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C O M P U T E R  S C I E N C E

Wisdom of the silicon crowd: LLM ensemble prediction 
capabilities rival human crowd accuracy
Philipp Schoenegger1*, Indre Tuminauskaite2, Peter S. Park3,  
Rafael Valdece Sousa Bastos4, Philip E. Tetlock5,6

Human forecasting accuracy improves through the “wisdom of the crowd” effect, in which aggregated predictions 
tend to outperform individual ones. Past research suggests that individual large language models (LLMs) tend to 
underperform compared to human crowd aggregates. We simulate a wisdom of the crowd effect with LLMs. 
Specifically, we use an ensemble of 12 LLMs to make probabilistic predictions about 31 binary questions, comparing 
them with those made by 925 human forecasters in a 3-month tournament. We show that the LLM crowd outper-
forms a no-information benchmark and is statistically indistinguishable from the human crowd. We also observe 
human-like biases, such as the acquiescence bias. In another study, we find that LLM predictions (of GPT-4 and 
Claude 2) improve when exposed to the median human prediction, increasing accuracy by 17 to 28%. However, 
simply averaging human and machine forecasts yields more accurate results. Our findings suggest that LLM pre-
dictions can rival the human crowd’s forecasting accuracy through simple aggregation.

INTRODUCTION
In the field of artificial intelligence (AI), the rapidly increasing capa-
bilities of large language models (LLMs) have shown promise and 
market competitiveness in a rapidly increasing number of economically 
valuable and cognitively demanding tasks (1, 2). State-of-the-art LLMs 
with billions of parameters, built on the transformer architecture (3), 
are trained on a very large amount of internet text data (4), before 
being fine-tuned to enhance their performance on specific tasks and 
improve their applicability in diverse domains. The LLMs are trained 
on these data to predict the next word or subword (token) when given 
an input string. This step of next-token prediction—when applied 
repeatedly—generates a sequence of tokens that form an output 
string coherently text-completing the input, often at a level of coher-
ence previously thought to be only achievable by human cognition 
(5–8) and at a high level of applicability to chat interfaces and various 
other settings.

This general training objective of next-token prediction, coupled 
with fine-tuning, also indirectly results in these LLMs displaying an 
array of specialized skills, which are often only emergently observed 
after the fact: in ways that were not—and for all practical purposes, 
likely could not have been—predicted before the first observation 
of the given capability (9). Such skills include but are not limited to 
reading comprehension (10), strategy (11), abstract object classification 
(12), and social science applications (13, 14).

When evaluating the capabilities of a given AI system, the 
predominant method is to measure how well an AI system performs 
at fixed benchmarks for specific tasks (15). The sizeable advancements 
achieved by transformer-based LLMs in these domains have rendered 
many previously established benchmarks obsolete (16, 17), moving 

the metaphorical goalposts forward in the form of more challenging 
and comprehensive benchmarks (18). It is plausible that a sizeable 
portion of the unprecedented successes that state-of-the-art LLMs 
have achieved on past task benchmarks is genuinely due to a deep 
understanding of the task-relevant cognitive skills (19). This argu-
ment is corroborated by the economic competitiveness—and even 
promises of economic superiority—that LLMs are achieving for an 
increasing array of human occupations (2), such as transcription 
(20), translation (21), and programming (19).

However, it is also plausible that a sizeable portion of LLMs’ suc-
cesses on task benchmarks is due to a superficial memorization of 
the task’s solutions and a shallow understanding of training set pat-
terns in general (22–25). Distinguishing between deep understand-
ing and shallow memorization is a complex challenge and is central 
to accurately assessing AI systems’ advanced reasoning capabilities. 
This is akin to the examiner’s problem of testing their student for a 
deep understanding of the course material, even when many of 
the potential exam questions can be correctly answered by shallow 
memorization instead. Just like the student can memorize the answers 
to exam questions if they see them beforehand, so too can an LLM if 
its training data contain the questions and answers used in the task 
benchmark. To resolve this ambiguity, one can exploit the testable 
presence or absence of the ability to generalize out of distribution: 
to apply learned knowledge beyond the settings represented in the 
training data (26). Such a test is arguably key to discerning a deep 
understanding of the task at hand (27) but is difficult to design when 
assessing broad LLM capabilities.

In contrast to task benchmarks, where questions and answers are 
fixed and potentially contained in an LLM’s training data, there are 
contexts where this concern can be ruled out fully, for example, 
when predicting the future in real-world settings (28, 29). This test 
stands out for its high external validity, in that the correct answer to 
a given real-world forecasting question cannot be in a given LLM’s 
training set, as not even the human evaluator knows the answer 
at the time of data collection. Moreover, the practice of forecasting 
is omnipresent in the cognitive tasks undertaken by humans, en-
compassing a wide range of applications from forecasting the trajec-
tory of current events to setting long-term plans. The ubiquity of 
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forecasting—especially in white-collar occupations where the increasing 
capabilities of LLMs are predicted to disrupt or even replace human 
professionals (30–32)—combined with the intrinsic external validity 
makes testing LLMs’ forecasting capability ideal for assessing their 
real-world applicability.

One context where LLMs’ forecasting capability can be tested 
directly is forecasting tournaments. In these tournaments, participants 
make probabilistic predictions about future occurrences and are 
then evaluated and rewarded for their accuracy (33). The accuracy 
of these forecasts across a set of questions determines the amount 
of reputational or monetary reward. Since more precise predic-
tions yield greater rewards, forecasters are incentivized to conduct 
substantively helpful research and to provide well-informed predic-
tions. The aggregate of these predictions across the crowd of human 
forecasters is a gold standard for human intelligence gathering. 
The effectiveness of aggregating competitive forecasts relies on the 
“wisdom of the crowd” phenomenon: the effect in which the collective 
accuracy of many forecasters’ predictions often surpasses that of any 
one individual among the crowd. This concept is supported by ex-
tensive research across various fields such as prediction markets (34) 
and political forecasting (35), showing that the combined forecasts 
of many individuals tend to be precise (36–38). This wisdom of the 
crowd effect relies on independent and unbiased judgments, which 
achieves an error-cancelation effect (39, 40). As Budescu (41) pointed 
out, this aggregation mechanism increases information and accounts 
for extremes, with the wisdom of the crowd effect also holding in 
contexts of biased inputs (42) or when there are correlations among 
judgments (40), showing remarkable robustness. There is a large 
literature on how to improve this aggregation process (43–45), with 
a central takeaway being that a simple median is an unexpectedly 
powerful aggregation mechanism: one that works across a myriad 
of contexts.

Past work has compared the prediction performance of frontier 
models against a human crowd. With respect to evaluating a single 
model, Schoenegger and Park (28) found that the frontier model 
GPT-4 performed poorly when comparing its predictions to that of 
a crowd drawn from a forecasting tournament. GPT-4 did not even 
significantly outperform the no-information benchmark strategy of 
predicting 50% on every question. Also, Halawi et al. (46) investi-
gated the prediction capabilities of an LLM system, including a 
combination of news retrieval and reasoning systems. They repli-
cated the finding of Schoenegger and Park that individual models 
not only show poor prediction accuracy but also found that their 
optimized system approached the accuracy of the human crowd. 
This suggests that individual LLMs may have poor forecasting ac-
curacy but can produce accurate predictions if they are set in an 
advanced system.

A hypothesis worth probing is that the underperformance of 
individual LLMs in real-time forecasting compared to human crowds 
may, at least in part, be due to not making use of the wisdom of the 
crowd effect. It may thus be the case that LLMs’ forecasting accuracy 
may be able to reach human-level performance if machine predic-
tions are sampled from a wide set of diverse models. To test this 
question, we simulate one such crowd of diverse LLMs and draw 
questions from a real-world forecasting tournament. We directly 
compare the LLM crowd’s estimate to that of the human crowd, 
without introducing further additions like retrieval systems.

In Study 1, we test this LLM ensemble approach. Specifically, 
we aggregate 12 LLMs’ forecasts into a collective crowd forecast, 

leveraging the diversity inherent in the different models’ training 
data, parameters, and methodologies (such as idiosyncratic fine-
tuning). We first test whether the LLM ensemble, unlike GPT-4 in 
the study of Schoenegger and Park (28), will significantly outper-
form the no-information benchmark in a forecasting tournament. 
This benchmark provides a minimal benchmark of accuracy that is 
equivalent to guessing 50% on every question.

Null hypothesis 1, Study 1: The average of median LLM fore-
casts is neither statistically significantly more nor less accurate than 
the 50% baseline, H01

:BLLM = 0.25.
We also conduct a stronger test of whether the LLM ensemble 

will significantly outperform the human crowd drawn from the real-
world forecasting tournament. For both studies, we use a 3-month 
tournament run on the platform Metaculus as our human crowd 
comparison. This provides a more direct comparison of the two 
aggregated forecasts and would present a result that has not been 
achieved so far.

Null hypothesis 2, Study 1: The average of median LLM fore-
casts is neither statistically significantly more nor less accurate than 
the average of median human forecasts, H02 : μLLM = μHuman.

Last, for Study 1, we test for differences in forecasting accuracy 
between the 12 models. Some of these models are variations of each 
other, like GPT-4 versus GPT-4 with Bing access, PaLM2 versus 
PaLM2 in Bard, and Llama-2-70B versus Solar-0-70B, while others 
differ on more fundamental grounds (e.g., parameter counts and 
open versus closed source). Testing for statistically significant dif-
ferences between models with different capabilities, endpoints, fine-
tunings, sizes, etc., might provide further insight into which aspects 
help and which aspects hinder prediction accuracy.

Null hypothesis 3, Study 1: There are no statistically significant 
differences in the average accuracy across the different LLMs and 
humans, H03 : μ1 = μ2 = … = μk.

In Study 2, we investigate the ability of two frontier models 
(GPT-4 and Claude 2) to integrate human intelligence into their 
forecast updating. This contributes to the literature on human-AI 
interactions. While previous work has focused on how AI can im-
prove human predictions (29), our study looks at the reverse: how 
human forecasts can improve LLM predictions. This is studied in a 
context where models update their forecasts in response to receiving 
the human crowd’s prediction. This investigation of updating behavior 
is grounded in the premise that access to external information, 
such as the median forecast of a human crowd, can serve as a valu-
able reference point for recalibrating predictions. The interaction 
between human and machine intelligence in this context is of 
particular interest, as it exemplifies the potential synergies that can 
emerge from integrating the intuitive, experience-based judgments 
of humans with the data-processing capabilities of LLMs.

We first investigate whether, for each of the two frontier LLMs, 
its average forecast becomes more accurate after being presented 
with the human crowd’s median forecast. This is arguably the most 
straightforward test of whether human cognitive output in this 
setting can augment machine-generated forecasts, as measured by 
forecasting accuracy.

Null hypothesis 1, Study 2: There is no statistically significant 
difference in the average accuracy of either LLM before and after 
having been provided the human crowd median, H01 : μpre = μpost.

We next investigate the impact that exposure to the human me-
dian forecast has on the precision of LLM forecasts. Specifically, we 

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 26, 2024



Schoenegger et al., Sci. Adv. 10, eadp1528 (2024)     8 November 2024

S c i e n c e  A d v an  c e s  |  R e s e ar  c h  A r t i c l e

3 of 14

investigate whether the prediction intervals become narrower, in-
dicating increased confidence in the forecasts: an effect that would 
suggest that LLMs can extract nontrivial information value from the 
human median forecast.

Null hypothesis 2, Study 2: The size of the prediction intervals 
does not become narrower after exposure to the human crowd 
median, H02 : Δrange ≥ 0.

Last, we investigate the relationship between the initial deviation 
of LLM forecasts from the human median and the magnitude of 
subsequent adjustments. This probes the extent to which larger 
discrepancies prompt more substantial forecast revisions, as would 
be expected.

Null hypothesis 3, Study 2: The magnitude of LLM forecast 
adjustments is not correlated with the initial deviation of their fore-
casts from the human crowd median, H03 : ρ = 0.

Both studies advance the literature on LLM prediction capabili-
ties. Building on the past work of Schoenegger and Park (28), the 
present paper examines an LLM ensemble approach instead of a 
single model. In addition, while Schoenegger et al. (29) have looked 
at how AI predictions can improve human accuracy, the present 
paper tests the converse, thereby helping complete the picture of 
how humans and AI systems may interact in real-world contexts 
that require accurate forecasting. This overall adds to a growing lit-
erature on AI and judgemental forecasting (46).

METHODS
All analyses were preregistered on the Open Science Framework, 
as detailed in https://osf.io/sb6mw/?view_only=395ab8faccba41
9c91f5f12dcaf97ce6. We clearly label all exploratory and non-
preregistered analyses as such throughout the paper to indicate 
which tests were decided on after having seen the data.

Study 1
In Study 1, we collected data from a total of 12 diverse LLMs to 
simulate the LLM crowd. To have a broad set of models, we tried 
to vary the size of the models, the access to additional tools (like 

internet search), whether they were open source, and the compa-
ny’s country. Specifically, these 12 models were GPT-4, GPT-4 
with Bing, Claude 2, GPT3.5-Turbo-Instruct, Solar-0-70b, Llama-
2-70b, PaLM 2 (Chat-Bison@002), Coral (Command), Mistral-
7B-Instruct, Bard (PaLM 2), Falcon-180B, and Qwen-7B-Chat. 
We accessed each model through a web interface and did not 
query any models via their application programming interfaces 
(APIs) to hold the query method constant, as not all models had 
API access at the time. This resulted in the use of default parameters 
(e.g., temperature) for all models. These web interfaces included 
company-specific interfaces like those offered by OpenAI, An-
thropic, Cohere, and Google for their respective models, as well 
as interfaces provided by other third parties such as Poe, Hugging 
Face, and ModelScope that provided access to the remaining models. 
We took this approach to maximize the number of models for 
which we could reliably query throughout the study’s data collec-
tion period while retaining heterogeneity of model specifications, 
as our goal was to draw on a diverse set of models. In addition, this 
also kept our study in the context of publicly available and easily 
accessible models, making it easier to implement this approach 
with a low amount of resources and effort. Our final set of models 
includes frontier proprietary models (GPT-4 and Claude 2) and 
open-source models (e.g., Llama-2-70b and Mistral 7B-Instruct) 
from a variety of demographically diverse companies originat-
ing from China, France, the United Arab Emirates, South Korea, 
Canada, and the United States. We also have a variety of models 
with internet access (e.g., GPT-4 with Bing, Bard, and Coral) and 
a large diversity of model sizes, ranging from 7 billion parame-
ters to an estimated 1.6 trillion. We monitored updates to the 
original models at the web interfaces and responded as follows to 
changes: In response to the release of GPT-4-Turbo, on 6 November, 
we queried the “Classic” model instead. For the upgrade to Claude 
2.1, we did not switch the query method on 21 November. When 
Bard switched, at least in part, to Gemini Pro from PaLM 2, we 
ceased data collection of this model via the Bard interface on 
6 December. For a list of all models and their central specifica-
tions, see Table 1 below.

Table 1. Detailed characteristics of each LLM tested. 

Model Company Internet access Open source Hosting platform Country of company

 GPT- 4 OpenAI No No OpenAI United States

 GPT- 4 Bing OpenAI Yes No OpenAI United States

Claude 2 Anthropic No No Anthropic United States

 GPT- 3.5-Turbo-Instruct OpenAI No No OpenAI United States

 Solar- 0- 70B Upstage No Yes Poe South Korea

Llama- 2- 70B Meta No Yes Poe United States

 PaLM 2 
(Chat- Bison@002) 

Google No No Poe United States

Coral (Command) Cohere Yes No Cohere Canada

 Mistral- 7B-Instruct Mistral No Yes Poe France

 Bard (PaLM 2) Google Yes No Google United States

 Falcon 180B Technology Innovation 
Institute

No No Hugging Face United Arab Emirates

 Qwen- 7B-Chat Alibaba Cloud No Yes ModelScope China
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To assess the prediction capabilities of these models, we drew on a 
set of forecasting questions that were asked in real time at a public 
forecasting tournament that ran from October 2023 to January 2024 
on the platform Metaculus, where over the course of this tourna-
ment, 925 human forecasters provided at least one prediction. In this 
tournament, forecasters were able to sign up with Metaculus (47) and 
predict as many questions as they wanted. The topics of the posed 
questions ranged from conflict in the Middle East, interest rates, lit-
erary prizes, and English electoral politics to Indian air quality, cryp-
tocurrency, consumer technology, and space travel. We focused 
exclusively on binary probabilistic forecasts, collecting across a total 
of 31 questions. These questions were crowdsourced and written by 
forecasters (including one author of this paper). All questions were 
reviewed by Metaculus staff for quality before opening them up for 
forecasting. Each question included a question title, a background 
section detailing the context of the question being asked, and a reso-
lution passage that spelled out how the question would resolve. We 
drew on the same set of questions and used the publicly available 
human median predictions for each question as the human bench-
mark. For a full list of the questions, see table S1.

For every question, within 48 hours of the question opening, we 
queried each model three independent times and recorded their pre-
dictions at the default settings. We recorded both the quantitative 
forecast and the qualitative rationale for all entries. If a model was 
unresponsive because of a technical reason, then we attempted to col-
lect a forecast 24 hours after the first failed attempt. If a model failed 
to provide a forecast for non-technical reasons like model censorship 
or content restrictions after several attempts, then we did not reat-
tempt data collection and instead recorded the prediction as missing. 
For each question, we prompted each model three times and record-
ed all predictions. If a model only responded with “Yes” or “No” as 
their prediction, then we coded this as 99 and 1%, respectively, 
though we note that this happened in less than 1% of cases across 
models. For cases in which a model failed to provide a forecast for the 
second or third run after having provided a forecast before, we con-
tinued to query the model until all three forecasts were provided.

The prompt that we used for all models included instructions on 
how to format the output and a number of prompting techniques that 
included instructing the model to respond as a superforecaster, using 
a persona prompt, and approaching questions via a simple chain-of-
thought method. The central motivating factor for deciding on the 
prompt used in our experiment was not accuracy but the consistency 
of output across questions and models. The resulting prompt included 
detailed question background, resolution criteria, and question text as 
they were posed on the public forecasting tournament; see Box 1.

For every set of machine forecasts, we also recorded the publicly 
available median human crowd prediction at the end of the day that 
the machine forecast was entered. If the prediction was entered on 
the first day, then we collected the human crowd predictions at the 
end of the second day for which the question was open to allow for 
higher participation rates. This was done to ensure a fair compari-
son of machine and human forecasts. Many LLMs can recall the cur-
rent date, thus making timed forecasts of the nature studied here 
potentially sensitive to asynchronous queries, while also introduc-
ing bias with respect to the human crowd. For roughly half of the 
questions, the human forecasters were not able to see the human 
crowd forecast, though there was substantial heterogeneity when 
the community predictions were made available to human forecast-
ers. In 15 out of 31 questions, our data were collected before the 

revelation of the community prediction to the human forecasters. 
Note that this variation in community prediction revelation could 
not be directly controlled on our end, as this is a decision made by 
Metaculus based on question author specifications and judgments 
of public interest, where questions of high public interest have their 
community prediction revealed earlier than scheduled.

For the human forecasts, we took the publicly available median 
forecast for each question. For the LLM ensemble approach, we 
computed the median from all nonmissing forecasts on each ques-
tion. We also computed the median forecast on each question for 
each model, to enable cross-model comparisons. See Fig. 1 for an 
overview of our LLM ensemble approach.

Study 2
In Study 2, we focused exclusively on two frontier models, GPT-4 and 
Claude 2. For our study context, we used the same real-world forecast-
ing tournament as in Study 1, functioning as a source of questions and 
human forecasts. For Study 2, we used a within-model research design 
that collected two forecasts (pre- and postintervention) per model run 
for each question. Each question was posed three times at the standard 
temperature settings, resulting in six forecasts per model for each ques-
tion. Our goal was to investigate LLM updating behavior with respect to 
human cognitive output, i.e., whether and how LLMs take into account 
the human prediction estimates that forecasting tournament aggregates 
provide. We queried GPT-4 and Claude 2 via the OpenAI and An-
thropic websites, respectively.

Note that for Study 2, we had to wait until all relevant commu-
nity predictions were made publicly available. This means that com-
pared to Study 1, there was substantial heterogeneity with respect to 
timing and prompting, making accuracy comparisons between the 
two studies problematic. Hence, while Study 1 was our cleanest at-
tempt at measuring the LLM ensemble accuracy, Study 2 was pri-
marily designed as a measure of directional updating, as opposed to 
directly comparable accuracy differences.

Box 1. Full prompt Study 1.
In this chat, you are a superforecaster that has a strong track record of 
accurate forecasts of the future. As an experienced forecaster, you 
evaluate past data and trends carefully and aim to predict future events as 
accurately as you can, even though you cannot know the answer. This 
means you put probabilities on outcomes that you are uncertain about 
(ranging from 0 to 100%). You aim to provide as accurate predictions as 
you can, ensuring that they are consistent with how you predict the future 
to be. You also outline your reasons for this forecasting. In your reasons, 
you will carefully consider the reasons for and against your probability 
estimate, you will make use of comparison classes of similar events and 
probabilities and take into account base rates and past events as well as 
other forecasts and predictions. In your reasons, you will also consider 
different perspectives. Once you have written your reasons, ensure that 
they directly inform your forecast.Then, you will provide me with a 
number between 0 and 100 (up to two decimal places) that is your best 
prediction of the event. Take a deep breath and work on this problem step 
by step.
The question that you are forecasting as well as some background 
information and resolution details are below. Read them carefully before 
making your prediction.
﻿Background:﻿
﻿Resolution:﻿
Question:
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We used a substantially longer and more elaborate set of prompts 
than in Study 1. The first prompt built on the “10 commandments of 
superforecasting” (48) and the literature on forecasting and updat-
ing, instructing models to carefully distinguish different degrees of 
doubt, strike the correct balance between under- and overconfidence, 
and break difficult problems into subproblems that are easier to solve, 
among other instructions. The second prompt—the intervention—
informed the model of the respective human crowd’s median fore-
cast and asked it to update if necessary, as well as to outline the 
reasons for the update (if any). No additional information was pro-
vided, and both models could not access the internet. For the full 
text of both prompts, see Boxes 2 and 3, respectively.

For both prompts, we collected forecasts not as point estimates 
but as probability ranges between 0 and 100%, with two–decimal 
point specificity. For further analysis, we treat the midpoint of this 
range as the point estimate and the provided predictions as upper 
and lower estimates. The human crowd median provided to the 
models was collected within 48 hours of the community prediction 
being revealed, to allow human forecasters to learn about it and up-
date their forecasts accordingly. This generally led to more well-
calibrated predictions and as such, a more impactful intervention.

RESULTS
Study 1
We collected, across the 31 questions, a total of 1007 individual 
forecasts from the 12 LLMs that make up the ensemble. For 109 

forecasts that we did not collect, this was due to technical problems 
with the model or interface at the time of forecast collection—in the 
case of Falcon-180B and PaLM 2—or because other models selec-
tively chose not to answer certain questions, presumably due to their 
content restriction policies—this was sometimes the case for Coral 
(Command) and Qwen-7B-Chat. We also recorded some missing 
forecasts for Bard, which was due to the fact that the underlying 
model powering the interface was changed to Gemini Pro. To en-
sure consistency and allow comparisons between the different con-
texts of PaLM 2, we stopped collecting data at this point.

Across all models and questions, we observe a minimum raw 
forecast value of 0.1% and a maximum raw forecast value of 99.5%, 
with a median forecast of 60%. This indicates that the LLMs are 
more likely to make predictions above the 50% midpoint, with the 
mean forecast value of the crowd M = 57.35 (SD = 20.93) being 
significantly above the 50% mark, t(1006) = 86.20, P < 0.001. The 
total question set resolved close to evenly, with 14 out of 31 ques-
tions resolving positively. This imbalance thus suggests that LLM 
predictions generally favor positive resolutions above and beyond 
the appropriate empirical expectation, with just more than 45% of 
questions resolving positively. Such a bias toward more positive pre-
dictions may be a function of the machine equivalent of acquies-
cence bias (49), where human responders tend to favor the positive/
agreement option irrespective of question content (50). This is one 
aspect in which we observe human forecaster behavior in our 
machine predictions that may prove useful avenues for improve-
ments in accuracy going forward. See Fig. 2 for a violin plot of all 

Median forecast
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GPT-4 Claude 2 PaLM 2 Mistral-7B Falcon-180B .....
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Fig. 1. Overview of the LLM ensemble mechanism. 
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model forecasts across all questions that shows heterogeneity be-
tween models of forecast distribution, ranges, and acquiescence bias.

To assess forecasting accuracy, we use the strictly proper scoring 
rule (51) of Brier scores (52), a scoring metric that assesses the ac-
curacy of probabilistic predictions by taking the mean squared dif-
ference between the forecasted probability and the actual outcome. 
Because we are not interested in binary classifications or decisions, 
the Brier score’s ability not only to assess whether the outcome was 
correct in a binary setting but also to determine how accurate the 
probabilistic predictions were makes it the preferred measure of ac-
curacy. It is defined mathematically as

where fi is the forecasted probability for the instance, and oi is the 
actual outcome, which can be 0 or 1. A lower Brier score indicates 
higher accuracy, with 0 being the perfect accuracy score. A score of 
0.250 represents a typical benchmark that would be arrived at if all 
predictions were 50%.

Testing our first hypothesis as preregistered, we investigate wheth-
er the LLM crowd can outperform the simple baseline of assigning a 
50% prediction on every question, a baseline that GPT-4 was unable 
to beat in previous work (28). To arrive at the notion of aggregate 
forecast that will be used for this analysis and further analyses, we 
calculate the median LLM forecast across all models for every 
question. We then take these medians and average them across 
all questions. Next, we compare this average to a Brier score of 
0.25 (the result of predicting 50% on all questions). We can reject 
our null hypothesis, with the LLM crowd, M = 0.20 (SD = 0.12), 
being significantly more accurate than the benchmark, t(30) =−2.35, 
P = 0.026. This is evidence that crowd-aggregated LLM fore-
casts can improve upon basic benchmarks and provide valuable 
probabilistic predictions.

Next, we compare the LLM crowd’s performance to that of the 
human crowd for our second and most central hypothesis, directly 
putting the two crowd-aggregation mechanisms head-to-head. To 
do this, we use the same LLM-crowd average as before (taking the 
median LLM prediction on each question and averaging up the Brier 
scores across questions). We compare this to the average of the 
median human predictions on the same questions. More detailed 
distributional statistics are presented in table S2.

In our preregistered analysis, we fail to find statistically signifi-
cant differences between the LLM crowd’s mean Brier score of M = 
0.20 (SD = 0.12) and that of the human crowd, M = 0.19 (SD = 
0.19), t(60) = 0.19, P = 0.850. See Fig. 3 for a kernel density estimate 
of the LLM-crowd and human crowd forecasts.

This result only enables us to directly conclude that the LLM 
crowd is neither more nor less accurate than the human crowd in 
the question set studied here. To provide some evidence in favor 
of the equivalence of these two approaches, we conduct a non-
preregistered equivalence test with the conventional medium effect 
size of Cohen’s d  =  0.5 corresponding to the equivalence bounds 
(53), which allows us to test whether the effect is zero or less than a 
0.081 change in Brier scores. For these equivalence bounds, we find 
that the LLM crowd and the human crowd are equally accurate, with 

Brier Score =
(

fi−oi
)2

Box 2. Initial prompt for Study 2.
In this chat, you are a superforecaster who has a strong track record of 
accurate forecasting. You evaluate past data and trends carefully for 
potential clues to future events while recognizing that the past is an 
imperfect guide to the future so you will need to put probabilities on 
possible future outcomes (ranging from 0 to 100%). Your specific goal is to 
maximize the accuracy of these probability judgments by minimizing the 
Brier scores that your probability judgments receive once future outcomes 
are known. Brier scores have two key components: calibration (across all 
questions you answer, the probability estimates you assign to possible 
future outcomes should correspond as closely as possible to the objective 
frequency with which outcomes occur) and resolution (across all 
questions, aim to assign higher probabilities to events that occur than to 
events that do not occur).You outline your reasons for each forecast: list 
the strongest evidence and arguments for making lower or higher 
estimates and explain how you balance the evidence to make your own 
forecast. You begin this analytic process by looking for reference or 
comparison classes of similar events and grounding your initial estimates 
in base rates of occurrence (how often do events of this sort occur in situa-
tions that look like the present one?). You then adjust that initial estimate 
in response to the latest news and distinctive features of the present 
situation, recognizing not only the need for flexible adjustments but also 
the risks of overadjusting and excessive volatility. Superforecasting 
requires weighing the risks of opposing errors, e.g., failing to learn from 
useful historical patterns versus over- relying on misleading patterns. In 
this process of error balancing, you draw on the 10 commandments of 
superforecasting (Tetlock & Gardner, 2015) and on other peer- reviewed 
research on superforecasting:
 1. Triage.
 2. Break seemingly intractable problems into tractable subproblems.
 3. Strike the right balance between inside and outside views.
 4. Strike the right balance between under-  and overreacting to evidence.
 5. Look for the clashing causal forces at work in each problem.
 6. Strive to distinguish as many degrees of doubt as the problem permits 
but no more.
 7. Strike the right balance between under-  and overconfidence, between 
prudence and decisiveness.
 8. Look for the errors behind your mistakes but beware of rearview- mirror 
hindsight biases.
 9. Bring out the best in others and let others bring out the best in you.
 10. Master the error- balancing bicycle.
 Once you have written your reasons, ensure that they directly inform your 
forecast.
Then, you will provide me with your forecast which is a range between 
two numbers, each between 0 and 100 (up to two decimal places) that is 
your best range of prediction of the event. Output your prediction as “My 
Prediction: Between XX.XX% and YY.YY%”. Take a deep breath and work on 
this problem step by step.
The question that you are forecasting as well as some background 
information and resolution criteria are below. Read them carefully before 
making your prediction.
﻿Background:﻿
﻿Resolution Criteria:﻿
﻿Question:﻿

Box 3. Prediction intervention prompt for Study 2.
 You have made your forecast based on careful reasoning and analysis. 
Now, consider the following new piece of information: The median crowd 
prediction in the forecasting tournament where this question was posed 
was XXX%. Please adjust your reasoning and forecast based on this 
information, as you deem appropriate. The large research literature on the 
wisdom of the crowd suggests that it is difficult for any single forecaster to 
out- predict crowd medians or averages. However, there are occasions 
when the crowd has proven to be wrong. In considering whether/how 
much to revise your earlier forecast, keep in mind the theme of error 
balancing: the need to balance the risk of giving too little weight to the 
crowd judgment versus the risk of over- relying on the crowd. Please 
explain how you balanced these risks. Please also make this prediction be 
in the same format as before: “My Prediction: Between XX.XX% and YY.
YY%.”
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both tests for the lower bound, t(60) = 2.16, P = 0.017, and the up-
per bound, t(60) = −1.78, P = 0.040, being statistically significant. 
This provides evidence that the LLM crowd is as accurate as the hu-
man crowd within these bounds. However, it is important to note 
that bounds of 0.08 in Brier scores are wide, suggesting that we are 
unable to identify a narrow null effect in the results provided here.

For our third null hypothesis, we compare the forecasting accu-
racy of each model (and of the human crowd) against each other to 
find potential effects of internet access (GPT-4 versus GPT-4 with 
Bing) or access points (Bard with PaLM2 versus PaLM2). Using 
an analysis of variance, we find significant aggregate differences, 
F(12,354) = 2.64, P = 0.002, leading us to reject our third null hy-
pothesis. Using Tukey’s post hoc test to adjust for multiple compari-
sons in the post hoc pairwise tests, we find that Coral (Command) 
underperforms a set of models (e.g., Claude 2 and GPT-4) as well as 
the human crowd. However, we fail to find statistically significant ef-
fects between any other pairs not involving Coral (Command), thus 
being unable to provide evidence in favor of or against potential ef-
fects of internet access, access points, or fine-tuning on prediction 
accuracy. See Fig. 4 for raincloud plots of the LLMs’ Brier scores as 
well as those of the human crowd. Also, see Table 2 for the models’ 
average Brier scores, where we find that the aggregate’s Brier score of 
0.20 is numerically lower than 9 out of the 12 individual models. 
However, this difference is not statistically significant after adjust-
ments; see table S3. In further non-preregistered analyses, we pro-
vide a conservative test of the “wisdom of the silicon crowd,” 

comparing all forecasts of the ensemble medians (of model medi-
ans) with the model predictions. We find that for 19 out of 31 ques-
tions, the ensemble median is above the 50th percentile, and in eight 
cases, it is at the 50th percentile; see table S4.

For all three hypotheses, we implemented the Benjamini-Hochberg 
(BH) procedure to adjust the P values obtained from multiple hy-
pothesis tests. This method was selected to control the false discov-
ery rate (FDR) and thereby reduce the risk of type I errors. The 
original P values for null hypotheses 1, 2, and 3 were 0.026, 0.850, 
and 0.002, respectively. These P values were first sorted in ascending 
order and then ranked accordingly. The adjusted P values were com-
puted using the BH procedure, which calculates the adjusted P value 
for the ith hypothesis as min{1,

pi ×m

i
}, where pi is the ith P value in 

the sorted list, m is the total number of hypotheses tested, and i is 
the rank of the P value. The results show that the adjusted P values 
for the hypotheses were 0.039 for the first hypothesis (original 
P = 0.026), 0.850 for the second hypothesis (original P = 0.850), and 
0.006 for the third hypothesis (original P = 0.002). These results in-
dicate that our rejections of the first and third null hypotheses re-
main robust after adjusting for multiple comparisons.

For further non-preregistered analyses, we conduct calibration 
analyses using the Murphy decomposition (54, 55) to provide data 
on how well-calibrated the models are in this context, i.e., how reli-
ably their probability estimates match the fraction of real outcomes. 
In Fig. 5, calibration curves for each model and their aggregate are 
plotted against the ideal 45° dotted line. This dotted line represents 

Violin plot of all model forecasts

Fig. 2. Violin plot of all LLM predictions across all questions. 
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perfect calibration, where predicted probabilities match observed 
frequencies. Deviations from this line indicate calibration errors: 
Curves above the line suggest underconfidence (predicting events as 
less likely than they actually are), while those below indicate over-
confidence (predicting events as more likely than they actually are). 
Figure 5 visually represents how closely the models’ predictions 
align with actual outcomes. We also calculate the calibration index 
(CI) which quantifies this deviation, with lower values indicating 
better calibration. CI is calculated using the formula

where N is the total number of forecasts, K is the number of bins, 
Nk is the number of forecasts in bin k, fk is the mean forecast prob-
ability in bin k, and ok is the observed relative frequency in bin k. 
This weights each bin’s contribution to the CI by the number of 
forecasts it contains. This approach ensures that bins with more 

CI =
1

N

K
∑

k=1

Nk

(

fk−ok
)2

Fig. 3. Kernel density estimate of the LLM-crowd and human-crowd forecasts (averaged median scores over all questions). Vertical dotted black line represents the 
50% baseline.

Table 2. Average Brier score for each model. 

Model Accuracy SD

 GPT- 4 0.15 0.11

 GPT- 4 (with Bing) 0.16 0.11

 Bard (PaLM 2) 0.19 0.17

 Falcon- 180B 0.21 0.13

Claude 2 0.21 0.16

 Solar- 0- 70B 0.22 0.16

 PaLM 2 (Chat- Bison@002) 0.23 0.15

 Mistral- 7B-Instruct 0.24 0.16

 Qwen- 7B-Chat 0.24 0.17

 GPT3.5-Turbo-Instruct 0.25 0.20

Llama- 2- 70B 0.25 0.16

Coral (Command) 0.38 0.40

Human 0.19 0.19
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forecasts, which provide a more statistically reliable estimate of 
forecasting accuracy, have a proportionately greater impact on the 
overall CI.

Our results demonstrate poor calibration of most models and 
overconfidence of the aggregate, suggesting that models overpredict 
outcomes compared to their actual rate of occurrence; see Fig. 5. 

This is in line with the finding that we find an acquiescence bias of 
LLMs on a question set where less than half of questions resolve 
positively, which is again an effect found in human forecasters as 
well. We also find generally poor calibration across all models, with 
some substantial differences in the CI scores; see Table 3. This sug-
gests that a further line of research may build upon improving 

Fig. 4. Raincloud plots of Brier scores for each LLM and for the human crowd. 
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models’ calibration, in an attempt to improve machine prediction 
capabilities and reliability further.

In additional non-preregistered analyses, we also look at poten-
tial patterns of accuracy between distinct types of questions. In table 
S5, we list the LLM crowd’s accuracy on each individual question, 
splitting questions into different types of topics. While the sample of 
questions is very low and should be interpreted with great caution, 
we report the following mean accuracy scores for each topic: Law: 
0.100 (n = 3), Literature: 0.120 (n = 1), Economics: 0.143 (n = 4), 
Conflict: 0.171 (n = 7), Technology: 0.173 (n = 3), Politics: 0.237 
(n = 9), Climate: 0.303 (n = 3), and Education: 0.360 (n = 1). The 
low number of questions makes rigorous analysis testing for the dif-
ference in accuracy between topic areas not possible.

Furthermore, we also report the following additional observa-
tions pertaining to our collected data. First, similar to the presence 
of acquiescence bias discussed above, we also find that model pre-
dictions are substantially more likely to be on round numbers than 
adjacent numbers. For example, across all questions and all models, 
a total of 38 predictions were entered for 50%, but no predictions 
were given for 49 or 51%; see table S6. This is an unexpected com-
monality between human response patterns and model outputs that 
is in line with the literature on how LLM outputs mirror a number 
of human biases (56–58). These data suggest that some of the model 
outputs might be subject to similar biases that reduce prediction ac-
curacy in humans, hinting at a potential point of improvement for 
future iterations aimed at increasing model accuracy.

Study 2
For Study 2, we collected a total of 186 primary forecasts and 186 
updated forecasts from both frontier models (GPT-4 and Claude 2) 
over the 31 binary questions studied. Neither model refused to pro-
vide a forecast or failed to respond to our queries.

First, we test whether exposure to the human crowd median im-
proves model accuracy. We can reject the first null hypothesis of 
Study 2 for both models: For GPT-4, there is a statistically signifi-
cant difference in Brier scores before and after exposure to the hu-
man median, with an average Brier score for the primary forecast of 
0.17 (SD: 0.13) and an updated score of 0.14 (SD: 0.11), P = 0.003. 
For Claude 2, we also find a statistically significant difference in 
Brier scores before and after exposure to the human median, im-
proving from 0.22 (SD: 0.19) to 0.15 (SD: 0.14), P < 0.001. This sug-
gests that the provision of human cognition in the form of crowd 
forecasts can improve model prediction capabilities.

We also find that when testing our second hypothesis, the size 
of the prediction interval narrows after exposure to human crowd 
predictions that lie within the probability range provided by the 
model, as would be predicted by theory. The prediction intervals 
for GPT-4 become significantly narrower after exposure to the 
human median, ranging from an average interval size of 17.75 
(SD: 5.66) to 14.22 (SD: 5.97), P < 0.001. The prediction intervals 
for Claude 2 also become significantly narrower after exposure to 
the human median forecast, narrowing from 11.67 (SD: 4.201) 
to 8.28 (SD: 3.63), P < 0.001. This suggests that the models 

Fig. 5. Calibration plot for the LLM aggregate (bolded) and for each comprising LLM (nonbolded). 
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appropriately reduce their prediction uncertainty due to their in-
corporation of the additional information contained in the human 
forecasts. See Fig. 6 for a graphical illustration of LLM forecasts 
for each of the two models tested, before and after exposure to the 
human forecasts.

Last, with respect to our third hypothesis, we analyze whether 
LLMs’ updates are proportional to the distance between their point 
forecast and that of the human benchmark. We can reject our null 
hypothesis for both models, finding a significant correlation between 
the initial deviation and the magnitude of forecast adjustment for 
GPT-4, r = 0.88, P < 0.001; as well as for Claude 2, r = 0.87, P < 0.001. 
This suggests that models move their predictions roughly in accor-
dance with how distant their prediction is from the human median.

As in Study 1, we use the BH procedure for controlling multiple 
comparisons, given our three hypotheses each tested for each mod-
el, resulting in six tests. The original P values were 0.001, 0.001, 
0.001, 0.001, 0.001, and 0.003. After applying the BH adjustment, 
the P values were 0.006, 0.006, 0.006, 0.006, 0.006, and 0.003, all of 
which were below the 0.05 FDR threshold. This indicates that post-
adjustment, all tests’ results remained statistically significant.

We also conduct the following exploratory analysis. Instead of 
comparing the LLM forecast after having been exposed to the 
human median to the LLM forecast before this exposure as pre-
registered, we compare this updated prediction to a simple aver-
age of the machine and human predictions as a naive benchmark 
using straightforward aggregation. This allows us to test whether the 

Table 3. Calibration index values for all LLMs. 

Model Calibration index

 Falcon- 180B 0.027

 Qwen- 7B-Chat 0.055

 PaLM 2 (Chat- Bison@002) 0.068

 Bard (PaLM 2) 0.071

Llama- 2- 70B 0.071

 GPT- 4 0.075

 Mistral- 7B-Instruct 0.080

 Solar- 0- 70B 0.081

Claude 2 0.082

 GPT- 4 (with Bing) 0.088

 GPT3.5-Turbo-Instruct 0.106

Coral (Command) 0.212

 Aggregate 0.041

Fig. 6. LLM forecasts for GPT-4 (left) and Claude 2 (right) before and after exposure to the human forecast. Colors distinguish first forecasts above, below, or within 
20 percentage points of the human median forecast. Highlighted changes and intervals are of the respective median forecast within that group.
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improvements the models make are due to genuinely understanding 
the need to appropriately update, as opposed to just providing an 
agreement-focused response. We find in paired t tests that for both 
GPT-4, at a Brier score of 0.13, t(92) = 2.583, P = .011; and Claude 
2, at a Brier score of 0.14, t(92) = 3.530, P = .001; their updated fore-
casts are significantly less accurate than a simple average between the 
machine and the human median forecasts, which have an average 
Brier score of 0.12. This suggests that the updating itself is direction-
ally correct but fails to improve upon a simple benchmark. In addi-
tion, recall that data collection for Study 2 was less controlled than 
for Study 1, as community median predictions for the tournament 
data were released at different points in time. Thus, comparisons of 
baseline accuracy between the two studies are not straightforwardly 
possible. On top of that, there were also differences in information 
present to the human forecasters, as well as differences in LLM 
prompts that further make any such comparison difficult.

DISCUSSION
Our results show that LLM ensemble prediction capabilities can ri-
val the gold standard of the human crowd tournament method. Pre-
vious results on single models (28, 46) showed that LLMs not only 
underperformed compared to a human crowd in a probabilistic 
forecasting context but also failed to clear simple benchmarks. Oth-
ers (59) found mixed results where—in the context of time-series 
forecasting—LLMs overperformed or underperformed relative to 
humans depending on the treatment condition; for more applica-
tions of LLMs in time-series forecasting, see (60–62). However, tak-
ing into account more sophisticated systems built on top of LLMs, 
such as combined retrieval and reasoning systems (46), human-level 
prediction accuracy may already be considered matched in some 
aspects. The approach presented here, a wisdom of the silicon crowd 
ensemble approach with LLMs, may be productively exploited in a 
variety of real-world contexts, as this aggregation approach remains 
simple to implement. Our finding opens the door for straightforward, 
practically applicable steps like forecast aggregation to increase 
current AI models’ forecasting ability—to predict future events in 
politics, economics, technology, and other real-world subjects—to a 
level that is statistically indistinguishable from the human crowd. 
This opens up a lot of directly applied work, given that LLM predic-
tion capabilities can inform decision-makers and businesses in cir-
cumstances where accurate probabilistic forecasts are difficult or 
expensive to acquire. Furthermore, since both our finding and the 
finding of Halawi et al. (46) suggest that placing individual LLMs in 
advanced systems can increase their forecasting ability to a market-
competitive level, it is natural to expect LLM predictions to be more 
widely applied across society in the near future.

We find a variety of human-like biases and prediction behaviors 
in our sample of LLMs. For example, we observe the presence of an 
acquiescence bias (49, 50) in model predictions, in that our models’ 
predictions are more likely to be above 50%, despite the resolution 
rate of all questions being almost even. In addition, the model pre-
dictions also strongly favor round numbers like lay human forecast-
ers often do. This suggests a potential avenue for further prediction 
capability improvements, as many of these human-like features are 
unlikely to be optimal and may be reducible via targeted prompting.

Moreover, we find that both the aggregate and the individual mod-
els were badly calibrated, with most models showing overconfidence, 
i.e., they assign higher probabilities to outcomes than is warranted by 

the empirical facts. Improving calibration is central to providing reli-
able predictions over the long run (63), and our results of acquies-
cence bias suggest that this may be an actionable area for future work 
focusing on improving model-level prediction capabilities.

In addition, even though it was not our primary research question, 
we were not able to provide evidence that the LLM aggregate outper-
formed the set of individual models that comprise it after adjusting 
for multiple comparisons, which may be explained by the compara-
tively low sample size that makes detection of smaller effects difficult. 
For more details on these limitations, the reader is directed to the 
“Limitations” section in Discussion, which contains a discussion of 
the design trade-offs. Qualitatively, though, we do find that the LLM 
aggregate has a numerically lower Brier score compared to 9 out of 
the 12 models. This provides some evidence in favor of the wisdom of 
the silicon crowd, though note that these comparisons are not statisti-
cally significant after adjustments. Similarly, our finding that the LLM 
crowd median (which is a median of the model medians) has a per-
centile rank of more than 50% on 61% of questions might also be evi-
dence of a wisdom of the silicon crowd effect, though note again that 
this analysis was not preregistered. Future preregistered research may 
directly pick up the question of how many models are needed, what 
type of diversity is beneficial, and whether this can be simulated by a 
single larger model with higher temperatures.

In practical terms, a central upside of this LLM ensemble 
approach—compared to the human counterpart—is its ease of im-
plementation. Running forecasting tournaments is an expensive and 
time-consuming process that relies on the presence of experienced 
and interested human forecasters. Running our ensemble approach 
is substantially cheaper. Depending on the number of queries, the 
total model count, and the token size of the input, the cost may be in 
the area of $1 per forecast. However, there are some unique chal-
lenges with LLM forecast elicitation that are generally not found in 
human forecasting tournaments. For example, we found that Aliba-
ba Cloud’s Qwen-7B-Chat was substantially more likely to refuse 
forecasting on potentially controversial questions like conflict. While 
it does not seem likely that model behavior like this will be wide-
spread, content restrictions like this may reduce diversity in a way 
that is not present in human forecasters who generally hold a quite 
heterogeneous set of views. However, LLM ensemble prediction ap-
proaches remain a scalable solution that may be applied in a variety 
of practical settings.

Our results from Study 2 that pertain to LLM updating behavior 
contribute to the broad literature on human-AI interactions (64, 65). 
While previous work in the context of forecasting has looked at how 
LLMs can augment humans in improving prediction accuracy (29), 
this paper provides evidence for the reverse. Specifically, our results 
show that machine predictions can be improved substantially by the 
provision of human cognition output drawn from forecasting tour-
naments. This finding suggests, at first glance, that LLM reasoning 
is already advanced enough to properly exploit the informational 
value provided by human cognition output. However, our explor-
atory analyses find that this process is substantially less effective 
than simply averaging the two estimates, suggesting that single 
human-AI methods based on the reasoning capabilities of frontier 
models (in this case, GPT-4 and Claude 2) still underperform sim-
ple aggregations.

On the other hand, our findings that both frontier models (GPT-
4 and Claude 2) respond as expected in their forecast updates—
reducing their uncertainty when the human estimate lies within 
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their prediction intervals, and updating in relation to the distance 
between their own point estimate and the human forecasts—match 
past theory and results pertaining to human forecasters (66). This 
overall suggests that the ability of these models to reason and act 
as expected—by past theory and results pertaining to human 
forecasters—depends on the type of task and benchmark applied. 
While this is not a massively strict test of their reasoning abilities—
as alternative explanations of model behavior being explained by 
simple expectation-fulfilling remain—it does provide some evi-
dence of such reasoning abilities.

Both studies reported in this paper test LLM capabilities in a 
context where it is not possible that any of the answers used to re-
solve the questions were part of the training data, as we queried the 
models in real-time alongside the human tournament. Because the 
correct answers to the questions were unknown at the time of data 
collection—even to the study authors—this provides an ideal 
evaluation criterion for LLM capabilities: one at which our LLM 
ensemble approach beat the naive baseline and was indistinguish-
able from the human crowd gold standard. This raises a host of 
additional research avenues and practical applications for LLM-
powered prediction.

In conclusion, the present paper is among the first to show that 
current LLMs are not statistically different from human crowd com-
petitive level of performance in forecasting future real-world events. 
We show this by applying the simple, practically applicable method 
of forecast aggregation. This replicates the human forecasting tour-
nament’s wisdom of the crowd effect for LLMs: a phenomenon we 
call the wisdom of the silicon crowd. Our finding opens up a num-
ber of areas for further research as well as practical applications 
since the LLM ensemble approach is substantially cheaper and faster 
than data collection from human forecasters. Future research may 
aim to combine the ensemble approach with model and scaffolding 
progress, which may potentially result in even stronger capability 
gains in the domain of judgemental forecasting.

Limitations
We want to explicitly point out a central limitation of our paper’s 
methods that we chose as part of our design. The main design 
trade-off was choosing between real-time forecasts and forecasts 
that resolved after the models’ knowledge cutoff and the present. 
We chose the former to accommodate real-time human forecasts 
as a comparison group, to avoid concerns like lookahead bias 
(67), to ensure that uncertainty about actual knowledge cutoff 
does not affect results, to have a high level of external validity, and 
to enable internet-connected models to participate. However, 
this approach brought with it a substantially smaller set of ques-
tions to be studied than might have been possible had we chosen 
the alternative approach to question selection. While we believe 
that our approach is, in general, a more stringent test of machine 
prediction capabilities, the lower sample size of questions (aggre-
gated to one ensemble prediction per question) is a substantial 
limitation of our results, potentially making identification of 
small effects (such as differences between the aggregate and the 
individual models) difficult.
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