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Abstract

In this paper we discuss some limitations of using survey data to measure inequality
of opportunity. First, we highlight a link between the two fundamental principles of the
theory of equal opportunities – compensation and reward – and the concepts of power
and confidence levels in hypothesis testing. This connection can be used to address,
for example, whether a sample has sufficient observations to appropriately measure
inequality of opportunity. Second, we propose a set of tools to normatively assess
inequality of opportunity estimates in any type partition. We apply our proposal to
Conditional Inference Trees, a machine learning technique that has received growing
attention in the literature. Finally, guided by such tools, we suggest that standard tree-
based partitions can be manipulated to reduce the risk of compensation and reward
principles. Our methodological contribution is complemented with an application using
a quasi-administrative sample of Italian PhD graduates. We find a substantial level of
labor income inequality among two cohorts of PhD graduates (2012 and 2014), with a
significant portion explained by circumstances beyond their control.
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1 Introduction

In recent decades, there has been a notable rise in empirical analyses of social justice, par-

ticularly concerning equality of opportunity. The Equal Opportunity (EOp) paradigm pos-

tulates that inequalities attributed to factors beyond individual’s control -circumstances-

are unfair and should be eliminated as much as possible. Simultaneously, inequalities due

to individual efforts or responsibilities may be considered acceptable because they reflect

factors for which the society is willing to hold individuals responsible. These two ideas are

respectively known in the literature as compensation and reward principles. Beyond the

wide theoretical reasoning developed by prominent political philosophers such as Rawls

(1973), Sen (1980) and Dworkin (1981), analyses of EOp lie on compelling empirical evi-

dence that people disapprove inequalities rooted in circumstances more than inequalities

arising from choices (Cappelen et al., 2007, 2013).

Most of the early theoretical contributions proposed alternative interpretations of the com-

pensation and reward principles (see Fleurbaey, 2008, for a book-length discussion), explor-

ing their compatibility. In this paper we employ a prominent version of the so-called ex-ante

approach to EOp, where reward and compensation principles are compatible. Ex-ante EOp,

in its prominent interpretation, is realized when individuals with the same circumstances

have the same expected outcome (Ramos and Van de Gaer, 2016). To measure inequality

of opportunity (IOp) we follow Roemer (1998) and conceptualize a population as the union

of many different types of individuals. Each type is composed of individuals sharing all

relevant circumstances such as sex, socioeconomic background or place of origin. If indi-
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viduals within a type obtain different outcomes only because they make different choices,

then all within-type inequality is ethically acceptable and IOp corresponds to exclusively

the between-type inequality.

When IOp is measured as inequality between the average income across types, as assumed

in this paper, estimates may suffer from two types of biases. Intuitively, since fewer types

lead to lower IOp, partial observation of circumstances induces a downward bias.1 Given

that sample data tend to lack information on all desired circumstances, many researchers

(Checchi and Peragine, 2010; Ferreira and Gignoux, 2011; Roemer and Trannoy, 2016;

Ramos and Van de Gaer, 2016) considered IOp estimates as lower bounds for the real IOp.

More recently, Brunori et al. (2019) showed that measurement errors in estimating types’

expected outcomes, including errors due to high sampling variance in small sample sizes,

may also cause an upward bias in IOp estimates.2

The debate about these opposing biases highlights the importance of type partitioning

when studying EOp with survey data. To reduce the downward bias, we should define

more types. However, a finer type partition is likely to result in poorly estimated average

incomes for each type, biasing IOp upwards. Recently, Brunori et al. (2023) proposed

using data-driven approaches, particularly conditional inference regression trees (CITs), to

identify the type partition that best balances these biases. Since then, the use of machine

learners has become a best practice for robust IOp estimates.

This paper contributes to the literature in three ways. First, we shed new light on the

sources of upward and downward biases by highlighting an interesting link between type I

and type II errors in hypothesis testing, and the two normative principles of compensation

and reward. This allows us to define two indices, the Reward and the Compensation

scores, which inform us about the risk of upward and downward biases in IOp estimates,

1At the extreme, IOp is zero if only one type is defined.
2We come back on this in Section 2.1 and in Appendix A.
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respectively.

Violations of the reward principle, reflected in a low Reward score, occur whenever a type

partition contains types with statistically indistinguishable mean incomes. In such cases,

IOp estimates are upward biased because they capture part of the inequality within types.

Conversely, violations of the compensation principle, reflected in a lower Compensation

score, can be due to unobservable circumstances (as well-documented in the literature) or

to a lack of statistical power, which is necessary to identify differences in types’ expected

incomes. Since statistical power depends on the sample size, a by-product of our contri-

bution is a criterion to establish whether we have sufficient data to estimate IOp with a

given set of circumstances.

The second contribution of this paper is to discuss how CITs, a popular data-driven ap-

proach to obtain Roemerian partition, deal with compensation and reward violations. In

doing so we discuss how a CIT can partly control for reward violation, by setting the

desired confidence level to allow splits, but, can easily violate compensation, producing

conservative estimates, especially in cases in which the sample size is small. In discussing

this we also highlight two structural limitations of using recursive binary splitting to ob-

tain types’ partition: the structural impossibility to test and identify all types, and the

possibility that types with same expected income appear in different sub-branches of the

tree.

The third contribution of this paper is an algorithm that takes as input any type partition

and modifies it to improve the Compensation and Reward scores. This algorithm - the

Opportunity tree (O-tree) - merges types that have statistically indistinguishable averages

(thus reducing the upward bias) and, whenever possible, it splits a type in new ones that

have different expected income (thus reducing the downward bias).

We conclude with an empirical exercise investigating IOp among Italian PhD graduates
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in 2012 and 2014 (ISTAT, 2018). Surprisingly, labor income inequality is found to be

high among this select group of individuals, reaching 0.261 Gini points. We estimate

IOp using sex, area of origin, parental education, and occupation as circumstances. After

partitioning the sample into types using CIT, IOp reaches 0.072 Gini points, indicating that

the Gini of the variability predicted by circumstances is close to one-third of the Gini in the

distribution of income. The Reward and Compensation scores, however, are found to be

lower than the desired values, suggesting potential upward and downward biases. We apply

the proposed O-tree algorithm to modify the CIT’s type partition by merging several types

with statistically indistinguishable averages, and identifying two new types. As expected,

the resulting type partition performs better in terms of Reward and Compensation scores.

Interestingly, despite obtaining fewer types (7 instead on the 12 initial ones), the O-tree

leads to a slightly higher IOp of 0.073 Gini points.

The reminder of the paper is structured as follows. Section 2 introduces the definition of

inequality of opportunity we focus on, discusses the issues of estimating it using sample

data, and elucidates the connection of its basic normative principles – reward and compen-

sation – with the type I and type II errors. Section 3 introduces the CIT algorithm and

discusses its limits in dealing with violations of the compensation and the reward principles.

Section 4 shows how to measure the risk of these violations, and introduces the O-tree as a

potential solution. Section 5 compares CIT and O-tree in an empirical illustration. Section

6 concludes.
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2 From statistical to normative principles

2.1 Measuring inequality of opportunity with sample data

Following the philosophical debate on responsibility-sensitive egalitarianism and John Roe-

mer’s formal definition of EOp (Roemer, 1998; Fleurbaey, 2008), several economic models

of EOp have been proposed in the literature (see Ramos and Van de Gaer, 2016; Roe-

mer and Trannoy, 2016, for recent surveys). Theoretically, EOp roots in two independent

normative principles. First, the compensation principle formulates that people should be

compensated for unequal opportunities associated with circumstances. A prominent for-

mulation of this principle – ex-ante compensation – postulates that opportunity sets should

be equalized across people with different circumstances. This compensation principle does

not consider the role of effort, as it evaluates opportunities before individual’s degree of

effort is revealed. This interpretation, quite prominent in the literature, characterizes our

definition of ex-ante EOp. The second principle at the base of EOp is that individuals

should be rewarded for their differential efforts, so that inequalities purely due to effort are

fair. This is the reward principle, whose most prominent version steams from the principle

of utilitarian reward stating that inequalities in outcomes among individuals with the same

circumstances are a matter of moral indifference.

Formally, let Y N =
(
yNi
)|N |
i=1

be the income distribution of a population N = {1, 2, ..., |N |}

and TN = {tN1 , tN2 , ..., tN|TN |} be its partition into non-intersecting types (type partition).

The type partition is obtained after dividing N into subgroups of individuals with the

same circumstances. Formally, let C =
{
c1, ..., c|C|

}
be the set of individual characteristics

beyond their responsibility sphere, like sex at birth, father education and ethnicity. The

elements of C are assumed to be the result of a social debate about the unfair sources of

inequality. Each circumstance cj ∈ C can take a number |cj | ∈ N++ of possible values;
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let us denote with cj (i) the value taken by characteristic j for individual i. Then, any

tNk ∈ TN is a subset of N such that ∀i, j ∈ tNk , ch (i) = ch (j) for all ch ∈ C.

As also shown in Fleurbaey and Peragine (2013), the combination of ex-ante compensation

and utilitarian reward leads us to measure IOp as inequality in the smooth distribution,

where each individual’s outcome is replaced by the average outcome of the type she belongs

to. Clearly, the smooth distribution is function of
(
Y N , TN

)
. Letting I denote a generic

inequality measure like the Gini coefficient, we have that I
(
Y N , TN

)
measures the IOp

in the population of interest. In line with this approach, income variability within a type

should not affect the IOp measure.

In general, I
(
Y N , TN

)
6= I

(
Y N , T ′N

)
whenever TN 6= T ′N , so that if one observes only a

subset of the relevant circumstances C, then, even if we know the income distribution of

the entire population, we may still be unable to measure the true IOp. As also noted in

Ferreira and Gignoux (2011), we incur in a downward biased IOp measure.

The problem of unobserved circumstances is known in the literature since long, and the

solution (more detailed individual information) is easily understood but still a challenge in

practice. Recent developments in the literature (Brunori et al., 2019) underlined how sam-

ple size and sampling errors may also cause upward biases of the IOp estimate. Intuitively,

when the average incomes of types are estimated with errors (for example, due to small

sample sizes), these errors can increase the inequality between the types’ average incomes,

thereby increasing IOp. In Appendix A, using the data described in Section 5, we show

how upward biases can prevail, depending on the available sample size.

The problems of missing types (or unobserved circumstances) and limited sample size,

with their consequent downward and upward biases, have primarily been considered as

statistical issues limiting the reliability of IOp estimates. In the following subsection, we

examine these biases from a more theoretical perspective. This approach allows us to
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describe them more clearly and, in some aspects, in a new way. We clarify how these

biases are tightly connected to the normative principles of compensation and reward, and

we reinterpret type I and type II errors in hypothesis testing as risks of violating the reward

and compensation principles.

2.2 A normative approach to upward and downward biases

Let Y S denote the income distribution of a sample S ⊂ N . To clarify the source of potential

biases, let us call TS = {tS1 , tS2 , ..., tS|TS |} the type partition obtained when we observe all

circumstances in C, so that |TS | = |TN | and, for all 1 ≤ j ≤ |TN |, tSj ⊂ tNj . Observe that

TS is a hypothetical type partition in which estimation biases – I
(
Y S , TS

)
6= I

(
Y N , TN

)
– may come from the sampling process but not from unobserved circumstances.3

To fix ideas, suppose that we are interested in measuring ex ante income IOp due to biolog-

ical sex and race, where both circumstances take two possible values: male or female, and

black or white. The population is then divided in four types: TN =
{
tNMW , t

N
MB, t

N
FW , t

N
FB

}
.

Let types be of the same population size, and assume that tNMW , t
N
FW ∼ N (x, σ) and

tNMB, t
N
FB ∼ N (x+ ∆, σ), for x,∆ > 0. In words, white (resp. black) men and women

have incomes drawn from the same distribution, so they share the same opportunity set.

Conversely, there is inequality of opportunity induced by race, since black individuals have

higher expected income.

We draw an equal sized sample of observations from each type in TN . Then, we have

TS =
{
tSMW , t

S
MB, t

S
FW , t

S
FB

}
, and tSj ⊂ tNj for all j. Let µ (t) denote the arithmetic

average of the incomes of individuals in t. Despite our assumptions, there exists Y S ⊂ Y N

such that µ
(
tSMW

)
> µ

(
tSFW

)
= µ

(
tSMB

)
.4

3The blue solid line in Figure A1 highlights that, since averages are poorly estimated with small samples,
we tend to have I

(
Y S , TS

)
> I

(
Y N , TN

)
.

4A complete numerical example - with x = 500, σ = 50, ∆ = 10 - is available upon request.
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In such a sample, the estimate I
(
Y S , TS

)
is inaccurate for two reasons. First, since

µ
(
tSMW

)
6= µ

(
tSFW

)
, and given the assumption that white men and women have the same

opportunities, part of I
(
Y S , TS

)
is inequality due to effort. Including these inequalities

among the unfair ones is a violation of the reward principle, and a particular manifestation

of the upward bias.5 Second, I
(
Y S , TS

)
fails to include the difference between the expected

incomes of white women and black men, violating the compensation principle. We should

stress here that this is different that the downward bias highlighted by previous studies

because, by assumption, all relevant circumstances are observed. Yet, failing to capture

the difference in expected incomes of tNFW and tNMB reduces the estimated IOp.

The remainder of this section shows that these violations of the reward and compensation

principles are linked to, and can be measured by, the types I and II errors in hypothesis

testing.

Our departing assumption is that we are working with sample data, which is typically the

case in IOp empirical analyses. Thus, before proceeding with IOp measurement, we should

test if there is a statistically significant difference between expected incomes of types.

Indeed, if we cannot be confident in claiming that types have different average incomes,

then an I
(
Y S , TS

)
6= 0 will not be a good estimate of I

(
Y N , TN

)
, as it could, with an

high probability, reflect sampling variance. With this concern in mind, we may rely on

simple statistical tools to test whether the average incomes of two types are different.

The most straightforward approach is to test, for each pair tSj , t
S
k ∈ TS , the null hypothesis

H0 : µ
(
tNj

)
− µ

(
tNk
)

= 0 against HA : µ
(
tNj

)
− µ

(
tNk
)
6= 0. This is easily done by

computing the statistic

5Another instance of upward bias occurs if, for example, we overestimate IOp between white and black
men which, by assumption, have different opportunity sets. Formally, this happens if

∣∣(tSMW

)
−

(
tSMB

)∣∣ >∣∣(tNMW

)
−

(
tNMB

)∣∣ = ∆.
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Z =
µ
(
tSj

)
− µ

(
tSk
)√

σ(tSj )
2

|tSj |
+

σ(tSk )
2

|tSk |

where σ(t) denotes the standard deviation of incomes in group t. By the Central Limit

Theorem, Z follows a standardized normal distribution.6 From standard practices in hy-

pothesis testing we know that the choice of rejecting H0 is guided by the tolerable risk of

Type I error (α): rejecting H0 when it is true. Formally, if we denote Φ the cumulative

standardized normal distribution and Φ−1 its inverse, for a given α, the critical values

of our hypothesis testing are Φ−1(α/2) and Φ−1(1 − α/2). Therefore, we reject H0 if

Z ≤ Φ−1(α/2) or Z ≥ Φ−1(1− α/2).

In the context of IOp measurement, if H0 is true, like for white male and white female in

the above example, then α represents the probability of violating the reward principle if

tSj and tSk were treated as different types when estimating IOp.

Hypothesis testing is also sensitive to the Type II error: not rejecting H0 when it is false.

If this error occurs, like for white female and black male in the above example, then we

are wrongly concluding that tNj and tNk have the same average income, implying no IOp

between them. The probability of Type II error is denoted as β, and the power of a test

(1− β) is, in our context, the ability to detect a difference in expected income, under the

assumption that there actually exist one. Formally, the power of our test is expressed as:

1− β = 1− Φ
(
Φ−1(1− α/2)− d

)
+Φ

(
Φ−1(α/2)− d

)
with d = ε√√√√σ(tSj )

2

|tSj |
+
σ(tSk )

2

|tSk |

(1)

6We are assuming, for simplicity, that types are sufficiently big, so we can write the formulas referring
to Normal distributions rather than T-students distributions.
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It is easy to observe that power rises along with sample size, and decreases with higher

variability in income. Another key determinant of 1 − β is ε, which is the true difference

between the expected incomes of the two types. The bigger the ε, the easier will be for

the test to detect such a difference, as it will also be less likely not to reject H0. Finally,

necessarily, β is inversely related to α.

High power is essential for measuring IOp correctly. For example, if the sample size is too

small, then we may end up not rejecting a false H0 simply because we do not have enough

observations to detect the difference in average incomes. Similarly, if |µ
(
tNj

)
− µ

(
tNk
)
| is

positive but close to zero, a high sample variance may not allow us to detect such difference.

A test with a high probability of Type II error is more likely to conclude that there is no

IOp between types j and k. Indeed, even if |µ
(
tNj

)
− µ

(
tNk
)
| = ε > 0, with high β we are

likely not to reject H0. Consequently, β can be interpreted as the probability that, when

measuring IOp in our setting, we are violating the compensation principle.7

2.3 Normative versus data-driven type partitions

In Section 4.1 we build on the previous remarks to propose some criteria for an overall

assessment of a type partition in terms of the compensation and reward principles. From

our discussion so far it should be clear that upward and downward biases, as well as

violations of the reward and compensation principles in IOp estimates, are related to the

specific type partition we choose to measure IOp.

Most theoretical contributions (see Ferreira and Peragine, 2016, for a survey) assume that

there exists a normative partition of the population into types. This partition, taken as the

same across time and space, results from social and political debates about what should

and should not be considered a circumstance. In the previous section, the normative type

7The reader may notice that this probability is conditioned on H0 being false. In other word, it’s the
probability of not detect a true difference in means.
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partition corresponds to TN . In line with this approach, there exists only one relevant type

partition for IOp estimates: the above-defined partition TS .

As already mentioned, TS is de facto a theoretical construct, because real-world data

typically fail to contain all the individual characteristics that constitute circumstances. All

existing IOp estimates are therefore based on type partitions that differ from TS . This

raises issues of comparability across time and countries, either because different databases

may contain different (or differently coded) circumstances, or because researchers merge

types to obtain more robust estimations of the means (an example, among many, is Checchi

and Peragine, 2010).

Following (Brunori et al., 2019, 2023; Escanciano and Terschuur, 2023), the literature has

experienced an rising interest in machine learning techniques, like conditional inference

regression trees (CITs) and forests, which are implemented to construct data-driven type

partitions. These approaches limit arbitrariness in choosing the type partition for IOp

estimation, and tend to display better statistical properties. These are both welcomed

features for practitioners interested in obtaining statistically robust estimates of IOp.

Skeptics of data-driven approaches defend the idea that IOp is, first of all, a socio-economic

issue that can only be tackled when types are precisely defined. Data-driven type partitions

may be unstable, as they depend on the sample at hand, and are not always in line with a

politically accepted way of grouping individuals. Moreover, even if in the classic approach

researchers directly influence the type partition, their choices are more explicit and can be

defended on the basis of ethical and practical principles.

On the other hand, one may criticize the idea that the type partition should be the same

across time and space. Different societies have different income-generating processes, which

are hard to describe with a unique type partition. For example, casts and religion may

matter in some countries but not in others. With data-driven approaches, there is no prior
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assumption about the structure of society, so that the estimated IOp may be more in line

with the country and time specific structure of the socio-economic interactions.

The debate between the normative and data-driven approaches is still open and this paper

does not aim at resolving nor taking a stance on it. It however contributes to this debate by

showing that, independently of where the type partition comes from - normative approach

like in the previous section or data-driven approach like in the following - the simple fact

that we estimate IOp using sample data generates biases (violations of the reward and

compensation principles) which can be measured, as shown in Section 4.1, and limited, as

shown in Section 4.2.

In the following section, we move our focus toward data-driven partitions, specifically the

one resulting from CIT. This choice is aimed at (1) underlining structural limitations of

the CIT algorithm that have been so far overlooked by the literature, and (2) showing that

these limitations result in potential upward and downward biases (i.e. violations of the

reward and the compensation principles).

3 Biases in the Conditional Inference Tree

We have seen that IOp estimates may violate the principles of reward and compensation

even if they are based on a normative type partition like TS . Here we argue that data-

driven type partitions may suffer from the same biases. We depart from a closer look

at conditional inference regression trees, that have received great attention by the recent

literature.
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3.1 The Conditional Inference Tree

Conditional Inference Trees (CITs), developed by Hothorn et al. (2006), have been recently

adopted for IOp estimation (see Brunori et al., 2023, for example). Besides balancing up-

ward and downward biases widely discussed by the literature (Ferreira and Gignoux, 2011;

Brunori et al., 2019) this algorithm limits arbitrariness when defining the type partition

where IOp is measured. CITs are supervised machine learning algorithms that aim at

predicting a dependent variable by partitioning the space of regressors (circumstances).

In doing so, they define groups of non-overlapping observations (types) that are homoge-

neous in terms of the realization of a subsample of the observable predictors. Individual

predictions are made by taking the average outcome within groups.

The CIT algorithm takes as input a list of circumstances C and a parameter α̃. At each

iteration, the algorithm performs a series of independence tests to identify the circumstance

variable that is most associated with income8. Formally, for all ∀cj ∈ C, it tests the

null hypothesis that conditional and unconditional income distributions are statistically

indistinguishable – H
cj
0 : D(Y N |cj) = D(Y N ). The resulting p-values are Bonferroni-

adjusted. 9 If no adjusted p-value is lower than α̃, then the algorithm stops. Otherwise, the

algorithm selects the cj associated with lowest p-value, and performs a binary split of the

population according to the possible values of cj . The choice of how to split the population

is made after performing a series of permutation tests, which in our case corresponds to non-

parametric versions of the difference in mean t-test. The performed split is, again, the one

with the lowest p-value. Within each resulting sub-populations, the algorithm starts from

the independence test phase to attempt further splits. A stopping rule is triggered when

the degree of association between the dependent variable and all controls is not sufficiently

8As explained by Varian (2014) using a correlation test to select the splitting control eliminates the
well-known bias of standard trees in selecting variables with a high number of values or categories.

9This adjustment is necessary because of multiple hypothesis are tested in this step.
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significant to reject the null hypothesis of independence. In that case, no further split is

performed, preventing the model from growing too deep and overfit the data.

The above algorithm gives full control over the parameter (α̃) governing the decision of

whether or not to further split the sample. Lowering the α̃ value results in a more conser-

vative tree, with fewer splits and terminal nodes. Standard practices consist in fine-tuning

α̃ to improve the out of sample predictions of the model. From a normative perspective,

however, there is no direct way of assessing whether the resulting type partition (i.e. the

groups defined by the terminal nodes of the tree) respects the compensation and reward

principles discussed above. This is because once an independence test passes, a split must

be performed, independently of the type I and II errors involved in this split. Moreover,

the independence test is more demanding than a t-test, in the sense that it is possible that

a final node fails to reject the null hypothesis of the independence test while it could still

be split according to a difference in means test.

3.2 The flaws of a binary splitting algorithm

As explained, upward and downward biases are statistical manifestations of violations of the

normative principles at the base of EOp. We focus now on whether CIT algorithms delivers

type partitions that maximize consistency with the compensation and reward principles.

Let us consider a sample S for which we observe only two circumstances: gender (men

or women) and skin color (brown or white). Let us call T0 = {tMW , tMB, tFW , tFB} the

full type partition, that is one in which we divide the population by sex and skin color.10

In such a setting, the standard approach in the literature (Checchi and Peragine, 2010;

Ferreira and Gignoux, 2011) is to estimate ex-ante IOp by I
(
Y S , T0

)
.

10In this section, we do not use the superscript S when referring to types because these may not be
subsets of the types in TN , in particular if |C| > 2.
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Advocates of data-drive approaches, aware of the potential estimation biases, prefer to

let an algorithm like CIT choose the type partition. Indeed, the above sample can be

partitioned in several ways other than T0: fifteen in this case.11 A hardly mentioned,

yet theoretically relevant, limitation of CITs is that, due to its deterministic structure, it

chooses type partitions from a subset of the theoretically possible ones. In the previous

example, this subset contains only half of the potential partitions. This limitation becomes

even more stringent when more circumstances (or categories) are considered (Appendix C

provides more details on this issue).

CITs, and any other partitioning algorithm based on binary splitting, are irreversible pro-

cedures, in the sense that once a split is performed, the algorithm generates two distinct

populations and looks for further possible types within each of them. Consequently, it does

not check for the possibility that in the final type partition there exists two or more types

with the same average income. Also, since each split is based on the maximum degree of

association in the considered sample, the algorithm does not take consider the effect of a

split on potential further splits in the two sub-trees it generated. Following our discussion

in Section 2.2, this may come at the cost of a more severe violation of the reward principle.

Indeed, it is even possible that in the final type partition one finds two resulting types

with statistically indistinguishable densities.12 Since IOp is computed on the smoothed

distribution, this event may have no direct impact on the resulting measure. However, it

may indirectly impact estimates by leading to a different type partition.

Let us clarify the previous point with an example. Suppose the CIT algorithm identi-

fies T0 as the relevant type partition. By construction, this algorithm will never test for

the difference in means between tMB and tFW . It may however be the case that, not

only the average, but the entire income distribution of these types coincide. Let T? =

11See Appendix C for a deeper exploration on the type partition limitations.
12Real-data examples of this are available upon request.
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{tMW , tFB, {tMB ∪ tFW }}. We may observe that, in this case, I
(
Y S , T0

)
= I

(
Y S , T?

)
, so

that both type partitions lead to the same IOp estimate. Suppose now that there is a third

circumstance, say the region of birth, which is found to have no impact on expected income

within tMB and tFW separately, but is statistically relevant in tMB ∪ tFW .13 In this case,

the resulting types cannot appear and our IOp estimate will be based on a type partition

that misses a type with different opportunities, violating the compensation principle.

Overall, it seems clear that even if CITs are fine-tuned to reduce estimation biases, they

are not immune to violations of the compensation and reward principles biases.

4 Identifying the salient type partition

The discussion so far points out that, whenever we measure IOp using sample data, the

implemented type partition and the resulting IOp estimate may violate the reward and

compensation principles. In what follows, building on Section 2.2, we show that the risk

of these violations can be both measured, - via the Reward and the Compensation scores

- and reduced - by the Opportunity tree algorithm.

4.1 Compensation and Reward scores

Let us denote with T =
{
t1, t2, ...., t|T |

}
a type partition which we plan on using to es-

timate IOp. It is worth explaining here the change in notation with respect to Section

2. We have defined TN as a normative partition of the population where IOp should be

measured, and TS the partition of the sample into |TN | types, which are all subsets of the

population’s ones. Clearly, for TS to be well defined, one needs to have information about

all circumstances in C. Moreover, even if we do have such information, sample size issues

13The example in Figure A2 shows how this can happen because of sample size.
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may force us to use a partition, which we denote T , that differs from TS .14 When this is

the case, it is natural to question the normative relevance of the IOp estimate I
(
Y S , T

)
.

While there is no doubt that when T 6= TS there is room to claim that I
(
Y S , T

)
is not

a perfect estimate of I
(
Y N , TN

)
, we believe that I

(
Y S , T

)
is still informative about IOp

in the population N if we can claim that T minimizes the risk of violating the reward and

compensation principles.

To determine whether T is a sensible type partition we propose to check that all types

in T are salient, and no salient type is missing from T . Formally, a type t is “salient” if

(1) individuals in t have different circumstances than individuals in other types and (2)

for all t′ 6= t, the average income of individuals in t is different than the average income

of individuals in t′. If all types in T are salient, then T does not violate the reward

principle. Conversely, suppose there are t, t′ ∈ T such that µ(t) 6= µ(t′) but |µ(t) − µ(t′)|

is not statistically different from zero. In such a case, I
(
Y S , T

)
will capture part of the

inequality due to effort, which violates the reward principle. To assess this risk we propose

a Reward score defined as :

SR (T ) =
∑

(t,t′)∈T×T :µ(t) 6=µ(t′)

ω(t, t′)×
(
1− p-value

(
t, t′
) )

(2)

where ω(t, t′) = [ |t|+ |t′| ] /
[∑

(t,t′)∈T×T :µ(t) 6=µ(t′) |t|+ |t′|
]

is the relative sample size of the

considered pair of types, and p-value (t, t′) is the p-value of the difference in means t-test

for the considered pair. Observe that, if T contains two types t, t′ such that µ(t) = µ(t′),

this will have no impact on the estimated IOp; for this reason Eq. (2) focuses only on pairs

of types with different arithmetic mean.

The Reward score is a weighted sum of the statistical significance of the difference between

14This is particularly true when the partition is data-driven.
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average incomes of types in T . In other words, it measures how confident we can be in

claiming that types in T are salient. The higher is SR ∈ [0, 1], the more the type partition is

in line with the reward principle. Following standard practices in the statistical literature,

we can easily define values SR ∈ [0, 1] such that, whenever SR(T ) ≥ SR, we can conclude

that T is in line with the reward principle. We believe SR = 0.95 to be a sensible threshold,

given that 95% confidence intervals are standard in empirical analyses.

Let us now consider the risk that T is missing salient types, downward biasing the estimated

IOp and inducing violations of the compensation principle. To assess this, for each t ∈ T ,

we propose to test if it is possible to binary split this sub-population in two groups, t1j and

t2j , that are potentially salient types.

Formally, we implement a two step procedure. First, within each t ∈ T , we run a CIT

with α̃ = 1 and only one split allowed. In this step, a split will be performed because

any p-value will be smaller than 1. Clearly, since we are using CIT, this is not going to

be a random split, but the one performed by the circumstance most associated with the

outcome of individuals in t. Alternatively, one can follow a theoretically driven reasoning

to perform the previous binary split. The second step consists in testing the difference

in means of the resulting groups, t1 and t2 using a standard t-test. We then collect the

p-value and estimate the power of this test.15 The lower the p-value, the more confident

we are that t1 and t2 should constitute different types, so that we violate the compensation

principle by not splitting t. The higher the power, the more confident we are that the final

node t has sufficient sample size to identify more types, so that the previously computed

p-value provides reliable information.

Let power(t1, t2) denote the power of the difference in means t-test conducted on the

potential types t1 and t2; the p-value of the same test is denoted p-value(t1, t2). The power

15To compute the power of the test we need to define a set of parameters. We refer to Section 5 for more
details.
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and p-value computed from a given type are informative per-se. As discussed in Section

2.2, a test with low power suggests, under the assumption of false null hypothesis, potential

violations of the compensation principle. Thus, p-value(t1, t2) addresses the validity of that

assumption, while power(t1, t2) measures the risk of violations.

When power(t1, t2) is sufficiently high, with high p-value(t1, t2) we can confidently claim

that t1 and t2 should not constitute different types. Conversely, when p-value(t1, t2) is

close to zero, with high power we are confident that t1 and t2 should constitute different

types. While the former instance is desirable, the latter is a violation of the compensation

principle. When power(t1, t2) is low, then we do not have sufficient information to assess

whether t1 and t2 should be different types. While this signals the risk for violations of the

compensation principle, this risk decreases with p-value(t1, t2). Indeed, one may be less

worried about insufficient sample size when p-value(t1, t2) is sufficiently high, signalling

that t1 and t2 have similar means.

In most applications we have partitions composed of many types, so that analysing and

comparing powers and p-values within each terminal node may become cumbersome. To

account for the interaction between power and p-value in determining whether there is a

potential violation of the compensation principle coming from a given t ∈ T , we suggest to

look at the product between the two. Moreover, to simplify the normative assessment of a

type partition, we propose the following Compensation score:

SC (T ) =
∑
t∈T

|t|∑
t∈T |t|

(
power(t1, t2)× p-value(t1, t2)

)
(3)

where, for all t ∈ T , t1 and t2 denote the two types resulting from binary splitting t,

|t| is the number of observations in t, and power(t1, t2) and p-value(t1, t2) are defined as

before. The Compensation score is a simple weighted sum of the scores of each type, for
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weights depending on the relative sample size. This weighting system emphasizes violations

occurring in populated subgroup, as these are likely to have stronger effect on the estimated

IOp.

The interpretation of the Compensation score is straightforward: it is an aggregate measure

of how confident we are that the given partition is not missing salient types. The higher is

SC ∈ [0, 1], the more a type partition alineates with the compensation principle. Also in this

case, we may define a value SC ∈ [0, 1] such that, whenever SC(T ) ≥ SC we can conclude

that T is in line with the compensation principle. We suggest to define SC = pow
(
1− SR

)
,

where pow is a minimum acceptable power for a test. Since the statistical literature tends

to use 0.8 as reference, we take SC = 0.8 (1− 0.95) = 0.04 to be a reasonable threshold for

our Compensation score.

The reader may notice that Eq. (2) and (3), as well as SC and SR, are to some extent

arbitrary. A deeper analysis and axiomatization of the Reward and Compensation scores

is out of the scope of this chapter. Here, we remain in line with the statistical meaning

attached to SR and SC and consider the product a natural way of aggregating power and

p-value across types. More sophisticated scores can be easily constructed; for example, we

could replace (1− p-value(t, t′)) in Eq. (2) with fSR (1− p-value(t, t′)), where fτ : [0, 1]→

[0, 1] is a function such that fτ (x) = 1 if x ≥ τ and fτ (x) = τ−1x otherwise.16 While this

score does not solve the arbitrariness issue, it has the interesting property of being equal

to 1 only if all types in T satisfy the reward principle.

4.2 The Opportunity-tree

We now introduce a procedure aimed at improving the Reward and Compensation scores

of a given type partition. We present this procedure within the context of CIT-based

16Similar transformations can be performed to the elements of Eq. (3).
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partitions, because it also deals with the limitations discussed in Section 3.2.17

We suggest a simple refinement of the standard CIT algorithm, which we call “Opportunity-

tree” (O-tree). Our approach consists of complementing CIT with a final step in which

we check that all resulting types have statistically different average incomes.18 Types with

the same expected incomes are then sequentially merged. After this merging process is

completed, we repeat the CIT procedure within each of the new resulting sub-populations

to explore possible new types.

The pseudo code of the O-tree algorithm is given in Algorithm 1. The algorithm can be

divided in three blocks: an initial one that runs CIT, a second block that merges similar

types, and a third block that attempts further splits in the merged types. The first block

(Steps 1 and 2) does not require further explanations, since these are given in Section

3. The reader should however notice that T ? in Step 2 can be any type partition, not

necessarily produced by a CIT.

The second part of the algorithm (Step 6 to 16), which is the core of our proposal, takes as

input a type partition and merges types that have statistically undistinguishable expected

incomes. Specifically, starting from a type partition, it performs t-tests of differences in

means for each pair of types. It merges the pair of types with the highest p-value above a

0.05 threshold, and repeats the series of t-tests for the remaining types. If there are pairs

for which the p-value is above 0.05, then it merges the pair with the highest p-value and

repeats the procedure. Otherwise, it passes to the following block.

The third block of Algorithm 1 (Step 17 to 19) fits a CIT in each resulting type (after

merging) to explore whether more types appear. This CIT must have α̃ = 1 to ensure that

17These limitations are: (1) a high share of the possible type partitions can never be defined as salient;
and (2) it is possible that the salient type partition is composed of types with similar expected income.

18This part of the procedure can be modified to test that types have statistically different CDF, instead
of focusing only on the averages. Minor changes in the O-tree algorithm are required to accommodate this.
Here we keep our focus on the average because we measure ex-ante IOp as between-means inequality.
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Algorithm 1 The O-tree algorithm

1: Input: C
2: run CIT (with a given α̃) and store the resulting type partition in T ?

3: T ← ∅
4: while T 6= T ? do
5: T ← T ?

6: for all (tj , th) ∈ T × T , tj 6= th, do
7: test H0 : µ(tj) = µ(th) against HA : µ(tj) 6= µ(th)
8: store the resulting p-value pjh in the set P = {p12, ...p1T , p23, ...p2T , ...p(T−1)T }.
9: end for

10: define P ? = {pjh ∈ P : pjh > α}, for α = 0.05.
11: if P ? 6= ∅ then
12: let pjh = maxP ?.
13: merge types to create tjh = {tj ∪ th}
14: update type partition: T ← T \ {tj , th} ∪ tjh
15: go to Step 6
16: end if
17: for all tj ∈ T do
18: run CIT with α̃ = 1 and only one split allowed
19: store the resulting type partition in T ?j
20: end for
21: T ? ←

⋃
tj∈T T

?
j

22: end while
23: Return: T

a split is performed, and allow only one split in order to have only two new potential types

for each of the initial ones. Finally, the algorithm returns to the second block to check

that the new type partition does not violate the reward principle. It then keeps running

until the process of attempting further splits, after merging types with similar averages,

does not modify the resulting type partition.19

The proposed O-tree algorithm deals with the second structural problem of CIT by merging

types with similar expected incomes. At the same time, it increases the number of possible

19It may be possible that this process enters a loop in which a type is split and then merged repeatedly.
If this happens, we force the algorithm to stop after the merge, so that the new types are not generated
and the final type partition does not violate the reward principle.
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type partitions CIT can detect. Finally, by merging types, we generate groups with higher

population share, in which it is easier to detect the effects of circumstances that were hidden

by the lack of sufficient observations in the original type partition. Consequently, the O-

tree algorithm constitutes both, a technical and a normative improvement with respect to

the CIT, since it expands the set of possible partitions explored and is likely to improve

the compensation and reward scores of the resulting type partition.

5 Empirical Aplication

In the above text we have proposed a method to assess the reliability of IOp estimates based

on sample data. Given the selected circumstances beyond individual control, Compensation

and Reward scores are able to tell us whether we have sufficient information to test the

degree of association between circumstances and the outcome of interest. We show now

how the two scores can guide our analysis of real data.

5.1 Data

We study IOp among Italian PhD graduates using the “Survey on university doctorate

holders’ vocational integration” carried out by the Italian National Institute of Statistics

(ISTAT, 2018), which contains information about PhDs graduated in 2012 (N=8,172) and

in 2014 (N=7,882). In such a highly selected population, one would expect to observe

low levels of income and opportunity inequality. Therefore, we ask whether circumstances

beyond individual control such as area of origin, sex, and socioeconomic background, are

predictive of labour income disparities within our sample.

We take the monthly net labor income of the respondents as the outcome of interest,

which is assumed to capture labour market success. Labor income is reported in 134 in-
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come brackets ranging from “200 euro/month” and “above 7,000 euros”, but we treat it as

a continuous variable.20 We consider five key circumstances out of individual control. A

binary variable describing self-reported gender (male and female), mother’ s and father’ s

education coded in five categories (1=elementary education or no education, 2=lower sec-

ondary, 3=upper secondary, 4=university diploma, 5=university degree or above), mother

and father occupation if employed (1=manager, 2=professionals, 3= technicians and as-

sociate professionals, 4= clerical support workers, 5=skilled manual worker, 6=elementary

occupations), mother and father occupation if self-employed (1=entrepreneur, 2=profes-

sionals, 3=technicians, 4=managing directors (family business), 5=manual worker (family

business), 6= administration managers, 7=managing directors). Finally, we consider the

region of residence before enrolment in an undergraduate university course as the circum-

stance describing the area of origin of the respondent. To this circumstance, we add two

categories: “other country in European Union” and “outside the European Union”.

In order to make the outcome variable comparable across cohorts we remove a fixed cohort

effect. Understandably doctors graduated two years earlier earn on average 103.8 euro

more per month than their younger pairs. Descriptive statistics of both circumstances

beyond individual control and outcome are available in Section D.

5.2 Main Results

Income inequality in the analysis sample amounts 0.261 Gini points. This value is sur-

prisingly high, given the expected homogeneity of the objective population in terms of

education and age. To identify salient types with CITs, we set α̃ = 0.05, so the algorithm

keeps on splitting until the null hypothesis of independence between the income variability

and any observable circumstance can be rejected only with a level of confidence lower than

20We assign 7000 euros to observations in the upper bracket.
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95%. All remaining parameters defining the tree algorithm are set to the default values

(see Hothorn and Zeileis, 2015, for details). We obtain a partition in 12 types reported

in Figure 1. The between-type inequality corresponds to our baseline IOp estimate in the

resulting type partition, and reaches 0.072 Gini points, meaning about 27.5% relative to

total inequality, is inequality that can be accounted for the circumstances employed21.

Figure 1: Roemerian type partition based on CIT
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A clear hierarchy of circumstances in terms of their prominence emerges when inspecting

the shape of the tree: sex is the first split, dividing the tree in two sub-trees. All terminal

nodes made of male have an expected income above the population mean, while none

of the types containing women has an expected outcome above the population average,

with type 22 being the only exception representing a mere 0.3% of the sample.22 In the

21Note that the Gini index is not a path-independent additive decomposable inequality index, using a
perfectly decomposable index such as MLD such share would be smaller.

22For clarity, we normalize the type-specific expected outcome with 1 being the sample mean, 2,070 euros.
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female sub-tree, the two largest types originate from the splitting node 14, that contains

25% of the sample. Both resulting types are made of PhD graduates whose father has

a prestigious occupation (entrepreneur, professional, managing directors, manager), but

they differ in their region of origin. Type 15 is endowed with a higher expected outcome

(0.99 of the population average), and contains respondents coming from the North of Italy

(excluding Trentino-Alto Adige and Liguria), Lazio and outside Italy. Opposed, type 16

mainly contains PhD graduates from the South of Italy, and has an expected income 10%

lower.

In the male sub-tree, the richest type (terminal node 10) is made of male PhD graduates

with a university graduated father, that also embodies a relatively high-qualification. Re-

spondents in type 10 are generally from Northern Italy (Piemonte, Lombardia, Trentino

- Alto Adige, Friuli-Venezia Giulia, Lazio) but also come from some regions in the South

(Puglia, Bailicata, Calabria) and the EU.

In addition to the prominent role of sex, circumstances describing the place of origin

and the characteristics of the father determine several splits in the tree. Meanwhile, the

education of the mother only appears in the sub-tree populated by men. Although the

geographical distinction is not always clear, the CIT partition is fairly consistent with

the Italian rationale. Coming from the Northern part of the country, Lazio, and from

abroad, tends to predict higher incomes than coming frome elsewhere. Father’s occupation,

although used as an unordered variable, also tends to partition the sample according to a

social hierarchy, whereby more prestigious occupations are predictive of higher income, as

do the educational levels of both the father and mother.

Remarkably, the types’ partition obtained with the CIT produces a number of types with

almost indistinguishable expected outcome (terminal nodes 16, 19, and 21). As mentioned

above, this is an undesired effect of using recursive binary splitting to obtain a partition
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in salient types.

We perform the normative assessment of the type partition in Figure 1 by implementing

the procedure discussed in Section 4.1. Table 1 reports the (1 − p-value) is computed for

each pair of terminal nodes in Figure 1, together with it’s weighted counterpart. There are

several pairs of types, such as the combination Type1 = 5 and Type2 = 7, for which we

cannot reject the null hypothesis of equal expected income (1 - pvalue = 0.87).

Table 2, instead, reports the power and p-value computed within each terminal node of

Figure 1. To compute power one needs to set the parameters in Eq. 1. For each terminal

node we use the respective sample size and empirical standard deviation, and set ε to be

the difference between the average income in the two resulting types. In doing so, the

parameter d corresponds to the standard “Cohen’s d”. Finally, α is set to 0.05, which

corresponds to our favourite threshold for the reward score. In Table 2, there are a few

instances where the combined value of power and p-value for the first non-performed split

arise suspicion. For example, type 23 has sufficient sample size to test for further splits,

and the first non-performed split in this node has a very low p-value. This observation

suggests the possibility of refining the CIT algorithm by forcing splits like the one in type

23 to take place.

The Reward Score for the CIT amounts to 0.913 which is just above the lowest SR intro-

duced in Section 4.1. This is in line with the fact that CIT are constructed to somehow

avoid violations of the reward principle, so one would expect a good SR from it. We

should however stress that the reward score from CIT falls below 0.95, which is probably

the most common confidence level used in practice. The performance becomes even less

satisfactory when we consider the Compensation Score. Observe that if we set SR = 0.95

and pow = 0.8, then SC = 0.04, while the Compensation Score of the CIT merely reaches

0.0363. Type 21 is particularly worring since the p-value is low and power is also low. The
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risk that the split is not performed due to limited sample size (N=157) is high.

Being somewhat insatisfied with the CIT performance, we now estimate the O-tree intro-

duced in Section 4.2. Figure 2 plots the O-tree, where the number of terminal nodes has

almost halved: from twelve in the CIT to seven. Specifically, types 5 and 12 have been

merged into type 29, type 6 and 11 have been merged into type 26, type 10 and 22 have

been merged into type 27, and type 7 and 15 have been merged into type 28. Additionally,

type 16, 19, and 21, which initially had the same expected outcome in the CIT, have been

merged and subsequently split into types 1200 and 1300. Although the O-tree delivers a

more parsimonious type partition, the between-type inequality estimate slightly increases

to 0.0732 Gini points.

Furthermore, the O-tree has two types containing a mix of women and men. Type 28, the

largest type, includes 25% of individuals with an expected income equal to the population

average. Type 27 comprises the most advantaged individuals, characterized by high levels

of father’s education, high father’s occupation, and a mix of regions of origin. This type

represents the top 5% top-earners among PhD graduates, earning approximately 30% more

than the population average. It is also worth highlighting that the new split is unique on us-

ing mother’s occupation, revealing a higher expected outcome among women whose fathers

were not university graduates but the mother’s occupation lied in high-skilled positions.

Despite the more parsimonious type partition, the O-tree constitutes an improvement with

respect to the CIT in terms of reward and, most importantly, compensation score. Specif-

ically, for the O-tree we have SC = 0.165 and SR = 0.982: both above our favourite

thresholds SC = 0.04 and SC = 0.95. This is explained by a refined statistical proce-

dure that parsimoniously employ degrees of freedom by merging non-salient types. The

improvement is even more evident after inspecting Tables 3 and 4 below.23

23We have checked that the O-tree improves the Scores resulting from a non-parametric partition of the
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Table 1: Reward score for each pair of terminal nodes of CIT

Type 1 Type 2 1-pvalue Weighted Type 1 Type 2 1-pvalue Weighted

5 6 0,9945 0,0166 15 23 1,0000 0,0222
5 7 0,8706 0,0121 15 11 1,0000 0,0149
5 15 0,9734 0,0139 15 10 1,0000 0,0165
5 16 1,0000 0,0134 15 21 0,9902 0,0127
5 19 1,0000 0,0155 15 22 0,9546 0,0115
5 12 0,8355 0,0084 16 19 0,1078 0,0026
5 23 1,0000 0,0129 16 12 1,0000 0,0185
5 11 0,9358 0,0052 16 23 1,0000 0,0213
5 10 1,0000 0,0072 16 11 1,0000 0,0140
5 21 0,9997 0,0035 16 10 1,0000 0,0156
5 22 0,8638 0,0024 16 21 0,1096 0,0013
6 7 1,0000 0,0256 16 22 0,9947 0,0111
6 15 1,0000 0,0260 19 12 1,0000 0,0206
6 16 1,0000 0,0251 19 23 1,0000 0,0234
6 19 1,0000 0,0272 19 11 1,0000 0,0161
6 12 0,9170 0,0200 19 10 1,0000 0,0177
6 23 1,0000 0,0246 19 21 0,1493 0,0021
6 11 0,2933 0,0051 19 22 0,9949 0,0132
6 10 1,0000 0,0190 12 23 1,0000 0,0180
6 21 1,0000 0,0152 12 11 0,5815 0,0062
6 22 0,6197 0,0090 12 10 1,0000 0,0123
7 15 0,7280 0,0169 12 21 1,0000 0,0086
7 16 1,0000 0,0223 12 22 0,7567 0,0060
7 19 1,0000 0,0244 23 11 1,0000 0,0135
7 12 0,9999 0,0190 23 10 1,0000 0,0152
7 23 1,0000 0,0218 23 21 0,9757 0,0111
7 11 0,9998 0,0145 23 22 0,9992 0,0107
7 10 1,0000 0,0162 11 10 1,0000 0,0078
7 21 0,9975 0,0124 11 21 1,0000 0,0041
7 22 0,9362 0,0110 11 22 0,6578 0,0022

15 16 1,0000 0,0227 10 21 1,0000 0,0058
15 19 1,0000 0,0248 10 22 0,3949 0,0020
15 12 1,0000 0,0194 21 22 0,9923 0,0013

Description: 1-pvalue is the one resulting from a difference in mean t-test between types in the two
considered types. The Weighted values multiply 1-pvalue by the weight as defined in Section 4.1.

Source: Istat, IIPDR 2018
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Table 2: Compensation score for each terminal node of CIT

Type Subsplits N Mean Power P-value

5 1 320 2121,37 0,2600 0,4301
5 2 69 2427,86 0,2600 0,4301
6 1 2074 2316,1 0,3348 0,1588
6 2 149 2649,44 0,3348 0,1588
7 1 1527 2054,14 0,7059 0,0255
7 2 256 2279,19 0,7059 0,0255

15 1 153 1832,72 0,8257 0,0114
15 2 1689 2067,24 0,8257 0,0114
16 1 1495 1799,17 0,7490 0,0044
16 2 206 2076,98 0,7490 0,0044
19 1 1869 1808,73 0,6428 0,0514
19 2 162 2063 0,6428 0,0514
12 1 400 2167,64 0,8022 0,1933
12 2 785 2312,46 0,8022 0,1933
23 1 1434 1687,77 0,9728 0,0135
23 2 193 1524,56 0,9728 0,0135
11 1 205 2489,69 0,4300 0,0669
11 2 274 2185,82 0,4300 0,0669
10 1 697 2648,71 0,1013 0,1769
10 2 45 3333,32 0,1013 0,1769
21 1 12 1347,74 0,2699 0,0044
21 2 145 1884,55 0,2699 0,0044
22 1 34 2178,72 0,0380 0,2788
22 2 12 3634,93 0,0380 0,2788

Description: Power and P-value are those computed from a difference in means t-test between two types
generated from the the initial terminal node.

Source: Istat, IIPDR 2018
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Figure 2: Opportunity-tree types partition

O-tree is estimated setting α = 0.05. The outcome is normalized such that 1 = mean sample income, 2072
euros.

Source: Istat, IIPDR 2018
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Table 3: Reward score for each pair of terminal nodes of O-tree

Type 1 Type 2 1-pval weighted

29 26 0,9870 0,0495
29 28 1,0000 0,0610
29 1200 1,0000 0,0592
29 1300 0,9999 0,0234
29 23 1,0000 0,0376
29 27 1,0000 0,0277
26 28 1,0000 0,0742
26 1200 1,0000 0,0724
26 1300 1,0000 0,0366
26 23 1,0000 0,0508
26 27 1,0000 0,0409
28 1200 1,0000 0,0832
28 1300 0,6310 0,0299
28 23 1,0000 0,0616
28 27 1,0000 0,0518

1200 1300 1,0000 0,0456
1200 23 1,0000 0,0598
1200 27 1,0000 0,0499
1300 23 1,0000 0,0240
1300 27 1,0000 0,0142

23 27 1,0000 0,0283
Description: 1-pvalue is the one resulting from a difference in mean t-test between types in the two
considered types. The Weighted values multiply 1-pvalue by the weight as defined in Section 4.1.

Source: Istat, IIPDR 2018
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Table 4: Compensation score for each terminal node of O-tree

Type Subsplits N Mean Power P-value

29 1 789 2171,63 0,9263 0,0795
29 2 785 2312,46 0,9263 0,0795
26 1 2534 2315,19 0,4025 0,1224
26 2 168 2624,85 0,4025 0,1224
28 1 1783 2086,45 0,9999 0,47
28 2 1842 2047,76 0,9999 0,47

1200 1 385 1716,76 0,9966 0,0794
1200 2 3084 1819,9 0,9966 0,0794
1300 1 184 1942,09 0,53 0,4076
1300 2 236 2080,04 0,53 0,4076

23 1 1434 1687,77 0,9728 0,0135
23 2 193 1524,56 0,9728 0,0135
27 1 730 2627,63 0,1189 0,0542
27 2 58 3373,66 0,1189 0,0542

Description: Power and P-value are those computed from a difference in means t-test between two types
generated from the the initial terminal node.

Source: Istat, IIPDR 2018

The results confirm that our proposal, the O-tree, improves the respect for the compen-

sation and reward principles in the delivered type partition. Moreover, the comparison

between Figures 1 and 2 highlights how the interaction between individual circumstances

may be more complex than what results from the standard CIT. Interestingly, and maybe

counterintuitively, the type partition that better respect the compensation principle is

composed of fewer types.

Finally, aimed at providing more evidence about the suitability of the O-tree algorithm

to improve the reward and the compensation scores, we have analyzed all CIT tree re-

sults for Europe produced at the Global Estimates of Opportunity and Mobility (GEOM)

database.24 For each CIT type partition, we have estimated ex-ante IOp as in GEOM, and

data. Using a simplified version of the father’s and mother’s education, the non-parametric delivers an IOp
of 0.065 Gini points, a reward score of 0.876 and a compensation score of 0.52. The O-tree delivers an
almost identical IOp of 0.064 Gini points, improving the reward score to 0.999 and the compensation score
to 0.718. Results for other type partitions are available upon request.

24The GEOM is a comprehensive database aimed at estimating IOp for as many countries as possible.
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the associated reward and compensation scores. Then, we have produced the O-tree, and

estimated IOp Gini and the scores in the resulting type partition.

After averaging results, the average Gini IOp rises from 0.095 (GEOM) to 0.102 (O-tree).

While the reward score sligtly decline (0.954 and 0.950 for the GEOM and O-tree, re-

spectively), the compensation scores rises from 0.019 in GEOM to 0.075 for the O-tree.

We find the O-tree to make a more appropriate use of the available data. The merging -

splitting process algorithm delivers more types (on average, 9.5 in GEOM and 10.6 in the

O-tree), which is also associated with higher IOp levels. This is reflected in a much higher

compensation score, which is substantially improved without worsening the reward score.

All these results and further analysis on this robustness check are available upon request.

6 Conclusion

Empirical approaches to ex-ante IOp are often limited by data availability. Most studies

are based on survey data, including just a few circumstance variables from the many that

a society could blame for affecting individual outcomes. Due to this partial observabil-

ity of circumstances IOp estimates were traditionally considered as lower-bound estimates

of the ”true” values ((Checchi and Peragine, 2010; Ferreira and Gignoux, 2011). Recent

contributions have challenged this reasoning, because scarcely populated types may bear

errors when estimating the average outcomes, thus provoking upward-biased IOp estimates

(Brunori et al., 2019). This paper expands on these ideas by first identifying a connection

between Type I and Type II errors in hypothesis testing and the normative principles of

reward and compensation that underlie the equality of opportunity principle. Moreover,

we show how these errors are closely related to upward and downward biases in the es-

There are 80 estimates for Europe, steaming from EU-SILC data 2005, 2011 and 2019. The outcome is
disposable househoold income, and the avialable circumstances are sex, parental education and occupation
and place of origin. Details about the data and all results are available at https://geom.ecineq.org/.
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timation of IOp. When analysts use sample-based survey data, they face a trade-off: to

reliably assess differences between groups, they need a sufficient sample size.The richer the

information about circumstances beyond individual control included in the analysis, the

more Roemerian types can be identified. However, this richness exacerbates the sample

size constraint: with the typical survey data available today, the number of possible types

often exceeds the sample size. This makes it impossible to fully account for all interactions

of circumstances or risks introducing a substantial upward bias. Consequently, analysts,

constrained by sample size, must limit the number of types considered in the analysis.

This can be done theoretically, by excluding some circumstances or merging categories,

or empirically, by following data-driven methods to identify the most statistically salient

groups. Whatever methodology is followed, once a partition in types is defined, to make

the problem of IOp estimation statistically meaningful, it is key for researchers to evaluate

whether they have a sufficient degree of freedom to reliably estimate differences in types’

means. A sample size that is too small will result in an upward bias in the IOp (see Brunori

et al. (2023) for a discussion).

Unfortunately, the typical empirical study of IOp does not include an assessment of the

sufficiency of the data used. This is where this paper makes its most important contribu-

tion: we propose two scores to assess whether the type partition adopted is appropriate

given the available data. The Compensation and Reward scores do this by signaling the

magnitude of the risk of violating the two principles, which would translate into downward

and upward biases, respectively.

Practitioners might find that, after computing the compensation and reward scores for a

preferred type partition, they do not meet what they consider to be the appropriate nor-

mative thresholds. One potential solution could be to expand the sample size, for instance,

by imputing missing observations or merging information obtained by different sources.
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Moreover, the researcher may evaluate whether the initial partition can be improved by

merging redundant types in order to free degree of freedom. If the type definition is found

to be too narrow, the researcher can group categories within circumstances (e.g., broaden-

ing the definition of parental education) or even eliminate certain circumstances from the

analysis. The O-tree introduced in Section 4.2 is an example of how a data-driven partition

of Roemerian types can be adjusted to obtain improved scores.

However, if the researcher prefers to measure IOp using that specific type partition, we rec-

ommend always addressing and reporting the associated reward and compensation scores,

highlighting the limitations and biases that might affect the estimates. While we are all

constrained by data availability, one should never demand more from the data than it can

deliver.

To demonstrate the usefulness of our proposals, we analyzed the distribution of income in a

sample of Italian PhD graduates. Using conditional inference trees, we show a substantial

degree of inequality among Italian doctors, with a surprising share of variability predicted

by circumstances beyond individual control, such as gender and region of birth. Moreover,

we evaluated the compensation and reward scores for the partition obtained using standard

conditional inference trees and then for the partition obtained with the opportunity tree,

showing improvement in both scores. Our evaluation demonstrates that the sample used

is sufficiently rich to estimate inequality of opportunity with a limited risk of biases.
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Appendix A Upward and downward biases

To clarify the dynamics between up and downward biases in IOp estimation, let us consider

Figure A1 which reports the estimated IOp for different type partitions and sample sizes

based on the data described in Section 5.

The dashed horizontal lines in Figure A1 are the IOp levels computed on the whole sample

which, for the scope of this exercise, is assumed to correspond to the population. Suppose

that our I
(
Y N , TN

)
is the IOp computed on the whole population when sex, father occu-

pation, father education, mother education and region of birth are taken as circumstances

(the dashed blue line). The solid lines report the IOp estimates for the same partitions

on random subsamples of the population (subsamples are obtained without replacement

from the 5%, around 800 observation, to 100%). Analogously, the red dashed line exem-

plifies the downward bias, representing IOp estimated on the same sample but excluding

the parents’ education from the set of circumstances. In this case, for sample sizes above

10%, the red solid line is always below the dashed blue one. The upward bias is, instead,

quite evident by observing how small sample sizes lead to IOp estimates higher than the

respective dashed blue line. Interestingly, this upward bias may reach a point where, even

with fewer circumstances and types, a small sample we lead to IOp estimates above the

true value I
(
Y N , TN

)
. In Figure A1 this happens in correspondence of the 0.05 sample

size (red solid line).

The upward and downward biases illustrated in the previous example are well known

in the literature (Ferreira and Gignoux, 2011; Brunori et al., 2019). For a long time,

the downward bias has led many researchers (Checchi and Peragine, 2010; Ferreira and

Gignoux, 2011; Roemer and Trannoy, 2016; Ramos and Van de Gaer, 2016) to interpret

IOp estimates as mere lower bounds for the real IOp. Upward biases have been recently

shown by Brunori et al. (2019), and the literature (see Brunori et al., 2023) has looked at
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Figure A1: Upward and downward biases.
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data-driven approaches for a solution.

Appendix B Appendix: Sample size simulation

Here we clarify that much of our ability to satisfy the compensation and reward principles in

hypothesis testing depends on the sample size. Therefore, researchers should be particularly

careful when trying to measure IOp with small samples.

Consider two groups of 250 individuals each. An outcome of interest, such as income, is

distributed as a N(160, 25) in the first group, while income in the second is distributed as

a N(170, 40). In the left-hand plot in Figure A2 we show the p-values of a difference-in-

means t-test for different sample shares, and the α thresholds that would make us reject

the null hypothesis of equal means. In the right-hand plot in Figure A2, we show the power
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of each test, for the same sample sizes and α values. We bootstrap each test 500 times.

By construction, the two groups have different expected income. Nevertheless, with small

sample sizes (less than 75 individuals per group) for none of the standard values of α we

will be rejecting the null hypothesis of equal means. This is reflected, in the right-hand

panel, by the low power in correspondence of small sample shares.

Figure A2: The importance of sample size
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Appendix C Appendix: Missing partitions in conditional

inference trees

Here we exemplify why Conditional Inference Trees (CITs) cannot explore all the possible

type partitions.

Let us assume to have a sample (S) for which we observe only two circumstances: gender

(men or women) and skin color (brown or white). Let us call T0 = {tMW , tMB, tFW , tFB}
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the full type partition, that is one in which we divide the population by sex and skin

color. In such a setting, the standard approach in the literature (Checchi and Peragine,

2010; Ferreira and Gignoux, 2011) assumes T0 to be the salient type partition so that

the ex-ante IOp estimation is I
(
Y S , T0

)
. The literature, however, often neglects that the

same population can be partitioned in several other ways: fifteen in this case. To these

partitions, listed below, one should add T∅ = S which corresponds to the case in which no

type is generated, so that IOp is zero by definition.

• T0 = {tMW , tMB , tFW , tFB}

• T1 = {tM , tF }

• T2 = {tMW , tMB , tF }

• T3 = {tM , tFW , tFB}

• T4 = {tW , tB}

• T5 = {tWM , tWF , tB}

• T6 = {tW , tBM , tBF }

• T7 = {tMW , t−MW }

• T8 = {tMB , t−MB}

• T9 = {tFW , t−FW }

• T10 = {tFB , t−FB}

• T11 = {tMW , tFB , {tMB ∪ tFW }}

• T12 = {tMB , tFW , {tMW ∪ tFB}}

• T13 = {tFW , tMB , {tFB ∪ tMW }}

• T14 = {tFB , tMW , {tFW ∪ tMB}}

• T15 = {{tMW ∪ tFB}, {tFW ∪ tMB}}

Clearly, I
(
Y S , T0

)
is only one of the possible measures of IOp: the one based on the

assumption that T0 is the correct way of partitioning the population.

The CIT algorithm starts with the identification of the circumstance (sex or skin color, in

this case) most associated with income. Suppose it was sex at birth, so the algorithm tests

whether there exist a difference in expected income between men and women. If we reject

the null hypothesis of both groups having same incomes, the type partition T1 is generated.

We can now treat each type in T1 as a different population and test, within each sex group,

whether skin color is correlated with income. If skin color is associated with men’s income,

but not in women’s income, we get T2. Vice versa, the algorithm may also deliver T3.
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A hardly mentioned, yet theoretically relevant, limitation of CITs is that, due to its de-

terministic structure, the salient partitions one can hope to identify are T∅, T0 and T1 up

to T6, which constitute half of the possible partitions of T0. This limitation becomes even

more stringent when more circumstances (or categories) are considered.

Formally, let c1, ..., cm be the list of observed circumstances and |cj | ≥ 2, j = 1, ...,m, the

number of values cj can take. Without loss of generality, assume that all circumstances

are nominal variables, not ordered.25 Then, for each cj , we have 2|cj |−1 possible binary

splits, including the cases of no split and total split. Let K =
∏m
j=1 |cj |, then the number of

possible salient type partitions CITs can explore is 2K−1. On the other hand, the number

of all the possible partitions of a K-dimensional set into disjoint subsets whose union forms

the initial set is measured by the K-th Bell number. The series of Bell numbers is defined

by Bn+1 =
∑n

k=0

(
n
k

)
Bn, with B0 = 1. As shown in Figure A3, the share of type partitions

that CITs can possibly identify quickly converges towards zero.

25Since the number of possible binary splits of a nominal variable is higher than the ones for an ordinal
one, the result below holds true even if some or all circumstances are ordinal.
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Figure A3: Share of observable type partition using recursive binary split
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Appendix D Appendix: Descriptive Statistics

Table A1: Income summary statistics

N Mean Sd Gini

14,205 2,070.42 1,098.70 0.26

Source: Istat, IIPDR 2018

Table A2: Mother occupation

Label Original Variable Our variable 2014 (%) 2012 (%)

Entrepreneur Aut m 1 Mother Occ.=9 1.4 1.3
Professionals Aut m 2 Mother Occ.=13 2.6 2.35
Technicians Aut m 3 Mother Occ.=12 3.77 3.94
Managing Directors (Family Business) Aut m 4 Mother Occ.=14 0.32 0.45
Manual Worker (Family Business) Aut m 5 Mother Occ.=5 0.32 0.38
Managing Director Aut m 6 Mother Occ.=15 0.03 0.04
Administration Managers Aut m 7 Mother Occ.=6 0.06 0.04
Manager Dip m 1 Mother Occ.=16 5.01 4.25
Professional (Supervisor, official) Dip m 2 Mother Occ.=10 26.58 26.73
Technicians and Associate Professionals Dip m 3 Mother Occ.=11 14.54 12.92
Clerical Support Workers Dip m 4 Mother Occ.=8 7.02 7.48
Skilled manual worker Dip m 5 Mother Occ.=7 1.69 1.6
Elementary Occupations Dip m 6 Mother Occ.=4 4.2 3.87
Other Cond m 4 Mother Occ.=3 1.52 1.33
Dead Cond m 6 Mother Occ.=1 1.13 1.28
Housewife Cond m 3 Mother Occ.=2 29.83 32.05

Source: Istat, IIPDR 2018
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Table A3: Father occupation

Label Original Variable Our variable 2014 (%) 2012 (%)

Entrepreneur Aut p=1 Father Occ.=9 4.78 4.59
Professionals Aut p=2 Father Occ.=13 9.55 9.19
Technicians Aut p=3 Father Occ.=12 10.45 10.79
Managing Directors (Family Business) Aut p=4 Father Occ.=14 0.2 0.2
Manual Worker (Family Business) Aut p=5 Father Occ.=5 0.14 0.16
Managing Director Aut p=6 Father Occ.=15 0.05 0.11
Administration Managers Aut p=7 Father Occ.=6 0.08 0.13
Manager Dip p=1 Father Occ.=16 14.5 14.1
Professional (Supervisor, official) Dip p=2 Father Occ.=10 15.97 16.56
Technicians and Associate Professionals Dip p=3 Father Occ.=11 18.26 17.66
Clerical Support Workers Dip p=4 Father Occ.=8 6.51 6.83
Skilled manual worker Dip p=5 Father Occ.=7 9.54 9.84
Elementary Occupations Dip p=6 Father Occ.=4 4.34 3.93
Other Cond p=4 Father Occ.=3 1.78 20.03
Dead Cond p=6 Father Occ.=1 3.84 3.89

Source: Istat, IIPDR 2018

Table A4: Mother education

Label Original Variable Our variable 2014 (%) 2012 (%)

Elementary or no education Titstu m=1 Mother Edu.=1 10.52 12.52
Lower secondary Titstu m=2 Mother Edu.=2 19.64 20.09
Upper secondary Titstu m=3 Mother Edu.=3 38.18 37.76
University diploma Titstu m=4 Mother Edu.=4 5.16 4.59
University degree or above Titstu m=5 Mother Edu.=5 26.5 25.04

Source: Istat, IIPDR 2018

Table A5: Father education

Label Original Variable Our variable 2014 (%) 2012 (%)

Elementary or no education Titstu p=1 Father Edu.=1 8.74 10.13
Lower secondary Titstu p=2 Father Edu.=2 20.24 20.26
Upper secondary Titstu p=3 Father Edu.=3 36.37 36.12
University diploma Titstu p=4 Father Edu.=4 3.18 2.5
University degree or above Titstu p=5 Father Edu.=5 31.46 30.98

Source: Istat, IIPDR 2018
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Table A6: Region of origin and sex

Label Original Variable Our variable 2014 (%) 2012 (%)

Piemonte Unireg=1 Region=1 5.52 6.13
Valle d’Aosta Unireg=2 Region=2 0.15 0.13
Lombardia Unireg=3 Region=3 12.81 11.34
Trentino - Alto Adige Unireg=4 Region=4 1.81 1.14
Veneto Unireg=5 Region=5 6.31 7.01
Friuli-Venezia Giulia Unireg=6 Region=6 2.11 2.48
Liguria Unireg=7 Region=7 2.25 2.21
Emilia-Romagna Unireg=8 Region=8 5.46 5.56
Toscana Unireg=9 Region=9 5.9 6.73
Umbria Unireg=10 Region=10 1.4 2.18
Marche Unireg=11 Region=11 2.77 2.83
Lazio Unireg=12 Region=12 12.79 11.75
Abruzzo Unireg=13 Region=13 2.54 2.69
Molise Unireg=14 Region=14 0.56 0.6
Campania Unireg=15 Region=15 10.02 9.4
Puglia Unireg=16 Region=16 6.71 7.92
Basilicata Unireg=17 Region=17 1.1 0.95
Calabria Unireg=18 Region=18 3.89 3.98
Sicilia Unireg=19 Region=19 8.15 9.08
Sardegna Unireg=20 Region=20 3.32 2.37
Europe-EU Unipaese=101 Region=21 1.6 1.19
Rest of the World Unipaese=301 Region=22 3.48 2.33

Sex Sesso 2 Female 52.83 52.9

Source: Istat, IIPDR 2018
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