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ABSTRACT
We propose a two-step procedure to model and predict high-dimensional functional time series, where
the number of function-valued time series p is large in relation to the length of time series n. Our first step
performs an eigenanalysis of a positive definite matrix, which leads to a one-to-one linear transformation
for the original high-dimensional functional time series, and the transformed curve series can be segmented
into several groups such that any two subseries from any two different groups are uncorrelated both con-
temporaneously and serially. Consequently in our second step those groups are handled separately without
the information loss on the overall linear dynamic structure. The second step is devoted to establishing
a finite-dimensional dynamical structure for all the transformed functional time series within each group.
Furthermore the finite-dimensional structure is represented by that of a vector time series. Modeling and
forecasting for the original high-dimensional functional time series are realized via those for the vector time
series in all the groups. We investigate the theoretical properties of our proposed methods, and illustrate
the finite-sample performance through both extensive simulation and two real datasets. Supplementary
materials for this article are available online, including a standardized description of the materials available
for reproducing the work.
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1. Introduction

Functional time series typically refers to continuous-time
records that are naturally divided into consecutive time inter-
vals, such as days, months or years. With recent advances in data
collection technology, multivariate or even high-dimensional
functional time series arise ubiquitously in many applications,
including daily pollution concentration curves over differ-
ent locations, annual temperature curves at different stations,
annual age-specific mortality rates for different countries, and
intraday energy consumption trajectories from different house-
holds. Those data can be represented as a p-dimensional func-
tional time series Yt(u) = {Yt1(u), . . . , Ytp(u)}� defined on a
compact set u ∈ U , and we observe Yt(·) for t = 1, . . . , n. In this
article we tackle the high-dimensional settings when the dimen-
sion p is comparable to, or even greater than, the sample size n,
which poses new challenges in modeling and forecasting Yt(·).

By assuming Yt(·) is stationary, a conventional approach
is first to extract features by performing dimension reduction
for each component series Ytj(·) separately via, for example
functional principal component analysis (FPCA) or dynamic
FPCA (Bathia, Yao, and Ziegelmann 2010; Hörmann, Kidziński,
and Hallin 2015), and then to model p vector time series by,
for example, regularized vector autoregressions (Guo and Qiao
2023) or factor model (Gao, Shang, and Yang 2019). However,
more effective dimension-reduction can be achieved by pulling
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together the information from different component series in
the first place. This is in the same spirit of multivariate FPCA
(Chiou, Chen, and Yang 2014; Happ and Greven 2018) and
sparse FPCA (Hu and Yao 2022), though those approaches make
no use of the information on the serial dependence which is the
most relevant for future prediction.

To achieve more effective dimension reduction and better
predictive performance, we propose in this article a two-step
approach. Our first step is a segmentation transformation step in
which we seek for a linear transformation Yt(·) = AZt(·), where
A is a p×p invertible constant matrix, such that the transformed
series Zt(·) = {Z(1)

t (·)�, . . . , Z(q)
t (·)�}� can be segmented into q

groups Z(1)
t (·), . . . , Z(q)

t (·), and curve subseries Z(i)
t (·) and Z(j)

t (·)
are uncorrelated at all time lags for any i �= j, that is,

cov{Z(i)
t (u), Z(j)

t+k(v)} = 0 , (u, v) ∈ U2 and
k = 0, ±1, ±2, . . . .

Hence, each Z(i)
t can be modeled and forecasted separately as

far as the linear dynamics is concerned. Under the stationarity
assumption, the estimation of the transformation matrix A boils
down to the eigenanalysis of a positive definite matrix defined
by the double integral of quadratic forms in the autocovariance
functions of Yt(·). An additional permutation on the compo-
nents of Zt(·) will be specified in order to identify the latent
group structure.
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Our second step is to identify a finite-dimensional dynamic
structure for each transformed subseries Z(l)

t (·) separately,
which is based on a latent decomposition

Z(l)
t (u) = X(l)

t (u) + ε
(l)
t (u) , u ∈ U , (1)

where X(l)
t (·) represents the dynamics of Z(l)

t (·), ε
(l)
t (·) is white

noise with E{ε(l)
t (u)} = 0 and E{ε(l)

t (u)ε
(l)
s (v)�} = 0 for any

(u, v) ∈ U2 and t �= s, and {X(l)
t (·)}n

t=1 are uncorrelated with
{ε(l)

t (·)}n
t=1. Furthermore we assume that the dynamic structure

of X(l)
t (·) admits a vector time series presentation via a varia-

tional multivariate FPCA. For given {Z(l)
t (·)}n

t=1, the standard
multivariate FPCA performs dimension reduction based on the
eigenanalysis of the sample covariance function of Z(l)

t (·), which
cannot be used to identify the finite-dimensional dynamic struc-
ture of X(l)

t (·) due to the contamination of ε
(l)
t (·). Inspired by

the fact that the lag-k (k �= 0) autocovariance function of Z(l)
t (·)

automatically filters out the white noise, our variational multi-
variate FPCA is based on the eigenanalysis of a positive-definite
matrix defined in terms of its nonzero lagged autocovariance
functions; leading to a low-dimensional vector time series which
bears all the dynamic structure of X(l)

t (·), and consequently, also
that of Z(l)

t (·). This is possible as the number of components
in each Z(l)

t (·) is usually small in practice. Finally, owing to the
one-to-one linear transformation in the segmentation step, the
good predictive performance of Zt(·) can be easily carried back
to Yt(·).

Our article makes useful contributions on multiple fronts.
First, the segmentation transformation in the first step trans-
forms the serial correlations across different series into the auto-
correlations within each of the identified q subseries. This not
only avoids the direct modeling of the p functional time series
together, but also makes each of those transformed subseries
more serially correlated and, hence, more predictable. As the
serial correlations across different series are valuable for future
prediction, the segmentation provides an effective way to use
the information. Note that the prediction directly based on a
multivariate ARMA-type model with even a moderately large
dimension is not recommendable, as the gain from using the
autocorrelations across different component series is often can-
celed off by the errors in estimating too many parameters. Fur-
thermore, even in the special case with q = 1, our decorrelation
transformation can effectively push the cross-autocorrelations
that are previously spread over p components into a block-
diagonally dominate structure, where the cross-autocorrelations
along the block diagonal are significantly stronger than those off
the diagonal. This still leads to reasonably good segmentation by
retaining the strong within-group cross-autocorrelations while
ignoring the weak between-group cross-autocorrelations and, as
evidenced by simulations in Section 5.3, results in more accurate
future predictions than those based on models without transfor-
mation. Therefore, the proposed transformation can always be
used as an initial step in modeling high-dimensional functional
time series.

Second, though the segmentation transformation is moti-
vated from the decorrelation idea of Chang, Guo, and Yao (2018)
for vector time series, its adaption to the functional setting intro-
duces additional methodological and theoretical complexities

and requires innovative advancements in both methodology
and theory due to the intrinsic infinite-dimensionality of func-
tional data. A simple extension of Chang, Guo, and Yao (2018)
would be to apply their method to the p-dimensional vector
Yt(u) on each evaluation grid value u followed by aggregation,
which fails to account for the smoothness and continuity of the
functional nature of observed data. In contrast, our proposal
on Yt(·) implements novel integral-based normalization and
uses double integral over (u, v) ∈ U2 to fully leverage the
autocovariance information, thus, leading to more efficient esti-
mation. Moreover, when performing permutation on the com-
ponents of the transformed series, our method relies on Hilbert–
Schmidt norm to measure the magnitude of bivariate functions,
which introduces extra theoretical complexities compared to the
absolute value measure used in Chang, Guo, and Yao (2018).
Finally, we develop a novel functional thresholding procedure,
which guarantees the consistency of our estimation under high-
dimensional scaling. Its theoretical analysis involves establishing
novel inequalities between functional versions of matrix norms.

Third, the nonzero lagged autocovariance-based dimension
reduction approach in the second step makes the good use of
the serial dependence information in our estimation, which is
most relevant in time series prediction. On the method side, our
proposed variational multivariate FPCA extends the univariate
method of Bathia, Yao, and Ziegelmann (2010) by incorporating
the cross-autocovariance. This extension addresses a crucial gap
in dimension-reduction techniques, enabling us to accommo-
date multivariate functional time series. Importantly, when p is
fixed or moderately large, such method can be directly applied
to the observed curve series Yt(·) for dimension reduction and
forecasting purposes. On the theory side, we demonstrate that
our proposal exhibits appealing convergence properties despite
the additional transformation and estimation errors arisen from
the first step, which are not involved in Bathia, Yao, and Ziegel-
mann (2010). By comparison, standard (multivariate) FPCA
methods under (1) suffer from inconsistent estimation and less
efficient dimension reduction.

Existing research on functional time series has mainly
focused on adapting the univariate or low-dimensional mul-
tivariate time series methods to the functional domain. An
incomplete list of the relevant references includes Bathia, Yao,
and Ziegelmann (2010), Cho et al. (2013), Aue, Norinho, and
Hörmann (2015), Hörmann, Kidziński, and Hallin (2015), Aue,
Rice, and Sonmez (2018) and Li, Robinson, and Shang (2020).
Following the recent emergence of high-dimensional functional
time series data, there has been a wave of significant advance-
ments aimed at addressing its complexities. Notable develop-
ments include functional factor models (Gao, Shang, and Yang
2019; Tavakoli, Nisol, and Hallin 2023), functional dependence
analysis (Guo and Qiao 2023), functional clustering (Tang,
Shang, and Yang 2022), statistical inference for mean functions
(Zhou and Dette 2023), sparse vector functional autoregressions
(Chang et al. 2024), and graphical PCA (Tan et al. in press).

The rest of the article is organized as follows. In Section 2,
we develop the methods employed in the first step, that is the
segmentation transformation, the permutation and the func-
tional thresholding. Section 3 specifies the variational multi-
variate FPCA method used in the second dimension reduction
step. We investigate the associated theoretical properties of the
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proposed methods in Section 4. The finite-sample performance
of our methods is examined through extensive simulations in
Section 5. Section 6 applies our proposal to two real datasets,
revealing its superior predictive performance over most fre-
quently used competitors.

Notation. Denote by I(·) the indicator function. For a positive
integer m, write [m] = {1, . . . , m} and denote by Im the identity
matrix of size m × m. For x, y ∈ R, we use x ∨ y = max(x, y).
For two positive sequences {an} and {bn}, we write an � bn or
bn � an if lim supn→∞ an/bn = 0. For a p × q real matrix E,
denote by E� its transpose, and write E⊗2 = EE� and ‖E‖2 =
λ

1/2
max(E�E), where λmax(M) denotes the largest eigenvalue of the

matrix M. Let L2(U) be the Hilbert space of square integrable
functions defined on U and equipped with the inner product
〈f , g〉 = ∫

U f (u)g(u) du for f , g ∈ L2(U) and the induced norm
‖ · ‖ = 〈·, ·〉1/2. For any B in S ≡ L2(U × U), we denote the
Hilbert–Schmidt norm by ‖B‖S = {∫U ∫

U B2(u, v) dudv}1/2.

2. Segmentation Transformation

2.1. Linear Decomposition of Yt(u)

We consider the following linear decomposition of Yt(u):

Yt(u) = AZt(u) = A1Z(1)
t (u)+· · ·+AqZ(q)

t (u) , u ∈ U , (2)

where q ∈ [p] is an unknown positive integer, A =
(A1, . . . , Aq) is a p × p unknown loading matrix, and Zt(u) =
{Z(1)

t (u)�, . . . Z(q)
t (u)�}� is a latent p-dimensional functional

time series such that cov{Z(l)
t (u), Z(l′)

s (v)} = 0 for all t, s ∈ [n],
l �= l′ and (u, v) ∈ U2. Such linear decomposition possesses
three key properties:

• For any p-dimensional functional time series Yt(u), its linear
decomposition (2) always exists by setting q = 1 and choos-
ing (A, Zt(u)) = (H, H−1Yt(u)) for some invertible matrix
H.

• The linear decomposition (2) is not uniquely determined.
Alternative segmentations of Zt(u) can be obtained by merg-
ing multiple uncorrelated groups into a single group.

• For a given segmentation, Al for l ∈ [q] cannot be uniquely
identified, as within-group rotations will not distort the
uncorrelated group structure. In fact, only the linear spaces
spanned by the columns of Al, denoted by C(Al), l ∈ [q], are
uniquely defined.

Our goal is then to find a linear decomposition (2) for Yt(·),
where each group Z(l)

t (·) for l ∈ [q] cannot be further divided
into smaller uncorrelated subgroups. This allows us to model
each Z(l)

t (·) separately, as there are no cross-correlations among
them at all time lags. We formalize the inseparability for each
Z(l)

t (·) as Condition 4 in Section 4, which in turn defines the
number of groups q and the segmentation of Zt(·) in (2). In
Section 2.2, we will present the estimation of the number of
groups q, the linear spaces C(Al) and the associated transformed
subseries Z(l)

t (·) of group size pl for l ∈ [q]. Before that, let us
first illustrate the validity and benefit of the linear decomposition
(2), that is segmentation transformation, in predicting multi-
variate functional time series with a real-life example. As we will

demonstrate, such a decomposition (2) is commonly achieved
with a relatively large q in practice. This effectively reduces the
modeling burden while retaining the full linear dynamics of
the original curve series Yt(·), thus, leading to more accurate
predictions.

Example 1. We consider the global age-specific mortality dataset
analyzed in Tang, Shang, and Yang (2022). To simplify the
presentation, we examine only the female mortality curve series
Yt(·) with p = 8 randomly selected countries (Australia,
Canada, Switzerland, Denmark, Finland, Great Britain, Japan
and Portugal) and the transformed curve series Zt(·) in (2),
which are obtained by the proposed method in Section 2.2. Let

σ̂y,k,ij(u, v) = 1
n − k

n−k∑
t=1

{Yti(u) − Ȳi(u)}{Y(t+k)j(v) − Ȳj(v)}

with Ȳi(u) = n−1 ∑n
t=1 Yti(u). We use

�̂y,k,ij = ‖σ̂y,k,ij‖S
{∫ σ̂ 2

y,0,ii(u, u) du
∫

σ̂ 2
y,0,jj(u, u) du}1/2 ,

as proposed by Rice and Shum (2019), to measure the functional
cross-autocorrelation between Yti(·) and Ytj(·) at lag k. Figure 1
displays �̂y,k,ij and �̂z,k,ij for −5 ≤ k ≤ 5, where �̂z,k,ij is
defined by substituting each Yti(·) in �̂y,k,ij with Zti(·). It is
evident that the transformation effectively channels the strong
cross-autocorrelations over different time lags among all 8 coun-
tries into significant autocorrelations within each of the six
groups of Zt(·), that is, {1, 2, 3}, {4}, {5}, {6}, {7}, and {8}, while
the cross-autocorrelations among these six groups are identified
as weak and statistically insignificant across all time lags at the
5% significance level.

We then implement two prediction methods on Yt(·) and
Zt(·), respectively, to demonstrate that forecasting Yt(·) through
the forecasting of the transformed series Zt(·) can yield
more accurate predictive performance than directly forecasting
Yt(·):

• (Joint prediction) We treat the p components of Yt(·) as
one group and perform the Variational-multivariate-FPCA-
and-VAR-based procedure (VmV), that is Step (ii) of our
proposed Algorithm 1 in Section 5.1, on Yt(·) directly. Based
on the identified group structure by Figure 1, we implement
SegV on Zt(·), which performs VmV on each of the six groups
of Zt(·) separately.

• (Marginal prediction) We implement UniV and Uni.SegV,
which respectively perform VmV on each component of Yt(·)
and Zt(·) separately.

Note that the difference in each prediction method comes
solely from the transformation. See details of these methods
in Sections 5 and 6. Table 1 reports one-step ahead mean
absolute prediction errors (MAPE) and mean squared predic-
tion errors (MSPE) defined as (34) in Section 6, with a test
size of 15. As expected, methods that employ the transfor-
mation, namely SegV and Uni.SegV, significantly outperform
their counterparts VmV and UniV without any transforma-
tion. This highlights the benefit of integrating the transforma-
tion as an initial step in modeling multivariate functional time
series.
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Figure 1. Functional cross-autocorrelation of mortality (original and transformed) curve series versus size 0.95 upper confidence bound (blue dotted line).



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 5

Table 1. MAPEs and MSPEs for four competing methods on the female mortality
curves.

Method SegV VmV Uni.SegV UniV

MAPE 1.205 1.890 1.454 1.765
MSPE 0.296 0.662 0.386 0.616

NOTE: All numbers are multiplied by 10. The lowest values are in bold font.

2.2. Estimation Procedure

We now consider how to find the segmentation transforma-
tion under (2). Assume that maxi∈[p]

∫
U E{Z2

ti(u)} du = O(1).
Define �y,k(u, v) = cov{Yt(u), Yt+k(v)} and �z,k(u, v) =
cov{Zt(u), Zt+k(v)}. Without loss of generality, we focus on the
orthogonal transformations only, that is, A�A = AA� = Ip,
as we can replace (Yt , Zt) in (2) by (V−1/2

y Yt , V−1/2
z Zt) with

Vy = ∫
U�y,0(u, u) du and Vz = ∫

U�z,0(u, u) du. Then A is
replaced by V−1/2

y AV1/2
z which is an orthogonal matrix as

Ip =
∫
U

var{V−1/2
y Yt(u)} du =

∫
U

var{V−1/2
z Zt(u)} du . (3)

Due to the unobservability of Zt , we can take V−1/2
z Zt as Zt since

they share the same block structure. In practice, we can replace
observations Yt by V̂−1/2

y Yt , where V̂y is a consistent estimator
of Vy.

For a given integer k0 ≥ 1, let

Wz =
k0∑

k=0

∫
U

∫
U

�z,k(u, v)⊗2 dudv and

Wy =
k0∑

k=0

∫
U

∫
U

�y,k(u, v)⊗2 dudv . (4)

Then both Wy and Wz are nonnegative definite. According to
(2), it holds that �y,k(u, v) = A�z,k(u, v)A� , where �z,k(u, v)
is block-diagonal with blocks on the main diagonal of sizes p1 ×
p1, . . . , pq × pq. Due to AA� = Ip, by (4),

Wz = A�WyA . (5)

As all �z,k(u, v) for k ≥ 0 and (u, v) ∈ U2 are block-diagonal
matrices of the same sizes, so is Wz. Perform the eigenanalysis
for each of q blocks on the main diagonal of Wz separately,
leading to q orthogonal matrices of sizes pl × pl for l ∈ [q].
The columns of each of those orthogonal matrices are the pl
orthonormal eigenvectors from the corresponding eigenanal-
ysis. We form a p × p block diagonal orthogonal matrix �z
with those q orthogonal matrices along the main block diagonal.
Then the columns of �z are the orthonormal eigenvectors of Wz,
that is,

Wz�z = �zD , (6)

where D is a diagonal matrix consisting of the p eigenvalues.
Then by (5) and (6), WyA�z = AWz�z = A�zD. Thus, the
columns of �y ≡ A�z are the orthonormal eigenvectors of Wy.
Combining this with (2) yields that ��

y Yt(·) = ��
z A�Yt(·) =

��
z Zt(·) . Since �z is a block-diagonal orthogonal matrix with

q blocks, ��
z Zt(·) effectively applies orthogonal transformation

within each of the q groups of Zt(·). Thus, ��
z Zt(·) is of the same

segmentation structure of Zt(·), that is knowing ��
z Zt(·) is as

good as knowing the latent segmentation of Zt(·). By (2), we
have Zt(·) = A�Yt(·). Hence, �y can be taken as the required
transformation matrix A.

Let �̂y,k(u, v) be some consistent estimator of �y,k(u, v) for
k ∈ {0} ∪ [k0], to be specified in Section 2.3. We define an
estimator of Wy as

Ŵy =
k0∑

k=0

∫
U

∫
U

�̂y,k(u, v)⊗2 dudv , (7)

and calculate its orthonormal eigenvectors η̂1, . . . , η̂p. Let �̂y =
(̂η1, . . . , η̂p). Then the required transformation matrix A can
be estimated by a (latent) column-permutation of �̂y. More
specifically, put

Ẑt(·) ≡ {̂Zt1(·), . . . , Ẑtp(·)}� = �̂
�
y Yt(·) . (8)

We propose below a data-driven procedure to divide the p
components of Ẑt(·) into q̂ uncorrelated groups.

Recall Zt(·) = {Zt1(·), . . . , Ztp(·)}� with �z,k(·, ·) =
{�z,k,ij(·, ·)}i,j∈[p]. For two curve series Zti(·) and Ztj(·) within
the same group, one would expect that their lag-k cross-
autocovariance function �z,k,ij(u, v) to be significantly different
from zero for some integer k and (u, v) ∈ U2, thus, leading
to at least one large ‖�z,k,ij‖S for some integer k. Based on
Ẑt(·) defined as (8), we let �̂z,k(u, v) ≡ {�̂z,k,ij(u, v)}i,j∈[p] =
�̂

�
y �̂y,k(u, v)�̂y for any (u, v) ∈ U2. Given a fixed integer m ≥

0, we define the maximum cross-autocovariance over the lags
between prespecified −m and m as

T̂ij = max
|k|≤m

‖�̂z,k,ij‖S (9)

for any pair (i, j) ∈ [p]2 such that i < j, and regard Ẑti(·) and
Ẑtj(·) from the same group if T̂ij takes some large value. To be
specific, we rearrange ℵ = p(p − 1)/2 values of T̂ij (1 ≤ i < j ≤
p) in the descending order T̂(1) ≥ · · · ≥ T̂(ℵ) and compute

�̂ = arg max
j∈[ℵ]

T̂(j) + δn

T̂(j+1) + δn
(10)

for some δn > 0. Corresponding to T̂(1), . . . , T̂(�̂), we identify
�̂ pairs of cross-correlated curves. To divide the p components
of Ẑt(·) into several uncorrelated groups, we can first start with
p groups with each Ẑtj(·) in one group and then repeatedly
merge two groups if two cross-correlated curves are split over
the two groups. The iteration is terminated until all the cross-
correlated pairs are within one group. Hence, we obtain the
estimated group structure of Ẑt(·) with the number of the final
groups q̂ being the estimated value for q. Denote by Ẑ(l)

t (·) the
estimated lth group for l ∈ [q̂]. The estimated transformation
matrix Â = (Â1, . . . , Âq̂) can then be found by reorganizing the
order of (̂η1, . . . , η̂p) such that

Ẑ(l)
t (·) = Â�

l Yt(·) , l ∈ [q̂] . (11)

Remark 1. (i) We include a small term δn > 0 in (10) to
stabilise the estimates for “0/0”. Given a suitable order of δn, we
can establish the group recovery consistency. See Theorem 1 in
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Section 4. A common practice is to set δn = 0 and replace ℵ
by c�ℵ in (10) for some constant c� ∈ (0, 1), see Lam and Yao
(2012) and Ahn and Horenstein (2013).

(ii) All integrated terms in Wy are nonnegative definite.
Hence, there is no information cancellation over different lags.
Therefore, the estimation is insensitive to the choice of k0. In
practice a small k0 (such as k0 ≤ 5) is often sufficient, while
further enlarging k0 tends to add more noise to Wy.

2.3. Selection of ̂�y,k(u, v)

The estimate �̂y,k(u, v) plays a key role in Section 2.2. Let Ȳ(u) =
n−1 ∑n

t=1 Yt(u). A natural candidate for �̂y,k(u, v) is the sample
version of �y,k(u, v) defined as

�̂S
y,k(u, v) = 1

n − k

n−k∑
t=1

{Yt(u) − Ȳ(u)}{Yt+k(v) − Ȳ(v)}� ,

k ∈ {0} ∪ [k0] . (12)

When p2/n → 0, �̂S
y,k(u, v) is a valid estimator for �y,k(u, v).

However, when p grows faster than n1/2, it does not always
hold that ‖�̂S

y,k(u, v) − �y,k(u, v)‖2 → 0 in probability. Under
the high-dimensional scenario, the orthogonality of A naturally
results in the magnitude of many of its entries being small,
leading to certain sparsity on A which will then pass onto the
autocovariance functions �y,k(·, ·), as �y,k(·, ·) = A�z,k(·, ·)A�.

Inspired by the spirit of threshold estimator for large covari-
ance matrix (Bickel and Levina 2008), we apply the functional
thresholding rule, which combines the functional generaliza-
tions of hard thresholding and shrinkage with the aid of the
Hilbert–Schmidt norm of functions, on the entries of the sample
autocovariance function �̂S

y,k(u, v) = {�̂S
y,k,ij(u, v)}i,j∈[p] in (12).

This leads to the estimator

Tωk(�̂
S
y,k)(u, v) = [

�̂S
y,k,ij(u, v)I{‖�̂S

y,k,ij‖S ≥ ωk}
]

i,j∈[p] ,

(u, v) ∈ U2 , (13)

where ωk ≥ 0 is the thresholding parameter at lag k. Taking �̂y,k
in (7) as Tωk(�̂

S
y,k) yields

Ŵy =
k0∑

k=0

∫
U

∫
U
Tωk(�̂

S
y,k)(u, v)⊗2 dudv . (14)

Remark 2. The thresholding parameter ωk for each k ∈ {0} ∪
[k0] can be selected using an L-fold cross-validation approach.
Specifically, we sequentially divide the set [n] into L valida-
tion sets V1, . . . , VL of approximately equal size. For each l ∈
[L], let �̂

S,(l)
y,k (u, v) = {�̂S,(l)

y,k,ij(u, v)}i,j∈[p] and �̂
S,(−l)
y,k (u, v) =

{�̂S,(−l)
y,k,ij (u, v)}i,j∈[p] be the sample lag-k autocovariance functions

based on the lth validation set {Yt(·) : t ∈ Vl} and the remaining
L−1 sets {Yt(·) : t ∈ [n]\Vl}, respectively. We select the optimal
ω̂k by minimizing

Error(ωk) = 1
L

L∑
l=1

p∑
i,j=1

∥∥Tωk(�̂
S,(l)
y,k,ij) − �̂

S,(−l)
y,k,ij

∥∥2
S ,

where Tωk(�̂
S,(l)
y,k,ij)(u, v) = �̂

S,(l)
y,k,ij(u, v)I{‖�̂S,(l)

y,k,ij‖S ≥ ωk}.

3. Variational Multivariate FPCA

Our second step is to represent (linear) dynamic structure of
each Z(l)

t (·) in terms of a vector time series via representation (1).
The key idea is to identify the finite decomposition for X(l)

t (·).
For (u, v) ∈ U2 and k ≥ 0, let μ(l)(u) = E{X(l)

t (u)} and

M(l)
k (u, v) = E[{X(l)

t (u) − μ(l)(u)}{X(l)
t+k(v) − μ(l)(v)}�] .

Then the multivariate Karhunen-Loève decomposition for
X(l)

t (·) serving as the foundation of multivariate FPCA (Chiou,
Chen, and Yang 2014; Happ and Greven 2018) admits the form

M(l)
0 (u, v) =

∞∑
j=1

λ
(l)
j ϕ

(l)
j (u)ϕ

(l)
j (v)� ,

X(l)
t (u) − μ(l)(u) =

∞∑
j=1

ξ
(l)
tj ϕ

(l)
j (u) , (15)

where λ
(l)
1 ≥ λ

(l)
2 ≥ · · · ≥ 0 are the ordered eigenvalues of

M(l)
0 (·, ·), ϕ(l)

1 (·), ϕ(l)
2 (·), . . . are the corresponding orthonormal

eigenfunctions satisfying
∫
U ϕ

(l)
j (u)�ϕ

(l)
k (u) du = I(j = k), and

ξ
(l)
tj = ∫

U ϕ
(l)
j (u)�{X(l)

t (u) − μ(l)(u)} du with E{ξ (l)
tj } = 0 and

cov{ξ (l)
tj , ξ (l)

tk } = λ
(l)
j I(j = k).

When X(l)
t (·) is rl-dimensional in the sense that λ

(l)
rl > 0 and

λ
(l)
rl+1 = 0, the dynamics of X(l)

t (·) is entirely determined by that
of rl-vector time series ξ

(l)
t = {ξ (l)

t1 , . . . , ξ (l)
trl }�. Unfortunately,

under the latent decomposition (1), that is,

Z(l)
t (u) = X(l)

t (u) + ε
(l)
t (u)

= μ(l)(u) +
rl∑

j=1
ξ

(l)
tj ϕ

(l)
j (u) + ε

(l)
t (u) , u ∈ U , (16)

the standard multivariate FPCA based on (15) is inappropri-
ate as X(l)

t (·) is unobservable and we cannot provide a con-
sistent estimator for M(l)

0 (u, v) based on Z(l)
t (·) due to the fact

cov{Z(l)
t (u), Z(l)

t (v)} = M(l)
0 (u, v) + cov{ε(l)

t (u), ε(l)
t (v)}.

Now we introduce the variational multivariate FPCA based
on a variational multivariate Karhunen-Loève decomposition
for X(l)

t (·). Motivated from the fact cov{Z(l)
t (u), Z(l)

t+k(v)} =
M(l)

k (u, v) for any k ≥ 1, for a prespecified small integer k0 ≥ 1,
we define

K(l)(u, v) =
k0∑

k=1

∫
U

M(l)
k (u, w)M(l)

k (v, w)� dw . (17)

Similar to M(l)
0 , K(l) is also nonnegative definite and admits a

spectral decomposition

K(l)(u, v) =
∞∑

j=1
θ

(l)
j ψ

(l)
j (u)ψ

(l)
j (v)� ,

where θ
(l)
1 ≥ θ

(l)
2 ≥ · · · ≥ 0 are the eigenvalues of K(l), and

ψ
(l)
1 (·), ψ (l)

2 (·), . . . are the corresponding orthonormal eigen-
functions.
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Proposition 1. Let 	
(l)
k = E[ξ (l)

t {ξ (l)
t+k}�] be a full-ranked matrix

for some k ∈ [k0]. Then it holds that (i) θ
(l)
rl > 0 and θ

(l)
rl+1 = 0;

(ii) span{ϕ(l)
1 (·), . . . , ϕ(l)

rl (·)} = span{ψ (l)
1 (·), . . . , ψ (l)

rl (·)}.

Proposition 1 shows that, under the expansion (16), K(l) has
exactly rl nonzero eigenvalues, and the dynamic space spanned
by {ψ (l)

1 (·), . . . , ψ (l)
rl (·)} remains the same as that spanned by

{ϕ(l)
1 (·), . . . , ϕ(l)

rl (·)}. Therefore, X(l)
t (·) can be expanded using rl

basis functions ψ
(l)
1 (·), . . . , ψ (l)

rl (·), that is,

X(l)
t (u) − μ(l)(u) =

rl∑
j=1

ζ
(l)
tj ψ

(l)
j (u) , u ∈ U , (18)

where the basis coefficients ζ
(l)
tj = ∫

U ψ
(l)
j (u)�{X(l)

t (u) −
μ(l)(u)} du. Note that we take the sum in defining K(l) in (17) to
accumulate the information from different lags, and there is no
information cancellation as each term in the sum is nonnegative
definite. An additional advantage for using the nonzero lagged
autocovariance-based decomposition is that the identified direc-
tions ψ

(l)
1 (·), . . . , ψ (l)

rl (·) catch the most significant serial depen-
dence, which leads to the most efficient dimension reduction
and is thus advantageous for prediction.

Noting that Z(l)
t (·) is not directly observable, we can only

estimate M(l)
k and K(l) based on p̂l-vector of estimated trans-

formed curve subseries Ẑ(l)
t (·) = {̂Z(l)

t1 (·), . . . , Ẑ(l)
tp̂l

(·)}� obtained
in the segmentation transformation step. With the aid of (11),
for k ∈ {0} ∪ [k0], put

M̂(l)
k (u, v) = Â�

l �̂y,k(u, v)Âl . (19)

It is easy to see from (1) that M̂(l)
k (u, v) is a reasonable estimator

for M(l)
k (u, v) when k ≥ 1, as it filters out white noise ε

(l)
t (·)

automatically. It is noteworthy that (19) requires the consistent
estimators for �y,k(u, v). Its implementation under the high-
dimensional setting can thus be done by setting �̂y,k(u, v) =
Tωk(�̂

S
y,k)(u, v) defined in (13).

To estimate ψ
(l)
j (·) and ζ

(l)
tj in (18), we perform eigenanalysis

of the estimator for K(l),

K̂(l)(u, v) =
k0∑

k=1

∫
U

M̂(l)
k (u, w)M̂(l)

k (v, w)� dw , (20)

leading to the eigenvalues θ̂
(l)
1 ≥ θ̂

(l)
2 ≥ · · · ≥ 0, and the

corresponding orthonormal eigenfunctions ψ̂
(l)
1 (·), ψ̂ (l)

2 (·), . . . .
To estimate rl (i.e., the number of nonzero eigenvalues), we take
the commonly-adopted ratio-based estimator for rl as

r̂l = arg max
j∈[n−k0]

θ̂
(l)
j + δ̃n

θ̂
(l)
j+1 + δ̃n

(21)

for some δ̃n > 0. Under some regularity conditions, such defined
r̂l is a consistent estimator for rl; see Theorem 3 in Section 4.
In practice, since δ̃n is usually unknown, we instead adopt r̂l =
arg maxj∈[cr(n−k0)] θ̂

(l)
j /θ̂

(l)
j+1, where cr ∈ (0, 1) is a prescribed

constant aiming to avoid fluctuations due to the ratios of extreme
small values.

Let ζ̂
(l)
tj = ∫

U ψ̂
(l)
j (u)�{̂Z(l)

t (u) − �Z(l)(u)} du for t ∈ [n], j ∈
[r̂l] and l ∈ [q̂]. We can fit a model for the r̂l-dimensional vector
time series ζ̂

(l)
t = {ζ̂ (l)

t1 , . . . , ζ̂ (l)
tr̂l

}� with t ∈ [n] to obtain its h-

step ahead prediction ζ̊
(l)
n+h and then recover the h-step ahead

functional prediction as

Z̊(l)
n+h(u) = �Z(l)(u) +

r̂l∑
j=1

ζ̊
(l)
(n+h)jψ̂

(l)
j (u) , h ≥ 1 .

We finally obtain the h-step ahead prediction ÂZ̊n+h(·) for
original functional time series, where Â = (Â1, . . . , Âq̂) and
Z̊n+h(·) = {Z̊(1)

n+h(·)�, . . . , Z̊(q̂)

n+h(·)�}�.

4. Theoretical Properties

This section presents theoretical analysis of our two-step esti-
mation procedure. To ease presentation, we focus on the high-
dimensional scenario and develop the theoretical results based
on the estimator Tωk(�̂

S
y,k)(u, v) in (13). To simplify notation,

we use B to denote the linear operator induced from the kernel
function B ∈ S, that is, for any f ∈ L2(U), B(f )(·) =∫
U B(· , v)f (v) dv ∈ L2(U). Denote the p-fold Cartesian product
H = L2(U)×· · ·×L2(U). For any f , g ∈ H, we denote the inner
product by 〈f , g〉 = ∫

U f (u)�g(u) du with the induced norm
‖ · ‖ = 〈·, ·〉1/2, and use B to denote the linear operator induced
from the kernel matrix function B = (Bij)m1×m2 with each
Bij ∈ S, that is, for any f ∈ H, B(f )(·) = ∫

U B(· , v)f (v) dv ∈ H.
We write ‖B‖S ,∞ = maxi∈[m1]

∑m2
j=1 ‖Bij‖S . Before imposing

the regularity conditions, we first define the functional ver-
sion of sub-Gaussianity that facilities the development of non-
asymptotic results for Hilbert space-valued random elements.

Definition 1. Let ϒt(·) be a mean zero random variable in L2(U)

and �0 : L2(U) → L2(U) be a covariance operator. We call
ϒt(·) a sub-Gaussian process if there exists a constant c > 0
such that E[exp{〈f , ϒt − E(ϒt)〉}] ≤ exp{2−1c2〈f , �0(f )〉} for
all f ∈ L2(U).

Condition 1. (i) {Yt(·)} is a sequence of multivariate functional
linear processes with sub-Gaussian errors, that is, Yt(·) =∑∞

l=0 � l(εt−l), where � l = (l,ij)p×p with each l,ij ∈ S and
εt(·) = {εt1(·), . . . , εtp(·)}� with independent components of
mean-zero sub-Gaussian processes satisfying Definition 1; (ii)
The coefficient functions satisfy

∑∞
l=0 ‖� l‖S ,∞ = O(1); (iii)

maxj∈[p]
∫
U cov{εtj(u), εtj(u)} du = O(1).

Condition 2. For {Yt(·)}, its spectral density operator y,θ =
(2π)−1 ∑

k∈Z �y,kexp(−kθ
√−1) for θ ∈ [−π , π ] exists and

the functional stability measure

My = 2π ess sup
θ∈[−π ,π ],�∈H0

〈�, y,θ (�)〉
〈�, �y,0(�)〉 < ∞ , (22)

where H0 = {� ∈ H : 〈�, �y,0(�)〉 ∈ (0, ∞)}.

Write �y,k(u, v) = {�y,k,ij(u, v)}i,j∈[p]. Conditions 1(ii) and
1(iii) guarantee the covariance-stationarity of {Yt(·)} and imply
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that maxj∈[p]
∫
U �y,0,jj(u, u) du = O(1). Condition 2 places a

finite upper bound on the functional stability measure, which
characterizes the effect of small decaying eigenvalues of �y,0
on the numerator of (22), thus, being able to handle infinite-
dimensional functional objects Ytj(·). See its detailed discussion
in Guo and Qiao (2023). Conditions 1 and 2 are essential to
derive maxi,j∈[p] ‖�̂S

y,k,ij − �y,k,ij‖S = Op{My(n−1log p)1/2}
for �̂S

y,k,ij involved in (13), which plays a crucial rule in our
theoretical analysis.

Condition 3. For A = (Aij)p×p, maxi∈[p]
∑p

j=1 |Aij|α ≤ s1 and
maxj∈[p]

∑p
i=1 |Aij|α ≤ s2 for some constant α ∈ [0, 1).

The parameters s1 and s2 determine the row and column
sparsity levels of A, respectively. The row sparsity with small
s1 entails that each component of Yt(·) is a linear combination
of a small number of components in Zt(·), while the column
sparsity with small s2 corresponds to the case that each Ztj(·)
has impact on only a few components of Yt(·). The parameter α

also controls the sparsity level of A with a smaller value yielding
a sparser A. Write

p† = max
l∈[q]

pl . (23)

Lemma A2 in the supplementary material reveals that the func-
tional sparsity structures in columns/rows of �y,k(·, ·) are deter-
mined by s1s2p† with smaller values of s1, s2 and p† yielding
functional sparser �y,k(·, ·).

Recall that Wz = diag(Wz,1, . . . , Wz,q) in (5) is a block-
diagonal matrix, where Wz,l is a pl ×pl matrix. We further define

ρ = min
j �=l

min
λ∈�(Wz,l), λ̃∈�(Wz,j)

|λ − λ̃| , (24)

where �(·) denotes the set of eigenvalues of the matrix, and
assume ρ > 0.

We first establish the group recovery consistency of the
segmentation step. To do this, we reformulate the permuta-
tion in Section 2.2 in an equivalent graph representation way.
Recall �y = A�z and �z is a block-diagonal orthogonal
matrix with the main block sizes p1, . . . , pq. Write �z =
diag(�z,1, . . . , �z,q). Since A = (A1, . . . , Aq), we have �y ≡
(η1, . . . , ηp) = (A1�z,1, . . . , Aq�z,q). The columns of �y are
naturally partitioned in to q groups G1, . . . , Gq, where Gl =
{η∑l−1

l′=0 pl′+1, . . . , η∑l
l′=0 pl′

} with p0 = 0. To simplify the nota-
tion, we just write

Gl =
{ l−1∑

l′=0
pl′ + 1, . . . ,

l∑
l′=0

pl′
}

, l ∈ [q] . (25)

Recall that the columns of such defined �y are the eigen-
vectors of Wy. For ρ defined in (24), if ‖Ŵy − Wy‖2 ≤ ρ/5,
by Lemma A4 in the supplementary material, there exists an
orthogonal matrix H = diag(H1, . . . , Hq) with Hl ∈ R

pl×pl for
each l ∈ [q] and a column permutation matrix R for �̂y, such
that �̂yR ≡ (�̂1, . . . , �̂q) with �̂l ∈ R

p×pl , and

‖�̂l − Al�z,lHl‖2 ≤ 8ρ−1‖Ŵy − Wy‖2 . (26)

If the p eigenvalues of Wy are distinct, H is a diagonal matrix
with elements in the diagonal being 1 or −1. Write �yH =
(A1�z,1H1, . . . , Aq�z,qHq) ≡ (γ 1, . . . , γ p). For each l ∈ [q],
we can define a graph (Gl, El) such that (i, j) ∈ El if and only if
max|k|≤m ‖γ �

i �y,kγ j‖S �= 0.

Condition 4. There exists some ς > 0 such that
inf (i,j)∈El max|k|≤m ‖γ �

i �y,kγ j‖S ≥ ς for each l ∈ [q], where m
is specified in (9).

Condition 4 ensures that the group Gl is inseparable at the
minimal signal level ς given the transformation Al�z,lHl for
each l ∈ [q], and facilitates the specifications of the true number
of groups q and the associated segmentation structure under
(2). Define Tij = max|k|≤m ‖γ �

i �y,kγ j‖S and � = ∑q
l=1 |El|.

Rearrange ℵ = p(p − 1)/2 values of Tij (1 ≤ i < j ≤ p)
in the descending order, T(1) ≥ · · · ≥ T(ℵ). We then have
T(i) ≥ ς for i ∈ [�] and T(i) = 0 for i ≥ � + 1. Denote
by E = {(i, j) : Tij ≥ T(�), 1 ≤ i < j ≤ p} the edge set of
G = [p] under the transformation �yH. The true segmentation
{G1, . . . , Gq} in (25) can then be identified by splitting (G, E) into
q isolated subgraphs (G1, E1), . . . , (Gq, Eq), where q represents
the true number of uncorrelated groups.

Recall that with the aid of �̂y, the estimated segmentation is
obtained via the ratio-based estimator �̂ as defined in (10). To
be specific, we build an estimated graph (G, Ẽ) with vertex set
G = [p] and edge set Ẽ = {(i, j) : T̂ij ≥ T̂(�̂), 1 ≤ i < j ≤
p}, and split it into q̂ isolated subgraphs (G̃1, Ẽ1), . . . , (G̃q̂, Ẽq̂).
Note that p columns of �̂y = (̂η1, . . . , η̂p) correspond to the
ordered eigenvalues λ1(Ŵy) ≥ · · · ≥ λp(Ŵy). Write �̂yR ≡
(γ̂ 1, . . . , γ̂ p) and let π : [p] → [p] denote the permutation
associated with R, that is, γ̂ i = η̂π(i). Based on the permutation
mapping π , we let Ĝl = {π−1(i) : i ∈ G̃l} for l ∈ [q̂].
Theorem 1. Let Conditions 1–4 hold. For each |k| ≤
k0 ∨ m, select ωk = ckMy(n−1log p)1/2 in (13)
for some sufficiently large constant ck > 0. Assume
(ρ−1s2

1s2
2p3−α

† )2/(1−α)M2
y log p = o(n) and δn in (10) satisfies

ρ−1s3
1s3

2p5−2α
† M1−α

y (n−1 log p)(1−α)/2 � δn � ς2T−1
(1) , where

p† and ρ are specified in (23) and (24), respectively. As n → ∞,
it holds that (i)P(q̂ = q) → 1 and (ii) there exists a permutation
π̃ : [q] → [q] such that P[⋂q

l=1{Ĝπ̃(l) = Gl} | q̂ = q] → 1.

Theorem 1 gives the group recovery consistency of our seg-
mentation step. We next evaluate the errors in estimating C(Al)
for l ∈ [q]. Based on the estimated groups {Ĝ1, . . . , Ĝq̂}, we
reorganize the order of (γ̂ 1, . . . , γ̂ p) = (̂ηπ(1), . . . , η̂π(p)) and
define Âl in (11) as Âl = (γ̂ i)i∈Ĝl

for l ∈ [q̂]. We consider a
general discrepancy measure (Chang, Guo, and Yao 2015, 2018)
between two linear spaces C(E1) and C(E2) spanned by the
columns of E1 ∈ R

p×p̃1 and E2 ∈ R
p×p̃2 , respectively, with

E�
i Ei = Ip̃i for i ∈ [2] as

D{C(E1), C(E2)} =
√

1 − tr(E1E�
1 E2E�

2 )

max(p̃1, p̃2)
∈ [0, 1] . (27)

Then D{C(E1), C(E2)} is equal to 0 if and only if C(E1) ⊂ C(E2)
or C(E2) ⊂ C(E1), and to 1 if and only if the two spaces are
orthogonal.
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Theorem 2. Let conditions for Theorem 1 hold. As n → ∞, it
holds that

max
l∈[q]

min
j∈[q̂]

D{C(Al), C(Âj)}

= Op
{
ρ−1s2

1s2
2p3−α

† M1−α
y (n−1log p)(1−α)/2} .

Theorem 2 presents the uniform convergence rate for
minj∈[q̂] D{C(Al), C(Âj)} over l ∈ [q]. For given α, the rate
is faster for smaller values of {s1, s2, p†,My}, while enlarging
the minimum eigen-gap between different blocks (i.e., larger ρ)
reduces the difficulty of estimating each C(Al).

Supported by Theorems 1 and 2, our subsequent theoretical
results are developed by assuming that the group structure of
Zt(·) is correctly identified or known, that is, q̂ = q and
Ĝl = Gl for each l. We now turn to investigate the theoretical
properties of the dimension reduction step. Inherited from the
segmentation step, Z(1)

t (·), . . . , Z(q)
t (·) rely on the specific form

of A = (A1, . . . , Aq), and thus are not uniquely defined. Yet
intuitively, we only require a certain transformation matrix to
make our subsequent analysis related to η̂1, . . . , η̂p mathemat-
ically tractable. Based on (26), we define �l = Al�z,lHl and
it holds that C(�l) = C(Al) for each l ∈ [q]. Let Z(l)

t (·) =
��

l Yt(·). Recall (1) and (18). The primary goal of the second
dimension reduction step is to identify each rl and to estimate
the associated dynamic space Cl = span{ψ (l)

1 (·), . . . , ψ (l)
rl (·)}.

Recall that {θ̂ (l)
j , ψ̂ (l)

j (·)}j≥1 are the eigenvalue/eigenfunction
pairs of K̂(l)(·, ·) defined in (20) with Âl = (γ̂ i)i∈Gl and the
dimension rl is fixed for all l ∈ [q]. Our asymptotic results are
based on the following regularity condition:

Condition 5. For each l ∈ [q], all rl nonzero eigenvalues of
K(l)(·, ·) are different, that is, θ

(l)
1 > · · · > θ

(l)
rl > 0 =

θ
(l)
rl+1 = · · · .

Theorem 3. Let Conditions 1–3 and 5 hold. Assume
(ρ−1s3

1s3
2p5−2α

† )2/(1−α)M2
y log p = o(n) and δ̃n in (21)

satisfies ρ−1s3
1s3

2p7−2α
† M1−α

y (n−1 log p)(1−α)/2 � δ̃n �
minl∈[q]{θ(l)

rl }2/ maxl∈[q] θ(l)
1 , where p† and ρ are specified

in (23) and (24), respectively. As n → ∞, it holds that
P[⋂q

l=1{r̂l = rl}] → 1.

Theorem 3 shows that rl can be correctly identified with
probability tending to one uniformly over l ∈ [q]. Let
Ĉl = span{ψ̂ (l)

1 (·), . . . , ψ̂ (l)
r̂l

(·)} be the dynamic space spanned
by r̂l estimated eigenfunctions. To measure the discrepancy
between Cl and Ĉl, we introduce the following metric. For two
subspaces C(b1) = span{b11(·), . . . , b1r̃1(·)} and C(b2) =
span{b21(·), . . . , b2r̃2(·)} satisfying 〈bij, bik〉 = I(j = k) for each
i ∈ [2], the discrepancy measure between C(b1) and C(b2) is
defined as

D̃{C(b1), C(b2)}

=

√√√√√1 − 1
max(r̃1, r̃2)

r̃1∑
j=1

r̃2∑
k=1

〈b1j, b2k〉2 ∈ [0, 1] ,

which equals 0 if and only if C(b1) ⊂ C(b2) or C(b2) ⊂ C(b1)
and 1 if and only if two spaces are orthogonal.

Theorem 4. Let conditions for Theorem 3 hold. Assume
(�−1ρ−1s3

1s3
2p7−2α

† )2/(1−α)M2
y log p = o(n) with � =

minl∈[q],j∈[rl]{θ(l)
j − θ

(l)
j+1}. As n → ∞, it holds that

max
l∈[q]

D̃(Ĉl, Cl)

= Op
{
�−1ρ−1s3

1s3
2p7−2α

† M1−α
y (n−1log p)(1−α)/2} .

5. Simulation Studies

We conduct a series of simulations to illustrate the finite sample
performance of the proposed methods. To simplify the data-
generating process, we consider a relaxed form of (2) as

Ŷt(u) = ÂẐt(u)

= Â{̂Z
(1)

t (u)�, . . . , Ẑ
(q)

t (u)�}� , u ∈ U = [0, 1] , (28)

with no orthonormality restriction on the transformation matrix
Â = (Â1, . . . , Âq). The p-dimensional functional time series

Ẑt(·) is formed by q uncorrelated groups {̂Z
(l)
t (·) : l ∈ [q]},

where each Ẑ
(l)
t (·) arises as the sum of dynamics X̂

(l)
t (·) and

white noise ε̌
(l)
t (·). Based on (3) in Section 2.2, (28) can then

be easily reformulated as (2) by setting

Yt(·) = V−1/2
y̌ Ŷt(·) , A = V−1/2

y̌ ÂV1/2
ž and

Zt(·) = V−1/2
ž Ẑt(·) , (29)

where Vy̌ = ∫
U cov{Ŷt(u), Ŷt(u)} du and Vž =∫

U cov{̂Zt(u), Ẑt(u)} du. Then the orthonormality of A is
satisfied.

Write ε̌t(·) = {ε̌(1)
t (·)�, . . . , ε̌(q)

t (·)�}� ≡
{ε̌t1(·), . . . , ε̌tp(·)}�. We generate each curve component of
ε̌t(·) independently by ε̌tj(·) = ∑10

l=1 2−(l−1)etjlψl(·) for
j ∈ [p], where etjl’s are sampled independently from N (0, 1)

and {ψl(·)}10
l=1 is a 10-dimensional Fourier basis function. The

finite-dimensional dynamics X̂t(·) = {X̂
(1)

t (·)�, . . . , X̂
(q)

t (·)�}�

with prescribed group structure is generated based on some
5-dimensional curve dynamics ϑtg(·) = ∑5

l=1 κtglψl(·) for
g ∈ [20]. The basis coefficients κ tg = (κtg1, . . . , κtg5)

� are
generated from a stationary VAR model κ tg = Ugκ (t−1)g + etg
for each g. To guarantee the stationarity of κ tg , we generate
Ug = ιÛg/ρ(Ûg) with ι ∼ Uniform[0.5, 1] and ρ(Ûg) being
the spectral radius of Ûg ∈ R

5×5, the entries of which are
sampled independently from Uniform[−3, 3]. The components
of the innovation etg are sampled independently from N (0, 1).
We will specify the exact forms of X̂t(·) under the fixed and
large p scenarios in Sections 5.1 and 5.2, respectively. The white
noise sequence ε̌t(·) ensures that Ẑt(·) as well as Zt(·) share
the same group structure as X̂t(·). Unless otherwise stated, we
set k0 = m = 5 and cr = c� = 0.75 in our procedure, as our
simulation results suggest that our procedure is robust to the
choices of these parameters.
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5.1. Cases with Fixed p

We consider the following three examples of X̂t(·) =
{X̌t1(·), . . . , X̌tp(·)}� with different group structures for p ∈
{6, 10, 15} based on independent ϑt1(·), . . . , ϑt5(·).

Example 1. X̌t1(·) = ϑt1(·), X̌tj(·) = ϑ(t+j−2)2(·) for j ∈ {2, 3}
and X̌tj(·) = ϑ(t+j−4)3(·) for j ∈ {4, 5, 6}.

Example 2. X̌tj(·) for j ∈ [6] are the same as those in Example 1
and X̌tj(·) = ϑ(t+j−7)4(·) for j ∈ {7, . . . , 10}.

Example 3. X̌tj(·) for j ∈ [10] are the same as those in Example 2
and X̌tj(·) = ϑ(t+j−11)5(·) for j ∈ {11, . . . , 15}.

Therefore, X̂t(·) consists of q = 3, 4, and 5 uncorrelated groups
of curve subseries in Examples 1–3, respectively, where the
number of component curves per group is pl = l for l ∈ [q].
The p-dimensional observed functional time series Ŷt(·) =
{Y̌t1(·), . . . , Y̌tp(·)}� for t ∈ [n] is then generated by (28) with the
entries of Â sampled independently from Uniform[−3, 3]. To
obtain h-step ahead prediction of Ŷt(·), we integrate the segmen-
tation and dimension reduction steps respectively in Sections 2
and 3 into the VAR estimation as outlined in Algorithm 1. For
each of the three examples introduced above, we select

V̂(h)

y̌ = 1
n − h

n−h∑
t=1

∫
U

{
Ŷt(u) − 1

n − h

n−h∑
t=1

Ŷt(u)

}⊗2
du , (30)

�̂
(h)

ỹ,k (u, v) = 1
n − h − k

n−h−k∑
t=1

{Ỹt(u) − Ȳ∗(u)}

{Ỹt+k(v) − Ȳ∗(v)}� , (31)

with Ȳ∗(·) = (n − h − k)−1 ∑n−h−k
t=1 Ỹt(·), for the

quantities involved in Step (i) of Algorithm 1. We refer to
the segmentation-(Variational-multivariate-FPCA)-and-VAR-
based Algorithm 1 with selections of V̂(h)

y̌ in (30) and �̂
(h)

ỹ,k (u, v)
in (31) as SegV hereafter.

The performance of our two-step proposal is examined in
terms of linear space estimation, group identification and post-
sample prediction. For A = (A1, . . . , Aq) specified in (29),
with the aid of (27), define f (l) = arg minj∈[q̂] D2{C(Al), C(Âj)}
for each l ∈ [q]. We then call Â = (Â1, . . . , Âq̂) an effective
segmentation of A if (i) 1 < q̂ ≤ q, and (ii) rank(Âl′) =∑

l∈[q]: f (l)=l′ rank(Al) for each l′ ∈ [q̂]. The intuition is as
follows. The effective segmentation implies that each identified
group in Ẑt(·) contains at least one, but not all, groups in Zt(·).
Since our main target is to forecast Ŷt(·) based on the cross-serial
dependence in {Z(l)

t (·) : l ∈ [q]}, this segmentation result is
effective in the sense that the linear dynamics in Zt(·) is well kept
in {̂Z(l)

t (·) : l ∈ [q̂]} without any contamination or damage and a
mild dimension reduction is achieved with q̂ > 1. For the special
case of complete segmentation (q̂ = q), we use the maximum
and averaged estimation errors for (Â1, . . . , Âq̂), respectively,

Algorithm 1 General prediction procedure for multivariate
functional time series
(i) Treat the first n − h observations as training data, adopt

the normalization step to obtain Ỹt(·) = {V̂(h)

y̌ }−1/2Ŷt(·),

where V̂(h)

y̌ is the consistent estimator of Vy̌ in (29), and
implement the procedure in Section 2.2 on {Ỹt(·)}n−h

t=1 to
obtain estimated transformation matrix Â = (Â1, . . . , Âq̂)

and transformed curve subseries {̂Z(l)
t (·) : l ∈ [q̂]}.

(ii) Apply the procedure in Section 3 on each {̂Z(l)
t (·)}n−h

t=1 to
achieve the h-step ahead prediction denoted as Z̊(l)

n (·) for
l ∈ [q̂]. In particular, for each l, select the best VAR model
that best fits each vector time series {̂ζ (l)

t }n−h
t=1 according to

the AIC criterion.
(iii) Obtain the h-step ahead prediction ÂZ̊n(·) for the normal-

ized curves Ỹn(·) with Z̊n(·) = {Z̊(1)
n (·)�, . . . , Z̊(q̂)

n (·)�}�.
Then the h-step ahead prediction for the original curves
Ŷn(·) is given by Ŷn(·) ≡ {Ŷn1(·), . . . , Ŷnp(·)}� =
{V̂(h)

y̌ }1/2ÂZ̊n(·).

defined as MaxE = maxl∈[q] D2{C(Al), C(Âf (l))} and AvgE =
q−1 ∑q

l=1 D2{C(Al), C(Âf (l))} to assess the ability of our method
in fully recovering the spanned spaces C(A1), . . . , C(Aq). Note
that A in (29) can not be easily computed, as the true Vy̌ and Vž

are hard to find even for simulated examples. For Â specified in
(28), let Ã = V−1/2

y̌ Â ≡ (Ã1, . . . , Ãq) with Ãl = V−1/2
y̌ Âl. Since

Vž is a block-diagonal matrix, then C(Ãl) = C(Al) for l ∈ [q].
Hence, we can replace C(Al) by C({V̂(h)

y̌ }−1/2Âl) to obtain the
approximations of MaxE and AvgE in our simulations.

To evaluate the post-sample predictive accuracy, we define
the mean squared prediction error (MSPE) as

MSPE = 1
pN

p∑
j=1

N∑
i=1

{Ŷnj(vi) − Y̌nj(vi)}2 (32)

with v1, . . . , vN being equally spaced points in [0, 1], and com-
pute the relative prediction error as the ratio of MSPE in (32) to
that under the “oracle” case. In the oracle case, we apply the pro-

cedure in Section 3 directly on each true {̂Z
(l)
t (·)}n−h

t=1 to achieve

the h-step ahead prediction for {̂Z
(l)
n (·) : l ∈ [q]}, denoted by

{Z̆(l)
n (·) : l ∈ [q]}, and further obtain the h-step ahead predic-

tion Â{Z̆(1)
n (·)�, . . . , Z̆(q)

n (·)�}� for the original curves Ŷt(·). By
comparison, we also implement an univariate functional predic-
tion method on each Y̌tj(·) separately by performing univariate
dimension reduction (Bathia, Yao, and Ziegelmann 2010), then
predicting vector time series based on the best fitted VAR model
and finally recovering functional prediction (denoted as UniV).

We generate n ∈ {200, 400, 800, 1600} observations with N =
30 for each example and replicate each simulation 500 times.
Table 2 provides numerical summaries, including the relative
frequencies of the effective segmentation with q̂ = q and q̂ ≥
q − 1, and the estimation errors for Â = (Â1, . . . , Âq̂) under the
complete segmentation case. As one would expect, the proposed
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Table 2. The relative frequencies of effective segmentation with respect to q̂ = q and q̂ ≥ q − 1, and the means (standard deviations) of MaxE, AvgE, and relative MSPEs
(rMSPE) over 500 simulation runs.

n = 200 n = 400 n = 800 n = 1600

Example 1
(p = 6)

q̂ = q 0.626 0.722 0.772 0.880
q̂ ≥ q − 1 0.930 0.988 0.998 1.000

MaxE 0.128(0.088) 0.089(0.066) 0.053(0.048) 0.035(0.037)
AvgE 0.079(0.052) 0.053(0.038) 0.030(0.025) 0.019(0.019)

rMSPE - SegV 1.081(0.172) 1.048(0.105) 1.026(0.065) 1.014(0.048)
rMSPE - UniV 1.584(0.453) 1.598(0.423) 1.596(0.379) 1.651(0.443)

Example 2
(p = 10)

q̂ = q 0.324 0.444 0.644 0.806
q̂ ≥ q − 1 0.490 0.688 0.874 0.972

MaxE 0.301(0.108) 0.193(0.090) 0.117(0.064) 0.072(0.049)
AvgE 0.183(0.059) 0.115(0.047) 0.069(0.035) 0.041(0.024)

rMSPE - SegV 1.291(0.271) 1.174(0.215) 1.089(0.143) 1.059(0.091)
rMSPE - UniV 1.708(0.404) 1.836(0.410) 1.841(0.436) 1.862(0.392)

Example 3
(p = 15)

q̂ = q 0.032 0.178 0.410 0.622
q̂ ≥ q − 1 0.086 0.344 0.616 0.832

MaxE 0.426(0.091) 0.347(0.121) 0.241(0.113) 0.157(0.091)
AvgE 0.273(0.054) 0.195(0.050) 0.128(0.042) 0.077(0.033)

rMSPE - SegV 1.477(0.313) 1.363(0.277) 1.166(0.156) 1.091(0.098)
rMSPE - UniV 1.805(0.370) 1.967(0.394) 2.033(0.394) 2.001(0.384)

method provides higher proportions of effective segmentation
and lower estimation errors as n increases, and performs fairly
well for reasonably large n as p increases. For (p, n) = (6, 200),
we observe 62.6% complete segmentation with AvgE as low as
0.079. Furthermore, the proportions of effective segmentation
with q̂ ≥ q − 1 are above 93% for n ≥ 200. Similar results
can be found for cases of (p, n) = (10, 800+) and (15, 1600),
whose proportions of effective segmentation with q̂ ≥ q −
1 remain higher than 87.4% and 83.2%, respectively. Table 2
also reports the relative one-step ahead prediction errors. It is
evident that SegV significantly outperforms UniV in all settings,
demonstrating the effectiveness of our proposed segmentation
transformation and dimension reduction in predicting future
values. Although the proportions of complete segmentation are
not high when p = 15, the corresponding proportions of q̂ ≥
q − 1 become satisfactorily higher, and SegV performs similarly
to the oracle case with its relative prediction errors being closer
to 1 as n increases.

5.2. Cases with Large p

Under a large p scenario, a natural question to ask is whether
the segmentation method based on the classical estimation for
autocovariance functions of Ỹt(·) (denoted as NonT) as (31) in
Section 5.1 still performs well, and if not, whether a satisfac-
tory improvement is attainable via the functional-thresholding
estimation (denoted as FunT) developed in Section 2.3. To this
end, we generate Ŷt(·) from (28) with p ∈ {30, 60} and n ∈
{200, 400}. Specifically, we let X̌t(3l−2)(·) = ϑtl(·), X̌t(3l−1)(·) =
ϑ(t+1)l(·), X̌t(3l)(·) = ϑ(t+2)l(·) for l ∈ [q]. This setting ensures q
uncorrelated groups of curve subseries in X̂t(·) with pl = 3 com-
ponent curves per group and hence q = 10 and 20 correspond
to p = 30 and 60, respectively. Let the p × p transformation
matrix Â = �1 + δ�2. Here �1 = diag{�11, . . . , �1(p/6)}
with elements of each �1i ∈ R

6×6 being sampled independently
from Uniform[−3, 3] for i ∈ [p/6], and �2 is a matrix with two
randomly selected nonzero elements from Uniform[−1, 1] each
row. We set δ ∈ {0.1, 0.5}. It is notable that our setting results

in a very high-dimensional learning task in the sense that the
intrinsic dimension 30 × 5 = 150 or 60 × 5 = 300 is large
relative to the sample size n = 200 or 400.

We assess the performance of NonT and FunT in discovering
the group structure. The optimal thresholding parameters ω̂k in
FunT are selected by the 5-fold cross-validation (see Remark 2),
and Vy̌ in the normalization step is estimated by V̂(0)

y̌ given in

(30), as the threshold version of V̂(0)

y̌ might not be positive defi-
nite. In practice, when p is large, FunT may lead to segmentation
with a small q̂, indicating that some groups of {̂Z(l)

t (·) : l ∈ [q̂]}
contain multiple groups in {Z(l)

t (·) : l ∈ [q]}. To ease the
modeling burden of complex VAR process, we may consider per-
forming further segmentation transformation on the estimated
groups by repeating FunT R times. To be precise, the ith round of
segmentation transformation via FunT is performed within each
group discovered in the (i − 1)th round with c� = 1 for i ∈ [R],
and hence (Â1, . . . , Âq̂) is updated after each iteration. Table 3
reports the relative frequencies of the effective segmentation for
NonT and FunT with R ∈ {1, 5, 10}. Finally, we apply FunT-
based SegV (denoted as FTSegV) combined with the R-round
segmentation transformation for R ∈ {1, 5, 10} in Step (i) of
Algorithm 1, and compare their one-step ahead predictive per-
formance with UniV and SegV. Table 4 summarizes the relative
prediction errors for all five comparison methods.

Several conclusions can be drawn from Tables 3 and 4. First,
the performance of SegV severely deteriorates under the high-
dimensional setting, as this procedure fails to detect any effective
segmentation, resulting in elevated prediction errors. By com-
parison, FTSegV exhibits superior predictive ability over SegV
and UniV. In particular, for large n, for example, n = 400,
FTSegV does a reasonably good job in recovering the group
structure of Zt(·) and performs comparably well to the oracle
method with the relative prediction errors lower than 1.149
in all scenarios. Second, comparing the results for n = 200
among different R, we observe an interesting phenomenon that
even though the relative frequencies of effective segmentation
for FunT drop as R increases, implying that some groups in
{̂Z(l)

t (·) : l ∈ [q̂]} are split incorrectly before forecasting,
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Table 3. The relative frequencies of effective segmentation over 500 simulation runs.

(p, δ)
NonT FunT

R = 1 R = 5 R = 10

n = 200 n = 400 n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

(30, 0.1) 0 0 0.706 1.000 0.556 1.000 0.546 1.000
(30, 0.5) 0 0 0.588 1.000 0.436 1.000 0.420 1.000
(60, 0.1) 0 0 0.298 1.000 0.148 1.000 0.144 1.000
(60, 0.5) 0 0 0.194 0.996 0.078 0.990 0.072 0.990

Table 4. Means (standard deviations) of relative MSPEs over 500 simulation runs.

Method (p, δ) n =200 n =400 (p, δ) n =200 n =400

FTSegV (R = 1)

(30, 0.1)

1.243(0.162) 1.095(0.105)

(60, 0.1)

1.249(0.122) 1.110(0.073)
FTSegV (R = 5) 1.225(0.153) 1.091(0.101) 1.250(0.123) 1.104(0.071)
FTSegV (R = 10) 1.222(0.151) 1.087(0.099) 1.249(0.122) 1.099(0.071)
SegV 1.814(0.376) 1.901(0.368) 1.813(0.271) 1.907(0.265)
UniV 1.631(0.313) 1.735(0.317) 1.599(0.214) 1.682(0.210)

FTSegV (R = 1)

(30, 0.5)

1.268(0.176) 1.134(0.134)

(60, 0.5)

1.285(0.134) 1.149(0.101)
FTSegV (R = 5) 1.255(0.171) 1.128(0.130) 1.282(0.136) 1.142(0.098)
FTSegV (R = 10) 1.250(0.168) 1.128(0.127) 1.281(0.136) 1.141(0.099)
SegV 1.815(0.377) 1.903(0.369) 1.813(0.271) 1.905(0.264)
UniV 1.635(0.315) 1.740(0.317) 1.603(0.215) 1.684(0.209)

the prediction errors stay low and slightly decrease as shown
in Table 4. This is not surprising, since further segmentation
based on FunT yields fewer parameters to be estimated in VAR
models and thus benefits the forecasting accuracy even if a
few small but significant cross-covariances of Zt(·) are ignored.
Such finding highlights the success of FTSegV and its R-round
segmentation in the sense that although FTSegV may not be able
to accurately recover the group structure in Zt(·) for a small n, it
achieves an appropriate dimension reduction to provide signifi-
cant improvement in high-dimensional functional prediction.

5.3. General Data-Generating Cases

To further illustrate the advantage of our proposed segmentation
transformation in predicting high-dimensional functional time
series, we simulate data from a more generalized functional time
series framework instead of strictly adhering to (2). Specifically,
we consider the vector functional autoregressive (VFAR) model
of order 1,

Yt(u) =
∫
U

Q(u, v)Yt−1(v) dv + εt(u) , u ∈ U , t ∈ [200] ,

(33)
where εt(·) = {εt1(·), . . . , εtp(·)}� are independently sampled
from a p-dimensional vector of mean zero Gaussian processes,
independent of Yt−1(·), and Q = (Qij)i,j∈[p] is the functional
transition matrix with each Qij ∈ S. See Section H1 of the
supplementary material for the detailed data-generating process.

We compare the predictive performance of three competing
methods. The first VFAR method is developed by knowing the
true data-generating process through VFAR model. We relegate
the detailed prediction procedure to Section H1 of the supple-
mentary material. We next consider two segmentation-based
prediction methods:

• (Seg+Y method) For the original curve series {Yt(·)}t∈[200],
we compute the sample estimates {�̂y,k,ij(u, v)}i,j∈[p] for k ∈
{0} ∪ [5] as in Section 2.3. Let T̊y,ij = max|k|≤5 ‖�̂y,k,ij‖S

Table 5. The mean of MSPEs over 500 simulation runs.

Method p = 10 p = 15 p = 20 p = 25 p = 30 p = 35

VFAR 6.709 7.974 10.506 13.439 20.149 40.552
Seg+Y 6.314 6.691 8.931 11.313 17.001 32.846
Seg+Z 6.324 6.682 8.267 8.998 12.605 17.275

and sort T̊y,ij’s for 1 ≤ i < j ≤ p in descending order. We
recognize Yti(·) and Ytj(·) as belonging to the same group if
T̊y,ij is ranked among 10% of all p(p − 1)/2 sorted values.
We then segment the p component series Ytj(·)’s into several
nonoverlapping groups and apply VFAR to each identified
group to obtain its one-step ahead prediction.

• (Seg+Z method) Consider the transformed curve series
Ẑt(u) = Â�{V̂(0)

y }−1/2Yt(u), where Â is obtained by imple-
menting the procedure in Section 2.2 on the normalized pro-
cess {[V̂(0)

y ]−1/2Yt(·)}t∈[200]. We perform the same segmen-
tation procedure as in Seg+Y to {̂Zt(·)}t∈[200], apply VFAR
to each of the identified groups of {̂Zt(·)}t∈[200] to obtain
the one-step ahead prediction Z̆201(·), and finally obtain
{V̂(0)

y }1/2ÂZ̆201(·) as the one-step ahead prediction for the
original curve series.

Table 5 reports one-step ahead MSPEs for three methods
with different values of p. As anticipated, the performance
of VFAR deteriorates severely as p increases, demonstrating
that the joint model suffers from the high-dimensionality, even
when the true model is known. Meanwhile, both segmentation-
based prediction methods exhibit improved predictive perfor-
mance, with Seg+Z notably outperforming Seg+Y, particularly
in scenarios with large p. It is crucial to emphasize that the
improvement of Seg+Z over Seg+Y is attributed to the decorre-
lation transformation. Table S1 in the supplementary material
provides further insights into the impact of transformation,
where q̊y and q̊z denote the numbers of the identified groups
using Seg+Y and Seg+Z, respectively. Interestingly, Seg+Z yields
more groups than Seg+Y while retaining the same amount
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of strongly connected pairs. This observation indicates that
the decorrelation transformation effectively pushes the cross-
autocorrelations that were previously spread over p compo-
nents into a block-diagonally dominate structure, where the
cross-autocorrelations along the block diagonal are signifi-
cantly stronger than those off the diagonal. Such enhancement
of within-group autocorrelations, along with the reduction of
cross-autocorrelations between the groups, leads to reasonably
good segmentation by only retaining the strong within-group
cross-autocorrelations while ignoring the weak between-group
cross-autocorrelations, and thus yields more accurate future
predictions.

6. Real Data Analysis

In this section, we apply our proposed SegV and FTSegV to
two real data examples arising from different fields. Our main
goal is to evaluate the post-sample predictive accuracy of both
methods. By comparison, we also implement componentwise
univariate prediction method (UniV) and the multivariate pre-
diction method of Gao, Shang, and Yang (2019) (denoted as
GSY) to jointly predict p component series by fitting a factor
model to estimated scores obtained via eigenanalysis of the
long-run covariance function (Hörmann, Kidziński, and Hallin
2015). It is worth mentioning that the joint prediction model
VmV (see Example 1) completely fail due to high dimension-
ality, so we do not report their results here. To evaluate the
effectiveness of the segmentation transformation and its impact
on prediction, we forge two other segmentation cases, namely
under-segmentation and uni-segmentation, for both SegV and
FTSegV (denoted as Under.SegV, Uni.SegV, Under.FTSegV and
Uni.FTSegV, respectively). Denote by {Ĝl : l ∈ [q̂]} the
segmented groups of {̂Z(l)

t (·) : l ∈ [q̂]} discovered in
Step (i) of Algorithm 1 (seen also as correct-segmentation).
The under-segmentation updates {Ĝl : l ∈ [q̂]} by merg-
ing two groups Ĝl1 and Ĝl′1 together before subsequent anal-
ysis, where arg max(i,j): i∈Ĝl , j∈Ĝl′ , 1≤l �=l′≤q̂ T̂ij ∈ Ĝl1 × Ĝl′1 with
T̂ij defined in (9). The uni-segmentation, on the other hand,
regards each curve component of {̂Z(l)

t (·) : l ∈ [q̂]} as an
individual group and then applies UniV componentwisely. For
a fair comparison, the orders of VAR models adopted in all
SegV/FTSegV-related methods and UniV are determined by the
AIC criterion, while GSY is implemented using the R package
ftsa.

To examine the predictive performance, we apply an expand-
ing window approach to the observed data Y̌tj(vi) for t ∈ [n], j ∈
[p], i ∈ [N]. We first split the dataset into a training set and a
test set respectively consisting of the first n1 and the remaining
n2 observations. For any positive integer h, we implement each
comparison method on the training set {Y̌tj(vi) : t ∈ [n1], j ∈
[p], i ∈ [N]} and obtain its h-step ahead prediction, denoted
as Ŷ(h)

(n1+h)j(vi), based on the fitted model. We then increase
the training size by one, that is {Y̌tj(vi) : t ∈ [n1 + 1], j ∈
[p], i ∈ [N]}, refit the model and compute the next h-step
ahead prediction Ŷ(h)

(n1+1+h)j(vi) for j ∈ [p], i ∈ [N]. Repeat the
above procedure until the last h-step ahead prediction Ŷ(h)

nj (vi)

is produced. Finally, we compute the h-step ahead MAPE and

MSPE as

MAPE(h) = 1
(n2 + 1 − h)pN

n∑
t=n1+h

p∑
j=1

N∑
i=1

|Ŷ(h)
tj (vi) − Y̌tj(vi)| ,

MSPE(h) = 1
(n2 + 1 − h)pN

n∑
t=n1+h

p∑
j=1

N∑
i=1

{Ŷ(h)
tj (vi) − Y̌tj(vi)}2 . (34)

6.1. Age-Specific Mortality Data

The first dataset, analyzed in Tang, Shang, and Yang (2022),
contains age-specific and gender-specific mortality rates for
developed countries during 1965–2013 (n = 49). See Table S3
in the supplementary material for the list of p = 29 countries
after removing certain countries with missing data. Following
the proposal of Tang, Shang, and Yang (2022), we model the log
transformation of the mortality rate of people aged vi = i − 1
living in the jth country during year 1964 + t as a random curve
Y̌tj(vi) (t ∈ [49], j ∈ [29], i ∈ [101]) and perform smoothing for
observed mortality curves via smoothing splines. We divide the
smoothed dataset into the training set of size n1 = 34 and the
test set of size n2 = 15. Since the smoothed curve series exhibit
weak autocorrelations when lags are beyond 3 and the training
size is relatively small, we use k0 = m = 3 in our procedure for
this example.

Table 6 reports the MAPEs and MSPEs for females and
males. Several obvious patterns are observable. First, our pro-
posed methods, SegV and FTSegV, provide the best predictive
performance uniformly for both females and males, and all h.
This demonstrates the effectiveness of reducing the number of
parameters via the segmentation transformation in predicting
high-dimensional functional time series. Second, although the
cases of under- and uni-segmentation are inferior to the correct-
segmentation case, they significantly outperform UniV and GSY.
Note that the improvement of Uni.SegV over UniV reveals the
capability of the transformation matrix Â to effectively decorre-
late the original curves, thereby leading to more accurate pre-
dictions. One may also notice that, Uni.SegV does not perform
as well as SegV and Under.SegV. In most cases, the transformed
curve series exhibits q̂ = 26 groups, with 25 groups of size 1
and one large group of size 4; see Figures S2–S11 in the sup-
plementary material. The limitation of Uni.SegV thus becomes
apparent as it fails to account for the cross-serial dependence
within the large group, resulting in less accurate predictions.
This finding again confirms the effectiveness of our procedure,
in particular, the within-group cross-autocorrelations is also
valuable in forecasting future values.

6.2. Energy Consumption Data

Our second dataset contains energy consumption readings (in
kWh) taken at half hourly intervals for thousands of London
households, and is available at https://data.london.gov.uk/
dataset/smartmeter-energy-use-data-in-london-households. In

https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
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Table 6. MAPEs and MSPEs for eight competing methods on the female and male mortality curves for h ∈ {1, 2, 3}.

Method MAPE MSPE MAPE MSPE

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

SegV

Female

1.157 1.461 1.806 0.291 0.401 0.566

Male

1.104 1.391 1.727 0.251 0.354 0.499
Under.SegV 1.201 1.510 1.874 0.304 0.417 0.593 1.123 1.425 1.751 0.251 0.358 0.500
Uni.SegV 1.526 1.821 2.154 0.441 0.579 0.767 1.302 1.573 1.892 0.324 0.443 0.598
FTSegV 1.175 1.458 1.801 0.301 0.405 0.569 1.101 1.391 1.732 0.251 0.353 0.502
Under.FTSegV 1.206 1.510 1.876 0.309 0.421 0.598 1.118 1.418 1.743 0.251 0.356 0.499
Uni.FTSegV 1.560 1.838 2.173 0.457 0.585 0.776 1.300 1.573 1.897 0.324 0.444 0.602
UniV 1.761 2.032 2.325 0.603 0.749 0.925 1.561 1.825 2.127 0.467 0.596 0.759
GSY 2.476 2.515 2.577 1.434 1.447 1.451 2.144 2.110 2.201 1.112 1.023 1.043

NOTE: All numbers are multiplied by 10. The lowest values for each h are in bold font.

Table 7. MAPEs and MSPEs for eight competing methods on the energy consumption curves for h ∈ {1, 2, 3} and p ∈ {40, 80}.

Method MAPE MSPE MAPE MSPE

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

SegV

p = 40

1.639 1.748 1.793 0.047 0.053 0.054

p = 80

1.996 2.058 2.071 0.070 0.075 0.075
Under.SegV 1.669 1.766 1.794 0.048 0.054 0.054 2.025 2.092 2.104 0.072 0.077 0.077
Uni.SegV 1.709 1.873 1.964 0.049 0.058 0.062 2.022 2.132 2.187 0.070 0.078 0.081
FTSegV 1.637 1.747 1.791 0.047 0.053 0.054 2.012 2.055 2.070 0.071 0.074 0.074
Under.FTSegV 1.669 1.766 1.793 0.048 0.054 0.054 2.040 2.087 2.104 0.073 0.076 0.077
Uni.FTSegV 1.708 1.872 1.963 0.049 0.058 0.062 2.045 2.138 2.190 0.072 0.078 0.081
UniV 1.867 2.009 2.109 0.058 0.067 0.072 2.221 2.362 2.463 0.083 0.093 0.100
GSY 2.142 2.264 2.320 0.099 0.110 0.119 2.833 2.826 2.781 0.159 0.159 0.159

NOTE: All numbers are multiplied by 102. The lowest values for each h are in bold font.

our study, we select households with flat energy prices during
the period between December 2012 and May 2013 (n = 182)
after removing samples with too many missing records, and
hence construct 4000 samples of daily energy consumption
curves observed at N = 48 equally spaced time points following
the proposal of Cho et al. (2013). To alleviate the impact of
randomness from individual curves, we randomly split the
data into p groups of equal size, then take the sample average
of curves within each group and finally smooth the averaged
curves based on a 15-dimensional Fourier basis. We target
to evaluate the h-day ahead predictive accuracy for the p-
dimensional intraday energy consumption averaged curves in
May 2013 based on the training data from December 2012 to
the previous day. The eight comparison methods are built in the
same manner as Section 6.1 with k0 = m = 5.

Table 7 presents the mean prediction errors for h ∈ {1, 2, 3}
and p ∈ {40, 80}. A few trends are apparent. First, the pre-
diction errors for p = 80 are higher than those for p = 40
as higher dimensionality poses more challenges in prediction.
Second, likewise in previous examples, SegV and FTSegV attain
the lowest prediction errors in comparison to five competing
methods under all scenarios. All segmentation-based methods
consistently outperform UniV and GSY by a large margin. Third,
despite being developed for high-dimensional functional time
series prediction, GSY provides the worst result in this example.

Supplementary Materials

The supplementary material contains all technical proofs of the main
results, and additional empirical results.
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