(ξ), σ̂2
i , ∆(p−1) , γ, δ

(p−1)
min , det[M(ξ∗ , θθθ)], Ep−1

(
ηi (x,θθθ)−δmin

∆

)
)

Construct the vector zp ≡ (1, xp)
for i in JIK do

Compute the function maxi v[ξ(p)
i ] for zp

end for
Allocate the individual to the treatment prescribed by rules (11–12)

Update w(p) ,M(p)(ξ), σ̂2
i , ∆(p) , δ

(p)
min, θ̂θθ

(p)
, Ep

(
ηi (x,θθθ)−δmin

∆

)
end procedure

To evaluate the algorithm, we consider a scenario with two treatments (I = 2), two
covariates (K = 2), ns = 2000 simulations, and P = 1200 individuals. The parameter
values used to generate the response data for the treatments are θθθ1 = (α1, β1,1, β1,2)

T =
(0.5, 0.2, 0.4) for treatment 1 and θθθ2 = (α2, β2,1, β2,2)

T = (1.0, 0.8, 1.0) for treatment 2, as
detailed in Section 4. We set τ = 1.6667, with corresponding variances of σ2

1 = 1.0 and σ2
2 =

1.6667, and examine two different values of γ, specifically γ ∈ {0.90, 0.95}. Additionally,
we use the value of (det[M(ξ∗, θθθ)])1/[2(K+1)] = 0.0968, which was found by (Duarte and
Atkinson [2], Table 1, line 7) for K = 2 and τ = 1.6667. The table gives properties of D- (and
other) optimal designs for the information component of our compound design.

In the upper panel of Figure 1, we observe the fraction w1, which represents the
proportion of individuals allocated to treatment 1. Two distinct patterns emerge:

1. Convergence below 0.5: w1 converges to a value below 0.5 for both values of γ. This
indicates that fewer individuals are allocated to the treatment with the lower average
expectation, aligning with our intended allocation strategy;

2. Overestimation of optimal allocation: The values of w1 tend to overestimate the
optimal allocation values obtained through the SDP approach, especially when con-
sidering an infinite sample size (as shown in Table 1, line 7 for I-R-optimal designs
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with γ ∈ {0.90, 0.95}). This discrepancy arises primarily due to differences in expecta-
tion construction. In the SDP formulation, the expectation is established a priori using
four points, whereas in the randomization procedure, it is adaptively constructed by
considering the continuous design space of regressors for sampling. For example,
the SDP-based optimal designs yield w1 = 0.0412 for γ = 0.95 and w1 = 0.1310 for
γ = 0.90. In contrast, the adaptive design achieves w1 = 0.1491 and w1 = 0.2163 at
convergence.

It is also observed that w1 decreases as γ increases, reflecting the increased weight
given to the regret term. As a result, more individuals are allocated to the treatment with a
higher expectation (treatment 2), despite its larger variance. The difference in allocation
between the two treatments at convergence is 0.0728. In the lower panel of Figure 1, we
examine the variance estimates s2

i for both treatments (i ∈ JIK). Both estimates converge
to the actual variance of the responses. Notably, s2

1 shows more pronounced fluctuations,
mainly because it is estimated from a smaller fraction of patients, whereas s2

2 is estimated
from the larger remaining fraction.

100 200 300 400 500 600 700 800 900 1000 1100 1200
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1
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Figure 1. Results for γ ∈ {0.90, 0.95}: (i) upper panel—w1; (ii) lower panel—s2 .

Figure 2 illustrates the progression of parameter estimates for both treatments over the
course of the numerical experiment. It is noticeable that all of them converge towards the
true values of θθθ. However, a pattern resembling that observed for the variance estimates
s2

i is also evident. Specifically, the estimation of the parameters for η1(x, θθθ) relies on
a relatively small number of individuals, causing any new data point to have a more
pronounced impact on the existing estimates. In contrast, the parameter estimates for
η2(x, θθθ) exhibit smoother trajectories due to the larger number of responses considered in
the fitting process.

Figure 3 illustrates the evolution of w1 across a range of γ values from 0.50 to 0.99.
The observed trends align with our expectations: as the weight assigned to the regret
component increases, the values of w1 decrease, and the corresponding curves become
flatter. This downward trend in w1 continues as γ increases. Notably, when γ reaches 1.0,
corresponding to an allocation based solely on regret, w1 approaches zero. Consequently,
the Fisher information matrix (FIM) becomes nearly singular, and det[M(ξ, θθθ)] approaches
zero. This suggests that the information component of the objective function in Equation (8)
becomes prone to numerical instability. This phenomenon occurs because when the FIM
approaches singularity it becomes ill-conditioned, meaning its condition number increases
significantly. This leads to numerical instability in the computation of its determinant, as
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small errors in the input data or round-off errors during calculations can result in large
inaccuracies in the output.

To address these challenges while still evaluating the algorithm’s performance at
extreme γ values, we conducted tests with γ = 0.99. The results remained consistent with
the broader trends observed for other γ values.

0 200 400 600 800 1000 1200

0
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0.6

0.8

1

1.2

Figure 2. Evolution of the model parameters for both treatments. The smoother upper trajectories are
for treatment 2, which is allocated more frequently.
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Figure 3. Evolution of w1 with γ. As γ→ 1, there is a decreasing emphasis on parameter estimation
and increasing on the allocation to the most promising treatment (the arrow represents the increase
of γ).

6. A Real Case Application

In this section, we apply the methodologies developed in Sections 4 and 5 to a real-
world case study. Specifically, we investigate the clinical trial described by Atkinson et al. [28],
which focuses on the randomization of Parkinson’s disease patients. The primary aim of
this study was to devise a randomization protocol for assigning patients to one of two
treatment groups:
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1. Treatment 1: A novel procedure exploiting digital technologies.
2. Treatment 2: A conventional treatment and monitoring approach.

To evaluate treatment efficacy, we use the quality of life (QoL) as the response variable.
This is measured by the Parkinson’s Disease Questionnaire with 8 items (PDQ-8) [29],
with QoL, denoted as pdq8, quantified as a percentage (ranging from 0% to 100%), where
higher values indicate a lower quality of life. Several prognostic factors are known to
influence QoL, with two demonstrating particularly strong correlations: (i) disease duration
and stage, represented as h&q, and measured on the Hoehn and Yahr scale [30,31]; and
(ii) psychological well-being and neuropsychiatric symptoms (e.g., depression and anxiety),
denoted as bdi, and assessed using Beck’s Depression Inventory (BDI) [32], based on
responses to a structured questionnaire.

The models used for preliminary results for both treatments follow the structure
outlined in Equation (1). The first prognostic factor, x1, corresponds to h&q, while the
second, x2, represents bdi. In the dataset used for modeling the two responses to these two
variables h&q and bdi are constrained to integer values. Specifically, h&q ranges from 1 to 5
(i.e., h&q ∈ [1, 5]), and bdi ranges from 1 to 35 (i.e., bdi ∈ [1, 35]). Consequently, the design
space considered is denoted as X ≡ [1, 5]× [1, 35], with covariate values randomly, but not
uniformly, drawn from this space.

To mimic the empirical distribution of covariates we simulated from continuous
distributions, which were then discretized. The variable h&q was generated by sampling
from a normal distribution with a mean of 2.3837 and a standard deviation of 0.2857.
Additionally, bdi was sampled from a Gamma distribution with a shape parameter of
1.7678 and a scale parameter of 6.8145. These parameters were estimated from historical
data. The model parameters for each treatment are specified as follows:

• For treatment 1: (α1, β1,1, β1,2) = (2.0941, 3.9057, 1.1089), with σ2
1 = 207.9267.

• For treatment 2: (α2, β2,1, β2,2) = (−0.1015, 4.1312, 1.5117), with σ2
2 = 107.8993.

The expected values for each model are (i) Em[η1(x, θθθ)] = 33.7714; and
(ii) Em[η2(x, θθθ)] = 39.5027. Additionally, the values for δmin, ymax

Ωm
, and ∆ are

(i) ymin
Ωm

= δmin = 5.5414; (ii) ymax
Ωm

= 73.4640; and (iii) ∆ = 67.9226.
The D-optimal design is uniformly distributed, with w1 = w2 = 0.5000. The nor-

malization factor for the D-optimal design used, det[M(ξ∗, θθθ)]1/[2(K+1)], is 0.4203. It is
important to note that given the characteristics of the response variable our objective
is to minimize the second term in Equation (10), which is equivalent to maximizing its
negative. Consequently, treatment 1 should be preferred due to its lower expectation,
despite having a higher level of uncertainty. Visual inspection of the graphical represen-
tations of both models shows that in a specific region of the design space, defined as
Ω ≡ {(h&q, bdi) ∈ [1, 5]× [1, 35] | 0.2251h&q + 0.4028bdi ≤ 2.1956}, where both bdi and
h&q are low, treatment 2 becomes the preferred choice.

The compound designs derived from the SDP formulation (9) for γ = {0.90, 0.95}
are summarized in Table 2. These results align with the key trends identified in Section 4.
Specifically, the treatment with the higher expectation is assigned to more than half of
the individuals, despite also having a larger variance. This approach is consistent with
our goal of maximizing the normalized regret. Notably, treatment 1 emerges as the most
favorable option across almost the entire design domain. Moreover, as the weight of the
regret component increases, the proportion of individuals allocated to treatment 1 also rises.

Table 2. I-R-optimal designs for model (1) considering the response is pdq8 model (w2 = 1− w1).

σ2
1 σ2

2

I-R-Opt. Design † I-R-Opt. Design ‡

w1 Opt w1 Opt

207.9267 107.8993 0.8120 −0.3711 0.6769 −0.3052
† γ = 0.95; ‡ γ = 0.90.
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We now apply the treatment allocation algorithm discussed in Section 5 using the I-R
rule. For this simulation, we set ns = 2000 and P = 1200 (i.e., 1200 individuals). The values
for h&q and bdi are generated randomly from a uniform distribution over the ranges [1, 5]
and [1, 35], respectively.

The upper panel of Figure 4 presents the weights w1 for the two values of γ. These
weights closely match the results obtained using SDP, as shown in Table 2. The difference
in w1 at convergence between γ = 0.90 and γ = 0.95 is approximately 0.0699. As expected,
the weight assigned to treatment 1, which has the higher expectation, exceeds 0.5 in both
cases, reaching around 0.80. This indicates that the allocation favors the treatment with the
higher expectation.

The lower panel of Figure 4 displays the estimated variances of the response models
for both treatment groups. The variances converge to a stable value, consistent with
the test case. Notably, the group with the larger weight shows less variability in its
variance estimate.
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Figure 4. Results for γ ∈ {0.90, 0.95}: (i) upper panel—w1; (ii) lower panel—s2. For both values of γ

treatment 1 is allocated more frequently, and consequently, has a more precise estimate of variance.

7. Conclusions

This paper demonstrates the application of compound design criteria for patient allo-
cation in personalized medicine. Building upon the framework proposed in Duarte and
Atkinson [2], which focused on patient allocation without considering ethical aspects, this
study integrates ethical considerations into the allocation process. Specifically, the aim is to
balance the acquisition of information for parametric response models with ethical consid-
erations to ensure that each patient is assigned to the most effective available treatment.

The proposed approach is designed for response models that are linearly dependent on
prognostic factors and characterized by continuous responses with distinct noise variances.
A concave compound design criterion is developed that combines D-optimality with regret
minimization, as detailed in Section 3. This dual criterion reflects the necessity of both
maximizing the precision of parameter estimates and minimizing patient harm or regret,
emphasizing the importance of fairness in clinical decision making, considering a weighted
sum objective function.

To compute continuous optimal designs for the I-R criterion within a discrete design
space, semidefinite programming is considered, as outlined in Section 4. Previous work
in Duarte and Atkinson [2] addressed the numerical computation of designs maximizing
information about parameters in a similar setup, and this paper builds upon those formula-
tions. This work assumes that the variances of the treatments and model parameters are
known, facilitating the construction of the expectation of each treatment response.
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In scenarios where information about variances and model parameters is unavailable,
a sequential adaptive optimal design algorithm is presented in Section 5. This algorithm
iteratively updates estimates of parameters and variances as responses are collected. A
systematic method for computing sequential adaptive optimal allocation schemes is pro-
posed, and its application is illustrated with a concrete example. Although the approach
aligns with reinforcement learning algorithms described in studies such as Zhao et al. [33]
and Matsuura et al. [34], it differs by utilizing a known parametric structure a priori rather
than a model-free representation.

The proposed computational methods are evaluated through two distinct scenar-
ios: first, using a simplified illustrative example; and second, applying them to a real-
world problem involving Parkinson’s disease patients. The treatments considered are
(i) treatment 1, which employs a cutting-edge digital technology-centered procedure; and
(ii) treatment 2, encompassing a traditional treatment and monitoring protocol.

Beyond computational efficiency, the proposed methods thoughtfully integrate ethical
considerations into traditionally information-based designs in personalized medicine. This
helps mitigate the ethical dilemma of balancing data collection in experimental settings
with ensuring patients receive the best possible care. By incorporating regret minimization,
the approach ensures that even patients not initially assigned to the optimal treatment
experience reduced harm during the early stages of the experiment.

Moreover, this approach could be extended to non-medical domains such as marketing,
economics, or policy-making, where optimal allocation strategies must balance information
acquisition with fairness or ethical considerations. The framework’s flexibility also opens
up the potential for application to treatments with binary or categorical outcomes, further
broadening its relevance as well as models of linear and nonlinear classes.

The computational methods proposed are robust and versatile, offering practical
insights into the allocation process. Future research could explore alternative randomization
techniques, as discussed in Atkinson [25], which address trade-offs between efficiency
losses due to randomization and bias reduction. Additionally, developing theoretical
results to support the convergence of these methods would be beneficial. The approach
introduced could also be adapted to models beyond the linear regression framework
considered here, with careful attention to selecting appropriate regret measures and scaling
for these alternative models.

Finally, while this study centers on known model parameters and variances, exploring
scenarios with more complex model structures or unknown variance assumptions remains
a promising direction. Introducing Bayesian methods or robust optimization techniques
could offer a means of addressing the uncertainties inherent in patient responses or treat-
ment variabilities. In particular, incorporating patient heterogeneity more explicitly into
the model could further enhance the framework’s applicability to real-world clinical trials
where patient responses may not follow identical parametric structures. The inclusion
of such considerations could lead to even more refined and ethically sound allocation
strategies, reinforcing the value of this approach in personalized medicine.
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Nomenclature

i Counter for treatments
I Number of treatments
j Counter for factor levels
J Number of factor levels
k Counter for covariates
K Number of covariates
imax Treatment with maximum response
v(•) Compound criterion
x Vector of covariates
X Design space
w Vector of treatment weights
z Vector of covariates including 1
Em Expectation based on m-individuals
M(•) Global FIM
M(•) Treatment FIM
θθθ Parameter vector
Θ Parameter domain
∆ Response range
δmin Minimum (reference) response
Γns Non-standardized regret function
Γ Standardized regret function
γ Weight relating regret and information
Ψ Standardized D-optimality criterion

Appendix A. Formulations to Determine the Bounds of Response Expectation

Here, we set the formulations used to estimate the bounds of the expectation for
response to treatment. First, the upper bound problem:

δmax = max
XXX,δδδ,ζζζ,x

n

∑
i=1

ζi (A1a)

s.t µi(x) = δi, i ∈ JnK (A1b)

δi ≤ ζi (A1c)

ζi ≤ wi Mbig (A1d)
n

∑
i=1

ωi = 1, XXX ∈ {0, 1}, x ∈ Ω, (A1e)

And now, the lower bound problem:

δmin = min
XXX,δδδ,ζζζ,x

n

∑
i=1

ζi (A2a)

s.t µi(x) = δi, i ∈ JnK (A2b)

δi ≥ ζi (A2c)

ζi ≤ wi Mbig (A2d)
n

∑
i=1

ωi = 1, XXX ∈ {0, 1}, x ∈ Ω. (A2e)

Appendix B. Construction of the Regret Based on Previous Responses

Here, we construct the metric used to measure the regret based on the expectation of
the responses available.
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1
m

I

∑
i=1

m

∑
j=1

ηi(xj, θθθ)− δmin

∆
=

1
m

I

∑
i=1

mi

∑
j=1

ηi(xj, θθθ)− δmin

∆

=
1
m

I

∑
i=1

mi

mi

∑
j=1

ηi(xj, θθθ)− δmin

mi ∆

=
1
m

I

∑
i=1

miEm

(
ηi(x, θθθ)− δmin

∆

)

=
I

∑
i=1

mi
m

Em

(
ηi(x, θθθ)− δmin

∆

)

=
I

∑
i=1

wi Em

(
ηi(x, θθθ)− δmin

∆

)
(A3)

Note that the first equality results from assuming that each patient is allocated to only
one treatment.
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