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Abstract

Worsening climatic conditions are a significant threat to livelihoods, health and

well-being worldwide. In this paper, we estimate the impact of temperature and precip-

itation anomalies on inequality and poverty using a dataset combining comprehensive

climatological data with subnational regional wealth and inequality measures derived

from the Demographic and Health Surveys for 52 countries and 453 regions. Using

the International Wealth Index as a comparative measure of material wealth, we find a

significant impact of temperature anomalies on the distribution of material wealth. We

estimate that an average temperature anomaly of one standard deviation in the past 4

years increases the regional Gini coefficient by 0.018 points and increases the share of

extremely poor households by 4.1 percent. The impacts are stronger in rural areas. We

find that temperature anomalies affect inequality through multiple channels, includ-

ing agricultural employment, the deterioration of assets, decreased economic activity,

higher unemployment and worsened access to healthcare. The impacts of precipitation

anomalies on inequality, on the other hand, are more ambiguous.
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Environmental Hazards and Inequality

1 Introduction

Climate change will exacerbate the frequency, intensity, duration, and spatial extent of en-

vironmental hazards (Cramer et al., 2018; Field et al., 2012). This will affect populations

worldwide with major implications for health, food, water security, jobs, productivity and

well-being. These impacts are obviously not distributed equally across space and popula-

tions. Less developed regions are typically more exposed to hazards and more vulnerable

because they lack the adaptive capacity to adequately prepare for and cope with the con-

sequences. Within these regions, it is often the poorest parts of the population that suffer

the most (Tol, 2018). Previous research has shown that environmental hazards can have

important impacts on resource allocation within households (Doss, 1996; Hadley et al.,

2008) and on the wealth distribution between households in a community (Reardon and

Taylor, 1996; Thiede, 2014; Sedova et al., 2019). Higher levels of inequality can increase

social tensions and result in conflict (Cramer, 2003; Lessmann, 2016), further destabilizing

affected regions.

However, little is known about the effects of climatic events on inequality on a wider ge-

ographical scale and over time (Islam and Winkel, 2017). It is crucial to gain a better

understanding of these processes as these relationships are central to estimating the dam-

age function of current and future climate change. Our study explores the impact of tem-

perature and precipitation anomalies on material wealth inequality within regions across a

large set of countries. Our analysis exploits the Demographic and Health Surveys (DHS),

a standardized survey framework which disproportionately samples the poorest countries

of the world, but also includes observations on lower middle-income and middle-income

countries in Africa, Latin America, South and Southeast Asia and Eastern Europe. Our

approach produces comparable estimates for a sample covering the earliest stages of de-

velopment up through to the lower middle range of the world income distribution. We

construct a subnational panel dataset that allows us to test for the effects of anomalies on

the wealth distribution within regions. In total, we obtain data for 453 subnational regions

with information on more than 3.5 million households. DHS surveys are collected every

three to six years1 from 1990 to 2019 depending on the country, resulting in an unbalanced

time series covering a period of 30 years.

DHS surveys collect rich data on households and their individual members. Based on this

information, we construct a material wealth index at the household level that captures a

level of material assets that allow for a decent living. We use information on household

1This rule can be broken in some rare cases with a maximum variation of one year.
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assets following a methodology developed for the International Wealth Index (IWI), which

is comparable across countries and over time (Smits and Steendijk, 2015). Based on the

information on material household wealth, we calculate inequality measures (e.g., Gini

coefficient) at the regional level that reflect the material wealth distribution within regions

in our sample. The material wealth indices constructed based on DHS surveys focus on

household consumption. Important assets such as homeownership or financial holdings are

not included, as they are not available at the household level.

We use high-resolution, high frequency climate data from the Climate Research Unit of the

University of East Anglia (Harris et al., 2014) to calculate the occurrence and intensity of

temperature and precipitation anomalies for each region. Combining the regional climate

and inequality data, we analyze the extent to which changes in material wealth inequality

are driven by climate anomalies that have occurred in the period prior to a DHS survey. The

extensive microdata provided in the DHS allow us to explore the underlying mechanisms

influencing the direction and size of the relationship.

We find that temperature anomalies increase both inequality and the share of poor house-

holds within regions. A temperature anomaly of one standard deviation in the previous 4

years leads to an increase in the regional Gini coefficient by 0.018 points and an increase in

the share of the poorest households by 4.1 percent. The effects on inequality are found to

be stronger for climate anomalies that persist over longer time windows, including for 60

months (0.018 points), 72 months (0.031 points) and 84 months (0.048). In rural regions,

households are particularly vulnerable to temperature anomalies, leading to an increase in

material asset-based wealth inequality of 0.039 points, a decrease in mean wealth by 0.019

points, and an increase in the share of the poorest households by 6.7 percent. Poorer, more

equal and colder regions tend to be more affected by temperature anomalies. Distributional

impacts increase over time, with the strongest inequality-enhancing effects observed in the

last two decades.

We test multiple channels for these results. We test the socioeconomic channel and decom-

pose the wealth effects into different asset subcategories to understand which assets are

most likely to be affected by climatic events. Our analysis shows that temperature anoma-

lies affect inequality through multiple channels, including decreased economic activity,

higher unemployment, and worsened access to healthcare. Decomposing the wealth effects

into different asset subcategories also shows that temperature anomalies affect households’

material assets and diminish resilience. They lead to a reduction in electronic assets (in

particular cheap electronics, such as telephones) and to a deterioration in housing facilities.

These assets could be either directly affected through long periods of heat, not renewed
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or maintained due to income shocks, or sold by households for consumption smoothing.

Individuals employed in agriculture are more affected by temperature anomalies, seeing a

larger decline in their wealth. Thus, selling assets to compensate for an income shock and

to smooth consumption seems to be a likely scenario.

We also test for migration by checking whether weather anomalies lead to compositional

demographic changes according to gender, education and age. We find evidence that a

small part of the population seems to be responding to temperature shocks by migration:

temperature anomalies do not seem to impact the educational and gender composition of a

region but do seem to affect the age composition by a small amount. When controlling for

these compositional changes, the main results are consistent and barely change in size.

We also rule out conflict as a mechanism through which climate affects inequality: while

recent work has argued that climate affects conflict (Burke et al., 2015), we find no evidence

that conflict is driving our results.

The remainder of this paper is structured as follows. In Section 2, we provide an overview

of the previous literature and discuss our conceptual framework. Section 3 introduces the

data and measures used in our analysis. Section 4 presents our research design and estima-

tion strategy and we present our results in Section 5.

2 Literature

The literature on the distributional effects of environmental hazards has grown over the past

years. Papers have studied the impacts of different hazards on inequalities mostly between

countries. The findings show contrasting climatic effects on inequality depending on local

contexts and the measure of wealth used.

At the national level, climatic changes and extreme events have been shown to exacerbate

global inequality between rich and poor countries as measured through GDP per capita

(Mendelsohn et al., 2006) and economic output (Diffenbaugh and Burke, 2019). Using

a panel of countries from 1992 to 2018, Cappelli et al. (2021) find that higher levels of

income inequality, as measured with the Standardized World Income Inequality Database

(SWIID), are associated with a greater number of people affected by disasters and of fatal-

ities. Limited evidence exists as to changes in inequality at the subnational level.

Within countries, it is often the poorest that suffer the most (Tol, 2018). Poor households

are more likely than richer households to be located in disaster-prone areas due to lower

housing costs, greater accessibility of jobs, and the importance of social networks in the

choice of relocation following a disaster (Patankar, 2015). In addition, poor households
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are more vulnerable to disasters and have a reduced ability to cope with and recover from

losses (Hallegatte et al., 2016, 2018, 2020).

At the micro-level, environmental hazards have important distributional impacts on the

resource allocation within and between households in a community (Doss, 1996; Hadley

et al., 2008). Most studies focus on one catastrophic event and assess whether the related

damages widen inequality (Baez and Santos, 2007; Belasen and Polachek, 2009; Mottaleb

et al., 2013; Sakai et al., 2017; Thiede, 2014). Given the unreliability of income data, es-

pecially in developing countries, alternative measures have been utilized to assess wealth

disparities like nightlight satellite data or composite wealth indices derived from asset own-

ership (Narloch and Bangalore, 2018).

The development of wealth indices only started in the late 1990s when systematic surveys

were carried out by large organisations like the World Bank. These indices are based on

the notion that the possession of assets reflect a household’s material and physical wealth

and wellbeing. Filmer and Pritchett (1999, 2001) were the first to use principal component

analysis of assets to create country-specific wealth indices. Studies using these methods

yield mixed findings: while some papers find that disasters decrease inequality in income

as poorer households sell assets, recording a temporary increase in earnings (Reardon and

Taylor, 1996; Keerthiratne and Tol, 2018), other studies find no effect (Thiede, 2014) or

a positive effect on inequality (Gilli et al., 2024; Palagi et al., 2022; Dang et al., 2023;

Castells-Quintana and McDermott, 2023). Climatic hazards can affect the level and dis-

tribution of asset-based wealth outcomes in various ways: households can choose to sell

non-productive assets for consumption smoothing in times of distress (De Waal, 2005;

Watts and Bohle, 1993). Assets can also be directly affected or damaged by a hazard, for

example through destructions of properties. While wealthier households may be relatively

worse affected by the latter effects in absolute terms, as they are more often houseowners

and have a higher income (Hallegatte et al., 2020), poorer households are more vulnerable

and hence suffer more from the impacts in relative terms. Hazards may also prevent af-

fected poor households from expanding their asset-based wealth (e.g., by restricting their

access to credit) further contributing to an increase in inequality (Patankar and Patwardhan,

2016). These ambiguous results highlight the need for more investigations into the distri-

butional impact of climatic events and their relevance across different populations within

countries (Kousky, 2014).

A more limited body of work has analysed the persistence of the effects of climatic shocks.

Sustained anomalies, including long-lasting droughts, have been shown to lead to shocks in

the agricultural sector and to damage cropland and animals in North Brazil (Piedra-Bonilla
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et al., 2021). Studies have shown that climatic hazards can have lasting negative effects on

economic output, labour productivity and asset growth for more than five years (Acevedo

et al., 2020; Donadelli et al., 2017).

Using data from Ethiopia and Honduras, Carter et al. (2006) find a drop in disposable

income in the short run after a disaster event due to crop failures, increased medical expen-

diture and assets or land being destroyed. In the medium run, they find that climate shocks

increase asset inequality in Honduras, with the poor struggling to rebuild their assets while

richer households are better at protecting their assets during a shock or selling assets to

smooth consumption. The extent of the asset loss depends on whether affected households

can engage in other coping strategies as well as changes in asset prices over time (Carter

et al., 2006). When looking at assets, we would therefore expect to see an effect over the

medium to long run once households have used up their disposable income or savings.

More frequent, persistent and long-lasting shocks would further decrease households’ abil-

ity to exploit other coping mechanisms and exacerbate the impact on assets.

In addition to directly reducing asset-based wealth, climatic hazards can also exert an in-

direct effect on wealth inequality, through the out-migration of affected households. This

is particularly problematic if migration depends on the wealth of the household, thereby

changing the composition of the population in a region. This would in turn bias the econo-

metric estimation of climatic impacts on wealth and inequality over time. Studies interested

in the socio-economic impacts of hazards therefore need to test and account for such migra-

tion patterns (Bohle et al., 1994; Watts and Bohle, 1993). Indeed, several studies find that

environmental hazards affect migration, although a decline in migration has been reported

in some studies (Cattaneo, 2019; Berlemann and Steinhardt, 2017; Borderon, 2019). Hoff-

mann et al. (2020) quantitatively analyse the influence of environmental factors on migra-

tion through a meta-analysis of country-level studies and find that a one standard deviation

change in the environmental conditions leads to an increase in migration by 0.021 standard

deviations. They find that migration is primarily internal, or occurs within neighbouring

low- and middle-income countries.

Our study employs the asset-based International Wealth Index (Smits and Steendijk, 2015)

which employs principal component analysis to make wealth levels comparable across

countries and time. We provide novel evidence that temperature anomalies impact ma-

terial wealth assets and housing characteristics through multiple channels, which increases

the difficulty for households to posses assets that allow for a decent living. Regional eco-

nomic output, agricultural employment, unemployment and access to healthcare are af-

fected by temperature anomalies. We also look at migration by studying regional compo-
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sition changes. We find evidence that supports a story of migration among the young, but

our main results hold when accounting for these changes. Our study also contributes to the

literature on the duration of climatic shocks. Our paper adds to this literature and finds that

the effects of temperature anomalies on inequality are found to be stronger for anomalies

that persist over longer time windows (60 months or longer). We find evidence for agricul-

tural employment, effects on economic output, unemployment and access to healthcare.

3 Data and Measurement

We combine asset and wealth data from the Demographic and Health surveys (DHS), GDP

data from satellite date (Kummu et al., 2018) and environmental hazards data from the

Climate Research Unit gridded data. We describe these datasets below.

3.1 Asset and wealth data

We measure the material and physical well-being of households using the household level

Demographic and Health surveys (DHS). Rolled out by USAID, these surveys cover more

than 90 low- and middle-income countries representing about 23% of the world population

(Croft et al., 2018). We use data for those countries for which longitudinal information

covering several time periods is available. In total, the data employed covers 52 countries

(see the Summary Statistics Table 9) with 453 subnational regions.

DHS surveys are repeated cross-sectional surveys every 3 to 6 years from 1988 until 2017

resulting in a repeated cross-section. They provide nationally representative and standard-

ized data on health, population and several socioeconomic variables in low- and middle-

income countries. DHS also includes a limited set of household characteristics including

the size of the household (number of occupants) and whether or not the household is located

in an urban or rural setting.

DHS surveys also contain a geographic identifier, which provides the approximate coor-

dinate location of the survey cluster. There are typically 500–1000 survey clusters in a

country, with each cluster containing around 25 households.2

Based on the DHS data, we construct two datasets for our analysis. First, we build a macro-

level dataset at the subnational regional level. For this, we use harmonized regional iden-

2To guarantee the anonymity of the interviewed households, the geographical locations of the clusters are

randomly allocated by DHS within a radius from the real location of a maximum of 2km for urban areas,

and 5km for rural areas. One limitation of the DHS dataset for our analysis is that large cities usually form

one unit, while smaller cities are combined with rural areas. If weather shocks impact large cities less, and if

large cities have a higher Gini coefficient, this might bias our effects downwards.
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tifiers to study regional observations over time, even if regions’ boundaries have changed

(Belmin et al., 2021). Using the harmonized region IDs, we aggregate the DHS micro

household data to the subnational regional level obtaining aggregate measures on overall

wealth and its distribution. Combining this data with the information on climatic impacts

prior to the DHS using harmonized regional boundary shapefiles allows us to test to what

extent changes in environmental conditions and anomalies have influenced wealth and in-

equality within the regions over time and to explore heterogeneity by regions’ characteris-

tics.

Second, in addition to the regional database, we also make full use of the DHS micro

data at the individual level to explore some of the underlying mechanisms. As shown in

the previous literature, population groups are impacted differently by extreme events with

implications for the wealth distribution in an area. Using the detailed DHS microdata

on household and individual characteristics, including socioeconomic status, agricultural

dependency, and household composition, allows us to test not only whether climatic shocks

have an impact on wealth and its distribution, but also for whom and where.

3.2 Wealth Index construction

To measure the level of inequality within a region, we first construct a composite wealth

measure at the household level, which allows us to determine the wealth distribution be-

tween households. For this, we rely on the methodology of the International Wealth Index

(IWI) (Smits and Steendijk, 2015). The index expands the standard DHS household level

wealth index and makes it comparable over time and across countries.

The IWI was developed with the idea that wealth can be defined by global material re-

quirements needed for living a decent life. It is based on each household’s possession of a

standard set of assets such as housing construction materials, quality of water access and

sanitation facilities, consumer durables, cheap utensils that reduce the workload, electric-

ity and more. In total, twelve assets are used to create a wealth score for each household,

grouped into three categories: consumer durables, housing characteristics and public utili-

ties.

The selection of the twelve assets is a function of the availability, clumpiness, and di-

mensionality of the data. Each indicator is assigned a weight derived from a principal

component analysis in Smits and Steendijk (2015). The weights reflect the possibility that

a household that owns one specific asset also owns other selected assets. By summing up

the differently weighted assets and items, a household wealth score can range between 0
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and 100.3 Not all DHS surveys contain information for all the selected asset classes, so

we normalize the index by dividing it by the maximum possible value the wealth index

could take given the indicators available in a given country survey. We do this by summing

up the positive weights derived from the principal component analysis, which gives us the

denominator of our wealth index (the weights are shown in the Appendix Figure 6). We

run robustness tests on the sample of countries for which we have at most one missing asset

item across every survey year and our results are not sensitive to this restriction (see Table

17).

The first factor loading of the IWI explains 30 percent of the variation in assets, which is

higher than the percentages generally obtained using country-specific indices (26% Filmer

and Pritchett (2001); 27% McKenzie (2005); 24–27% Córdova (2009)). The principal

component analysis can also be country-specific if we consider that the dimensionality and

underlying understanding of wealth are not universal. For our analysis, comparability over

time and across countries is derived from using the weights from the International Wealth

Index. In addition, we run a region fixed-effects model that accounts for time-invariant

region-specific characteristics.

Based on the index of household assets, we create aggregate regional measures of inequal-

ity. Our main outcome, the Gini coefficient of material wealth, is based on the Lorenz

curve, which plots the cumulative percentage of income (of the wealth index) over the cu-

mulative percentage of the population, and compares it with a uniform distribution. The

Gini coefficient has a number of weaknesses often highlighted in the inequality literature,

two of them are of importance to our study. The main weakness of using the Gini as a

measure of inequality is that it describes the whole distribution in one number and tends to

be more sensitive when it comes to changes in the middle of the distribution (Sen, 1997).

In order to improve on this limitation and understand what parts of the wealth distribution

are affected, we additionally create measures that describe the share of households below a

certain cutoff point, e.g. below 0.2. This describes the share of households below a wealth

index score of 0.2, the tail of distribution, which serves as a poverty measure. In order

to uncover what happens to the material distribution of wealth when the Gini coefficient

increases, we investigate micro-level asset data in Section 5.5. The second main limitation

of applying a Gini-like inequality measure to our index are comparability issues (Young,

3For example, the weight assigned to owning a car is lower than the weight assigned to a television or a

refrigerator. This is explained by the fact that the probability for a household to own a car once they own

a television and a refrigerator is high, hence the car does not provide more information about the wealth of

the household. On the other hand, the ownership of a television and a refrigerator is more discriminatory

between income groups
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2013). This would be a greater concern if we used principal components analysis, however

we construct an index that applies the weights of a PCA to a basket of assets so the inequal-

ity measure is calculated off a weighted average rather than a principal component. We then

apply the same weights across all regions to ensure the orders of magnitude are comparable

between regions. The fact that we standardise the index by the number of available assets

introduces some noise, as we apply a distribution based measured to different standardised

distributions but we consider this a worthwhile trade-off to capture as many assets available

in the surveys.

The asset-based wealth indices constructed from DHS surveys have several limitations.

The index of wealth is truncated, to the extent that there is nothing to discriminate between

wealthy households who own all assets of the highest quality. While assets such as ‘expen-

sive utensils’, defined as the possession of expensive (roughly over 250 US dollar) items

- e.g. a washer, dryer, computer, motorbike, motorboat, air conditioner, or generator - are

meant to create more discriminatory power at the upper end of the wealth distribution, the

discriminatory power is still limited. Financial assets or loans are not captured in the DHS

surveys and one of the key assets, home ownership, is not recorded in a systematic way in

the DHS surveys.4 As the impact of environmental hazards has been shown to impact prop-

erty values, our results on inequality are downward biased, as we would expect hazards to

decrease the values of properties for homeowners and leave renters’ wealth the same.

At its inception, the index was reported to have had low discriminatory power at the bottom

of the wealth distribution (Rutstein, 2008). As a result, cheaper assets - e.g. chair, table,

fan or mixer - were included in later surveys to be able to better differentiate among the

poorest groups. These were used in the International Wealth Index.

We present the summary statistics of the data in Table 9, Figure 7, Figure 8 and Figure 9.

3.3 Further socioeconomic data

We use gridded data on regional GDP per capita and human development derived from

Kummu et al. (2018) to capture the additional impact of anomalies on the mean distribution

of wealth in a subnational region. This dataset comes with certain limitations. Temporal

coverage of the national and subnational data varied between countries so they use temporal

interpolation and extrapolation approaches to fill the missing values. They also had to make

assumptions to translate national data sources to regional level data. To estimate the total

4Note that the Gini coefficient was designed to characterise a distribution of wealth over the cumulative

population, and that if our wealth index is truncated at the top, our measure of inequality represents how equal

that truncated distribution of wealth is. In addition, wealthier households might use financial assets such as

insurance products to mitigate and adapt to environmental hazards and these will not be captured in our data.
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GDP (PPP) of each grid cell, Kummu et al. (2020) multiply the GDP per capita (PPP) by

grid specific population data using two different spatial resolutions, from HYDE 3.2 and

from GHS population grid. The additional assumptions and methods used to produce this

dataset can be found in Kummu et al. (2018). In addition, as the data covers only the period

1990-2015, we are missing data for the most recent DHS observations. Our results using

GDP per capita as an outcome are shown in the Table 6.

3.4 Environmental hazards: climate anomalies

In the last decade, studies have exploited high-frequency (e.g., month to month) changes

in temperature, precipitation, and other climatic variables to identify the causal short-term

economic impacts of weather shocks using panel methodologies. We follow best practice

in measuring environmental hazards causally (for a full review, see Dell et al. (2014) ex-

ploiting exogenous variation in climatic shocks over time within a given spatial area, on

regional inequality).

The most standard type of climate data are sourced from ground stations, which usually

directly observe temperature, precipitation, and other weather variables. One important

challenge posed by ground station data is incomplete coverage, particularly in low-income

countries or in areas with sparse population density. As a result, climate scientists have

developed a variety of gridded data products, which interpolate ground station data over a

grid.5

We use the Climate Research Unit (CRU TS 4.05) gridded data6. The data are provided in

a raster format covering all land areas at a 0.5° spatial and monthly temporal resolution7.

From this dataset, we create a balanced panel on temperature and precipitation levels at the

subnational regional level from 1900 to 2020.8 The spatial coverage of precipitation data is

limited and more time-dependent so the temporal and spatial aggregation and interpolation

is noisier than it is for temperature anomalies (CRU TS 4.05).

5As gridded data interpolates ground station data, it suffers from similar limitations in areas where ground

station data are sparse (e.g. some developing countries). Interpolation methods uses distance-weighting from

weather stations and do not use elements of wealth or built-up areas, removing concerns that predictions

might bias our estimation strategies. Precipitation has a greater spatial variation than temperature, especially

in rugged areas, so the interpolation introduces more measurement error.
6Of the University of East Anglia and of Willmott, Matsuura at the University of Delaware (UDEL)
7While satellite data can provide complementary climate data for areas with a limited ground network,

satellite data were introduced more recently and ground station is more accurate than the satellite data

(Houghton et al., 2001; Karl et al., 2006)
8While satellite data can provide complementary climate data for areas with a limited ground network,

satellite data were introduced more recently and ground station is more accurate than the satellite data

(Houghton et al., 2001; Karl et al., 2006)
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Our study considers climate anomalies, where the climate variable is calculated as its level

difference from the within-region mean and divided by the within-region standard devia-

tion.

The nominator — the difference in mean - is partly captured by the panel model. The de-

nominator scales the difference by the historical standard deviation of that climate variable

for that month. This follows the underlying “climate-economy model” (Dell et al., 2014)

where level changes matter not in an absolute sense but relative to an area’s usual variation.

Due to the standardization, the order of magnitude of these anomalies can be compared

across countries and regions. In addition, they reflect climatic impacts that are relevant to

local populations as they accurately reflect deviations and extremes on the ground (Hsiang

and Jina, 2014; Dell et al., 2014; Hoffmann et al., 2021).

Based on this data, we calculate for each region r for a given month m deviations in temper-

ature and precipitation (Xrmy) from the long-term monthly mean over the reference period

1900-2020 (Xr,m1900−2020
). We then calculate for each month in a year y the long run standard

deviation SDrm1900−2020
for the entire reference period and standardise our mean deviations

using the following formula:

Anomalyrmy =
Xrmy −Xrm1900−2020

SDrm1900−2020

(1)

Our main independent anomaly variable then sums these monthly standardised mean anoma-

lies (of temperature and precipitation) over the 48 months prior to the survey date. There

are two main reasons to focus on the four year window. We assume that permanent de-

cisions to do with purchasing or selling material goods are more likely to be based on

average recent experience rather than one good or bad year, following Henderson et al.

(2017). Furthermore, we would like to use the average period between two surveys. The

median period between surveys is 60 months, but as the survey collection takes multiple

months to complete, we take the anomalies over a period of 48 months. This ensures that

we capture the period between surveys that do not overlap with previous survey collection,

on average. To determine the accurate date for the data collection, we rely on information

provided by DHS on the respective interview dates in the regions, using the first month of

data collection.

The mean temperature anomaly can be positive or negative, as shown in Table 9. For

temperature, an anomaly over the last 48 months tends to be positive on average, referring

typically to higher temperatures than its long-run mean. In contrast, for precipitation, the

mean anomaly is negative.

12



4 Estimation Strategy

Large cross-sectional correlations exist between a country’s climate and its socioeconomic

outcomes, posing well established challenges in identifying causality.

This paper follows the new wave of empirical research that use panel methodologies, ex-

ploiting high-frequency (e.g., year-to-year) changes in temperature, precipitation, and other

climatic variables to identify the economic effects of these shocks. To the extent that cli-

matic shocks are exogenously determined, reverse causation is unlikely to be a major con-

cern (Dell et al., 2014). Many controls are endogenous to the weather variation. We follow

best practice, which only include either no controls or credibly exogenous controls (Dell

et al., 2014).

Following the literature, our estimation strategy tests the causal effects of regional climate

anomalies on regional wealth inequality using fixed effects panel models with region and

year fixed effects. We include no additional controls to mitigate the issue of bad controls

in climate models (Baquie and Foucault, 2023; Dell et al., 2014):

Yr,y = α +βSr,p +μy +ηr + εr,y (2)

Our main outcome of interest Yr,y is inequality, calculated as the Gini coefficient of the

material wealth index in region r at survey year y. We also estimate the impacts of climate

anomalies on economic outcomes, as well as on the percentage of households possessing

specific assets.

Sr,p are climate anomalies summed in a region r over a time period p of 12 to 84 months.

We test for temperature and precipitation anomalies. As described earlier, our preferred

specification tests for anomalies summed over 48 months. We include year fixed effects

(μy the survey year) and region fixed effects (ηr) to control for unobserved heterogeneity

and common time trends. All standard errors are clustered at the region level. We also

study the impact of weather anomalies on the mean wealth of a region to complement the

picture on inequality.

We test for the heterogeneity of environmental hazards on inequality considering a range

of regional characteristics. We distinguish regions by income level (measured by GDP per

capita), their baseline temperature and their initial inequality level.

Migration is important for the interpretation of the results. We worry about asymmetric mi-

gration by household wealth in response to climatic shocks. The departure of households

and individuals that might be disproportionately wealthy or poor will change the composi-

tion of the population in a region. The empirical issue we face is the degree to which the
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location of poorer and richer households is endogenous to anticipated shocks. The failure

to account for sorting likely leads us to under-estimate the impact of climatic shocks on

inequality (bias β downwards) if the hardest hit populations from climatic shocks are the

poorest, or if the least affected are the wealthiest who might nonetheless update their pref-

erences and decide to migrate away from risky areas. Conversely, if poor households sort

into areas prone to climatic shocks after a shock because rent or housing is now cheaper,

then we would be over-estimating β – as it would capture the impacts of climatic shocks

on households that overcame the disaster, and capture the migration of poor households

into the region due to lower house or rental prices.9 Equally, we would over-estimate β if

the richest households decide to migrate to an area following or in anticipation of climatic

shocks because they might see an economic opportunity. Ultimately, we need to formally

test for migration to better understand the impacts of weather shocks on regional inequal-

ity. The survey data used is repeated cross-section rather than panel data, we thus test for

sorting by studying changes in the composition of the population over time (Table 7).

5 Results

5.1 Descriptives

Figure 1 shows the distribution of the Gini index globally, revealing substantial differences

in the level of wealth inequality between and within countries. Regions with particularly

high levels of inequality can be found in Central America, the Sahel region, Central Africa,

and the Horn of Africa (Figure 1 Panel A). Countries with relatively higher wealth levels,

such as Turkey or Egypt, are characterized by relatively low levels of inequality. This is

due to the particular nature of the dataset used to capture inequality, which is better suited

to capture the inequality at the lower end of the wealth distribution.

Major differences in inequality are not only observable between but also within countries

(Figure 1, Panel B). The boxplots show a wide span in the levels of regional inequality

for countries like Ethiopia, Namibia, Mali, and Cameroon. These findings highlight the

importance of taking a subnational perspective when considering inequalities in wealth

levels.

In our empirical analysis, we combine the information about changes in the wealth dis-

tribution at the regional level over time with information on temperature and precipitation

anomalies. The temperature anomalies employed increase over time (Appendix Figure 8),

9Cappelli et al. (2021) find evidence in favor of a vicious cycle between disasters and inequality.
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while the precipitation anomalies do not (Appendix Figure 9).

Figure 1: Distribution of the Gini index at the subnational level globally

Notes: The figure shows information for the most recent DHS wave for each country

5.2 Baseline models: Impacts of anomalies on inequality

Our baseline results are presented in Table 1, where we regress the regional wealth Gini

coefficients on different climate indicators. Our main independent variable is the average

temperature or precipitation anomaly within the 48 months prior to a DHS survey. In

our main specifications, we control for region and year fixed effects. Standard errors are

clustered at the region level.

We estimate a significant impact of temperature anomalies on material wealth inequality.

Specifically, we find that an increase of one standard deviation in the average temperature

anomaly in the past 48 months increases the regional material wealth Gini coefficient by

0.018 points (SE 0.007).

In addition, we find a significant negative effect of -0.011 (SE 0.005) of temperature anoma-

lies on regional mean wealth levels. The combined effects of a widening of the wealth
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distribution and of a reduction in overall wealth levels suggests that selected population

groups in the sample are particularly affected by temperature anomalies whereas others are

less impacted leading to a reduction in mean wealth levels contributing to the observed

increase in inequality.

The relationship between extreme temperatures and inequality also holds when we con-

trol for precipitation anomalies. We do not find an impact of precipitation anomalies on

inequality or on mean wealth levels, but find some impacts of precipitation on individual

assets (Appendix Figure 10). However, as stated above, caution is warranted when inter-

preting the effects of precipitation anomalies as the temporal and spatial aggregation and

interpolation is noisier than it is for temperature anomalies (CRU TS 4.05).

Various robustness tests were performed to test for the sensitivity of our findings. First,

our model estimates are not sensitive to different inequality measures (Appendix Table 16),

which likewise confirm a positive relationship between temperature anomalies and wealth

inequality. We test whether the effects on inequality might be driven by outlier events in

regions such as conflicts. Our results are not sensitive to the exclusion of countries affected

by conflict during the observation period, as shown in Appendix Table 17. We also test

whether the availability or missing data on assets in the DHS surveys affects our findings

by removing countries from the sample that have assets that are missing. Similarly, the

results are robust to this additional check and confirm the positive, even larger, effect of

temperature anomalies on material wealth inequality (see Table 17). In further extended

models, we consider GDP per capita as an outcome using an alternative dataset to confirm

the negative wealth impacts observed with the DHS data (Table 6). In line with our main

results, we find that temperature anomalies over the last 48 months are associated with a

significant negative impact on regional GDP per capita.10

10This result confirms that GDP per capita would be a ‘bad control’ (Angrist and Pischke, 2009, 2014) in

our main regressions. Note that our measure of GDP per capita might underestimate yearly fluctuations due

to the interpolation and extrapolation methods used (see Data section).
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Table 1: Temperature & precipitation anomalies over 48m on regional Gini and wealth

Dependent Variables: Gini Wealth mean

Model: (1) (2) (3) (4) (5) (6)

Variables

Tmp anom 0.016∗∗ 0.018∗∗ -0.012∗∗∗ -0.011∗∗

(0.007) (0.007) (0.005) (0.005)

Pre anom 0.012 0.014 0.014∗ 0.012∗

(0.009) (0.009) (0.007) (0.007)

Fixed-effects

Region Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 1,829 1,829 1,829 1,829 1,829 1,829

R2 0.87094 0.87048 0.87120 0.96944 0.96939 0.96952

Within R2 0.00486 0.00133 0.00686 0.00518 0.00366 0.00796

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Anomalies can exert cascading influences on populations, where the experience of envi-

ronmental stress in one period affects the likelihood and severity of a household being

affected again. In additional analyses, we explore temporal dynamics of the effects (see

Table 12) using distributed lag models (Gasparrini et al., 2010) to analyze how impacts of

temperature and precipitation anomalies evolve over time.11 For temperature anomalies,

we find some evidence for short-term impacts, 24 months prior to the DHS surveys, but

mostly longer-term impacts of anomalies occurring in the period of 36 to 72 months. This

suggests that effects of temperature anomalies are complex and characterized by different

underlying processes affecting wealth levels and inequalities.

The DHS data employed covers 30 years allowing us to analyse how anomaly impacts dif-

fered by time periods in the data. For this, we interacted the anomaly measures with a

factor variable capturing the decades when the DHS data were collected (see Table 13).

11By simultaneously estimating lagged impacts, we can explore how anomalies in different time periods

have affected the outcomes and explore cumulative effects.
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We find particularly strong effects of temperature anomalies in the 2000s and 2010s, sug-

gesting an increasing impact of temperature anomalies on the distribution of wealth over

time. Climate change has led to an increase in the intensity of anomalies observed in many

regions of the world. These larger anomalies may have disproportionate effects on wealth

levels and distributions explaining the larger effects observed in latter periods (Schlenker

and Roberts, 2009). The existing literature has also tested for non-linear damage functions

of climatic shocks (Cui et al., 2024). However, the climatic shocks we study are stan-

dardised mean temperature and temperature anomalies so we do not expect to see strong

non-linearities in the shocks. We test for quadratic versions of our climatic shocks and our

results are not significant (Appendix Table A.6).

5.3 Distributional impacts

While our baseline models consider changes in the overall wealth distribution and mean

levels, Table 2 provides detailed analysis of the impacts of anomalies on the wealth distri-

bution. For this, we create a series of variables that measure for each DHS data collection

the share of the population in a subnational region that falls into fixed wealth bins.12 We

study shifts in the population share between wealth bins (e.g., wealth index <0.2) and an-

alyze how the relative population in each bin changes over time. All models control for

region and year fixed effects to rule out confounding effects of unobserved heterogeneity

on underlying time trends.

12We split the wealth index into 5 bins (0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8-1) and study how population

shares swicth between them over time)
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Table 2: Distributional impacts of Temperature & precipitation anomalies over 48m

Dep. Var.: Wealth <0.2 Wealth 0.2-0.4 Wealth 0.4-0.6 Wealth 0.6-0.8 Wealth >0.8

Model: (1) (2) (3) (4) (5)

Variables

Tmp Anom 0.041∗∗∗ -0.032∗∗∗ -0.009 0.0007 0.007

(0.010) (0.009) (0.007) (0.008) (0.006)

Pre Anom 0.016 -0.012 -0.041∗∗∗ -0.036∗∗∗ -0.033∗∗∗

(0.013) (0.014) (0.010) (0.014) (0.009)

Fixed-effects

Region Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes

Fit statistics

Observations 1,829 1,829 1,829 1,829 1,829

R2 0.93102 0.73555 0.83406 0.95138 0.92039

Within R2 0.01108 0.00826 0.01641 0.00893 0.01948

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

While we find that temperature anomalies affect the entire wealth distribution, particularly

strong effects are observed for the lowest wealth bin which is estimated to grow by 4.1%

with a one standard deviation increase in temperature anomalies in the past 48 months. All

other wealth bins are estimated to shrink in size with particularly strong negative effects ob-

served for the second lowest wealth quintile. This suggests that climatic shocks particularly

affect those with already limited resources further pushing them into even greater poverty.

No significantly negative effects are observed for the population shares in the wealthiest

quintile, underscoring that temperature anomalies mostly affect the poor, with no evidence

of wealthier parts of the population being affected.

Ultimately, it is the stark increase in the poorest wealth quintile that drives the spread in

wealth in response to temperature anomalies and the resulting increase in inequality. By

increasing the share of the extremely poor, temperature anomalies contribute to a reduction

in the mean wealth level and an increase in the Gini coefficient as observed in Table 1.

This underpins the finding established in the literature that climatic stress can have par-
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ticularly adverse consequences for the lower end of the wealth distribution, leading to an

exacerbation of poverty in affected areas.

Temperature anomalies could affect the tail of the wealth distribution by reducing the num-

ber of assets, forcing households to use cheaper materials for housing construction, or

destroying water access and sanitation facilities. These results are in line with the litera-

ture, which shows that extreme weather events are associated with diminishing resilience

and wealth in the short-term (Jones and Ballon, 2020). While we remain cautious about

the results on precipitation anomalies, as discussed earlier, we observe that they affect the

wealth distribution in different ways, and seem to have shifted the distribution of wealth

from the middle of the distribution to the top.

5.4 Duration of Climate Anomalies

Our baseline results show that unusually high temperatures have a significant impact on

regional inequality. We next test the effect of environmental shocks over different time

periods. How does the duration of climate anomalies impact inequality?

We present our results in Figure 2. We find that temperature anomalies in the last 12 months

have no significant effect on inequality. However, once we extend the period to consider

the number of months over 48 months and over 84 months before the survey, the impact

steadily increases. At the same time, temperature anomalies have a significant negative

effect on mean wealth of a region as shown in Figure 3. The weather anomalies thus

increase inequality and bring down the distribution of material wealth, meaning the poor

get poorer, rather than the rich richer.

These results suggest that impacts of anomalies increase with their prolonged duration.

Accordingly, household assets are only affected if climatic shocks last over a longer pe-

riod. The distinct adaptation mechanisms available to poor and rich households following

shocks may translate into regional inequality only over longer time horizons explaining

the observed temporal pattern. The results are robust to changes in mean temperature and

precipitation levels over a time period of 48, 60, 72 or 84 months (Figure 2). We see the

same patterns of positive temperature anomalies on the wealth distribution: it reduces mean

wealth and the effect increases over time.
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Figure 2: Mean temperature and precipitation Anomalies on regional Gini: different Time

Periods

Notes: ‘Tmp’ stands for temperature. ‘Pre’ for precipitation. The bars represent the 95% confidence interval.
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Figure 3: Mean temperature and precipitation Anomalies on regional mean wealth: differ-

ent Time Periods

Notes: ‘Tmp’ stands for temperature. ‘Pre’ for precipitation. The bars represent the 95% confidence interval.

5.5 Heterogeneity by Regional Characteristics

Anomalies can exert differential effects on wealth depending on local contexts and eco-

nomic conditions. We test how the effect differs by development level, mean temperature

and inequality levels and present the results in Table 3.

First, we look at the differences in effects by GDP per capita. We interact temperature

anomalies with GDP per capita, displaying the results in Column 1. We find a negative

interaction effect, indicating that the effect of temperature anomalies on inequality is less

pronounced for regions with higher development level, and stronger in poorer regions. In

line with the previous results, we find a positive impact of positive temperature anomalies

on the Gini coefficient. Also, regions with higher GDP are linked to lower inequality, which

is in line with the Kuznets curve (Kuznets, 1955).

Second, we also test how hot and cold regions are differentially impacted. We interact the
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baseline temperature mean over 48 months with temperature anomalies and the results are

shown in Column 2. Surprisingly, regions with a higher baseline temperature experience

less pronounced effects of temperature anomalies on material wealth inequality. Thus,

temperature shocks have a more pronounced effect on inequality in colder regions. One

potential explanation could be adaptation. While we would have expected a stronger effect

in warmer regions, households might already have adopted measures or strategies to deal

with pronounced heatwaves. In contrast, households in colder regions might lack experi-

ence and infrastructure to cope with severe heatwaves, explaining why we observe stronger

effects in colder regions.

Third, we look at differences by baseline inequality levels. In Column 3, we focus on

the baseline inequality measure and interact it with temperature anomalies to understand

whether equal and unequal regions experience stronger effects. We find that the effect

of temperature anomalies is less pronounced in regions with a higher initial inequality

level. Temperature anomalies exacerbate inequality in more equal regions. Similar to the

previous results, this could be as more unequal regions might have been more affected by

temperature shocks and adapted, in contrast to regions with lower inequality. We also find

a positive effect of positive temperature anomalies on the Gini coefficient in Column 2 and

3, which is consistent with the previous results. In summary, our findings suggest that local

contexts and economic conditions shape the relationship between climate anomalies and

inequality, as poorer regions with lower baseline temperature and lower inequality levels

tend to be more affected by temperature shocks.
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Table 3: Regional Heterogeneities: Temperature and precipitation anomalies over 48m on

Gini

Dependent Variable: Gini

Model: (1) (2) (3)

Variables

Tmp anom 0.133∗∗ 0.078∗∗∗ 0.055∗∗∗

(0.060) (0.026) (0.017)

Log(GDP pc) -0.005

(0.010)

Pre anom 0.009 0.016∗ 0.015∗

(0.009) (0.009) (0.009)

Tmp anom × log(GDP pc) -0.014∗

(0.007)

Tmp anom × Baseline Tmp -0.003∗∗

(0.001)

Tmp anom × Baseline Gini -0.099∗∗

(0.047)

Fixed-effects

Region Yes Yes Yes

Year Yes Yes Yes

Fit statistics

Observations 1,618 1,829 1,829

R2 0.86576 0.87179 0.87178

Within R2 0.01366 0.01130 0.01143

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

5.6 Differences by Urban, Rural and Agricultural Dependency

The literature has documented significant heterogeneity in climate impacts between rural

and urban areas (Henderson et al., 2017). In line with these results, we find particularly

pronounced effects of temperature anomalies on the wealth distribution and wealth levels
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in rural areas, which experience a decrease in wealth of 1.9 percent, and an increase in

the Gini coefficient of 0.039. Urban regions experience a substantially smaller effect on

material wealth inequality or mean wealth, which is not statistically significant. We also

observe a stronger increase in the share of poor households in rural areas, with the share

of household in the lowest wealth quintile increasing by 6.7 percent in rural areas, whereas

the effect is smaller and not significant in its urban counterpart (Appendix Table 14).

Table 4: Temperature and precipitation anomalies over 48m on regional Gini and Mean

Wealth in urban and rural areas

Dependent Variables: Gini Urban Wealth Mean Urban Gini Rural Wealth Mean Rural

Model: (1) (2) (3) (4)

Variables
Tmp anom -0.0009 -0.002 0.039∗∗∗ -0.019∗∗∗

(0.005) (0.006) (0.010) (0.006)

Pre anom -0.012∗∗ 0.035∗∗∗ 0.022∗ 0.005

(0.006) (0.010) (0.013) (0.009)

Fixed-effects
Region Yes Yes Yes Yes

Year Yes Yes Yes Yes

Fit statistics
Observations 1,824 1,824 1,759 1,759

R2 0.87961 0.91851 0.78596 0.95192

Within R2 0.00226 0.01102 0.01964 0.00995

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

To explore this relationship, we investigate what might cause the rural-urban differences.

Previous studies have shown that climatic anomalies can destroy cropland and negatively

affect agricultural livelihoods, forcing affected households to sell assets thereby increas-

ing material inequality. To test whether agriculture is one of the mechanisms through

which environmental anomalies affect inequality, we use DHS microdata on agricultural

employment and land. Agricultural employment describes whether an individual is cur-

rently employed in agriculture, which refers to work related to agriculture in the previous

7 days. Agricultural land measures whether a household owns land that can be used for
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agriculture.13

We present the results in Table 5. We find that individuals that are employed in agricul-

ture tend to suffer more from wealth shocks following a temperature anomaly relative to

individuals in non-agricultural jobs. There are many possible explanations for this effect:

income losses forcing households to sell assets, or loss of employment. We test for the

latter channel in Column 2 where we regress individual unemployment on the anomaly

measures. While the coefficient is negative, it is insignificant, suggesting that the nega-

tive anomaly effects may not be driven by affected individuals losing their job, but rather

by them experiencing reductions in their income (e.g., because of destroyed agricultural

production).

In contrast, we do not find any negative effects on wealth stemming from temperature

anomalies for households that own agricultural land, as shown in Columns 3. One expla-

nation might be that households owning land might possess assets less affected by climate

anomalies. Another explanation is that they might not need to sell them as a response to

a temperature shock. Interestingly, we do find a positive effect of temperature anomalies

on livestock. This could be part of an adaptation strategy: households might diversify their

agricultural portfolio by investing into livestock that is more resilient to high temperatures.

Column 5 shows that households in urban areas are more likely to buy livestock, possibly

because wealthier urban households can afford to diversify and adapt to changing climatic

conditions.

Summing up these results, this section shows that rural areas are more affected by anoma-

lies, which could be explained by the higher agricultural dependency of their inhabitants.

Inhabitants that are employed in agriculture tend to suffer more from wealth shocks, which

is not the case for households that own agricultural land. Urban households are wealthier

and more resilient to shocks, likely because cities possess better adaptive infrastructure on

average14. In rural areas, different channels can explain the relatively stronger impacts ex-

perienced, which we cannot perfectly distinguish in our analysis. These include reductions

in overall wealth due to a decrease in agricultural output, the direct destruction of assets,

out-migration of richer households, or in-migration of poorer households (see Table 6.3 on

migration and composition effects below).

13Agricultural employment is provided by the DHS at the individual level, while the measure of agricultural

land is available at the household level.
14This is not the case for informal settlements in cities
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Table 5: The effects of temperature and precipitation anomalies over 48m on agriculture:

Agricultural Employment, Agricultural Land and Livestock

Dependent Variables: Wealth Agric. emp. Wealth Livestock

Model: (1) (2) (3) (4) (5)

Variables
Tmp anom -0.017∗∗ -0.004 -0.006 0.060∗∗∗ 0.033

(0.008) (0.005) (0.010) (0.020) (0.021)

Agric. emp. 0.044∗∗∗

(0.009)

Pre anom 0.023∗∗ 0.010∗ -0.0002 -0.126∗∗∗ -0.110∗∗∗

(0.011) (0.006) (0.013) (0.029) (0.027)

Tmp anom × Agric. emp. -0.018∗∗

(0.008)

Agric. land -0.075∗∗∗

(0.017)

Tmp anom × Agric. land 0.019

(0.018)

Urban -0.398∗∗∗

(0.015)

Tmp anom × Urban 0.084∗∗∗

(0.020)

Fixed-effects
Region Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes

Fit statistics
Observations 2,635,392 2,635,392 2,531,092 1,266,576 1,266,576

R2 0.43943 0.13733 0.39377 0.16136 0.24821

Within R2 0.00159 6.55×10−5 0.02006 0.00140 0.10481

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

6 Exploring underlying mechanisms

In this section, we explore different mechanisms that could explain the observed effects of

temperature anomalies on inequality. In a first step, we test the extent to which different

socio-economic channels explain the observed temperature effects. In a second step, we

decompose the wealth effects into different asset subcategories to understand which assets
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are most likely to be affected by climatic events. In a third step, we analyze the role of

population composition in influencing the results reported.

6.1 Socio-economic Effects

The observed effects of temperature anomalies on wealth inequality and overall wealth

levels might be explained through changes in other affected variables. Here, we explore

four possible channels of influence testing for climatic impacts on regional GDP per capita,

unemployment, undernourishment, and healthcare access. All of these are theoretically

relevant in explaining the observed relationship between inequality, wealth, and anomalies.

While we obtain information on regional GDP from external data sources, we rely on the

rich DHS individual level data to explore the role of the other characteristics. Table 6

shows the results of models that regress the four variables on the occurrence of temperature

and precipitation anomalies in the regions. A temperature anomaly is estimated to reduce

regional income levels, which is in line with a large literature on the economic impacts

of weather shocks using panel data, e.g. Hsiang (2010); Dell et al. (2012); Linsenmeier

(2023); Kotz et al. (2024). Further negative effects of temperature anomalies are found

for unemployment and the accessibility of health care services. Temperature anomalies

of one standard deviation increase the likelihood that an individual is unemployed by 6.4

percent and that they do not have access to health care by 6.0 percent. We do not find

any significant effect for food security. The effect for an individual to be unemployed is

substantially higher in rural areas, as shown by a negative coefficient of the interaction term

with the urban dummy in Model 3. For access to healthcare, we do not find any significant

differences for urban vs. rural areas. These results are estimated using linear probability

models as well as in the form of logistic regressions (Appendix Table 15). The results of

the logistic regressions confirm a negative relationship for an individual being unemployed

and not having access to healthcare. Overall, these findings show substantial and consistent

effects of temperature anomalies on respondents’ livelihoods and well-being with potential

implications for their wealth and the inequality observed in the subnational regions.

28



Table 6: Temperature and precipitation anomalies impacts on GDP pc, unemployment,

food security and health

Dep. Var.: Log(GDP pc) Unemployed Healthcare Undernourished

Model: (1) (2) (3) (4) (5) (6) (7)

Variables
Tmp anom -360.4∗∗ 0.064∗∗∗ 0.082∗∗∗ -0.060∗∗∗ -0.052∗∗∗ 0.008 0.005

(176.3) (0.017) (0.018) (0.016) (0.016) (0.008) (0.008)

Pre anom -26.9 -0.045∗∗ -0.046∗∗ -0.011 -0.014 -0.017∗∗ -0.017∗∗

(305.3) (0.023) (0.022) (0.019) (0.019) (0.008) (0.008)

Urban 0.065∗∗∗ 0.064∗∗∗ -0.045∗∗∗

(0.009) (0.009) (0.010)

Tmp anom × Urban -0.041∗∗∗ -0.016 0.002

(0.010) (0.010) (0.009)

Fixed-effects
Region Yes Yes Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 1,618 2,878,725 2,878,725 1,690,633 1,690,633 2,535,857 2,535,857

R2 0.95413 0.22564 0.22709 0.09109 0.09322 0.10598 0.10882

Within R2 0.00650 0.00108 0.00294 0.00059 0.00293 6.49×10−5 0.00324

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

6.2 Affected Assets

In the next step, we turn to the impacts of weather anomalies on different subcategories

of material assets as reported in the DHS (for more details see Appendix Figure 10). The

outcome variable describes the percentage of households possessing a specific asset within

a region. We create categories for assets and housing characteristics.15 We then aggregate

these statistics at the regional level and get the share of households possessing at least one

of the assets in the category. We show the results in Figure 4 below, exhibiting not only the

standard regression results, but also the results corrected for multiple hypotheses testing to

reduce the probability of a type I error. As we test a large number of hypotheses at once, we

15Transport includes bicycle, motorcycle and car. Expensive electronics refer to computers, televisions, or

fridges, while cheap electronics include radios, watches and telephones. Housing includes toilet, floor, water

and rooms. We assign a value of 1 to a household if it possesses at least one element of each category.
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show the initial p-value as well as the Bonferroni adjusted p-values, which are calculated

when running the regressions for all 54 assets. The results of all other models are shown in

the Appendix Figure 10, Figure 11 and Figure 12.

We find that temperature anomalies affect different assets and housing characteristics that

are relevant for a decent living. Anomalies have a particularly strong effect on the pos-

session of cheap electronics and utensils (watch, radio and telephone). These could either

be directly damaged by the climate anomalies, not renewed or maintained due to income

shocks, or sold by households for consumption smoothing. We show the impacts across the

individual assets, the asset categories by education level and by urban and rural regions in

the Appendix Figure 11 and Figure 12. Households affected by anomalies are particularly

less likely to possess a telephone. We observe this effect in urban as well as rural areas,

with the effects being more pronounced in rural regions. Surprisingly, we find a positive

effect on expensive electronics. This effect likely stems from wealthier households, prox-

ied by secondary education levels, which see a positive (though insignificant) effect as a

response to temperature anomalies, whereas households with no secondary education show

a negative coefficient. This could be explained that due to pronounced heatwaves wealth-

ier households spend more time indoors and thus are more likely to invest in a computer,

television, or fridge. In addition, temperature anomalies decrease the share of households

with high-quality housing. This is more likely for households without secondary educa-

tion and for households in rural areas. Again, this could result from direct damages to the

households or failure to maintain or improve their housing.
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Figure 4: Mean temperature and precipitation anomalies over 48m on regional share of

households owning assets

Notes: ‘Tmp’ stands for temperature. ‘Pre’ for precipitation. The bars represent the 95% confidence interval. P-values adjusted to

multiple hypotheses testing using Bonferroni adjustment. Cheap electronics refer to three assets: watches, radios and telephones.

Expensive electronics refer to three assets: computers, televisions and fridges.

6.3 Population Composition Effects

The occurrence of climatic anomalies can affect migration patterns. The out-migration of

households from an area could affect our estimation if specific wealth groups are system-

atically more or less likely to leave in response to a shock in an area. (Bohra-Mishra et al.,

2014) show that climate-induced migration is more often triggered by long-term increases

in temperature or precipitation rather than by short-term catastrophic events. In line with

this finding, recent evidence has shown that affected populations tend to move back into

risky areas after large one-off weather shocks such as floods (Kocornik-Mina et al., 2020).
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In this section, we test the magnitude of the migratory response to anomalies, and discuss

whether migration may have affected our findings. DHS data are repeated cross-sectional

so it is impossible to follow individuals and households over time. In addition, no in-

formation on migration patterns is available in the data. Other studies, such as Cattaneo

and Foreman (2023); Mueller et al. (2020), do not provide migration data that could be

applied in our context. Thus, we indirectly explore migration patterns and consider how

the demographic composition of households has changed over time considering changes in

time-invariant characteristics: educational attainment, gender and age.

The DHS describes educational attainment using six categories: no education, incomplete

primary, complete primary, incomplete secondary, complete secondary and higher educa-

tion. Although education composition is an imperfect variable, given that education levels

have been rising across the world over the past 30 years, it allows us to proxy for changes

in socioeconomic status controlling for time and region fixed effects. The composition

of households is described by the share of households with at least one member having

completed secondary education, at the regional level. For gender, we use the share of men

within a region, calculating the share of male members within a household and then ag-

gregating the weighted average at the regional level. Across the specifications, we do not

find any evidence that temperature anomalies have affected population composition by ed-

ucation level and gender with regions experiencing anomalies showing no changes in their

composition by these two variables. As a third characteristic, we consider the age distribu-

tion in the subnational regions and changes over time. Given that younger individuals are

more likely to migrate (Bailey, 1993), we use the share of individuals between the age 18

and 35 within a region as the main outcome variable. We calculate the share of individuals

in a region that are aged between 18-35 by first calculating the share of members between

18 and 35 within a household and then aggregating the weighted average at the regional

level. Regressing the share of young adults on the temperature anomaly measure, we find a

significant negative effect on the age composition suggesting an out-migration of younger

individuals in response to temperature anomalies. Given the small size of the changes in

the age distribution and given that the educational composition as main socioeconomic sta-

tus indicator is not affected by anomalies, we do not consider these minor migration effects

to lead to biases in our main results. To explicitly account for migration in our estima-

tion, column 4 additionally controls for the share of individuals in a region that are aged

between 18-35 to account for changes in the population composition. Even including this

measure as an additional control, we find a significant impact of temperature anomalies on

asset-based wealth inequality, with the coefficient remaining robust to our baseline model
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results. Thus, while we find evidence for systematic out-migration by age as a response

to the anomalies considered, the migration responses is weak and does not systematically

affect our estimation of the effects of anomalies on the wealth distribution. Instead, our

findings suggest that households become poorer due to the anomalies, leading to an overall

widening of the wealth distribution and an increase in the Gini coefficient.

Table 7: Compositional change: share of households with secondary education, share men

and share of household members aged 18-35

Dependent Variables: Second. educ. Men Age 18-35 Gini

Model: (1) (2) (3) (4)

Variables

Tmp anom 0.007 0.002 -0.005∗∗∗ 0.018∗∗

(0.007) (0.004) (0.002) (0.007)

Pre anom -0.041∗∗ 0.007 -0.002 0.014

(0.017) (0.005) (0.002) (0.009)

Age 18-35 0.038

(0.092)

Fixed-effects

Region Yes Yes Yes Yes

Year Yes Yes Yes Yes

Fit statistics

Observations 1,829 1,829 1,829 1,829

R2 0.94143 0.61826 0.89597 0.87122

Within R2 0.01175 0.00254 0.00557 0.00698

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

7 Discussion and Conclusion

Although it has long been recognized that climatic shocks can have differential impacts

on different population groups, there is a dearth of evidence related to their distributional
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impacts at the regional level. In this paper, we build a unique panel dataset at the sub-

national regional level combining high-frequency data on temperature and precipitation

anomalies with information on the distribution of a material asset-based wealth index based

on the Demographic and Health Surveys. To the best of our knowledge, our study is the

first to analyse intra-regional distributional effects of climatic anomalies using asset-based

inequality measures. Our paper contributes to the literature by showing how anomalies

increase asset-based wealth inequality.

We estimate that an average temperature anomaly of one standard deviation increases ma-

terial wealth inequality by 0.018 points and increases the share of poorest households by

4.1 percent. The distributional effects vary across periods and regions: they increased over

time and rural areas tend to be more affected. Areas with higher agricultural dependency,

lower levels of development and lower levels of inequality experience the strongest im-

pacts of temperature anomalies. In rural areas, asset-based wealth inequality is estimated

to increase by 0.039 points and the share of the poor population by 6.7 percent with a one

standard deviation anomaly in temperature.

We explore the mechanisms driving these results and find that temperature anomalies af-

fect inequality through multiple channels, including decreased economic activity, higher

unemployment and worsened access to healthcare. Temperature anomalies also reduce the

amount of households’ material assets. Our results show that temperature anomalies impact

assets and housing characteristics through multiple channels, which increases the difficulty

for households to posses assets that allow for a decent living. Given the expected environ-

mental changes in many regions of the world, this study generates important insights with

implications for both academic research and policy.

We also test for migration and find evidence that a small part of the population may be

responding and adapting to temperature shocks by migrating: temperature anomalies do not

seem to impact the educational and gender composition of a region, but do seem to affect

the age composition by a very small amount. When controlling for these compositional

changes as proxy for migration, the main results are consistent and barely change in size.

Future research could explore this issue further by studying the topic using panel data,

which is currently unavailable in our setting but has been studied with other data (Mueller

et al., 2020).

Climatic shocks are found to particularly affect the wealth of the poor highlighting the need

for targeted interventions protecting the most vulnerable communities from the adverse ef-

fects of climate change. Policymakers should prioritize the development and implementa-

tion of climate adaptation strategies that specifically address the challenges faced by rural
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areas with high agricultural dependency, lower levels of development, and elevated inequal-

ity. These strategies could include investments in resilient agricultural practices, improved

infrastructure for rural communities, and targeted poverty alleviation programs. Further-

more, recognizing the differential impacts of climatic shocks on wealth distribution, there

is a pressing need for social safety nets that can mitigate the negative implications of cli-

matic shocks. In particular, as climate change is expected to exacerbate the frequency and

intensity of temperature anomalies, it will likely decrease households’ ability to cope with

these shocks even further. Using a material wealth index also speaks to the questions of

persistence, indicating that the effects are long-lasting, rendering it even more difficult for

(poorer) households to have the minimum standards that allow for a decent living. Our

results highlight a need for an integration of long-term climate resilience measures into de-

velopment plans, focusing on building adaptive capacity in regions where the distributional

impacts of climate change are most severe.

Our findings also underscore the importance of justice considerations in climate mitigation

and adaptation policy. It is the poor who have contributed the least to the climate crisis, but

are the most severely affected. Their losses in wealth ultimately drive the increases in in-

equality observed in this study. Policies should therefore prioritize the most vulnerable and

marginalized communities disproportionately affected by climatic shocks. International

adaptation and resilience funds discussed at COP28 can play a crucial role in ensuring that

the most affected regions receive assistance in adapting to and protecting themselves from

the impacts of climatic shocks.
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A Appendix

A.1 Precipitation and temperature data

Monthly precipitation and temperature is pulled from the Climate Research Unit (TS4.04)

at the University of East Anglia. Indicators of environmental and climatic conditions in

a region are derived from the CRU TS (4.05) monthly high-resolution gridded multivari-

ate climate dataset (Harris et al., 2014). We first derive gridded information on monthly

average temperatures (in °C and precipitation in mm). We then use the information on

the spatial boundaries of the regions to crop the gridded climate data and calculate mean

monthly temperature and precipitation levels per region. The resulting dataset is a long

time series with climate information from 1900 to 2020.

A.2 Harmonised regions - common denominator geography

As some regions have split over time, we define a common denominator geography. This

involves alternatively aggregating or disaggregating regions to ensure consistent common

geography across survey waves. We review an example of this geography using the case

study of Ghana. As shown in Figure 1, in Ghana, the northernmost region of Upper West,

East and Northern split into three regions in 1988. In this case, we can aggregate our

measures of inequality and weather shocks to ensure consistency. We can weight our in-

equality measure by employment and use the weather anomaly average for the common

denominator geography.

For a few exceptions, regions have split in a way that is inconsistent with a common de-

nominator geography approach. This might happen if regions extend or break up following

new boundaries that our datasets do not cover. In such cases, we approximate geographies

to the best of our ability using geographical areas or other national surveys.
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Figure 5: Common denominator geography

Notes: The northernmost region is split into three between 1988 and 1993. The common denominator geography consists in

aggregating the data back to one region to ensure it is considered as one region over time
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A.3 Surveys included in the analysis

Table 8: DHS Survey Waves included in the sample

Country Years available

Armenia 2000, 2005, 2010, 2016

Bangladesh 1994, 1997, 2000, 2004, 2007, 2011, 2014, 2017

Benin 1996, 2001, 2006, 2012, 2017

Bolivia 1998, 2003, 2008

Cambodia 2000, 2005, 2010, 2014

Cameroon 2004, 2011, 2018

Colombia 1990, 1995, 2000, 2005, 2010, 2015

Congo Democratic Republic 2007, 2013

Cote d’Ivoire 1994, 2012

Egypt 1992, 1995, 2000, 2003, 2005, 2008, 2014

Ethiopia 2000, 2005, 2011, 2016

Gabon 2000, 2012

Ghana 1993, 1998, 2003, 2008, 2014

Guinea 2005, 2012, 2018

Guatemala 1995, 1999, 2015

Haiti 2000, 2006, 2012, 2016

Honduras 2005, 2011

India 1993, 2006, 2015, 2020

Indonesia 1994, 1997, 2003, 2007, 2012, 2017

Jordan 1997, 2007, 2009, 2012

Kenya 1993, 1998, 2003, 2008, 2014,

Lesotho 2004, 2009, 2014

Madagascar 1992, 1997, 2004, 2008

Mali 1996, 2001, 2006, 2012, 2018

Malawi 1992, 2000, 2004, 2010, 2015

Morocco 1992, 2003

Mozambique 1997, 2003, 2011

Namibia 2000, 2006, 2013

Nepal 1996, 2001, 2006

Nicaragua 1998, 2001

Niger 1992, 1998, 2006, 2012

Nigeria 2003, 2008, 2013, 2018

Pakistan 1991, 2006, 2012, 2017

Peru 1996, 2000, 2004, 2007, 2009, 2010, 2011, 2012

Philippines 2003, 2008, 2013, 2017

Rwanda 2008, 2010, 2015

Senegal 1993, 1997, 2005, 2010, 2012, 2014, 2015, 2016, 2017, 2018, 2019

Sierra Leone 2008, 2013, 2019

South Africa 1998, 2016

Tajikistan 2012, 2017

Tanzania 1996, 1999, 2004, 2010, 2015

Timor-Leste 2009, 2016

Togo 1998, 2013

Turkey 2003, 2008, 2013

Uganda 2000, 2006, 2011, 2016

Vietnam 1997, 2002

Zambia 1992, 1996, 2002, 2007

Zimbabwe 1994, 1999, 2005, 2010, 2015
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A.4 International Wealth Index weights

Figure 6: Weights International Wealth Index, from Smits and Steendijk (2015)
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A.5 Summary statistics

Table 9: Summary Statistics for regions, socioeconomic and climate variables

Statistic N Mean St. Dev. Min Max

Socioeconomic
Wealth mean 1,869 0.383 0.197 0.062 0.889

Gini 1,869 0.319 0.131 0.040 0.800

GDP pc 1,573 4,100.950 3,998.069 259.569 37,156.630

Climate
Tmp anom mean 12 1,829 0.629 0.540 −1.103 2.266

Tmp anom mean 24 1,829 0.633 0.489 −0.998 2.321

Tmp anom mean 36 1,829 0.626 0.443 −0.798 2.026

Tmp anom mean 48 1,829 0.599 0.415 −0.601 1.960

Tmp anom mean 60 1,829 0.599 0.397 −0.584 1.910

Tmp anom mean 72 1,829 0.592 0.382 −0.571 1.834

Tmp anom mean 84 1,829 0.582 0.369 −0.585 1.804

Pre anom mean 12 1,829 −0.032 0.372 −1.183 1.229

Pre anom mean 24 1,829 −0.033 0.278 −1.030 1.323

Pre anom mean 36 1,829 −0.038 0.241 −0.988 1.278

Pre anom mean 48 1,829 −0.037 0.216 −1.038 1.257

Pre anom mean 60 1,829 −0.037 0.205 −0.852 1.118

Pre anom mean 72 1,829 −0.041 0.193 −0.732 1.101

Pre anom mean 84 1,829 −0.038 0.185 −0.744 1.027

‘Tmp’ refers to temperature, ‘Pre’ to precipitation. ’mean 12’ refer to the mean anomaly exactly 12 months before the survey.

We present the variation of our independent variable of climate anomalies (Figure 7, ag-

gregated at the country level). Precipitation anomalies do not seem to be systematically

worsening over our time period. We also present the variation by different world regions,

which are shown for temperature in Figure 8 and for precipitation in Figure 9. We assign

each subnational region into one of the major world regions represented in our data: South

Asia, Sub-Saharan Africa, the Middle East and North Africa, the Americas, and Europe

and Central Asia. For each of them, we plot temperature anomalies in Figure 8, showing

a substantial increase between 1990 and 2020. This is the case for all six world regions,

indicating a steeper rise since the 2000s. When doing the same for precipitation anomalies,

in contrast, we do not find any systematic increase or decrease over time.
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Figure 7: Climate anomalies by country

Notes: Precipitation anomalies from 1980-2020. Data from the Climate Research Unit (CRU TS 4.05) gridded data.

Figure 8: Temperature anomalies by world region

Notes: Temperature anomalies from 1990-2020. Data from the Climate Research Unit (CRU TS 4.05) gridded data.
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Figure 9: Precipitation anomalies by world region

Notes: Precipitation anomalies from 1990-2020. Data from the Climate Research Unit (CRU TS 4.05) gridded data.
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A.6 Nonlinear Effects

Table 10: Nonlinear Effects: Mean temperature and precipitation Anomalies over 48m on

wealth mean

Dependent Variable: Gini

Model: (1) (2)

Variables

Tmp anom 0.018 0.018

(0.011) (0.011)

Tmp anom square -0.0005 -0.0005

(0.007) (0.007)

Pre anom 0.014 0.014

(0.009) (0.009)

Pre anom square -0.021 -0.021

(0.013) (0.013)

Fixed-effects

Region Yes Yes

Year Yes Yes

Fit statistics

Observations 1,829 1,829

R2 0.87131 0.87131

Within R2 0.00770 0.00770

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.7 Positive and Negative anomalies

In addition to looking at the effects of mean anomalies, we also show the effects of pos-

itive and negative temperature as well as precipitation anomalies of different intensities,

including 1 and 1.5 standard deviations. We separate the mean anomaly into a positive and

negative component where the climate has deviated from its long-run mean by different

intensities. For example, a positive temperature anomaly of 1 standard deviation (“Tmp

anom p1SD”) refers to the number of months in 48 months with a positive temperature

anomaly exceeding the threshold of 1 standard deviation.

Table 11 shows a positive and significant effect for positive temperature anomalies for 1 and

1.5 standard deviations. The coefficient for negative temperature anomalies is insignificant

in both models. This clearly shows that the positive effect of mean anomalies on the Gini

coefficient is driven by positive temperature anomalies.

Negative and positive precipitation have both a negative effect on the Gini coefficient.

These findings are surprising given that we do not find any significant effects for the mean

precipitation anomalies. A likely explanation is that the effects of precipitation are hetero-

geneous and depend on the region and its local conditions.
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Table 11: Positive and negative temperature & precipitation anomalies 48 months for 1 and

1.5SD on inequality

Dependent Variable: Gini

Model: (1) (2)

Variables
Tmp anom p1SD 0.031∗∗

(0.014)

Tmp anom n1SD 0.009

(0.045)

Pre anom p1SD -0.046∗

(0.026)

Pre anom n1SD -0.070∗∗

(0.028)

Tmp anom p1.5SD 0.053∗∗∗

(0.019)

Tmp anom n1.5SD -0.011

(0.095)

Pre anom p1.5SD -0.061∗

(0.033)

Pre anom n1.5SD -0.129∗∗

(0.053)

Fixed-effects
Region Yes Yes

Year Yes Yes

Fit statistics
Observations 1,829 1,829

R2 0.87180 0.87216

Within R2 0.01144 0.01422

Clustered (region) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.8 Distributed Lag Model

Table 12: Lag in Mean temperature and precipitation Anomalies on Gini: different Time

Periods

Dependent Variable: Gini

Model: (1)

Variables
Tmp anom Lag 12 0.0003

(0.004)

Pre anom Lag 12 -0.011∗∗

(0.005)

Tmp anom Lag 24 0.007∗

(0.004)

Pre anom Lag 24 -0.007

(0.005)

Tmp anom Lag 36 0.012∗∗

(0.005)

Pre anom Lag 36 0.027∗∗∗

(0.005)

Tmp anom Lag 48 -0.009∗∗

(0.004)

Pre anom Lag 48 -0.007

(0.005)

Tmp anom Lag 60 0.010∗∗

(0.005)

Pre anom Lag 60 -0.010∗∗

(0.005)

Tmp anom Lag 72 0.026∗∗∗

(0.004)

Pre anom Lag 72 0.008

(0.005)

Fixed-effects
Region Yes

Year Yes

Fit statistics
Observations 1,829

R2 0.88362

Within R2 0.10264

Clustered region standard-errors in parentheses. ’Tmp’ stands for temperature.
’Pre’ stands for precipitation. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

A.9 Impacts over time

In Model 1 of Table 13 we show that relative to the period 1990-1999, the effects of tem-

perature anomalies on regional wealth inequality are significantly larger in 2000-2009 and

2010-2019. Thus, the effects are increasing over time. Model 2 and 3 uses a subset in-
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cluding only regions that have participated at least once every decade in the DHS. The idea

is to test whether the conclusion of Model 1, that the effect is increasing over time, still

holds when accounting for changes in the composition of the sample. We therefore only

keep regions that are observed over a long time and at least once in each decade. Model

2 shows the baseline results with this newly constructed sample, depicting an effect that is

also positive, statistically significant and similar in size as in Table 1. Model 3 also shows

the interaction effect, demonstrating that the effect in the last decade is positive and sta-

tistically significant, relative to the first period. This confirms that when accounting for

compositional effects, the conclusion of the effects increasing over time still holds.

Table 13: Mean temperature and precipitation Anomalies over 48m on Gini for different

time periods

Dependent Variable: Gini

Model: (1) (2) (3)

Variables

Tmp Anom -0.0152 0.0298∗∗∗ 0.0020

(0.0118) (0.0085) (0.0139)

Pre anom 0.0115 0.0022 -0.0011

(0.0090) (0.0096) (0.0099)

Tmp Anom × period 2000-2009 0.0373∗∗∗ 0.0359∗

(0.0131) (0.0199)

Tmp Anom × period 2010-2019 0.0416∗∗∗ 0.0349∗∗

(0.0127) (0.0145)

Fixed-effects

Region Yes Yes Yes

Year Yes Yes Yes

Fit statistics

Observations 1,829 998 998

R2 0.87218 0.86134 0.86232

Within R2 0.01443 0.01503 0.02199

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.10 Urban vs. rural: Households in extreme poverty

Table 14: Mean temperature and precipitation anomalies over 48m on Bottom of the wealth

distribution

Dependent Variable: Urban Wealth <0.2 Rural Wealth <0.2

Model: (1) (2)

Variables

Tmp Anom 0.011 0.067∗∗∗

(0.010) (0.013)

Pre anom -0.030∗∗ 0.036∗∗

(0.012) (0.018)

Fixed-effects

Region Yes Yes

Year Yes Yes

Fit statistics

Observations 1,824 1,759

R2 0.83408 0.91647

Within R2 0.00444 0.02183

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.11 Socio-economic Effects: Logit Models

Table 15: Logit model: Temperature and precipitation anomalies impacts over 48m on

unemployment, food security and health

Dependent Variables: Unemployed Undernourished Healthcare

Model: (1) (2) (3)

Variables

Tmp Anom 0.310∗∗∗ -0.254∗∗∗ -0.101

(0.081) (0.069) (0.062)

Pre anom -0.242∗∗ -0.040 -0.084

(0.108) (0.083) (0.093)

Fixed-effects

Region Yes Yes Yes

Year Yes Yes Yes

Fit statistics

Observations 2,878,725 1,690,633 2,535,857

Squared Correlation 0.22618 0.09158 0.11085

Pseudo R2 0.18162 0.06891 0.13475

BIC 3,111,962.3 2,180,889.0 1,858,556.1

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

A.12 Other Inequality Measures

In addition to the Gini coefficient, we test the effect of environmental anomalies on differ-

ent inequality measures. All three measures confirm a positive and significant relationship

for temperature anomalies and inequality, but differ in effect size. For the Theil index we

find an effect of similar size to the Gini coefficient. The coefficient for the Watts Poverty

index is larger in size, showing that the poorest are particularly affected by temperature

anomalies. The quantile share ratio at the top and tail of the distribution and shows a larger

effect than the Gini coefficient and Theil index, but is smaller than poverty measures.
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Table 16: Mean temperature and precipitation Anomalies over 48m on other inequality

measures

Dependent Variables: Theil Watts Poverty QSR Wealth 90/10

Model: (1) (2) (3)

Variables

Tmp anom 0.015∗∗∗ 0.034∗∗∗ 0.024∗

(0.005) (0.012) (0.014)

Pre anom 0.013∗∗ -0.025 0.016

(0.006) (0.016) (0.018)

Fixed-effects

Region Yes Yes Yes

Year Yes Yes Yes

Fit statistics

Observations 1,761 1,829 1,829

R2 0.66533 0.88977 0.69105

Within R2 0.01343 0.00727 0.00263

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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A.13 Affected Assets

All Assets

Figure 10: Mean temperature and precipitation anomalies over 48m on regional share of

households owning assets

Notes: ‘Tmp’ stands for temperature. ‘Pre’ for precipitation. The bars represent the 95% confidence interval. P-values adjusted to

multiple hypotheses testing using Bonferroni adjustment. Cheap electronics refer to three assets: watches, radios and telephones.

Expensive electronics refer to three assets: computers, televisions and fridges.
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Asset Categories with or without secondary education

Figure 11: Second. Educ.: Mean temperature and precipitation anomalies over 48m on

regional share of households owning asset categories

Notes: ‘Tmp’ stands for temperature. ‘Pre’ for precipitation. The bars represent the 95% confidence interval. P-values adjusted to

multiple hypotheses testing using Bonferroni adjustment. Cheap electronics refer to three assets: watches, radios and telephones.

Expensive electronics refer to three assets: computers, televisions and fridges.
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Asset Categories Urban. vs. Rural

Figure 12: Urban vs. Rural: Mean temperature and precipitation anomalies over 48m on

regional share of households owning asset categories

Notes: ‘Tmp’ stands for temperature. ‘Pre’ for precipitation. The bars represent the 95% confidence interval. P-values adjusted to

multiple hypotheses testing using Bonferroni adjustment. Cheap electronics refer to three assets: watches, radios and telephones.

Expensive electronics refer to three assets: computers, televisions and fridges.

A.14 Removing countries with missing assets and with conflict

We conduct two further robustness checks. First, we remove countries with missing assets.

Missing assets refers to survey where more than one item was fully missing. While we

normalize the index by dividing it by the maximum possible value the wealth index could

take to ensure comparison over time, we aim to ensure that potential changes in wealth are

not driven by items missing in a survey wave. Thus, we construct a sample only including
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countries with no more than one missing item in at least one survey wave. The results

are presented in Model 1, showing a positive and significant effect, with an estimated size

larger than the baseline effect. Therefore, we can conclude that missing assets are not a

driver of the relationship, and our findings remain robust even when accounting for this

potential source of bias.

Second, we are also concerned that conflict within a country could affect inequality. Re-

cent work has argued that climate affects conflict (Burke et al., 2015), which is why we

run further checks removing countries that have been affected by conflict during our obser-

vation period. This concerns the countries Egypt, Cote d’Ivoire, Mali and Nepal. Nepal,

Mali and Cote d’Ivoire have experienced civil wars during the period and Egypt underwent

a revolution followed by a substantial crisis between country surveys. We exclude these

countries from our sample and present our results in Model 2. The results are consistent

with the baseline effects shown in Table 1, indicating that conflict is not a significant factor

driving our findings.

Table 17: Mean temperature & precipitation anomalies over 48m on Gini: missing assets

and conflict

Dependent Variable: Gini

Model: (1) (2)

Variables

Tmp anom 0.0267∗∗ 0.0185∗∗∗

(0.0118) (0.0067)

Pre anom 0.0205∗ 0.0140

(0.0114) (0.0090)

Fixed-effects

Region Yes Yes

Year Yes Yes

Fit statistics

Observations 1,222 1,752

R2 0.86735 0.87542

Within R2 0.01151 0.00760

Clustered (region) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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