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Abstract: Knee osteoarthritis (OA) affects over 650 million patients worldwide. Total knee replace-
ment is aimed at end-stage OA to relieve symptoms of pain, stiffness and reduced mobility. However,
the role of imaging modalities in monitoring symptomatic disease progression remains unclear. This
study aimed to compare machine learning (ML) models, with and without imaging features, in pre-
dicting the two-year Western Ontario and McMaster Universities Arthritis Index (WOMAC) score for
knee OA patients. We included 2408 patients from the Osteoarthritis Initiative (OAI) database, with
629 patients from the Multicenter Osteoarthritis Study (MOST) database. The clinical dataset included
18 clinical features, while the imaging dataset contained an additional 10 imaging features. Minimal
Clinically Important Difference (MCID) was set to 24, reflecting meaningful physical impairment.
Clinical and imaging dataset models produced similar area under curve (AUC) scores, highlighting
low differences in performance AUC < 0.025). For both clinical and imaging datasets, Gradient
Boosting Machine (GBM) models performed the best in the external validation, with a clinically
acceptable AUC of 0.734 (95% CI 0.687–0.781) and 0.747 (95% CI 0.701–0.792), respectively. The five
features identified included educational background, family history of osteoarthritis, co-morbidities,
use of osteoporosis medications and previous knee procedures. This is the first study to demonstrate
that ML models achieve comparable performance with and without imaging features.

Keywords: knee osteoarthritis; WOMAC; machine learning; imaging; radiograph; MRI

1. Introduction

Osteoarthritis (OA) is the primary contributor to disability and chronic pain among pa-
tients over 60 years of age [1]. Knee OA is estimated to affect 654 million people worldwide,
with pain and joint stiffness significantly impacting daily activities, quality of life and emo-
tional well-being, particularly among the ageing population [2,3]. Patient-reported outcome
measures (PROMs), such as the Oxford Knee Score (OKS) and the Western Ontario and Mc-
Master Universities Arthritis Index (WOMAC), are widely utilised to evaluate symptoms
in knee osteoarthritis [4]. WOMAC is a reliable multi-dimensional health status assessment
tool that is considered the gold standard in evaluating OA severity and monitoring disease
progression [5–7]. The added advantage of WOMAC over other PROMs is that it gives a
more comprehensive evaluation of pain, stiffness and physical function [5,6]. It may also
aid in decision-making around the timing of total knee arthroplasty (TKA) [8,9]. Recent
studies have highlighted the need for reliable prediction of future PROMs to enhance
the shared decision-making process with patients regarding their long-term treatment
options [10].

Imaging modalities demonstrated increased diagnostic sensitivity for symptomatic
individuals with knee OA; nevertheless, their specific advantage in guiding clinical decision-
making regarding management options remains uncertain [11,12]. Erlangga et al.’s sys-
tematic review found limited or inconclusive associations between magnetic resonance
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imaging (MRI) findings and OA-related knee pain across 22 studies [13]. However, moder-
ate levels of evidence were found for imaging features such as bone marrow lesions and
synovitis being an indication of knee pain in such patients [13]. Moreover, other studies
reported certain MRI features identified in symptomatic patients that were also evident in
asymptomatic individuals [11,14].

The increased use of imaging has led to a significant rise in healthcare expenditure
around the world. Recent figures show the costs of unnecessary knee MRIs by a single
consultant in the United Kingdom to be over GBP 13,000 per year [15]. Nationally, a study
from Norway estimated that unnecessary knee MRIs cost around EUR 6.7–EUR 9.8 million
every year [16]. Similarly, for plain radiographs, a study by Ashikyan et al. analysing the
medical records of 500 knee OA patients in the United States found that over 15% of the
six-month follow-up radiographs performed were deemed non-essential to patient care,
amounting to USD 10,800 per year [17]. The financial impact and radiation risks add to the
need for further research on the role of imaging in forecasting meaningful clinical changes
in knee OA patients [18,19].

Whilst traditional statistical models are inherently constrained by their linearity as-
sumptions and limited capacity to handle complex datasets, machine learning (ML) al-
gorithms exhibit superior predictive power and feature engineering advantages [20–22].
In knee OA, previous ML studies have predominately focused on predicting objective
outcomes such as joint space narrowing and the need for TKR, overlooking other vital
domains for these patients such as stiffness and functional ability [23,24]. Two studies have
compared models based on clinical data alone, with those based on MRI data, in predicting
the necessity for a TKA, concluding that incorporating MRI scans was of no additional
value [25–27]. However, the role of imaging in predicting symptoms, which are the main
drivers for patients’ treatment choices, remains unexplored, as does the need for robust
external validation of such models [28,29].

This study aimed to develop and externally validate ML models, and comparatively
evaluate their performance with and without imaging features, to forecast the 2-year
WOMAC score of patients with knee OA. Secondary objectives included identifying the
most influential features that contribute to the predictive ability of the top-performing
model. We hypothesised that machine learning models lacking imaging features would
demonstrate comparable performance, as evaluated by the Area Under Curve metric, to
models incorporating imaging features in predicting the 2-year WOMAC scores.

2. Materials and Methods
2.1. Ethics Considerations

No ethical approval was required for this study owing to the open access nature of the
OAI and MOST databases. Ethical approval and informed consent for collecting data about
participants were obtained by the OAI and MOST datasets. The OAI dataset is hosted
by the Osteoarthritis Initiative Data Coordinating Center (OAI DCC) at the University of
California, San Francisco (UCSF), and is available through the National Institute of Health
(NIH) NIAMS repository: https://nda.nih.gov/oai (accessed on 5 March 2021). The MOST
data are accessible through the MOST Online Data Repository and supported by the NIH
NIAMS: https://most.ucsf.edu/ (accessed on 5 March 2021).

2.2. Data Source

This study used the Osteoarthritis Initiative (OAI) database (https://nda.nih.gov/
oai/, accessed on 5 March 2021) to train and internally validate the ML models, and the
Multicenter Osteoarthritis Study (MOST) database (https://most.ucsf.edu, accessed on
5 March 2021) to externally validate its performance. Both OAI and MOST databases are
multi-centre longitudinal prospective studies assessing men and women in the United
States with, or at high risk of, symptomatic knee OA. OAI enrolled 4796 subjects aged be-
tween 45 and 79 years from February 2004 to May 2006, while MOST enrolled
3026 subjects aged between 50 and 79 years from April 2003 to April 2005. Both databases

https://nda.nih.gov/oai
https://most.ucsf.edu/
https://nda.nih.gov/oai/
https://nda.nih.gov/oai/
https://most.ucsf.edu
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are publicly available, with the study design and protocol approved by local institutional
boards of participating centres and informed consent obtained from all participants [30,31].
Imaging features used from OAI and MOST databases were read by trained assessors,
blinded to patient details and clinical status. MRI scans were read using the Whole-Organ
Magnetic Resonance Imaging Score (WORMS) scoring system.

2.3. Outcome Measure

Our primary outcome was the binary 2-year WOMAC change (improvement/no
improvement), which comprises three domains including knee pain, stiffness and functional
limitations, as reported by the participants. The WOMAC questionnaire consisted of a total
of 24 items, with each question being scored between 0 (None) and 1–4 (Mild–Extreme)
points. A threshold score of 24 was selected based on the minimal clinically important
difference (MCID) from previous studies that suggested meaningful symptomatic physical
impairment in patients [32–34]. In other words, a total WOMAC score of 24 and above
was categorised as clinically symptomatic (positive class), while a score below 24 (negative
class) was considered less significant.

2.4. Feature Selection and Data Pre-Processing

In total, 1187 and 553 features were analysed using the OAI and MOST databases,
respectively. To enable external validation, only variables present in both OAI and MOST
databases with ≥60% completeness were included in this study.

In an attempt to generate explainable ML models, the features were systematically
transformed into meaningful categorical comparisons in both databases. This process
involved converting continuous variables, such as blood pressure, into discrete stages of
hypertension, as per clinical guidelines [35]. Inter-related features such as pain medications
were combined into a single variable based on the WHO analgesic ladder (no analgesia,
non-steroidal anti-inflammatory drugs, narcotics) to prevent the dilution of features and
improve model performance [36,37]. Features exhibiting high collinearity, such as the type
of surgery performed, were excluded to reduce to mitigate redundancy. Table 1 shows
the final set of features selected for model training, with additional information on the
classification levels for each feature presented in Appendix A.

Table 1. Final summary of the list of features used to train the machine learning algorithms.

Model Category Feature

Clinical
and Imaging Datasets

Patient Demographics

Age
Sex

Ethnicity
Living Status

Education Status
Employment Status

Body Mass Index (BMI)

Past Medical/Surgical History

Comorbidities (Charlson Comorbidity Index)
Inflammatory Arthritis

Injury to knee
Knee Surgery

Drug History
Osteoarthritis medication
Osteoporosis medication

Analgesic medication

Baseline Examination
Hypertension

20 m walk assessment

Baseline Questionnaire
Short Form-12 (SF-12) Mental Component

Physical Activity Scale for Elderly (PASE) score
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Table 1. Cont.

Model Category Feature

Imaging
Dataset

Radiograph
Joint Space Narrowing (JSN)—Medial
Joint Space Narrowing (JSN)—Lateral

Kellgren–Lawrence (KL) Grade

Magnetic Resonance
Imaging

Cartilage morphology (medial femorotibial joint)
Cartilage morphology (lateral femorotibial joint)

Cartilage morphology (patellofemoral joint)
Bone marrow lesions (medial femorotibial joint)
Bone marrow lesions (lateral femorotibial joint)

Bone marrow lesions (patellofemoral joint)
Meniscal tear

Outcome 2-year WOMAC score

Two separate datasets were created to evaluate the role of imaging features in pre-
dicting meaningful clinical changes in 2-year WOMAC scores. As shown in Table 1, the
clinical dataset contained the selected clinical features but not the radiographic and MRI
variables. The imaging dataset contained the features in the previous dataset in addition to
the radiographic and MRI variables. Subjects (n = 608) that had an MRI performed in both
legs or more than once at baseline were recorded and analysed as separate observations.

Patients with missing data in any of the final features were removed from this study.
In the OAI database, both clinical and imaging datasets had their observations split into
80% training and 20% internal validation sets. The MOST database was later used to allow
for an unbiased external validation. Figure 1 shows a summary of the pre-processing,
training and testing stages.

2.5. Model Development, Training and Validation

Five linear and tree-based classification machine learning algorithms were developed,
namely, Least Absolute Shrinkage (LASSO) Regression, Ridge Regression, Decision Tree
(DT), Random Forest (RF) and Gradient Boosting Machine (GBM), to minimise variance
and bias, and then compared to traditional multivariate Logistic Regression (LR), to predict
the binary 2-year WOMAC change (improvement/no improvement) [38–42]. This was
followed by hyperparameter tuning via 10-fold cross-validation in the LASSO, Ridge, RF
and GBM models to reduce over-fitting in the training set [43]. No tuning was required
for the base models using linear (LR) and tree-based (DT) algorithms. The models were
then tested on the previously unused MOST database for external validation. Model
performance was assessed in terms of the gold-standard area under the receiver operating
characteristic curve (AUC) [44]. To account for the class imbalance between positive and
negative cases in the outcome measure, the F1 score was computed [45]. Given that the
F1 score is dependent on the decision threshold to convert outcome probabilities into
discrete classes, its decision thresholds were optimised to maximise the score and achieve
the highest positive predictive ability.
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ing for Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) databases. 

  

Figure 1. Flowchart summarising the methodology from data extraction to model training and testing
for Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) databases.

2.6. Statistical Analysis and Feature Importance

Descriptive statistics, including mean and percentage, were used to describe the
rates of changes in the 2-year WOMAC score across the OAI and MOST databases. All
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mathematical modelling was carried out using R statistical computing environment version
4.3.0 (R: A language and environment for statistical computing). R packages ‘survival’
(version 3.6-4), ‘gbm’ (version 2.1.8), ‘glmnet’ (version 4.1-4), ‘tree’ (version 1.0-43), ‘rpart’
(version 4.1.16), and ‘randomForest’ (version 4.7-1.1) were used for survival analysis.
Further details of software packages are provided in Appendix A. Two-tailed Wilcoxon
Signed-Rank test was used to assess the difference in non-parametric AUC scores of imaging
and clinical dataset models. However, caution is advised when interpreting the results since
our findings are not subject to inferential testing and do not establish statistical significance.

3. Results
3.1. Data Distribution

The final dataset included 2408 and 629 observations from the OAI and MOST
databases, respectively. Descriptive statistics related to patient demographics, clinical
data and imaging features for OAI and MOST databases are presented in Table 2.

Table 2. List of the baseline features and their most populated subgroup, with the total number
(N) and percentage (%) of observations recorded at that level in Osteoarthritis Initiative (OAI) and
Multicenter Osteoarthritis Study (MOST) databases.

Feature Most Common
Subgroup

OAI, N (%)
(n = 2408)

MOST, N (%)
(n = 629)

Age 60–70 years 827 (34.3) 238 (37.8)
Sex Female 1531 (63.6) 369 (58.7)

Ethnicity White/Caucasian 2031 (84.3) 563 (89.5)
Living Status Lives with someone 1932 (80.2) 525 (83.5)

Education Status Graduate degree 757 (31.4) 147 (23.4)
Employment Status Paid work 1430 (59.4) 420 (66.8)

Body Mass Index (BMI) Overweight
(25.0–29.9) 982 (40.8) 258 (41.0)

Comorbidities (Charlson Comorbidity Index) None 1846 (76.7) 485 (77.1)
Inflammatory Arthritis None 2291 (95.1) 621 (98.7)

Injury to knee None 1293 (53.7) 372 (59.1)
Knee Surgery None 1807 (75.0) 522 (83.0)

Osteoarthritis medication None 1480 (61.5) 434 (69.0)
Osteoporosis medication None 1095 (45.5) 316 (50.2)

Analgesic medication None 1453 (60.3) 154 (24.5)

Hypertension Normal (SBP a < 140
& DBP a < 90) 1919 (79.7) 512 (81.4)

20m walk assessment Normal pace
(≥1.22 s) 1692 (70.3) 392 (62.3)

Short Form-12(SF-12)
Mental Component

Normal mental
health status 1214 (50.4) 319 (50.7)

Physical Activity Scale for Elderly (PASE) Normal physical activity
(≥120) 1614 (67.0) 482 (76.6)

Joint Space Narrowing (JSN)—Medial None 974 (40.4) 391 (62.2)
Joint Space Narrowing (JSN)—Lateral None 1905 (79.1) 509 (80.9)

Kellgren–Lawrence (KL) Grade Moderate (KL = 3) 739 (30.7) 79 (12.6)
Cartilage morphology (medial FTJ b) No thickness loss 937 (38.9) 271 (43.1)
Cartilage morphology (lateral FTJ b) No thickness loss 1144 (47.5) 345 (54.8)
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Table 2. Cont.

Feature Most Common
Subgroup

OAI, N (%)
(n = 2408)

MOST, N (%)
(n = 629)

Cartilage morphology (PFJ b)
Thickness loss in one or more

subregion 1463 (60.8) 145 (23.1)

Bone marrow lesions (medial FTJ b) None 1532 (63.6) 474 (75.4)
Bone marrow lesions (lateral FTJ b) None 1899 (78.9) 542 (86.2)

Bone marrow lesions (PFJ b) None 940 (39.0) 283 (45.0)
Meniscal tear None 1151 (47.8) 415 (66.0)

WOMAC Normal (<24) 1775 (73.7) 460 (73.1)
a SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure. b FTJ, Femorotibial Joint; PFJ, Patellofemoral Joint.

As highlighted in Table 2, the majority of patients were from White or Caucasian ethnic
backgrounds, amounting to approximately 84.3–89.5% of observations. Variances between
the OAI and MOST databases were notable in the analgesic medication, Kellgren–Lawrence
(KL) grade and patellofemoral joint cartilage morphology. Nevertheless, a comparable
proportion of patients exhibited normal WOMAC baseline scores in both databases (OAI:
73.7%, MOST: 73.1%).

3.2. Model Performance

The OAI database was split into 80% (n = 1926) training and 20% (n = 482) internal
validation cohorts, whilst 100% of the MOST database (n = 629) was used for external
validation. Table 3 shows the AUC values for the six models in the training and internal
validation sets.

Table 3. Area Under Curve (AUC) scores (with 95% Confidence Intervals) of six machine learning
algorithms that underwent training and internal tests for clinical and imaging datasets.

ML Algorithm
Clinical Dataset Imaging Dataset

Training
AUC (95% CI)

Internal Test
AUC (95% CI)

Training
AUC (95% CI)

Internal Test
AUC (95%CI)

Logistic 0.745
(0.721–0.770)

0.749
(0.700–0.797)

0.791
(0.768–0.814)

0.732
(0.682–0.782)

Lasso 0.734
(0.709–0.759)

0.751
(0.703–0.800)

0.779
(0.755–0.803)

0.738
(0.688–0.787)

Ridge 0.730
(0.705–0.756)

0.753
(0.705–0.801)

0.777
(0.753–0.801)

0.745
(0.696–0.795)

Decision Tree 0.628
(0.602–0.655)

0.630
(0.577–0.682)

0.667
(0.639–0.694)

0.654
(0.600–0.707)

Random Forest 0.784
(0.761–0.808)

0.777
(0.730–0.823)

0.820
(0.799–0.842)

0.786
(0.739–0.832)

GBM 0.736
(0.711–0.761)

0.759
(0.712–0.806)

0.783
(0.760–0.807)

0.752
(0.703–0.801)

ML models in the datasets from OAI had AUC score ranges of 0.628–0.820 in the
training and 0.630–0.786 in the internal validation sets. These scores consistently surpassed
the clinically acceptable threshold of AUC > 0.70, with the exception of the Decision Tree
(DT) algorithm (AUC = 0.62–0.66). Across both clinical and imaging datasets, the Random
Forest (RF) algorithm was the best-performing model in both training and internal test sets
(AUC = 0.77, AUC = 0.78, respectively). There was comparable model performance, in
terms of AUC values, between the clinical and imaging datasets, with a marginal difference
of 0.025.

Figure 2 highlights the AUC receiver operating characteristic curves (ROC) for the
six models in the external validation MOST cohort. GBM models performed with the high-
est AUC in the external test for clinical (AUC = 0.734) and imaging datasets (AUC = 0.747).
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Due to the low performances (AUC < 0.7) in both internal and external tests, DT was
excluded from further analysis. Besides the DT algorithm, which had the lowest predictive
ability (AUC < 0.70), variations in AUC scores between clinical and imaging datasets were
minimal (<0.02) across all other models, with no statistical differences (p > 0.05). The ROC
curves for training and internal validation sets are provided in Appendix B.
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Figure 2. Receiver operating characteristic (ROC) curves showing Area Under Curve (AUC) scores
(with 95% confidence intervals) of all six (a) clinical and (b) imaging machine learning algorithms
at external validation from Multicenter Osteoarthritis Study (MOST). Thin black line represents
performance of a random classifier (AUC = 0.500). All values shown to three significant figures. LR,
Logistic Regression; DT, Decision Tree; RF, Random Forest; GBM, Gradient Boosting Machine.

Excluding the DT model, the F1 score, a relative measure of a model’s ability to
identify true positive classes, exceeded 0.5 for all models in both clinical and imaging
datasets (Table 4). Random Forest (RF) and Gradient Boosting Machine (GBM) achieved
the highest F1 scores in internal (F1 = 0.617) and external (F1 = 0.548) tests, respectively.
Similar to AUC values, there was no significant variation in F1 scores between clinical and
imaging datasets (<0.03). Further information on the change in AUC and F1 scores between
internal and external tests is provided in Appendix B.
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Table 4. F1 scores of six machine learning algorithms that underwent internal and external tests for
clinical and imaging datasets.

ML Algorithm
Clinical Dataset Imaging Dataset

Internal Test
F1

External Test
F1

Internal Test
F1

External Test
F1

Logistic 0.526 0.547 0.550 0.512
Lasso 0.528 0.534 0.545 0.523
Ridge 0.536 0.541 0.543 0.522

Decision Tree 0.473 0.286 0.431 0.444
Random Forest 0.566 0.529 0.617 0.536

GBM 0.539 0.525 0.558 0.548

3.3. Feature Importance

The GBM model was the best-performing model across both clinical and imaging
datasets, as evaluated by the AUC score. The top five most influential factors that affected
the predictive ability of GBM models are given in Table 5.

Table 5. Top five most influential features in the best performing Gradient Boosting Machine (GBM)
model for clinical and imaging datasets.

Clinical Dataset Influence Factor Imaging Dataset Influence Factor

Education
Background 21.99 KL Grade 9.60

Arthritis History 10.56 Education
Background 7.66

Comorbidities 9.73 20 m walk test 7.62
Osteoporosis
medication 8.59 JSN—Medial 7.46

Past Knee Surgery 6.70 Pain medication 5.85

The patients’ educational background exerted the most substantial influence on the
predictive ability of the GBM model in the clinical dataset, accounting for 22% of feature
importance, and ranked second with approximately 8% in the imaging dataset (Table 5).
In the clinical dataset, this was followed by factors such as osteoarthritis history, co-
morbidities, medicated osteoporosis and a previous knee operation. Conversely, in the
imaging dataset, the most influential feature was KL grade (~10%). Other contributing
features in the imaging model included the 20 m walk test, joint space narrowing (JSN) in
the medial compartment, and the use of analgesics.

4. Discussion

This study aimed to evaluate whether machine learning models can attain comparable
performance in predicting a binary outcome in the 2-year WOMAC score in patients with
knee OA, and compare that to traditional logistic regression, irrespective of the inclusion
of MRI and radiographic features, using the OAI and MOST databases. Our findings
highlighted comparable predictive capabilities, with minimal differences, of less than 0.025
in the area under the curve (AUC) values, whether the models incorporated imaging
features or not. The GBM algorithm demonstrated the highest AUC and F1 scores at
external validation, achieving similarly acceptable scores for imaging dataset models, and
outperforming the logistic regression model.

This study adopted an ML approach and identified that the best-performing models
were tree-based algorithms (RF, GBM). Previously, Bastick et al. utilised LR algorithms to
detect pain trajectories and predict patient symptoms from their clinical data [46]. However,
our findings align with previous studies underscoring the superior predictive performance
of tree-based algorithms in capturing non-linear relationships when compared to traditional
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statistical methods [47,48]. Importantly, the GBM and the RF models consistently achieved
the highest AUC for both clinical and imaging datasets, demonstrating clinically acceptable
scores upon external validation, a facet not extensively addressed in prior research [49].

In terms of feature importance, the GBM algorithm in our study alluded to educational
background as the most important predictive driver in both clinical and imaging datasets.
A previous cross-sectional study analysed the relationship between clinical features and
knee OA and reported educational background to have the highest significant negative
correlation with a patient’s current WOMAC score [50]. Their findings highlighted that
the education status of patients with knee OA was likely to impact their future functional
and QoL outcomes [50]. This may be explained by the hidden confounding factors within
educational background such as income and type of employment that affect knee OA
progression [51]. Additionally, low education levels may contribute to a lack of knowledge
and awareness regarding lifestyle modifications for managing OA [52]. However, in our
study, it is important to consider this finding with caution due to the lack of inference testing,
inherent limitations of the OAI and MOST databases, and ML algorithmic bias [53–55].
Future prospective studies are needed to evaluate this causal inference.

In the imaging dataset, the Kellgren–Lawrence (KL) grade from radiographs exerted
the most substantial overall influence on the imaging dataset’s GBM model, while no
MRI features were identified as highly influential in enhancing the predictive ability of
the machine learning model. A previous study that used the MOST database included
696 observations and showed a higher occurrence of symptomatic knee pain in KL grades
1–4 (Odds Ratio: 1.5, 3.9, 9.0, 151; respectively) as compared to KL grade 0 [56]. Whilst
our study favoured explainable machine learning models over the black box approach
posed by DL, another study using 9348 observations from the OAI database showed
that radiographs analysed through deep learning (DL) alone (AUC = 0.770) were able to
predict the symptomatic progression of knee OA better (p < 0.001) than the clinical features
(AUC = 0.692) [57]. While it has been shown that MRI features are associated with patients
experiencing knee pain, individual features were ineffective in discriminating between
painful and non-painful knees [58]. This suggests that more studies are required to evaluate
DL approaches in analysing MRI features for symptom prediction.

Interestingly, Ashinsky et al. used only MRI features from the OAI database to predict a
3-year change in WOMAC score, achieving a 75% classification accuracy [59]. Their findings
reported cartilage thickness at the central portion of the medial femoral condyle to be the
feature that most affected symptomatic OA progression [59]. Whilst cartilage thickness
was not shown to be a key feature in our study, this is likely due to the greater influence of
clinical factors in predicting 2-year WOMAC. Schiratti et al., who combined MRI data with
clinical features from the OAI database to predict patients’ 1-year WOMAC pain scores,
achieved a lower AUC score of 0.724 than the GBM in our study (AUC = 0.747) [60]. This
may be because they utilised raw MRI images, which can add unnecessary noise to the
dataset, which is counterproductive in improving model performance [61]. Their study also
suggested that intra-articular space has the highest contribution in predicting the patient’s
pain, which was not recorded in the datasets of our study [60,62]. Therefore, this may be a
significant feature to obtain in future studies to boost the model’s predictive ability.

This study employed two of the largest available osteoarthritis databases (OAI and
MOST) to test and externally validate our ML models. Moreover, the input features curated
were commonly assessed and recorded for all OA patients, increasing the explainability
and application of our models in the real world. However, there are limitations to report.

Firstly, the databases drew subjects exclusively from the United States, resulting in
limited diversity in ethnic background, educational status, and socioeconomic factors.
Consequently, the generalisability of our models to international contexts with diverse
backgrounds might be constrained. Additionally, while the images underwent evaluation
by individuals following a standardised scoring system, the inherent subjectivity of this
process, as documented in previous research, is a potential limitation [63]. A comparative
analysis with DL models utilising raw images and continuous data could offer an alternative
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perspective on their role in predicting outcome scores. Lastly, the models were developed
using an imbalanced class dataset, with a minority (26.5%) having a high WOMAC score.
This presents a challenge for machine learning algorithms and potentially diminishes their
performance. Future research could address this issue through under-sampling methods,
such as the K-nearest neighbour algorithm, to rebalance the data [64].

This study underscores the effectiveness of machine learning (ML) models in pre-
dicting knee osteoarthritis (OA) severity, as measured by changes in the 2-year WOMAC
score, using routinely recorded clinical data without the need for additional imaging. The
practical application of predicting WOMAC scores holds promise for clinicians to evaluate
the progression of health-related quality of life in knee OA from an early stage, enhancing
the shared decision-making process and tailoring patient management strategies. Early,
smaller interventions, such as focal resurfacing or unicompartmental knee arthroplasty
(UKA), for patients at high risk of developing severe symptoms could potentially enhance
their long-term QoL [9].

Future studies are needed to evaluate ML’s ability to forecast even longer-term
WOMAC scores. While our study focused on symptomatic patients with existing knee
OA, the evaluation of WOMAC scores in asymptomatic patients might be helpful in aiding
the early decision-making process. Finally, the use of ML in predicting other PROMs that
assess QoL, such as SF-36, would enable clinicians to adopt a more holistic approach to
patient care in the future.

5. Conclusions

This study demonstrated that machine learning (ML) models leveraging only clinical
data are comparably effective to models incorporating additional imaging features in pre-
dicting the 2-year WOMAC score of knee osteoarthritis patients. Gradient boosting machine
algorithms emerged as the top-performing ML models for this outcome during external
validation, achieving clinically acceptable predictive AUC scores. In the clinical context,
this suggests that patient prognosis can be successfully estimated using routinely collected
patient data only, providing an opportunity to enhance patient assessment, facilitate timely
interventions and avoid unnecessary imaging costs.
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Appendix A

Table A1. All subgroups of each patient feature used to train machine learning models.

Patient Feature Subgroups within Each Feature

Age Age ≤ 50; 50 < Age < 60; 60 ≤ Age < 70; Age ≥ 70
Sex Male; Female

Ethnicity White/Caucasian; Black/African American/Asian & other
Non-White

Living Status Lives Alone; Lives with someone else

Education Status Less than high school graduate; High school graduate; Some
college; College graduate; Some graduate school; Graduate degree

Employment Status Yes; No

Body Mass Index (BMI) Underweight (BMI < 18.5); Healthy (18.5–24.9); Overweight
(25.0–29.9); Obese (30.0–39.9); Morbidly obese (BMI > 40)

Comorbidities (Charlson Comorbidity Index) None; Mild (CCI = 1–2), Moderate (CCI = 3–4); Severe (CCI > 5)

Inflammatory Arthritis None; OA/degenerative only; gout/other only; OA/degenerative
and gout/other

Injury to knee Yes; No
Knee Surgery No; Left or Right; Left and Right

Osteoarthritis medication None; corticosteroids; supplements (methylsulfonylmethane,
fluorides, glucosamine); Combination of above

Osteoporosis medication None; Vitamin D/Calcium; Bisphosphonate; Oestrogen/Raloxifene;
Calcitonin/Teriparatide; Combination of above

Analgesic medication None; WHO Pain Ladder 1 (mild);
WHO Pain Ladder 2 and above (moderate to severe)

Hypertension Normal (SBP < 140 & DBP < 90); Stage 1 (SBP ≥ 140/DBP ≥ 90);
Stage 2 (SBP ≥ 160/DBP ≥ 100); Severe (SBP > 180 or DBP > 110)

20m walk assessment No risk; Risk of disability (based on cut-off point of ≥10 s)

Short Form-12 (SF-12) Mental normal; low mental health score
Physical Activity Scale for Elderly (PASE) score Normal physical activity (≥120); Low physical activity (<120)

Joint Space Narrowing (JSN)—Medial Osteoarthritis Research Society International (OARSI) Grade 0–3
Joint Space Narrowing (JSN)—Lateral Osteoarthritis Research Society International (OARSI) Grade 0–3

Kellgren–Lawrence Grade Normal (0); Doubtful (1); Mild (2); Moderate (3); Severe (4)

Cartilage morphology (medial femorotibial joint) None; thickness loss in one subregion;
thickness loss in more than one subregion

Cartilage morphology (lateral femorotibial joint) None; thickness loss in one subregion;
thickness loss in more than one subregion

Cartilage morphology (patellofemoral joint) None; thickness loss in one subregion;
thickness loss in more than one subregion

Bone marrow lesions
(medial femorotibial joint) None; in one subregion; in more than one subregion

Bone marrow lesions
(lateral femorotibial joint) None; in one subregion; in more than one subregion

Bone marrow lesions (patellofemoral joint) None; in one subregion; in more than one subregion
Meniscal tear None; in one subregion; in more than one subregion

WOMAC WOMAC < 24; WOMAC ≥ 24
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Table A2. Software packages used for data interpretation tasks, including data pre-processing,
performance analysis and machine learning model training.

Data Interpretation Tasks RStudio Software Package

Data Visualisation Amelia (version 1.8.0)
Collinearity Visualisation corrplot (version 0.92)

Data Pre-Processing—setting seed; sample split simEd (version 2.0.0);
caTools (version 1.17.1)

Area Under Curve Score; Receiver Operative
Characteristic Curves

ROCR (version 1.0-11);
pROC (version 1.18.0)

F1 Score—confusionMatrix caret (version 3.45)

Generalised Linear Models
(Logistic Regression) glm (version 3.6.2)

Regularised General Linear Models
(Lasso Regression) glmnet (version 4.1-4)

Regularised General Linear Models
(Ridge Regression) glmnet (version 4.1-4)

Recursive Partitioning and Regression Trees
(Decision Tree) rpart (version 4.1.16)

Breiman and Cutler’s Random Forest Models randomForest (version 4.7-1.1)
Generalised Boosted Regression Models gbm (version 2.1.8)
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scores (with 95% Confidence Intervals) of all six (a) Clinical and (b) Imaging Machine Learning al-
gorithms in the Training Set from Osteoarthritis Initiative. Thin black line represents performance 
of a random classifier (AUC = 0.500). All values shown to 3 significant figures. LR, Logistic Regres-
sion; DT, Decision Tree; RF, Random Forest; GBM, Gradient Boosting Machine. 

Figure A1. Receiver Operating Characteristic (ROC) curves showing Area Under Curve (AUC) scores
(with 95% Confidence Intervals) of all six (a) Clinical and (b) Imaging Machine Learning algorithms
in the Training Set from Osteoarthritis Initiative. Thin black line represents performance of a random
classifier (AUC = 0.500). All values shown to 3 significant figures. LR, Logistic Regression; DT,
Decision Tree; RF, Random Forest; GBM, Gradient Boosting Machine.
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