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The Katz centrality of a node in a complex network is a measure of the node’s
importance as far as the flow of information across the network is concerned. For
ensembles of locally tree-like undirected random graphs, this observable is a random
variable. Its full probability distribution is of interest but difficult to handle analytically
because of its “global” character and its definition in terms of a matrix inverse.
Leveraging a fast Gaussian Belief Propagation-Cavity algorithm to solve linear systems
on tree-like structures, we show that i) the Katz centrality of a single instance can be
computed recursively in a very fast way, and ii) the probabilityP(K ) that a random node
in the ensemble of undirected random graphs has centrality K satisfies a set of recursive
distributional equations, which can be analytically characterized and efficiently solved
using a population dynamics algorithm. We test our solution on ensembles of Erdős-
Rényi and Scale Free networks in the locally tree-like regime, with excellent agreement.
The analytical distribution of centrality for the configuration model conditioned on
the degree of each node can be employed as a benchmark to identify nodes of empirical
networks with over- and underexpressed centrality relative to a null baseline. We also
provide an approximate formula based on a rank-1 projection that works well if the
network is not too sparse, and we argue that an extension of our method could be
efficiently extended to tackle analytical distributions of other centrality measures such
as PageRank for directed networks in a transparent and user-friendly way.

networks | cavity method | centrality

1. Introduction

The study of complex systems and the applications of the “science of complexity” to
the most diverse areas of research have witnessed spectacular successes in recent years.
Complex systems are quintessentially defined as being composed of many components
that are interacting locally, exhibiting emerging static and dynamical properties, and
involving a certain degree of randomness. However, not every elementary constituent
plays the same role in the structure or functionality of a system, with some constituents
being more critical and “central” to ensure stability, resilience, or other desired global
properties of the architecture (1–14). Identifying the most important nodes in a network
architecture is indeed of paramount importance to ensure the integrity and functionality
of transportation networks and critical infrastructures (15–19), as well as to allow users
to retrieve an accurate list of webpages corresponding to an Internet query (20, 21), or
identify the most suitable receivers of a vaccine to mitigate a disease outbreak (22–24).
Our ability to exploit the advantages of living in a modern and interconnected society
to the full heavily relies on preserving the integrity of crucial infrastructures such as the
Internet and power grids (1, 25–29).

Several “centrality” measures have been developed to classify and rank nodes of a
network, which focus on different structural characteristics: The degree centrality simply
counts how many neighbors each node has and ranks nodes according to how locally
connected they are. More global centrality measures include the eigenvector centrality
(30), the Katz centrality mainly considered here (31), and Google PageRank (20, 21).
Other definitions take into account the relative position of each node in the network
(for instance, closeness and betweenness (32, 33), communicability (34) and DomiRank
(35)), as well as the role played by a node in a dynamic process on networks (for instance,
current-flow (36), entanglement (37), and random-walk (38) centralities)—see ref. 39
and references therein for a taxonomy of centrality measures on networks and refs.
40–42 for comprehensive reviews.

When the underlying structure is a single instance or an ensemble of random networks,
generated according to probabilistic rules, each of the above centrality measures becomes

Significance

Centrality measures allow to
identify important nodes in
networked systems. An open
question in network theory is the
empirical observation that a
node’s centrality—whose
computation requires knowledge
of the entire network—strongly
correlates with its degree (the
number of its neighbors), a local
observable. We address this
puzzle providing an analytical
derivation of the distribution of
Katz centralities in random
networks. Our results explain the
connection between degree and
centrality: For sparse networks,
the distribution of centralities is a
multimodal distribution where
different peaks correspond to
different degrees. This finding
suggests that the functionality
of empirical networks may be
related to nodes with over- or
underexpressed centrality. Our
results provide a methodology for
the efficient identification of such
nodes.

Author contributions: S. Bartolucci, F. Caccioli, F. Caravelli,
and P. Vivo designed research; performed research;
contributed new analytic tools; analyzed data; and wrote
the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).
1To whom correspondence may be addressed. Email:
pierpaolo.vivo@kcl.ac.uk.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2403682121/-/DCSupplemental.

Published September 25, 2024.

PNAS 2024 Vol. 121 No. 40 e2403682121 https://doi.org/10.1073/pnas.2403682121 1 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
5.

21
4.

18
4.

21
2 

on
 O

ct
ob

er
 8

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
95

.2
14

.1
84

.2
12

.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2403682121&domain=pdf&date_stamp=2024-09-25
https://orcid.org/0000-0003-1127-5600
https://orcid.org/0000-0001-7964-3030
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:pierpaolo.vivo@kcl.ac.uk
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2403682121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2403682121/-/DCSupplemental


a random variable, whose precise statistics are of general interest.
Indeed, distributions of observables on random graphs constitute
an important benchmark, as “null models” constructed out of
random interactions can then be compared with empirical data
to quantify the effect of structure and “information” encoded in
the data that cannot be explained by pure noise.

Perhaps surprisingly, though, the available analytical results for
the full distribution of centrality measures on random networks
are particularly scarce. This is probably due to the “global”
character of most centrality measures, which require complete
information about all other nodes to be characterized exactly.

In the recent mathematical literature, most of the existing
works concern the distribution of PageRank on directed random
graphs (43–51), in particular, aimed at proving rigorously the
empirically observed “power-law hypothesis:” In a Scale Free
network, the PageRank scores follow a power law with the
same exponent as the (in-)degrees (52–56). In this context, the
distribution of PageRank was found to obey a distributional
fixed-point equation, which seemingly facilitated analytical
considerations. However, the derivations are not particularly
transparent or illuminating—at least to our eyes—and do not
allow easy access to an operational scheme to control and solve
the distributional equations. Upper bounds and approximations
to the PageRank distribution are provided in ref. 57 for d -regular
directed acyclic random networks generated by the configuration
model. The distribution of betweenness centrality was considered
for exponential random graph models in ref. 58 and for random
trees and other subcritical graph families in ref. 59. Exact
calculations of centrality vectors for instances of networks with
special structures are also available (60). For undirected random
graphs, bounds and convergence of the PageRank distribution
have been obtained in ref. 61, while numerical explorations of
distributions of various centrality measures (including PageRank)
as well as analytical results for networks with preferential
attachment are presented in ref. 62. For an empirical study of the
distribution of centralities in urban settings, see refs. 63 and 64.

In this paper, we focus on the Katz centrality of undirected
random networks withN nodes that are locally tree-like, meaning
that short loops are rare and the typical size of a loop isO(logN ).
However, our techniques work also in the case of other similarly
constructed centrality measures (65). We aim to characterize
analytically the full distribution of the Katz centrality of nodes i)
within a single instance withN nodes, and ii) across the entire en-
semble of large random graphs with fixed mean degree c forN →
∞, focusing on Erdős-Rényi and Scale Free graphs as prominent
examples*—although the theory works as well for any configu-
ration model characterized by the degree distribution p(k).

Leveraging a fast recursive scheme based on Cavity/Gaussian
Belief Propagation (GaBP) to solve linear systems on a tree-like
structure (67–69), we first show that the Katz centralities of all
nodes of a single instance solve a system of recursive equations
for cavity fields, which can be solved very efficiently. Next, we
exploit this result to claim that the corresponding distribution
of Katz centralities across the entire ensemble can be determined
as the solution of a set of recursive distributional equations—
essentially, integral equations for probability density functions
(pdf). Not only are these equations written out explicitly, but an
efficient numerical scheme (Population Dynamics) is proposed
to solve them numerically, the only necessary ingredient being
the degree distribution p(k) of the network of interest. The
numerical solution of the population dynamics scheme is in

*While power-law networks with exponent less than 3 have finite loops (66), the tree-like
approximation appears to work well also on these structures (6).

excellent agreement with numerical simulations of large random
networks with fixed average connectivity.

The progress we made in the analytical computation of the
probability density of the Katz centrality across nodes having
the same degree in the configuration model (see Eq. 38 below)
makes it possible to validate the functional importance of nodes
in an empirical network against a “null” model where only
the information about node degrees is retained. We test this
statistical validation scheme on a dataset comprising airline
routes connecting 3,425 world airports (70) retrieved from
the OpenFlights database, as well as on a Facebook friendship
interaction network (71), and a citation network (72) (SI
Appendix). In all cases, we are able to identify three classes of
nodes: those whose centrality is over- or underexpressed relative
to the value one might have expected for nodes of the same
degree in the “null” model and those whose centrality is instead
compatible with their “null” model counterparts.

We also propose an approximate scheme—based on a rank-1
projection of the adjacency matrix proposed in ref. 65 and suc-
cessfully used in refs. 73 and 74—to reproduce the distribution
of Katz centrality for not too sparse graphs, which also works
very well. All our results confirm and put on firmer analytical
ground the known observations that centrality measures are
often correlated with each other (75–78), as we show that the
distribution of Katz centrality can be naturally decomposed into
contributions coming from nodes of given degree (see Eq. 38
below) yielding a strong correlation between Katz and degree
centrality of each node (see Figs. 2 and 3 below).

We will also argue that an extension of our framework is likely
to be useful to compute analytically the full distribution of other
centrality measures (for example, PageRank in directed graphs)
in a transparent and easy-to-interpret way.

The plan of the paper is as follows. In Section 2, we provide
the definition and interpretation of Katz centrality, and we show
that the centralities of nodes can be computed as the solution of
a linear system. In Section 3, we provide a pedagogical derivation
of the cavity/BP recursive equations that allow us to solve a sparse
linear system of equations on a tree-like structure in a fast and
efficient way. In Section 4, we leverage this result to derive a set
of recursive equations to compute the Katz centrality of all nodes
of a single instance of a network in a fast and distributed way. In
Section 5, we exploit these results to show that the full probability
distribution P(K ) of observing a node with Katz centrality K
in an ensemble of large random networks is determined as the
solution of a pair of recursive distributional equations, which
can be efficiently solved using a Population Dynamics algorithm
presented in Section 6 along with the result of numerical
simulations. In Section 7, we present the results on empirical
validation of the importance of nodes in the airport network
dataset against a “null” benchmark where only the information
about the degree sequence is retained. In Section 8, we construct
an approximate scheme—based on a rank-1 projection of the
adjacency matrix—to write P(K ) in a more explicit form, which
works well in certain conditions. Finally, in Section 9, we offer
some concluding remarks and an outlook for future research.

2. Katz Centrality

In graph theory, the Katz centrality of a node was first introduced
by Leo Katz in 1953 (31) to measure the relative degree of
influence of an agent within a social network by taking into
account the total number of walks that connect the agent with
all the others. Paths connecting an agent with a “distant” node
are however penalized by an attenuation factor �.

2 of 12 https://doi.org/10.1073/pnas.2403682121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
5.

21
4.

18
4.

21
2 

on
 O

ct
ob

er
 8

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
95

.2
14

.1
84

.2
12

.

https://openflights.org
https://www.pnas.org/lookup/doi/10.1073/pnas.2403682121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2403682121#supplementary-materials


More formally, letG be theN×N symmetric adjacency matrix
of an undirected network formed by N nodes, with Gij = Gji =
1 if node i is connected to node j, and 0 otherwise. The powers of
G indicate the presence (or absence) of links between two nodes
through intermediaries. For instance, the element (Gk)ij counts
the number of paths of length k between nodes i and j.

Given a parameter � ∈ (0, 1), Ki denotes the Katz centrality
of node i if

Ki =
∞∑
k=1

N∑
j=1

�k(Gk)ji . [1]

The interpretation is straightforward: The centrality of a node is
a weighted sum of paths of all lengths reaching that node from
all other nodes, where longer paths are weighted less—see ref. 79
for proposals on how to optimally select the parameter �.

The value of the attenuation factor � has to be chosen such
that

0 < � <
1

�max
, [2]

where �max is the largest eigenvalue of G, for the infinite sum in
Eq. 1 to converge. Interestingly, it follows from the definition in
Eq. 1 that

lim
�→0+

Ki

�
= ki , [3]

where ki =
∑

j Gji is the degree of node i, i.e. the number of its
neighbors. Conversely,

lim
�→(1/�max)−

(1− ��max)Ki = �Ei , [4]

where Ei is the eigenvector centrality of node i, i.e. the i-th
component of the vector E that solves the eigenvector equation
GE = �maxE , and � is a numerical constant; see, e.g., ref. 80.

The infinite geometric sum in Eq. 1 converges to

K = (1− �G)−11︸ ︷︷ ︸
K s

−1 , [5]

where 1 is the N ×N identity matrix, and 1 is a N -dimensional
column vector. Here, K is the vector collecting the N centralities
of all nodes. From Eq. 5 and the fact that �G is substochastic, it
follows† that Ki ≥ 0.

Rearranging Eq. 5 slightly, we can rewrite the vector of
centralities as the solution of the linear system of equations

(1− �G)K s = 1 , [6]

where K s = K + 1.
In the following section, we review the algorithm to solve

efficiently a linear system of equations on a sparse structure using
a recursive method (GaBP/cavity) proposed in refs. 67–69. We
initially follow their idea of reframing the calculation of single-
instance centrality as the solution of a linear system on a sparse
structure, as they first suggested in the case of an extension of
Katz centrality to weighted networks that they named spatial
ranking (69, 82). Standard iterative schemes for linear systems
such as Gauss-Seidel, Jacobi, and conjugate gradient (83) are
routinely used to numerically compute the centrality values on
a single instance (84), as they are more stable and faster than
matrix inversion methods. The GaBP/Cavity scheme has however

†We have (Ks)i ≥ 0 from ref. 81. Then, (Ks)i = 1 + �(GKs)i from Eq. 6. Since G has
nonnegative entries and � is nonnegative, the claim easily follows.

two main advantages: i) there is some numerical evidence that
the GaBP/cavity scheme is superior to standard recursive linear
system methods in terms of performances and stability on sparse
structures (85, 86), and ii) contrary to classical recursive methods,
the GaBP/Cavity scheme provides explicit equations connecting
single-instance node and edge fields, which can be easily
translated into analytical distributional equations at the ensemble
level. We start in the next section by presenting the general
GaBP/cavity theory for the solution of sparse linear systems.

3. Solution of a Sparse Linear System with the
Cavity Method

Consider a linear system

Ax = b, [7]

with A square, symmetric and invertible. The fundamental
observation is that the solution vector

x? = A−1b, [8]

is identical to the vector of averages

x∗i = �i =
∫

dxi xipi(xi) , [9]

with
pi(xi) =

∫ ∏
j 6=i

dxj p(x), [10]

and p(x) given by the following multivariate Gaussian

p(x) =
1
Z

exp
[
−

1
2
xTAx + bT x

]
. [11]

This follows from

(x − x?)TA(x − x?) = xTAx − 2bT x + bTA−1b , [12]

which allows us to write the multivariate Gaussian with mean
vector x? in the form of Eq. 11

p(x) =
1
Z ′

exp
[
−

1
2
(x − x?)TA(x − x?)

]
=

1
Z

exp
[
−

1
2
xTAx + bT x

]
, [13]

with Z = Z ′ exp[(1/2)bTA−1b].
Writing the solution in the form of Eq. 9 transfers the problem

from the linear algebra domain to the probabilistic domain,
allowing us to tackle it with a more powerful and broader set
of tools.

From now on, we further assume that the matrix A of
coefficients of the linear system defines a locally tree-like graph
structure, where the unknowns xi live on the N nodes of a graph,
and the coefficients Aij 6= 0 stand for the weight of the edge
connecting node i and j.

If the graph is a tree—but the treatment below works very
well for tree-like structures—we can appeal to the GaBP scheme
(67–69)—a particular incarnation of the cavity method (87–89)
from the theory of disordered systems, and of message passing
algorithms (90–92)—to find efficient and fast recursive equations
for the averages �i we are after. Among the many virtues of the

PNAS 2024 Vol. 121 No. 40 e2403682121 https://doi.org/10.1073/pnas.2403682121 3 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
5.

21
4.

18
4.

21
2 

on
 O

ct
ob

er
 8

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
95

.2
14

.1
84

.2
12

.



scheme is the fact that—when the algorithm converges—it is
guaranteed to converge to the true averages (i.e. the inference is
guaranteed to be exact) (67, 69). In our case, the convergence of
the algorithm follows from the condition of Eq. 2, which defines
a walk-summable problem (see ref. 93, Proposition 2).

Let us start by rewriting the marginal pi(xi) as follows

pi(xi) =
1
Zi

∫ ∏
j 6=i

dxj exp

−1
2

∑
i

xi
∑
j∈∂i

Aijxj +
∑
k

bkxk


=

1
Zi
e−

1
2Aiix

2
i +bixi

∫ ∏
j∈∂i

dxj exp

−xi∑
j∈∂i

Aijxj


× p(i)(x∂i) , [14]

where ∂i denotes the set of nodes j connected to i (Aij 6= 0),
while p(i)(x∂i) denotes the cavity distribution, namely the joint
distribution of remaining variables (so, from the j-th variable
outward) after the node i has been removed from the picture.

Now, in a tree structure, the nodes j in the neighborhood of
i are only connected to each other via the node i (see sketch
in Fig. 1). When the node i is removed, the variables defined
on these nodes become therefore independent, i.e. the cavity
distribution factorizes over the nodes in the neighborhood of i

p(i)(x∂i) =
∏
j∈∂i

p(i)j (xj) . [15]

Therefore

pi(xi) =
1
Zi
e−

1
2Aiix

2
i +bixi

×

∏
j∈∂i

∫
dxj exp

[
−xiAijxj

]
p(i)j (xj) . [16]

We can repeat the reasoning for the cavity distribution itself

p(i)j (xj) =
1

Z (i)
j

e−
1
2Ajjx

2
j +bjxj

×

∏
`∈∂ j\i

∫
dx` exp

[
−xjAj`x`

]
p(j)` (x`) , [17]

where ∂ j \ i denotes the set of neighbors of node j excluding the
node i. Note that Eq. 17 is now a closed recursion for the cavity

Fig. 1. Sketch of the tree structure with the node i on top, the neighborhood
∂ i in dashed blue, and the further-down neighborhood ∂ j \ i in dashed green
(Left). On the Right, schematic representation of the removal of node i, which
leaves nodes j1, j2, and j3 independent.

distributions p(i)j , whereas Eq. 16 is not a closed recursion for
the marginal pi(xi). Knowing the cavity marginals (solutions of
Eq. 17), though, it is possible to compute the marginals using
Eq. 16, as we show below.

We make the (normalized) Gaussian ansatz for the cavity
distribution

p(i)j (x) =
1

Z (i)
j

exp

− (x − �(i)
j )2

2V (i)
j

 , [18]

with cavity mean �(i)
j and cavity variance V (i)

j . With this choice,
the integral on the r.h.s. of Eq. 17 is Gaussian, which in turn will
result in a Gaussian dependence on xj. Inserting this ansatz on
the r.h.s. of Eq. 17, we compute the resulting Gaussian integral
using the formula

〈e−Mx
〉 = e

M2V
2 −M� , [19]

where 〈·〉 stands for averaging over a normalized Gaussian
N (�, V ) with mean � and variance V . Specializing to

M = xjAj`, [20]

from Eq. 17, we see that the exponent in the r.h.s. becomes

−
1
2
x2
j

Ajj −
∑

`∈∂ j\i

V (j)
` A2

j`

+ xj

bj −
∑

`∈∂ j\i

Aj`�
(j)
`

 .

[21]
Furthermore, the average and variance of a normalized

Gaussian of the form appearing in the r.h.s. of Eq. 17, namely

p(x) =
1
Z
e−

1
2Cx

2+Dx , [22]

are respectively

V =
1
C

, [23]

� =
D
C

= DV . [24]

Using the expressions above, we get—equating mean and
variance—from Eq. 17 and using the ansatz Eq. 18

V (i)
j =

1

Ajj −
∑

`∈∂ j\i V
(j)
` A2

j`

, [25]

�(i)
j = V (i)

j

bj −
∑

`∈∂ j\i

Aj`�
(j)
`

 . [26]

Similarly, we make the (normalized) Gaussian ansatz for the
marginal distribution

pj(x) =
1
Zj

exp

(
−

(x − �j)2

2Vj

)
, [27]

with mean�j and varianceVj. Inserting again the Gaussian ansatz
of Eq. 18 for the cavity marginal in the r.h.s. of Eq. 16, and
comparing with the ansatz Eq. 27 for the l.h.s., we obtain the
following equations
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Vj =
1

Ajj −
∑

`∈∂ j V
(j)
` A2

j`

, [28]

�j = Vj

bj −
∑
`∈∂ j

Aj`�
(j)
`

 . [29]

Solving the self-consistency Eqs. 25 and 26 on the cavity
graph and inserting the results into Eqs. 28 and 29 provides the
solution x?

i = �i of the linear system Eq. 7. The equations above
are identical to those provided in ref. 68, after some rewriting
and rearrangements. In the next section, we are going to specialize
these results to the case of the linear system Eq. 6 defining the
shifted Katz centrality on a single network instance.

4. Katz Centrality on Single Instance of a
Random Graph

To apply the formalism developed in the previous section to the
Katz centrality, we may define from Eq. 6 the matrix A as

Aj` = �j` − �Gj` =
{
−� if j 6= `

1 if j = `
, [30]

since we assume that a link exists between node j and `, and that
there are no self-loops. Also, bj = 1 for all j.

The self-consistent cavity equations thus become

V (i)
j =

1

1− �2∑
`∈∂ j\i V

(j)
`

, [31]

�(i)
j = V (i)

j

1 + �
∑

`∈∂ j\i

�(j)
`

 , [32]

Vj =
1

1− �2∑
`∈∂ j V

(j)
`

, [33]

�j = Vj

1 + �
∑
`∈∂ j

�(j)
`

 , [34]

from which the Katz centrality Ki of node i can be efficiently
determined from Eq. 6 as

Ki = �i − 1 . [35]

Fig. 2. Probability density function P(K) of the Katz centrality with � = 1/50
computed over a single instance of an Erdős-Rényi graph of size N = 5,000
with average degree c = 4 by direct matrix inversion from Eq. 5 (pink circles).
Blue dot-dashed line: GaBP/cavity solution of the linear system as given in
Eqs. 31–35. The coordinates (Kj , kj) of each green square j = 1, . . . , N provide
the degree kj of node j against its centrality Kj .

Fig. 3. Probability density function P(K) of the Katz centrality with � = 1/50
computed over a single instance of an Erdős-Rényi graph of size N = 5,000
with average degree c = 20 by direct matrix inversion from Eq. 5 (pink circles).
Blue dot-dashed line: GaBP/cavity solution of the linear system as given in Eqs.
31–35. The coordinates (Kj , kj/m) of each green square j = 1, . . . , N provide
the degree kj of node j—rescaled by a factor m = 10.81 to make it visible on
the same scale—against its centrality Kj .

In Fig. 2, we plot the Katz centrality distribution for a single
instance of an Erdős-Rényi graph of size N = 5,000 with
average degree c = 4, along with the GaBP/Cavity solution
of the recursions above, as well as the degree sequence staircase
(green squares). From the plot, one easily infers that the centrality
distribution is naturally decomposed into contributions (peaks)
coming from nodes of different degrees. Increasing the average
connectivity c, the peaks would gradually merge, as more and
more nodes of different degrees happen to have the same
centrality (see Fig. 3 for c = 20).

5. Probability P(K) Over the Ensemble

We are now interested in leveraging the results of the previous
section—valid for a single instance of a random network—to
compute the probability density function P(K ) of finding a node
i with centrality P(K ) = Prob[Ki = K ] in an ensemble of large
undirected random graphs. Going from single-instance cavity
results to distributions over an ensemble is a quite standard
procedure (see ref. 94 for a review), which we report here for
completeness.

First, one has to focus on the joint probability density function
�(�, V ) of observing a cavity mean�(i)

j = � and a cavity variance

V (i)
j = V in the ensemble. To do so, one observes that the self-

consistency equations for the cavity variance and mean (Eqs.
31 and 32) refer to the links of the underlying graph. In an
infinitely large network, links can be distinguished from one
another by the degree of the node they are pointing to. Therefore,
considering an edge (i, j) pointing to a node j of degree k, the
value (�, V ) of the pair formed by the cavity mean �(i)

j and the

cavity variance V (i)
j —both living on this edge—is determined by

the set {�`, V`}k−1 of the k−1 values of the pair (�(j)
` , V (j)

` ) living
on each of the edges connecting j with its neighbors ` ∈ ∂ j\i.
In an infinite system, these values can be regarded as k − 1
independent realizations of the pair of random variables of type
�(j)

` and V (j)
` , each drawn from the same joint pdf �(�, V ).

The joint pdf �(�, V ) is then obtained by averaging the
contributions coming from every link w.r.t. the probability k

c p(k)
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of having a link pointing to a node of degree k,‡ with p(k)
being the degree distribution of the network, and c ∼ O(1) the
average connectivity. This reasoning leads to the self-consistency
equation

�(�, V ) =
∞∑
k=1

p(k)
k
c

∫
{d�}k−1�

(
� − V

(
1 + �

k−1∑
`=1

�`

))

× �

(
V −

1

1− �2∑k−1
`=1 V`

)
, [36]

where {d�}k−1 =
∏k−1

`=1 d�`dV`�(�`, V`). The recursive dis-
tributional Eq. 36 can be efficiently solved via a population
dynamics algorithm (Section 6). Note that the integral equations
above can now be considered and solved independently of
the network problem that originated them, since no other
information about the topology of such network enters the
picture apart from the degree distribution p(k), which makes
this approach so general and powerful.

The same reasoning can be applied to find the joint pdf
�̃(�̃, Ṽ ) of the pair (�i, Vi) satisfying Eqs. 33 and 34. From
there, one notices that the �i and Vi are variables related to
nodes, rather than edges. Since in the infinite size limit the nodes
can be distinguished from one another by their degree, the joint
pdf �̃(�̃, Ṽ ) can be written in terms of the solution �(�, V ) of
Eq. 36 as

�̃(�̃, Ṽ ) =
∞∑
k=0

p(k)
∫
{d�}k�

(
�̃ − Ṽ

(
1 + �

k∑
`=1

�`

))

× �

(
Ṽ −

1

1− �2∑k
`=1 V`

)
, [37]

where p(k) is again the degree distribution. Note that the r.h.s.
of Eq. 37 is a sum of k-fold integrals involving � and not �̃,
because �i and Vi are defined in terms of the “cavity” pair (Eqs.
33 and 34). Also, the integral relations above evidently preserve
the normalization of the joint pdfs � and �̃.

After solving Eq. 37 for the joint pdf �̃(�̃, Ṽ ) of the variables
of type �i and Vi, we appeal to Eq. 35 and the definition of the
shifted Katz centrality as a linear system in Eq. 6 to write the pdf
P(Ks) as

P(Ks) =
∫

dṼ �̃(Ks, Ṽ ) =
∞∑
k=0

p(k)P(Ks|k) , [38]

with the pdf P(Ks|k) of a node having shifted centrality Ks given
that it has degree k given by

P(Ks|k)

=
∫
{d�}k�

(
Ks −

(
1

1− �2∑k
`=1 V`

)(
1 + �

k∑
`=1

�`

))
.

[39]

‡The theory developed here for configuration model ensembles with no degree–degree
correlation can be extended, allowing for a more general probability P(k′|k) that a node
of degree k is connected to a node of degree k′ . In this case, the distribution �(�, V)
needs to be made k-dependent, �k(�, V) (103). The case of no degree–degree correlation
is recovered by noting that in this case P(k′|k) is independent of k. Therefore, P(k′|k)
reduces to the probability that an edge points to a node of degree k′ , which can be
defined as the ratio between the number of edges pointing to nodes of degree k′ , k′p(k′),
and the number of edges pointing to nodes of any degree, i.e. the sum

∑
k′ k′p(k′) = c.

Fig. 4. Conditional pdf P(Ks|k) of the shifted Katz centrality Ks = K + 1
of nodes of degree k for an ensemble of graphs with Poissonian degree
distribution with mean c = 35, � = 1/40 and population size NP = 105 (Eq.
38). The curves are obtained via Monte Carlo sampling of the integral in Eq. 39
after the population has reached equilibrium. We display curves for degree
up to k = 14.

The integral in Eq. 39 can be estimated via Monte Carlo
sampling from the equilibrium distribution �(�, V ) in Eq. 36.
Written as in Eq. 38, the pdf of the Katz centrality is naturally
expressed as a superposition of contributions, each coming
from nodes of degree k (see Fig. 4 for an ensemble of graphs
with Poissonian degree distribution with mean c = 35). For
sufficiently low average connectivity c, the individual degree-k
contributions are clearly visible in the form of distinct peaks.
Empirical conditional probability distributions for centrality
measures such as the betweenness have been previously analyzed
to characterize correlations of such metrics with the degree as well
as their expected behavior compared to random models (95). In
Fig. 5, we plot the variance �2

k of the conditional distribution
P(Ks|k) of the shifted Katz centrality as a function of the node’s

Fig. 5. Variance �2
k of the Katz centrality distribution (� = 0.01) conditioned

on nodes of degree k for ensembles of graphs with Poissonian degree
distribution with mean c = 10 (blue circles), c = 35 (red circles), and c = 50
(green circles). The variance is computed averaging K2

s over the conditional
distribution in Eq. 39, which is in turn computed via Monte Carlo sampling
from the equilibrium distribution � [solution of Eq. 36 with Poissonian p(k)].
The corresponding solid lines represent an approximate but explicit formula
for this linear trend, which we derive in SI Appendix after postulating a suitable
simple ansatz for the solution � of Eq. 36, and a continuum approximation
for the degree k. The approximate formula captures the numerical trend
reasonably well, even for values of k well beyond the expected range of
validity, with noticeable discrepancies only for very large k compared to the
mean degree c.
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Fig. 6. Probability density function P(Ks) of the shifted Katz centrality with
� = 1/40 computed over an ensemble of 1,000 Erdős-Rényi graphs of size
N = 1,000 with average degree c = 4 by direct matrix inversion from Eq. 5
(red circles). Blue solid line: distribution of the population M̃ after reaching
equilibrium, with NP = 105 population members and 100 updating sweeps
(see Section 6 for details).

degree for a Poissonian ensemble of graphs with mean degree
c = 10 (blue), c = 35 (red), and c = 50 (green) together with
an analytic approximate formula (solid lines) valid in principle
for large c, small �, and k = c ± O(

√
c) (SI Appendix). For

the range of parameters considered in the figure, the analytic
approximation—obtained postulating a suitable ansatz for the
function �(�, V ) in Eq. 36 and a continuum approximation for
the degree k—captures the essential trend of the variance quite
accurately and even beyond the a priori expected range of validity
for k. We observe that the variance is increasing linearly with the
node’s degree, with a steeper slope for larger average connectivity
c, a feature that is perfectly captured by the approximate analytic
formula (SI Appendix).

6. Numerical Solution Using Population
Dynamics

In this section, we describe the stochastic population dynamics
algorithm that leads to the solution of the self-consistency Eq. 36
for the joint pdf �(�, V ), coupled with the sampling procedure

Fig. 7. Probability density function P(Ks) of the shifted Katz centrality with
� = 1/40 computed over an ensemble of 1,000 Erdős-Rényi graphs of size
N = 1,000 with average degree c = 10 by direct matrix inversion from Eq. 5
(red circles). Blue solid line: distribution of the population M̃ after reaching
equilibrium, with NP = 105 population members and 100 updating sweeps
(see Section 6 for details).

to evaluate Eq. 37. This kind of algorithm is widely used in the
study of amorphous systems (96), spin glasses (97, 98), random
matrices (94, 99–101) and percolation in sparse networks (102).

First, in order to solve Eq. 36, one represents the joint pdf
�(�, V ) in terms of two populations of NP ordered real values,
M ≡ {�1, . . . ,�NP } and V ≡ {V1, . . . , VNP } ≥ 0, which are
assumed to be sampled from that joint pdf. Given that the true
jpdf is initially unknown, a starting population of pairs (M,V)
is initialized randomly.

Similarly, one represents the joint pdf �̃(�̃, Ṽ ) in terms of
two populations of NP ordered real values, M̃ ≡ {�̃1, . . . , �̃NP }

and Ṽ ≡ {Ṽ1, . . . , ṼNP } ≥ 0, which are assumed to be sampled
from that joint pdf. Again, a starting population of pairs (M̃, Ṽ)
is initialized randomly.

Then the following stochastic algorithm is iterated until
two stable populations are reached. 1) Generate a random
integer k from the distribution k

c p(k), where p(k) is the degree
distribution of the ensemble of interest and c =

∑
k kp(k) is the

average degree; 2) Generate a random integer k̃ from the degree
distribution p(k); 3) Select k−1 pairs of values (�(old)

` , V (old)
` ) at

random—sharing the same indices—from the two populations
(M,V) respectively; 4) Select k̃ pairs of values (�̃(old)

` , Ṽ (old)
` ) at

random—sharing the same indices—from the two populations
(M̃, Ṽ) respectively; 5) Compute the new values§

V (new) =
1

1− �2∑k−1
`=1 V

(old)
`

, [40]

�(new) = V (new)

(
1 + �

k−1∑
`=1

�(old)
`

)
, [41]

Ṽ (new) =
1

1− �2∑k̃
`=1 V

(old)
`

, [42]

�̃(new) = Ṽ (new)

1 + �
k̃∑

`=1

�(old)
`

 . [43]

6) Replace a randomly selected element V (old) of V with V (new),
and the element �(old) of M with the same index as V (old) with
�(new). 7) Replace a randomly selected element Ṽ (old) of Ṽ with
Ṽ (new), and the element �̃(old) of M̃ with the same index as Ṽ (old)

with �̃(new). 8) Return to 1.
Once two stable populations are reached, the pdf of the shifted

centrality is simply obtained by histogramming the population
M̃. The fact that the populations have reached convergence is
established by monitoring the first and second moments of the
samples and stopping when they have clearly plateaued.

In the following, we show the comparison between the
numerical solution obtained with population dynamics and direct
matrix inversion for Erdős-Rényi and Scale Free networks. Erdős-
Rényi networks were built by drawing each possible link with the
same probability p = c/(N − 1), which leads to networks with
a Poisson degree distribution in the limit of large N . Scale Free
networks were built using the uncorrelated configuration model
(104): Each node was assigned a number of half-links drawn from
§The value of � should ideally be chosen in such a way that for all instances G of graphs
in the ensemble, the matrix (1− �G) is positive definite - or that at least violations of this
requirement are “sufficiently rare.” While we are not aware of any sound mathematical
treatment of how small the value � should be to ensure that violations of positive
definiteness occur less frequently than a given tolerance, in practice the values of � we
employ are sufficiently small that no practical issues have arisen in our simulations.
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Fig. 8. Probability density function P(Ks) of the shifted Katz centrality with
� = 1/40 computed over an ensemble of 100 Erdős-Rényi graphs of size
N = 1,0000 with average degree c = 35 by direct matrix inversion from Eq. 5
(red circles). Blue solid line: distribution of the population M̃ after reaching
equilibrium, with NP = 105 population members and 100 updating sweeps
(see Section 6 for details).

a power law distribution P(k) ∝ k− , and these were randomly
matched to form links. We also check that the occurrence of
multiple links and self-loops is avoided. Furthermore, to prevent
degree correlations we imposed a cut-off to the degree sequence
so that the maximum allowed degree is

√
kminN , with kmin being

the minimum degree.
To produce the figures below, we use the following parameters:

• for E-R networks (Figs. 6–8) NP = 105 for the population
dynamics, and 100 sweeps (meaning that each population
member has been updated 100 times on average), with
� = 1/40 and different values c = 4, 10, 35 for the average
connectivity. We also perform direct matrix inversion on the
adjacency matrices of 1,000 E-R networks of size N = 1,000
for c = 4, 10, while for c = 35 we averaged over 100 networks
of size N = 10,000.

• for Scale Free networks (Fig. 9 and two other figures included
in SI Appendix) NP = 106 for the population dynamics, and

Fig. 9. Probability density function P(Ks) in semilogarithmic scale of the
shifted Katz centrality with � = 1/40 computed over an ensemble of 100
Scale Free graphs of size N = 10,000 with parameter  = 2.5 and minimum
degree kmin = 3 by direct matrix inversion from Eq. 5 (red circles). Blue
solid line: distribution of the population M̃ after reaching equilibrium, with
NP = 106 population members and 100 updating sweeps (see Section 6 for
details).

100 sweeps, with � = 1/40. The network parameters are
 = 2.5 for Fig. 9 and  = 3, 4 for the figures in SI Appendix,
with minimal degree kmin = 3 and degree cutoff at

√
Nkmin

to ensure no correlation between degrees (104). We perform
direct matrix inversion on the adjacency matrices of 100 Scale
Free networks of size N = 10,000.

7. Statistical Validation on Empirical Networks

In this section, we show how the conditional distribution
P(Ks|k) derived in Eq. 39 can be exploited in the analysis of
empirical networks. As an example, we consider the Global Air
Transportation Network retrieved from OpenFlights (see details
in SI Appendix) comprising 3,425 airports across the globe (70).
For each airport having k airline routes departing or arriving,
we are interested in determining whether its Katz centrality is
significantly higher or lower than the value predicted for nodes
of degree k by a suitably constructed random “null” model. This
approach will prove very useful in providing information on
the functional role played by each airport at different scales
(determined by the number of airline routes passing through
each node).

The algorithm reads as follows. i) From the degree sequence
of the network, we construct the empirical degree distribution
pemp(k) = Nk/N , where Nk is the number of nodes of degree
k that appear in the network. ii) We use pemp(k) as p(k) to
solve Eqs. 36 and 37 using the population dynamics algorithm
described in Section 6. This is equivalent to considering an
ensemble of networks where links are randomly rewired, while
preserving the degree of each node of the empirical network.
iii) For each degree k, we estimate the conditional distribution
P(Ks|k) in Eq. 39 for nodes of degree k in the null model. iv)
From this distribution, we compute the confidence bounds at a
given confidence level � and introduce a Bonferroni correction
to account for multiple hypothesis testing (�̃ = �/Nk). v) For
a given confidence level �̃ and for a class of nodes of degree
k, we identify over- and underexpressed nodes, whose centrality
significantly deviates from the null benchmark.

The results for the air transportation network are presented in
Fig. 10 (validation on other empirical networks are presented in
SI Appendix). We group the airports in four degree classes, from
those with a number of departing/arriving flights between 1 and
10 to those with a number of 100+ direct connections. Our

Fig. 10. Katz centrality (computed with � = 1/90) vs. average centrality
conditional on degree for nodes in the Global Transportation Network
(N = 3,425) (70). Symbols represent different degree classes: Class 1 = degree
[1 to 10], Class 2 = degree [11 to 50], Class 3 = degree [51 to 100], and
Class 4 = degree 100+. Colors reflect under- (red), normal (blue), and over-
(green) expressed categories in terms of Katz centrality for a confidence level
� = 0.99. Yellow boxes are used to highlight airports whose Katz centrality
falls within the top 1%.
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results show that airports with similar degrees can nonetheless
differ significantly in their network importance and functionality
(see full classification table in SI Appendix). For instance, in the
category of “small” airports (degree [1 to 10]), underexpressed
nodes are mostly regional airports located in isolated or less
accessible regions (e.g., remote parts of Alaska, Canada, and
Greenland), with mainly domestic coverage and low passengers’
volume. Overexpressed nodes correspond instead to airports
in strategic locations, despite having low degree centrality. In
particular, they are located in popular (remote) holiday spots,
hence acting as significant hubs for their region despite fewer
direct connections (e.g., BDA—Bermuda). The remaining nodes
offer balanced connectivity, as expected for their size and region,
without being overly crucial or underused. Similarly, in the
100+ degree centrality category, airports with underexpressed
Katz centrality, such as DME (Moscow Domodedovo, Russia)
and ATL (Atlanta, USA), manage high passenger volumes and
provide robust regional connectivity. However, their global
integration is not so pronounced. On the other hand, airports
with overexpressed Katz centrality, such as AMS (Amsterdam,
Netherlands) and JFK (New York, USA), are pivotal in the
global network. These airports have influential connections that
make them essential nodes for supporting global connectivity and
regional economic development. Simply ranking nodes by Katz
centrality value and selecting a fraction of the top ones as leading
hubs of the network, does not provide any information on the
finer scale structure. Indeed, the top 1% nodes by Katz centrality
coincide with high-degree nodes (class 4, k = [101, 248])
and include both under-, over-, and normal nodes as per our
importance validation labeling.

Therefore, the validation procedure proposed here can provide
more detailed and nuanced information about the functional role
played by nodes at different scales, which is not simply captured
by their degree.

8. Centrality Distribution from Rank-1
Approximation

In this section, we consider the rank-1 approximation to
centrality measures proposed in ref. 65, and we show that it
leads to an approximate but explicit formula for the distribution
P(Ks), which works very well for c sufficiently high.

The idea is to replace the symmetric adjacency matrix G
featuring in Eq. 5 with a rank-1 approximation Ĝ defined as

Ĝ =
1
k̄N

kkT , [44]

where k = {k1, . . . , kN }T is the degree sequence of the network
represented by G, arranged in a column vector, and k̄ is the
mean degree 1

N
∑

i ki. Constructed in this way, the matrix Ĝ
is rank-1 and has the same degree sequence (row sums) of the
original matrix G. From Eq. 5, replacing G with Ĝ and using
the Sherman–Morrison formula (105) to compute the inverse
matrix, we obtain

K s ' (1− �Ĝ)−11 =

1+
�Ĝ

1− �
∑

i k
2
i∑

i ki

 1

= 1 +
�

1− �
∑

i k
2
i∑

i ki

k . [45]

Note that this rank-1 approximation gives a different—and
superior, as we argue below—result from a simple linear
truncation of the resolvent matrix, which would yield instead

K s ' (1+ �G +O(�2))1 = 1 + �k . [46]

To make further analytical progress, we appeal to the Law of
Large Numbers for large N to further approximate

∑
i

ki ≈ N
∞∑
k=0

kp(k) ≡ Nc, [47]

∑
i

k2
i ≈ N

∞∑
k=0

k2p(k) ≡ Nk2 . [48]

The relation Eq. 45 allows us to write an approximate formula
for the pdf of the Katz centrality for a large network with degree
distribution p(k) as

P(K ) '
∞∑
k=0

p(k)�

K −
�

1− � k2

c

k

 . [49]

Specializing for instance to a large Erdős-Rényi network with
finite mean degree¶ c—characterized by a Poisson degree distri-
bution p(k) = e−cck/k!—we see that the centrality distribution
is approximated by a Poisson-weighted Dirac comb

P(K ) '
∞∑
k=0

e−c
ck

k!
�
(
K −

�
1− �(1 + c)

k
)

, [50]

where we used
∞∑
k=0

k
e−cck

k!
= c, [51]

∞∑
k=0

k2 e
−cck

k!
= c + c2 . [52]

In Fig. 11, we plot in red the empirical Cumulative Distribution
Function (CDF) F (Ks) =

∫ Ks
0 P(K ′)dK ′ (the probability of

observing a node with shifted Katz centrality smaller thanKs) over
an ensemble of 30 randomly generated Erdős-Rényi networks of
size N = 5,000 with c = 4 and � = 1/30. In blue, we plot
the CDF of the theoretical approximate formula Eq. 50, and
in green the CDF of the Dirac comb formula corresponding
to a crude linear truncation of the resolvent matrix (Eq. 46).
This corresponds to replacing the term �

(
K − �

1−�(1+c)k
)

with
� (K − �k) in Eq. 50.

We observe that the approximate formula Eq. 50 works very
well for higher c throughout the full set of allowed values of
� (Eq. 2), whereas for lower c—where the actual distribution
has a pronounced multimodality—it correctly reproduces the
typical values of the centrality possessed by nodes of degree
k (i.e. the location of the k-th peak) and the value of the
probability mass under each peak. The “network” effect in a

¶On scale-free networks with exponent  , the second moment diverges with N. If we
consider the structural cutoff kmax ∼ N1/2 , we have that 〈k2

〉 ∼ N(3−)/2 . This implies
that � should go to zero as N increases for Eq. 49 to be meaningful. A similar conclusion
can be reached from the condition in Eq. 2 using the results for the maximum eigenvalue
of networks generated with the configuration model reported in ref. 106.
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Fig. 11. Red line: empirical Cumulative Distribution Function (CDF) F(Ks) =∫ Ks
0 P(K ′)dK ′ of the shifted Katz centrality Ks for an ensemble of 30 randomly

generated Erdős-Rényi networks of size N = 5,000 with c = 4 and � = 1/30,
using the inversion formula Eq. 5. Blue dash-dotted line: CDF of the Dirac
comb approximate formula Eq. 50 with K = Ks − 1. Green dashed line: CDF
of the Dirac comb formula resulting from a simple linear approximation of
the resolvent (Eq. 46).

sparse regime therefore essentially amounts to dressing the degree-
only information with some noise. Moreover, in Fig. 11, we also
show that the CDF of the approximate Dirac comb formula
that would result from using a simple linear truncation of the
resolvent matrix (Eq. 46) does not capture the location of the
peaks nearly as accurately as our rank-1 approximation, with a
clear shift of all values to the left.

9. Conclusions and Outlook

In this work, we considered the distribution of the Katz centrality
of nodes on single instances and on ensembles of undirected
random graphs in the locally tree-like regime, focusing in
particular on Erdős-Rényi and Scale Free networks. The Katz
centrality of a node is a measure of how important that node is
in the context of information flow across the network, as it is
a weighted sum of paths of all lengths reaching that node from
all other nodes, where longer paths are weighted less by a factor
�. Having accurate analytical control over the full distributions
in “null models” (with interactions drawn at random with
a prescribed distribution that typically preserves the degree
sequence/distribution) is important to provide a benchmark
to gauge deviations arising in empirical and synthetic data.
However, the available analytical results for the full distribution
of centrality measures on random networks are surprisingly
scarce, which motivates the work we presented here.

The (shifted) Katz centralities of all nodes satisfy a linear system
of Eq. 6, which can be efficiently solved on a single instance
of the network using the cavity method (or Gaussian Belief
Propagation algorithm). We reviewed in detail the underlying
theory in Section 3.

From the single instance solution, it is straightforward to
deduce that the probability P(K ) of observing a node with
centralityK in an ensemble of random networks can be computed
from the functional solution of a pair of recursive distributional
equations (Eqs. 36 and 37), which can be efficiently solved using
a Population Dynamics algorithm as described in Section 6.

Our results further confirm that the Katz centrality is highly
correlated with the degree of nodes, with the k-th peak in
the distribution precisely corresponding to the contributions of
nodes of degree k to the centrality. The sharply multimodal

distribution of the centrality for low c gradually crosses over
toward a unimodal distribution as the average degree c increases,
with different peaks merging together.

The distribution of centrality across nodes of the same degree
in a random network can be further used as a benchmark to
identify nodes of an empirical network whose centrality is under-
or overexpressed relative to their degree. In the airline routes
example we considered, we indeed showed that an airport having
few or many connecting routes (its degree) does not tell the full
story about its functional role within the airline industry: the
“centrality” dimension is also important e.g. to identify smaller
airports that nonetheless serve a crucial role in ensuring global
connectivity, or conversely very busy ones that only serve local
or regional communities, though.

Our approach has wider applications in different fields. For
instance, in finance and economics preliminary attempts to
determine whether a node would significantly contribute to a
shock propagation have been recently made (107). In biology,
our approach could be useful to determine relevant sets of genes
and proteins (and their functional multiscale role) in different
biological processes (108).

Moreover, we have provided an analytical approximation
for the centrality distribution, which is based on the rank-1
projection proposed in ref. 65 and works well for not-too-sparse
graphs. If the graphs are very sparse, the approximation is anyway
able to capture the location and mass of each peak in a more
accurate way than a simple linear truncation of the resolvent
matrix.

It will be interesting to modify the treatment presented here
to deal with the case of networks with correlated degrees, as
well as directed networks for which the GaBP/cavity solution
of a linear system Eq. 7 on a tree structure requires some
changes (109). Extending the analysis to nonsymmetric adjacency
matrices would allow us to deal for instance with the distribution
of PageRank in random networks, a topic that has received some
attention in the mathematical literature lately in the context of
the so-called “power-law hypothesis” described in Introduction.

Data, Materials, and Software Availability. Previously published data were
used for this work (70).
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45. P. R. Jelenković, M. Olvera-Cravioto, Information ranking and power laws on trees. Adv. Appl.
Probab. 42, 1057–1093 (2010).

46. J. Lee, M. Olvera-Cravioto, PageRank on inhomogeneous random digraphs. Stoch. Process. Appl.
130, 1–57 (2020).

47. M. Olvera-Cravioto, Tail behavior of solutions of linear recursions on trees. Stoch. Process. Appl.
122, 1777–1807 (2012).

48. M. Olvera-Cravioto, PageRank’s behavior under degree correlations. Ann. Appl. Probab. 31,
1403–1442 (2021).

49. K. Avrachenkov, D. Lebedev, PageRank of scale-free growing networks. Internet Math. 3, 207–231
(2006).

50. Y. Volkovich, N. Litvak, Asymptotic analysis for personalized Web search. Adv. Appl. Probab. 42,
577–604 (2010).

51. S. Banerjee, M. Olvera-Cravioto, PageRank asymptotics on directed preferential attachment
networks. Ann. Appl. Probab. 32, 3060 (2022).

52. N. Litvak, W. R. W. Scheinhardt, Y. Volkovich, In-degree and PageRank: Why do they follow similar
power laws? Internet Math. 4, 175–198 (2011).

53. G. Pandurangan, P. Raghavan, E. Upfal, Using PageRank to Characterize Web Structure. Internet
Math. 3, 1–20 (2006).

54. D. Donato, L. Laura, S. Leonardi, S. Millozi, Large scale properties of the webgraph. Eur. Phys. J. 38,
239–243 (2004).

55. S. Fortunato, M. Boguñá, A. Flammini, and F. Menczer, “Approximating pagerank from in-degree”
in Algorithms and Models for the Web-Graph. WAW 2006, W. Aiello, A. Broder, J. Janssen, E.
Milios, Eds. (Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2008), vol. 4936.

56. L. Becchetti and C. Castillo, “The distribution of PageRank follows a power-law only for particular
values of the damping factor” in Proceedings of the 15th International Conference on World Wide
Web (New York: ACM Press, 2006), pp. 941–942.

57. P.-E. Lu, C.-S. Chang, D.-S. Lee, C.-C. Huang, Centrality analysis in d-regular directed acyclic random
networks and its applications in top-k recommendations. IEEE Trans. Comput. Soc. Syst. 6, 968–980
(2019).

58. C. Durón, “The distribution of betweenness centrality in exponential random graph models,” PhD
thesis, Pomona College, Claremont (CA) (2019). https://pages.pomona.edu/~jsh04747/Student%
20Theses/christina_duron_2019.pdf.

59. K. Durant, S. Wagner, On the distribution of betweenness centrality in random trees. Theor.
Comput. Sci. 699, 33–52 (2017).

60. M. Paton, K. Akartunali, D. J. Higham, Centrality analysis for modified lattices. SIAM J. Matrix Anal.
Appl. 38, 1055 (2017).

61. K. Avrachenkov, A. Kadavankandy, L. Ostroumova Prokhorenkova, A. Raigorodskii, “PageRank in
undirected random graphs” in Algorithms and Models for the Web Graph. WAW. 2015. Lecture
Notes in Computer Science, D. Gleich, J. Komjáthy, N. Litvak, Eds. (Springer, Cham, 2015), vol.
9479, p. 2015.

62. N. Perra, S. Fortunato, Spectral centrality measures in complex networks. Phys. Rev. E 78, 036107
(2008).

63. P. Crucitti, V. Latora, S. Porta, Centrality measures in spatial networks of urban streets. Phys. Rev. E
73, 036125 (2006).

64. A. Kirkley, H. Barbosa, M. Barthelemy, G. Ghoshal, From the betweenness centrality in street
networks to structural invariants in random planar graphs. Nat. Commun. 9, 2501 (2018).

65. S. Bartolucci, F. Caccioli, F. Caravelli, P. Vivo, Ranking influential nodes in networks from aggregate
local information. Phys. Rev. Res. 5, 033123 (2023).

66. G. Bianconi, M. Marsili, Loops of any size and Hamilton cycles in random scale-free networks.
J. Stat. Mech. 2005, P06005 (2005).

67. Y. Weiss, W. T. Freeman, Correctness of belief propagation in gaussian graphical models of
arbitrary topology. Neural Comput. 13, 2173–2200 (2001).

68. O. Shental, P. H. Siegel, J. K. Wolf, D. Bickson, D. Dolev, “Gaussian belief propagation solver
for systems of linear equations,” in 2008 IEEE International Symposium on Information Theory
(Toronto, ON, Canada, 2008), pp. 1863–1867.

69. D. Bickson, Gaussian belief propagation: Theory and application. arXiv [Preprint] (2009). http://
arxiv.org/abs/0811.2518 (Accessed 29 June 2024).

70. T. Woebkenberg, Data from “Global air transportation network: Airports, airlines, and routes.”
Kaggle. https://www.kaggle.com/datasets/thedevastator/global-air-transportation-network-
mapping-the-wo/data. Accessed 29 June 2024.

71. J. Leskovec, J. Mcauley, “Learning to discover social circles in ego networks” in Advances in Neural
Information Processing Systems, F. Pereira, C. J. Burges, L. Bottou, K. Q. Weinberger (Curran
Associates, Inc., 2012), vol. 25.

72. J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: Densification and shrinking diameters.
ACM Trans. Knowl. Discov. Data 1, 2–es (2007).

73. S. Bartolucci, F. Caccioli, F. Caravelli, P. Vivo, “Spectrally gapped” random walks on networks: A
mean first passage time formula. SciPost Phys. 11, 088 (2021).

74. S. Bartolucci, F. Caccioli, F. Caravelli, P. Vivo, Upstreamness and downstreamness in input-output
analysis from local and aggregate information. arXiv [Preprint] (2024). http://arxiv.org/abs/2009.
06350v4 (Accessed 29 June 2024).

75. T. S. Evans, B. Chen, Linking the network centrality measures closeness and degree. Commun.
Phys. 5, 172 (2022).

76. S. Oldham et al., Consistency and differences between centrality measures across distinct classes of
networks. PLoS One 14, e0220061 (2019).

77. T. W. Valente, K. Coronges, C. Lakon, E. Costenbader, How correlated are network centrality
measures? Connect. (Tor. Ont) 28, 16–26 (2008).

78. C. Li, Q. Li, P. Van Mieghem, H. E. Stanley, H. Wang, Correlation between centrality metrics and
their application to the opinion model. Eur. Phys. J. B 88, 65 (2015).

79. M. Aprahamian, D. J. Higham, N. J. Higham, Matching exponential-based and resolvent-based
centrality measures. J. Complex Netw. 4, 157–176 (2016).

80. M. Benzi, C. Klymko, On the limiting behavior of parameter-dependent network centrality
measures. SIAM J. Matrix Anal. Appl. 36, 686–706 (2015).

81. B. Peterson, M. Olinick, Leontief models, Markov chains, substochastic matrices, and positive
solutions of matrix equations. Math. Model. 3, 221–239 (1982).

82. D. Bickson, D. Malkhi, A unifying framework of rating users and data items in peer-to-peer and
social networks. Peer Peer Netw. Appl. 1, 93–103 (2008).

PNAS 2024 Vol. 121 No. 40 e2403682121 https://doi.org/10.1073/pnas.2403682121 11 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
5.

21
4.

18
4.

21
2 

on
 O

ct
ob

er
 8

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
95

.2
14

.1
84

.2
12

.

http://arxiv.org/abs/2011.07190
https://pages.pomona.edu/~jsh04747/Student%20Theses/christina_duron_2019.pdf
https://pages.pomona.edu/~jsh04747/Student%20Theses/christina_duron_2019.pdf
http://arxiv.org/abs/0811.2518
http://arxiv.org/abs/0811.2518
https://www.kaggle.com/datasets/thedevastator/global-air-transportation-network-mapping-the-wo/data
https://www.kaggle.com/datasets/thedevastator/global-air-transportation-network-mapping-the-wo/data
http://arxiv.org/abs/2009.06350v4
http://arxiv.org/abs/2009.06350v4


83. Y. Saad, “Iterative methods for sparse linear systems” in Society for Industrial and Applied
Mathematics (ed. 2, 2003).

84. E. Nathan, G. Sanders, J. Fairbanks, V. E. Henson, D. A. Bader, Graph ranking guaran-
tees for numerical approximations to Katz centrality. Proc. Comput. Sci. 108, 68–78
(2017).

85. D. Bickson, Y. Tock, A. Zymnis, S. P. Boyd, D. Dolev, “Distributed large scale network utility
maximization” in 2009 IEEE International Symposium on Information Theory (Seoul, South Korea,
2009), pp. 829–833.

86. D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, D. Dolev, “Linear detection via belief propagation” in
45th Annual Allerton Conference on Communication, Control, and Computing (University of Illinois,
Monticello, Illinois, 2007), vol. 2, pp. 1289.

87. M. Mézard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond: An Introduction to the Replica
Method and Its Applications (World Scientific Publishing Company, 1987), vol. 9.

88. T. Rogers, I. Pérez Castillo, R. Kühn, K. Takeda, Cavity approach to the spectral density of sparse
symmetric random matrices. Phys. Rev. E 78, 031116 (2008).

89. P. Cizeau, J.-P. Bouchaud, Theory of Lévy matrices. Phys. Rev. E 50, 1810 (1994).
90. L. Zdeborová, F. Krzakala, Statistical physics of inference: Thresholds and algorithms. Adv. Phys. 65,

453–552 (2016).
91. J. Barbier, F. Krzakala, N. Macris, L. Miolane, L. Zdeborová, Optimal errors and phase transitions in

high-dimensional generalized linear models. Proc. Natl. Acad. Sci. U.S.A. 116, 5451–5460 (2019).
92. D. L. Donoho, A. Maleki, A. Montanari, Message-passing algorithms for compressed sensing. Proc.

Natl. Acad. Sci. U.S.A. 106, 18914–18919 (2009).
93. J. K. Johnson, D. M. Malioutov, A. S. Willsky, “Walk-sum interpretation and analysis of Gaussian

belief propagation” in Advances in Neural Information Processing Systems 18, Y. Weiss, B.
Schölkopf, J. Platt, Eds. (MIT Press, Cambridge, MA, 2006), pp. 579–586.

94. V. A. R. Susca, P. Vivo, R. Kühn, Cavity and replica methods for the spectral density of sparse
symmetric random matrices. SciPost Phys. Lect. Notes, 33 (2021).

95. C. Y. Lee, Correlations among centrality measures in complex networks. arXiv [Preprint]. (2006).
https://doi.org/10.48550/arXiv.physics/0605220 (Accessed 29 June 2024).

96. R. Kühn, J. Van Mourik, M. Weigt, A. Zippelius, Finitely coordinated models for low-temperature
phases of amorphous systems. J. Phys. A Math. Theor. 40, 9227 (2007).

97. M. Mézard, G. Parisi, The Bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217–233
(2001).

98. F. Krzakala et al., Statistical Physics, Optimization, Inference, and Message-Passing Algorithms
(Oxford University Press, 2016).

99. R. Kühn, Spectra of sparse random matrices. J. Phys. A Math. Theor. 41, 295002 (2008).
100. V. A. R. Susca, P. Vivo, R. Kühn, Top eigenpair statistics for weighted sparse graphs. J. Phys. A

Math. Theor. 52, 485002 (2019).
101. V. A. R. Susca, P. Vivo, R. Kühn, Second largest eigenpair statistics for sparse graphs. J. Phys. A

Math. Theor. 54, 015004 (2021).
102. R. Kühn, T. Rogers, Heterogeneous micro-structure of percolation in sparse networks. Europhys.

Lett. 118, 68003 (2017).
103. A. Vázquez, M. Weigt, Computational complexity arising from degree correlations in networks.

Phys. Rev. E 67, 027101 (2003).
104. M. Catanzaro, M. Boguñá, R. Pastor-Satorras, Generation of uncorrelated random scale-free

networks. Phys. Rev. E 71, 027103 (2005).
105. J. Sherman, W. J. Morrison, Adjustment of an inverse matrix corresponding to a change in one

element of a given matrix. Ann. Math. Stat. 21, 124–127 (1950).
106. P. Dionigi, D. Garlaschelli, R. S. Hazra, F. D. Hollander, Largest eigenvalue of the configuration

model and breaking of ensemble equivalence. arXiv [Preprint] (2023). http://arxiv.org/abs/2312.
07812 (Accessed 29 June 2024).

107. A. Sadeghi, Z. Feinstein, Statistical validation of contagion centrality in financial networks. arXiv
[Preprint] (2024). http://arxiv.org/abs/2404.14337 (Accessed 29 June 2024).

108. Z. Gu, J. Liu, K. Cao, J. Zhang, J. Wang, Centrality-based pathway enrichment: A systematic
approach for finding significant pathways dominated by key genes. BMC Syst. Biol. 6, 1–13
(2012).

109. V. Fanaskov, Gaussian belief propagation solvers for nonsymmetric systems of linear equations.
SIAM J. Sci. Comput. 44, A77–A102 (2022).

12 of 12 https://doi.org/10.1073/pnas.2403682121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
5.

21
4.

18
4.

21
2 

on
 O

ct
ob

er
 8

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
95

.2
14

.1
84

.2
12

.

https://doi.org/10.48550/arXiv.physics/0605220
http://arxiv.org/abs/2312.07812
http://arxiv.org/abs/2312.07812
http://arxiv.org/abs/2404.14337

	Introduction
	Katz Centrality
	Solution of a Sparse Linear System with the Cavity Method
	Katz Centrality on Single Instance of a Random Graph
	Probability P(K) Over the Ensemble
	Numerical Solution Using Population Dynamics
	Statistical Validation on Empirical Networks
	Centrality Distribution from Rank-1 Approximation
	Conclusions and Outlook

