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Abstract
In this paper we define (special) GLIT classes and (special) GLIT algebras. We prove that
GLIT algebras, which generalise Lat-Igusa-Todorov algebras, satisfy the finitistic dimension
conjecture and give several properties and examples. In addition we show that special GLIT
algebras are exactly those that have finite finitistic dimension. Lastlywe studyMorita algebras
arising from a Morita context and give conditions for them to be (special) GLIT in terms
of the algebras and bimodules used in their definition. As a consequence we obtain simple
conditions for a triangular matrix algebra to be (special) GLIT and also prove that the tensor
product of a GLITK-algebra with a path algebra of a finite quiver without oriented cycles is
GLIT.

Keywords GLIT algebra · Finitistic dimension conjecture · Morita context ·
Igusa-Todorov functions

Mathematics Subject Classification (2010) 16E05 · 16E10 · 16G10

1 Introduction

Thiswork is framed in the theory of representations ofArtin algebraswith a particular interest
in the finitistic dimension (fin.dim) conjecture, which states that for a given Artin algebra �

there is a uniform bound for all projective dimensions of all finitely generated �-modules
with finite projective dimension. This conjecture can be traced back to the work of H. Bass,
particularly to the article [7]. For a complete survey of the conjecture, up to 1995, we refer
the reader to [24].

In relation to the fin.dim conjecture, K. Igusa and G. Todorov in [17] defined the now
called Igusa-Todorov functions (IT functions) and used them to prove, among other impor-
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tant results, that all algebras with representation dimension less than or equal to 3 satisfy the
fin.dim conjecture. This result is quite interesting since the concept of representation dimen-
sion, defined byM. Auslander in [2], has been extensively studied in connection with several
problems in Representation Theory. In [23] J. Wei defined the concept of Igusa-Todorov
algebra (IT algebra) and used the IT functions to prove they satisfy the fin.dim conjecture.
He provided an extensive list of IT algebras such as monomial algebras, special biserial
algebras, tilted algebras and algebras with radical cube zero, among others. The question of
whether all Artin algebras are IT was answered in 2016 by T. Conde in her Ph.D. thesis [12].
She used some results proved by R. Rouquier in [21] to exhibit as a counterexample a family
of algebras that are not IT, but do satisfy the fin.dim conjecture, namely exterior algebras of
vector spaces of dimension greater or equal than 3.

In [10] the authors defined generalised IT functions, which gave way to a generalisation of
the concept of Igusa-Todorov algebra. This new class of algebras, named Lat-Igusa-Todorov
(LIT for short), satisfies the fin.dim conjecture and strictly contains the class of IT algebras,
since it includes all self-injective algebras. Note that the example provided by Conde is a
family of self-injective algebras that are not IT. Among LIT algebras it is possible to find
algebras that are not IT, neither self-injective. However not all Artin algebras are LIT. The
definition of LIT algebra has the disadvantage of imposing the existence of a class of modules
D ⊆ mod� that is additively closed (addD = D), 1-syzygy invariant (�1(D) ⊆ D) and
� dim(D) = 0, where � is the first IT function defined in [17]. Even though there are many
well known classes with those properties, like Gorenstein projectives and modules that are
left orthogonal to �, there are examples of algebras where a subcategory with the above
properties can only be composed of projective modules. This can be seen in [4], where the
authors find examples of algebras that are not LIT.

The main objective of this article is to give a way to extend the definition of LIT algebra,
without losing the property of satisfying the fin.dim conjecture. Our quest takes us to the
concepts of (special) GLIT classes and (special) GLIT algebras.We prove that GLIT algebras
satisfy the finitistic dimension conjecture and that the known examples of algebras that are
not LIT, turn out to be GLIT. On the other hand, the concept of special GLIT algebra is
actually equivalent to the algebra having finite finitistic dimension.

As a way to explore the scope of the developed theory, we studyMorita rings arising from
aMorita context. Morita contexts, also known as pre-equivalence data, have been introduced
by H. Bass in ([8], see also [11]) in relation to the Morita Theorems on equivalences of
module categories. Let T and U be Artin algebras, a Morita context over T ,U is a 6-tuple
M = (T , N , M,U , α, β), where UMT is aU -T -bimodule, T NU is a T -U -bimodule and the
maps α : M ⊗T N → U , β : N ⊗U M → T are U -U and T -T -bimodule homomorphisms
respectively, satisfying the following associativity conditions, ∀m,m′ ∈ M,∀n, n′ ∈ N :

α(m ⊗ n)m′ = mβ(n ⊗ m′) and β(n ⊗ m)n′ = nα(m ⊗ n′).

Associated to any Morita context M as above, there is the Morita ring of M, which
incorporates all the information involved in the 6-tuple and is defined to be the formal 2× 2
matrix ring

�M =
(
T N
M U

)
,

where matrix multiplication is given by
(
t n
m u

)
·
(
t ′ n′
m′ u′

)
=

(
t t ′ + β(n ⊗ m′) tn′ + nu′

mt ′ + um′ α(m ⊗ n′) + uu′
)
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We would like to note that the Morita ring of a Morita context should not be confused
with the notion of a (right or left) Morita ring appearing in Morita duality.

Since we are interested in Artin algebras, the following result characterises when aMorita
ring is an Artin algebra.

Proposition 1.1 [13, Prop. 2.2] Let �M =
(
T N
M U

)
be a Morita ring. Then �M is an Artin

algebra if and only if there is a commutative Artin ring R such that T and U are Artin R-
algebras and M and N are finitely generated over R which acts centrally both on M and
N.

Given aMorita ring arising fromaMorita context, we prove that if T ,U areGLIT algebras,
UM, MT ,T N , NU are projective modules and M ⊗T N = N ⊗U M = 0, then the Morita
ring is a GLIT Artin algebra. As a particular case we obtain that a triangular algebra of the

form

(
T 0
M U

)
is GLIT provided the algebras in the diagonal are GLIT and UM, MT are

projectives. As a consequence we prove that the tensor product of a GLIT K-algebra with a
path algebra of a finite quiver without oriented cycles is GLIT.

A strong motivation for the study of tensor products is linked to the existence of Artin
algebras of infinite�-dimension (see [3] and [14]). In particular, the example provided by E.
Hanson and K. Igusa in [14] is a K-algebra that is a tensor product of two GLIT K-algebras
and in that particular case it is again a GLIT algebra, so it satisfies the finitistic dimension
conjecture, even though its �-dimension is infinite. A natural question that arises here is if
the tensor product of two GLIT algebras is again GLIT. Our results provide a partial answer
and establish a foundation for future research on the topic.

After this introduction, the reader will find Section 2 containing the necessary background
material to understand the upcoming results. In Section 3 we give the definition and main
properties of (special) GLIT classes and (special) GLIT algebras. Finally, Section 4 is dedi-
cated to giving conditions for Morita rings, matrix rings and tensor products to be GLIT.

2 Preliminaries

In this section some required definitions and results are presented in order to make use of
them in what follows. Unless otherwise stated, we are going to work with left modules over
an Artin algebra.

Igusa- Todorov functions and algebras. First we give the definition of the Igusa-
Todorov function �. We present an alternative way of defining the � function that is
equivalent to the original definition given in [17]. For an Artin algebra �, we denote by
proj� the full subcategory of mod� consisting of the projective modules. Define Kproj�

to be the free abelian group generated by the set {[X ]} of isoclasses of indecomposable,
non-projective f.g.�-modules. For every X ∈ mod�, we can define the subgroup 〈X〉 as the
free abelian group generated by the set of all isoclasses of indecomposable non-projective
modules which are direct summands of X . We denote by L the endomorphism of Kproj�

defined by L([X ]) = [�(X)], where � denotes the syzygy operator. In this setting, the �

function can be defined as follows.

Definition 2.1 Let � be an Artin algebra. We define a function � : mod� → Z≥0 in the
following way:

�(X) := min{n ∈ Z≥0 : rkLk(〈X〉) = rkLk+1(〈X〉),∀k ≥ n}.
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We recall the definition of the second Igusa-Todorov function �. For any subcategoty C
of mod� we set

fin.dim(C) := sup{pd(X) | X ∈ C, pd(X) < ∞}.

Definition 2.2 Let � be an Artin algebra. We define a function � : mod� → Z≥0 in the
following way:

�(X) := �(X) + fin.dim(add (��(X)(X)).

The following is a summary of properties of the Igusa-Todorov functions and their gen-
eralised versions. The reader can see [15–17] and [10] for a full picture.

Proposition 2.3 [16, Lemma 3.4, Proposition 3.5] Let� be an Artin algebra. Then, for every
X ∈ mod�, we have:

(a) �(X) ≤ �(�(X)) + 1;
(b) �(X) ≤ � (�(X)) + 1.

Definition 2.4 Let � be an Artin algebra, D a subcategory of mod� and t ≥ 1 an integer.

(1) We say that D is additively closed if addD = D.
(2) We say that D is t-syzygy invariant if �tD ⊆ D.

In [10] the authors defined generalised Igusa-Todorov functions�[D] and�[D] associated
to a subcategory D of mod� that is additively closed and 1-syzygy invariant. Note that
the first condition guarantees that 〈D〉 is a direct summand of K , the free abelian group
generated by the isoclasses of all indecomposable f.g.�-modules. Hence, the quotient group
KD := K/〈D〉 is free abelian. The second condition implies that the map L : KD → KD,

given by [X ] + 〈D〉 
→ L([X ]) + 〈D〉 is well defined. We now give the definitions of �[D]
and �[D], which can be found in [10, Definitions 3.4 and 3.8].

Definition 2.5 Let � be an Artin algebra and D ⊆ mod� be a class of �-modules that is
additively closed and 1-syzygy invariant. For any X ∈ mod�, we set

�[D](X) := min{n ∈ Z≥0 : rkLk
(〈X〉) = rkL

k+1
(〈X〉),∀k ≥ n},

where 〈X〉 := (〈X〉 + 〈D〉)/〈D〉. Note that 〈X〉 is the free abelian group generated by the set
of all isoclasses of indecomposable �-modules in add X that do not lie in D.

Definition 2.6 Let � be an Artin algebra and D ⊆ mod� be a class of �-modules that is
additively closed and 1-syzygy invariant. For any X ∈ mod�, we set

�[D](X) := �[D](X) + fin.dim (add��[D](X)(X)).

It is pertinent to observe that if D is taken to be the subcategory consisting of projective
modules, then the functions obtained are equal to the original Igusa-Todorov functions defined
in [17]. We list now a few of the main properties of �[D] and �[D].

Proposition 2.7 [10, Proposition 3.9] Let � be an Artin algebra and D a subcategory of
mod� that is additively closed and 1-syzygy invariant. Then, for X , Y ∈ mod� and D ∈ D
we have

(a) �[D](X ⊕ D) = �[D](X).

(b) �[D](Xs) = �[D](X).
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(c) �[D](X) ≤ �[D](X ⊕ Y ).

An important result that we will use later on is the following inequality.

Theorem 2.8 [10, Theorem 3.5] Let � be an Artin algebra and D a subcategory of mod�

that is additively closed and 1-syzygy invariant. Then for every X ∈ mod�,

�(X) ≤ �[D](X) + � dim(D).

Next we recall the definition of an Igusa-Todorov algebra given by J. Wei in [23].

Definition 2.9 Let � be an Artin algebra. We say � is n-Igusa-Todorov for some n ≥ 0 if
there is a module V such that for every M ∈ mod� there is a short exact sequence

0 → V1 → V0 → �nM → 0,

with V0, V1 ∈ add V . If we want to specify we say � is (n, V )-Igusa-Todorov or (n, V )-IT
for short.

The relevance of IT algebras lies within the fact that they satisfy the fin.dim conjecture and
they include monomial algebras, special biserial algebras and radical cube algebras, among
other relevant examples. However, not all Artin algebras are IT algebras, as was shown by T.
Conde in her PhD thesis [12]. Using a previous result by R. Rouquier [21, Corollary 4.4] she
was able to show that if K is an uncountable field and V is a K-vector space of dimension
greater or equal than 3, then the exterior algebra

∧
(V ) is not an IT algebra.

On the other hand, exterior algebras are self-injective, so despite not being IT, their finitistic
dimension is zero. In an attempt to generaliseWei’s definition the authors in [10] defined new
IT functions that gave way to the concept of LIT algebra, which generalises the definition of
IT algebra. LIT algebras also satisfy the fin.dim conjecture.

Definition 2.10 [10, Definition 5.1] An n-Lat-Igusa-Todorov algebra (n-LIT algebra, for
short), where n is a non-negative integer, is an Artin algebra � satisfying the following two
conditions:

(a) there is a classD ⊆ mod� that is additively closed, 1-syzygy invariant and� dim (D) =
0;

(b) there exists V ∈ mod� satisfying that each M ∈ mod� admits an exact sequence

0 −→ X1 −→ X0 −→ �nM −→ 0,

such that X1 = V1 ⊕ D1, X0 = V0 ⊕ D0, with V1, V0 ∈ add V and D1, D0 ∈ D.

In case we need to specify the class D and the �-module V , in the above definition, we say
that � is a (n, V ,D)-LIT algebra.

As we have said, LIT algebras include all the examples of non-IT algebras that were
known at the moment. This class of algebras also includes examples of non-self-injective,
non-IT algebras. However, not all Artin algebras are LIT either, as was shown by M. Barrios
and G. Mata in [4].

The main objective of this paper is to further generalise the concept of LIT algebra in
order to create a new class of algebras so that all of the examples above are included and the
fin.dim conjecture continues to hold.

Morita contexts and rings. Let T and U be Artin algebras, a Morita context over
T ,U is a 6-tuple M = (T , N , M,U , α, β), where UMT is a U -T -bimodule, T NU is a
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T -U -bimodule and the maps α : M ⊗T N → U , β : N ⊗U M → T are U -U and T -
T -bimodule homomorphisms respectively, satisfying the following associativity conditions,
∀m,m′ ∈ M,∀n, n′ ∈ N :

α(m ⊗ n)m′ = mβ(n ⊗ m′) and β(n ⊗ m)n′ = nα(m ⊗ n′).

Associated to any Morita context M as above, there is the Morita ring of M, which
incorporates all the information involved in the 6-tuple and is defined to be the formal 2× 2
matrix ring

�M =
(
T N
M U

)
,

where matrix multiplication is given by(
t n
m u

)
·
(
t ′ n′
m′ u′

)
=

(
t t ′ + β(n ⊗ m′) tn′ + nu′

mt ′ + um′ α(m ⊗ n′) + uu′
)

We say that a Morita ring is a Morita algebra if �M is an Artin algebra.
We recall a very useful description for the module category of a Morita algebra. Any left

�M-module can be seen as a 4-tuple (A, B, f , g), where A is a left T -module, B is a left
U -module, f : M ⊗T A → B is a U -morphism and g : N ⊗U B → A is a T -morphism. In
addition, the following diagrams have to be commutative:

N ⊗U M ⊗T A
1N⊗ f ��

β⊗1A
��

N ⊗U B

g

��
T ⊗T A

mA �� A

M ⊗T N ⊗U B
1M⊗g ��

α⊗1B
��

M ⊗T A

f

��
U ⊗U B

mB �� B,

where mA and mB are the isomorphisms given by the module action. We denote by βA :=
mA ◦ (β ⊗ 1A) and αB := mB ◦ (α ⊗ 1B).

Amorphism h : (A1, B1, f1, g1) → (A2, B2, f2, g2) is a pair of morphisms (h1, h2) such
that h1 ∈ HomT (A1, A2), h2 ∈ HomU (B1, B2) and the following diagrams commute:

M ⊗T A1
1⊗h1 ��

f1
��

M ⊗T A2

f2
��

B1
h2 �� B2

N ⊗U B1
1⊗h2 ��

g1
��

N ⊗U B2

g2
��

A1
h1 �� A2

A 4-tuple (A, B, f , g) is an indecomposable projective �M-module if and only if it has
either the form (P, M ⊗T P, 1M⊗T P , βP ) or (N ⊗U Q, Q, αQ, 1N⊗U Q), where P and Q
are indecomposable projective modules over T and U respectively.

For further properties and more details we recommend [13].
The following result from [19] describes more precisely the syzygies of modules in a

Morita algebra given some additional conditions on the Morita context. Given a module
X , we denote by PX

i the projective cover of �i X . Note that PX
0 is the projective cover of

X = �0X .

Lemma 2.11 Let �M =
(
T N
M U

)
be a Morita algebra sucht that α = β = 0 and

U M, MT ,T N and NU are projective modules. Then, for each (A, B, f , g) ∈ mod�M
we have

��(A, B, f , g) = (�T A, M ⊗T P A
0 , 1 ⊗ i0, 0) ⊕ (N ⊗U QB

0 ,�U B, 0, 1 ⊗ j0),
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where the maps i0 : �T A → PA
0 and j0 : �U B → QB

0 are the canonical inclusions.

We finish this section by making a very elementary but useful remark.

Remark 2.12 If, in the hypotheses of Lemma 2.11, we replace α = β = 0 by the stronger
condition M ⊗T N = N ⊗U M = 0, we have the following properties:

(1) �n(A, B, f , g) = (�n(A), M ⊗ PA
n−1, 1 ⊗ in, 0) ⊕ (N ⊗U PB

n−1,�
n(B), 0, 1 ⊗ in),

for any n ≥ 1.
(2) �(A, M ⊗T P, f , g) = �(A, 0, 0, 0), for any A ∈ mod T and P ∈ proj T .

(3) �(N ⊗U Q, B, f ′, g′) = �(0, B, 0, 0), for any B ∈ modU and Q ∈ projU .

(4) �n(A, 0, 0, 0) = �(�n−1A, 0, 0, 0), for all n ≥ 1.
(5) �n(0, B, 0, 0) = �(0,�n−1B, 0, 0), for all n ≥ 1.

3 (Special) GLIT Classes and (Special) GLIT Algebras

In this section we give the definition and main properties of (special) GLIT classes and
(special) GLIT algebras. We start by looking at the question of when a subcategory C of
mod� with � dim(C) < ∞ also satisfies that � dim(C) < ∞.

Proposition 3.1 Let � be an Artin algebra and C be a subcategory of mod� such that
� dim(C) = n < ∞. The following statements are satisfied.

(i) If fin.dim(add�tC) < ∞ for some t ≥ n, then � dim(C) < ∞.

(ii) If C is closed under direct sums and � dim(C) < ∞, then we have
fin.dim(add�nC) < ∞.

Proof (i) Let C ∈ C, by definition we have �(C) = �(C) + fin.dim(add��(C)(C)). Then
there is Z | ��(C)(C) with pd(Z) < ∞ such that �(C) = �(C) + pd(Z). Since �(C) ≤
n ≤ t , there is k ≥ 0 such that �(C) + k = t . Because the syzygy operator commutes with
direct sumswe get�k(Z) | �t (C). On the other handwe know that pd(Z) ≤ pd(�k(Z))+k.
Combining all of the above we obtain the following

�(C) = �(C) + pd(Z) ≤ �(C) + pd(�k(Z)) + k ≤ fin.dim(add�tC) + t .

Since this can be done for any C ∈ C, we get

� dim(C) ≤ fin.dim(add�tC) + t < ∞.

(ii) Let us denote � dim(C) = m and let Z ∈ add�n(C) with pd(Z) < ∞. Then there is
Z ′ an indecomposable summand of Z and C ∈ C such that Z ′ | �n(C) and pd(Z) = pd(Z ′).
Because � dim(C) = n, there is C ′ with �(C ′) = n, then �(C ⊕ C ′) = n and

�(C ⊕ C ′) = n + fin.dim(add�n(C ⊕ C ′)).

This means that pd(Z) ≤ m − n and since this can be done for any Z , we get

fin.dim(add�nC) ≤ m − n.

��
Corollary 3.2 Let� be an Artin algebra and C be a subcategory ofmod� closed under direct
sums and such that � dim(C) = n < ∞. Then,

� dim(C) < ∞ ⇐⇒ fin.dim(add�tC) < ∞, for some t ≥ n.
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Corollary 3.3 Let � be an Artin algebra and C be a subcategory of mod� such that
� dim(C) = n < ∞.

If � dim(�tC) < ∞ for some t ≥ n, then � dim(C) < ∞.

Moreover, � dim(C) ≤ � dim(�tC) + t .

Let us show some examples of how we can use the previous results.

Example 3.4 (1) Let � be an Artin algebra such that fin.dim(�) < ∞. Then every subcat-
egory C of mod� with finite �-dimension has also finite �-dimension. This follows
immediately from item (1) of Proposition 3.1.

(2) Let � be an Artin algebra and C a 1-syzygy invariant subcategory of mod� such that
� dim(C) = n < ∞, then � dim(C) < ∞. It suffices to apply Corollary 3.3, since
� dim(�nC) ≤ � dim(C) < ∞.

(3) Let D be a subcategory of mod� such that D is additively closed, 1-syzygy invariant
and � dim(D) = d < ∞. Then for any V ∈ mod� the class C := D ⊕ add V satisfies
� dim(C) < ∞. In order to show this we will use Corollary 3.3.
For an element C = D0 ⊕ V0 ∈ D ⊕ add V we have

�(C) = �(D0 ⊕ V0) ≤ �[D](D0 ⊕ V0) + d =
= �[D](V0) + d ≤ �[D](V ) + d.

In order to obtain that bound we have used Theorem 2.8 and Proposition 2.7. Hence,
� dim(C) = n ≤ �[D](V ) + d < ∞.

Now, take t ≥ n and let X ∈ �t (C), then X = �t D1 ⊕ �t V1 and

�(X) = �(�t D1 ⊕ �t V1) ≤ �[D](�t D1 ⊕ �t V1) + d =
= �[D](�t V1) + d ≤ �[D](�t V ) + d.

Here we have used the same inequalities as above, plus the fact that D is 1-syzygy
invariant. Therefore, � dim(�t (C)) = k ≤ �[D](�t V ) + d < ∞.

In particular, taking t = n we can apply Corollary 3.3 to get

� dim(C) ≤ �[D](V ) + �[D](�nV ) + 2d < ∞.

Now we examine the question of whether item (3) of the previous example still holds
if D is a class such that � dim(D) < ∞, it is additively closed and t-syzygy invariant for
some t ≥ 1. The following results will lead to Lemma 3.7, where we prove that it is indeed
possible.

Lemma 3.5 Let V ∈ mod� be an indecomposable module and D ⊆ mod� be a class such
that addD = D and � dim(D) = n < ∞. Then � dim(D ⊕ add V ) < ∞.

Proof First we observe that � dim(D ⊕ add V ) = � dim(D ⊕ V ), so we will prove that the
second term is bounded. If pd(V ) < ∞, then

� dim(D ⊕ V ) = max{� dim(D), pd(V )} < ∞.

Assume now that pd(V ) = ∞ and that there exists D̃ ∈ D such that�(D̃⊕V ) = m > n.

We affirm that � dim(D ⊕ V ) ≤ m. To prove the affirmation let us suppose that it is not
true, so assume there is some D′ ∈ D such that �(D′ ⊕ V ) = r > m > n. This means that
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s := �(D′ ⊕ D̃ ⊕ V ) ≥ r > m > n. By the definition of the � function there must be a
non-trivial relation (with integer coefficients) of the form

a1[�sV ] =
∑
j=1

b j [�s D̃ j ] +
∑
k=1

ck[�s D′
k], (1)

where {D̃ j } and {D′
k} are the set of non-isomorphic , non-indecomposable, non-projective

direct summands of D̃ and D′. This relation cannot occur at the s − 1 syzygy level, also the
coefficient a1 is non-zero because s > n, and at least one of the coefficients {ck} is non-zero,
since s > m.

In a similar way, using that �(D̃ ⊕ V ) = m < s there must be a non-trivial relation of
the form

a′
1[�mV ] =

∑
j=1

b′
j [�m D̃ j ]. (2)

This relation cannot occur at them − 1 syzygy level and similarly to Eq. 1, the coefficient
a′
1 is non-zero because m > n and at least one of the coefficients {b′

j } is non-zero since V
has infinite projective dimension. Because of the fact that m < s (2) will remain the same at
the s syzygy level (and at the s − 1 syzygy level), so we get

a′
1[�sV ] =

∑
j=1

b′
j [�s D̃ j ]. (3)

We multiply (1) by a′
1 and (3) by a1, then we get the following equality:

∑
j=1

(a′
1b j − a1b

′
j )[�s D̃ j ] +

∑
k=1

a′
1ck[�s D′

k] = 0.

This is a non-trivial relation because for some k the coefficient a′
1ck �= 0, but since s > n,

this relation has to occur at the s − 1 syzygy level. We can rewrite it as follows:
∑
j=1

a′
1b j [�s−1 D̃ j ] +

∑
k=1

a′
1ck[�s−1D′

k] =
∑
j=1

a1b
′
j [�s−1 D̃ j ].

At this point we use that Eq. 3 holds at the s−1 syzygy level. This means that the previous
equation can be rewritten as

∑
j=1

a′
1b j [�s−1 D̃ j ] +

∑
k=1

a′
1ck[�s−1D′

k] = a1a
′
1[�s−1V ].

Now we divide by a′
1 and obtain∑

j=1

b j [�s−1 D̃ j ] +
∑
k=1

ck[�s−1D′
k] = a1[�s−1V ]. (4)

Note that Eq. 4 is the same as Eq. 1 but at the s−1 level of syzygy, which is a contradiction.
This shows that the affirmation � dim(D ⊕ add V ) ≤ m is true and this finishes the proof. ��

Next, we use induction to prove that the above result is valid even if V is not indecom-
posable.

Lemma 3.6 Let V ∈ mod� be any module and D ⊆ mod� be an additively closed class
such that � dim(D) = n < ∞. Then � dim(D ⊕ add V ) < ∞.
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Proof We use induction in the number of indecomposable summands of V . First if V is
indecomposable, then by the previous lemma we have the result. Assume that it is true
for s − 1 indecomposable direct summands and let V = ⊕s

i=1Vi be the Krull-Schmidt
decomposition of V . It is not hard to see that D ⊕ add V = D ⊕ add (⊕s−1

i=1Vi ) ⊕ add Vs . By
the induction hypothesis � dim(D ⊕ add (⊕s−1

i=1Vi )) < ∞ and since Vs is indecomposable,
we can apply Lemma 3.5 to obtain that � dim(D ⊕ add V ) < ∞. ��
Lemma 3.7 Let D ⊆ mod� be such that � dim(D) < ∞, D is additively closed and it is
t-syzygy invariant for some t ≥ 1. Let V ∈ mod�, then

(i) � dim(D ⊕ add V ) = m < ∞.

(ii) For any k ≥ 1, � dim(�k(D ⊕ add V )) < ∞.

(iii) � dim(D ⊕ add V ) < ∞.

Proof The proof of (i) is immediate from Lemma 3.6.
For (i i), let D0 ⊕ V0 ∈ D ⊕ add V we get

�(�k(D0 ⊕ V0)) ≤ �(�kt (D0 ⊕ V0)) + k(t − 1) = �(�kt (D0) ⊕ �kt (V0))) + k(t − 1).

Since D is t-syzygy invariant, then it is also kt-syzygy invariant. Hence we obtain

� dim(�k(D ⊕ add V )) ≤ � dim(D ⊕ add�kt V ) + k(t − 1) < ∞.

Note that in the particular case k = qt ,

� dim(�k(D ⊕ add V )) ≤ � dim(D ⊕ add�kV ) < ∞.

The proof of (i i i) follows from the previous items in combination with Corollary 3.3,
taking k := tm. Note that m = 0 implies � dim(D ⊕ add V ) = 0. ��

At this point we are ready to give the definition of a GLIT class.

Definition 3.8 Let � be an Artin algebra and C be a subcategory of mod�. We say C is an
n-GLIT class, where n ≥ 0, if the following two conditions hold:

(a) there is a class D ⊆ mod� that is additively closed, �t (D) ⊆ D for some t ≥ 1 and
� dim (D) < ∞;

(b) there exists V ∈ mod� satisfying that each C ∈ C admits an exact sequence

0 −→ X1 −→ X0 −→ �nC −→ 0,

such that X1 = V1 ⊕ D1, X0 = V0 ⊕ D0, with V1, V0 ∈ add V and D1, D0 ∈ D.

In case we need to specify all the parameters in the above definition, we say that C is an
(n, t, V ,D)-GLIT class.

Definition 3.9 We say that an Artin algebra � is GLIT if mod� is an (n, t, V ,D)-GLIT
class.

Remark 3.10 If C is an (n, t, V ,D)-GLIT class, then D ⊕ add V satisfies items (i), (ii) and
(iii) of Lemma 3.7.

The following remark will be used in the proof of Theorem 4.13.

Remark 3.11 It is possible to obtain a class D, as in item (a) of Definition 3.8, if what
we have instead is a class D′ that is closed under direct sums, is t-syzygy invariant and
� dim (D′) < ∞. Namely the class D := add(D′) satisfies all the conditions in (a):
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• It is clear from the definition that D is additively closed.
• Take X ∈ D, then there exists Y ∈ D such that X ⊕ Y ∈ D′. Because D′ is t-syzygy

invariant and the syzygy operator commutes with direct sums we have�t (X)⊕�t (Y ) ∈
D′, hence �t (X) ∈ add(D′) = D, so we get �t (D) ⊆ D.

• Finally, let X ∈ D and Y ∈ D be such that X ⊕ Y ∈ D′. From the properties of the �

function, we have �(X) ≤ �(X ⊕ Y ) ≤ � dim(D′), hence � dim (D) = � dim (D′) <

∞.

Proposition 3.12 If C is (n, t, V ,D)-GLIT, then C is (m, t, Ṽ , D̃)-GLIT for every m ≥ n.

Proof Let us define Ṽ := �m−nV ⊕� and D̃ := add�m−nD. We can check that item (b) of
Definition 3.8 holds by applying the syzygy operatorm−n times to the short exact sequences
given by the fact that C is GLIT.

To see that item (a) holds it suffices, because of the previous remark, to prove that
� dim(�m−nD) < ∞, since the rest of the conditions are easily verified. For any Z ∈ �m−nD
we have that �(m−n)t (Z) ∈ D, then by Proposition 2.3 we get

�(Z) ≤ �(�(m−n)t (Z)) + (m − n)t ≤ d + (m − n)t < ∞,

where d = � dim(D). ��
Now we can prove that GLIT algebras satisfy the finitistic dimension conjecture.

Theorem 3.13 Let � be an Artin algebra and C ⊆ mod� be an (n, t, V ,D)-GLIT class.
Then fin.dim(C) < ∞. In particular, if � is a GLIT algebra, then it satisfies the fin.dim
conjecture.

Proof Let C ∈ C with pd(C) < ∞. Then it is known that

pd(C) ≤ pd(�nC) + n.

Now, let us use that C is a GLIT class and obtain a s.e.s of the form

0 −→ X1 −→ X0 −→ �nC −→ 0,

such that X1 = V1 ⊕ D1, X0 = V0 ⊕ D0, with V1, V0 ∈ add V and D1, D0 ∈ D. By the
Igusa-Todorov inequality [17, Theorem 4], we have

pd(�nC) ≤ �(X1 ⊕ X0) + 1 ≤ � dim(D ⊕ add V ) + 1.

By Lemma 3.7 (i i i) we know that � dim(D ⊕ add V ) < ∞, so in conclusion

fin.dim(C) ≤ � dim(D ⊕ add V ) + n + 1 < ∞.

��
Example 3.14 (1) If � is (n, V ) Igusa-Todorov, then it is (n, 1, V , 0)-GLIT.
(2) If � is (n, V ,D) Lat-Igusa-Todorov, then it is (n, 1, V ,D)-GLIT.
(3) If � dim(�) < ∞, then � is (0, 1, 0,mod�)-GLIT.

The next proposition gives necessary and sufficient conditions for a GLIT class to have
finite finitistic dimension. In particular, it gives several characterisations of the finitistic
dimension conjecture.

Proposition 3.15 Let � be an Artin algebra and C a subcategory of mod�. The following
are equivalent:
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(i) fin.dim(C) < ∞.

(ii) P<∞(C) is a 0-GLIT class.
(iii) P<∞(C) is an n-GLIT class for every n ≥ 0.
(iv) There is some m ≥ 0 and E ⊆ mod� with � dim(E) < ∞ and closed under direct

sums such that for each C ∈ P<∞(C) there is a s.e.s. of the form

0 → E1 → E0 → �mC → 0, with E1, E0 ∈ E .

Proof (i) ⇒ (i i) Take n = 0, t = fin.dim(C), V = 0,D = P<∞(C). Recall that if a module
C has finite projective dimension,�(C) = pd(C). Hence,� dim(P<∞(C)) = fin.dim(C) <

∞.

(i i) ⇒ (i i i) Follows directly from Proposition 3.12.
(i i i) ⇒ (iv) From Remark 3.10 we obtain E := D ⊕ add V satisfies � dim(E) < ∞ and

it is closed under direct sums, so by the definition of GLIT class we get the desired short
exact sequences.

(iv) ⇒ (i) Analogous to the proof of Theorem 3.13. ��
Definition 3.16 Let � be an Artin algebra and C ⊆ mod�. We say that C is a special GLIT
class if it satisfies one of the equivalent conditions above. In particular, � is a special GLIT
algebra if mod� is a special GLIT class.

We end this section with the following characterisation for the finitistic dimension con-
jecture. The proof follows from the above proposition and it is left to the reader.

Theorem 3.17 Let� be an Artin algebra. Then,� satisfies the finitistic dimension conjecture
if and only if it is special GLIT.

4 Morita Algebras: An Application

In this section we give conditions for a Morita algebra to be GLIT or special GLIT in terms
of the Morita context.

Let M = (T , N , M,U , α, β) be a Morita context such that:

• UM, MT ,T N , NU are projective modules.
• M ⊗T N = N ⊗U M = 0.

Note that the second item implies α = β = 0, so in what follows we write M =
(T , N , M,U , 0, 0). Let �M :=

(
T N
M U

)
be the Morita algebra associated to the Morita

context. In this section we prove that, with the above conditions, �M is GLIT if and only if
T and U are GLIT. This provides new examples of GLIT algebras and as an application we
give a partial answer to the question of whether the tensor product of GLIT algebras is again
GLIT.

From now on M will be taken to be a Morita context with the above conditions and
�M the Morita algebra associated to it. In the next lemma and proposition we establish a
relationship between �(A, M ⊗T P, f , g) and �(A), where P ∈ proj T .

Lemma 4.1 Let (A, M ⊗T P, f , g) ∈ mod�M such that P ∈ proj T . Denote the set
of indecomposable, pairwise non-isomorphic, direct summands of (A, M ⊗T P, f , g) by
{(Ai , Qi , fi , gi )}ri=1. If for some n ≥ 0 and ci ∈ Z≥0,∀i = 1, . . . , r we have a linear
combination of the form:

c1[�n A1] + · · · + cs[�n As] = cs+1[�n As+1] + · · · + cr [�n Ar ],
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then there is also a linear combination of the form:

c1[�n+1(A1, Q1, f1, g1)] + · · · + cs[�n+1(As, Qs, fs, gs)] =
= cs+1[�n+1(As+1, Qs+1, fs+1, gs+1)] + · · · + cr [�n+1(Ar , Qr , fr , gr )].

Proof Suppose that for some n ≥ 0 we have a linear combination as follows:

c1[�n A1] + · · · + cs[�n As] = cs+1[�n As+1] + · · · + cr [�n Ar ], (5)

where ci ∈ Z≥0,∀i = 1, . . . , r . This means that there exist P ′, P ′′ ∈ proj T such that

c1�
n A1 ⊕ · · · ⊕ cs�

n As ⊕ P ′ � cs+1�
n As+1 ⊕ · · · ⊕ cr�

n Ar ⊕ P ′′.

For each i decompose �n Ai = Mi ⊕ Pi , in such a way that Pi ∈ proj T and Mi does not
have any projective direct summands. The previous isomorphism can be rewritten as

c1M1 ⊕ · · · ⊕ csMs ⊕ c1P1 ⊕ · · · ⊕ P ′ � cs+1Ms+1 ⊕ · · · ⊕ cr Mr ⊕ cs+1Ps+1 ⊕ · · · ⊕ P ′′.

From the Krull-Schmidt theorem we then have

c1M1 ⊕ · · · ⊕ csMs � cs+1Ms+1 ⊕ · · · ⊕ cr Mr . (6)

c1P1 ⊕ · · · ⊕ cs Ps ⊕ P ′ � cs+1Ps+1 ⊕ · · · ⊕ cr Pr ⊕ P ′′. (7)

If we apply the syzygy operator to Eq. 6 we get

c1�M1 ⊕ · · · ⊕ cs�Ms � cs+1�Ms+1 ⊕ · · · ⊕ cr�Mr .

Furthermore we have the equalities �Mi = �n+1Ai and PAi
n = PMi

0 ⊕ Pi , for each i =
1, . . . , r . From Eq. 6 we have the following commutative diagram:

c1�M1 ⊕ · · · ⊕ cs�Ms
i ��

�
��

c1P
M1
0 ⊕ · · · ⊕ cs P

Ms
0

�
��

cs+1�Ms+1 ⊕ · · · ⊕ cr�Mr
i �� cs+1P

Ms+1
0 ⊕ · · · ⊕ cr P

Mr
0

Using Eq. 7 we can transform the previous diagram into the next one:

c1�M1 ⊕ · · · ⊕ cs�Ms
(i,0) ��

�
��

Y ⊕ c1P1 ⊕ · · · ⊕ cs Ps ⊕ P ′

�
��

cs+1�Ms+1 ⊕ · · · ⊕ cr�Mr
(i,0)�� Z ⊕ cs+1Ps+1 ⊕ · · · ⊕ cr Pr ⊕ P ′′

where Y = c1P
M1
0 ⊕ · · · ⊕ cs P

Ms
0 and Z = cs+1P

Ms+1
0 ⊕ · · · ⊕ cr P

Mr
0 . Now, using that

PAi
n = PMi

0 ⊕ Pi we get

c1�M1 ⊕ · · · ⊕ cs�Ms
i ′ ��

�
��

c1P
A1
n ⊕ · · · ⊕ cs P

As
n ⊕ P ′

�
��

cs+1�Ms+1 ⊕ · · · ⊕ cr�Mr
i ′ �� cs+1P

As+1
n ⊕ · · · ⊕ cr P

Ar
n ⊕ P ′′
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This all boils down to the fact that if we have a linear combination like (5), then the same
combination is obtained in mod�M for the next syzygy level, more precisely:

c1�
n+1(A1, Q1, f1, g1) ⊕ · · · ⊕ cs�

n+1(As, Qs, fs, gs) ⊕ (0, M ⊗T P ′, 0, 0) �
� cs+1�

n+1(As+1, Qs+1, fs+1, gs+1) ⊕ · · · ⊕ (0, M ⊗T P ′′, 0, 0).

Writing the previous isomorphism in terms of classes we obtain the desired linear com-
bination:

c1[�n+1(A1, Q1, f1, g1)] + · · · + cs[�n+1(As, Qs, fs, gs)] =
= cs+1[�n+1(As+1, Qs+1, fs+1, gs+1)] + · · · + cr [�n+1(Ar , Qr , fr , gr )].

Note that we have used Lemma 2.11 to calculate the syzygies in mod�M. ��
Proposition 4.2 Let (A, M ⊗T P, f , g) ∈ mod�M such that P ∈ proj T . Then,

�(A, M ⊗T P, f , g) ≤ �(A) + 1.

Proof Suppose that �(A, M ⊗T P, f , g) = n > �(A) + 1, therefore n ≥ 2. Then we have
a linear combination like that of Eq. 5 that derives from the linear combination in mod�M,
since the rank at the n syzygy level has to decrease. Since �(A) ≤ n − 2 the relation has to
be maintained at the level n − 2, but if this is the case, by Lemma 4.1 the same relation can
be found at level n − 1 in mod�M, which contradicts that �(A, M ⊗T P, f , g) = n. In
conclusion �(A, M ⊗T P, f , g) ≤ �(A) + 1. ��

The following corollary follows from the proof of the previous proposition.

Corollary 4.3 Let (A, 0, 0, 0) ∈ mod�M. Then,

�(A) ≤ �(A, 0, 0, 0) ≤ �(A) + 1.

Because M and N have symmetric roles in �M, we can obtain symmetric results in the
following sense:

Lemma 4.4 Let (N ⊗U Q, B, f , g) ∈ mod�M such that Q ∈ projU. Denote the set
of indecomposable, pairwise non-isomorphic, direct summands of (N ⊗U Q, B, f , g) by
{(Qi , Bi , fi , gi )}ri=1. If for some n ≥ 0 and li ∈ Z≥0,∀i = 1, . . . , r we have a linear
combination of the form:

l1[�n B1] + · · · + ls[�n Bs] = ls+1[�n Bs+1] + · · · + lr [�n Br ],
then there is also a linear combination of the form:

l1[�n+1(Q1, B1, f1, g1)] + · · · + ls[�n+1(Qs, Bs, fs, gs)] =
= ls+1[�n+1(Qs+1, Bs+1, fs+1, gs+1)] + · · · + lr [�n+1(Qr , Br , fr , gr )].

Proposition 4.5 Let (N ⊗U Q, B, f , g) ∈ mod�M such that Q ∈ projU. Then,

�(N ⊗U Q, B, f , g) ≤ �(B) + 1.

Corollary 4.6 Let (0, B, 0, 0) ∈ mod�M. Then,

�(B) ≤ �(0, B, 0, 0) ≤ �(B) + 1.
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We leave the proofs to the reader as they are analogous to those of Lemma 4.1, Proposi-
tion 4.2 and Corollary 4.3.

Putting together Corollaries 4.3 and 4.6 we have the following relation between the �-
dimension of T , U , �M.

Corollary 4.7 LetM = (T , N , M,U , 0, 0) be aMorita context such that U M, MT , T N , NU

are projective modules and M ⊗T N = N ⊗U M = 0. Then,

max{� dim(T ),� dim(U )} ≤ � dim(�M).

where �M is the Morita algebra associated to M.

Next we give an example illustrating Lemma 4.1 as well as Proposition 4.2 and Corol-
lary 4.3.

Example 4.8 Let T = KQ
J 2

be the K-algebra given by the following quiver

Q : 1 2 3,

where J is the ideal generated by the arrows. Consider the algebra � =
(
T 0
T T

)
, in what

follows we will see that for X := S1 ⊕ I2 ∈ mod T we have �(X) = 2 and �(X , 0, 0) = 3.
This example shows that the inequality of Corollary 4.3 can be strict and that the inequality
of Proposition 4.2 cannot be refined. In order to do so let us write the minimal projective
resolutions for S1 and I2:

· · · P1 ⊕ P2 ⊕ P3 P1 ⊕ P2 P1 S1 0

S1 ⊕ S2 ⊕ S3 S1 ⊕ S2

· · · P1 ⊕ P2 P1 P1 I2 0

S1 ⊕ S2 S1

We can see here that

rk 〈[�S1], [�I2]〉 = rk 〈[S1] + [S2], [S1]〉 = 2.

Since S3 = P3 is projective,

rk
〈[�2S1], [�2 I2]

〉 = rk 〈[S1] + [S2] + [S3], [S1] + [S2]〉 = 1.

Furthermore
rk

〈[�mS1], [�m I2]
〉 = 1,∀m ≥ 2,

so we get that �(S1 ⊕ I2) = 2.
Let us now calculate �(S1 ⊕ I2, 0, 0). The projective resolutions are as follows:

· · · Q2 Q1 Q0 (S1, 0, 0) 0

(�2S1, P1 ⊕ P2, i) (�S1, P1, i)
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· · · Q′
2 Q′

1 Q′
0 (I2, 0, 0) 0

(�2 I2, P1, i) (�I2, P1, i)

Here we have used Lemma 2.11 to compute syzygies in mod�. From the previous cal-
culations we know there is a relation between the first components of the second syzygies,
meaning [�2S1] = [�2 I2] but as we will see now, that relation cannot be extended to the
whole module, i.e. [(�2S1, P1 ⊕ P2, i)] �= [(�2 I2, P1, i)]. The only way that these classes
can be the same is if there are modules P ′, P ′′ ∈ proj� such that

(�2S1, P1 ⊕ P2, i) ⊕ P ′ � (�2 I2, P1, i) ⊕ P ′′.

By the relation taking place in the first components and in order to make the second compo-
nents isomorphic, there is only one possibility for P ′ and P ′′, namely P ′ = (0, P3, 0) and
P ′′ = (P3, P3, 1)⊕(0, P2, 0).Nevertheless it is easy to check that there is no isomorphism in
mod� for the given triples, even though the components separately are isomorphic. Hence,
for any P ′, P ′′ ∈ proj� we have

(�2S1, P1 ⊕ P2, i) ⊕ P ′ �� (�2 I2, P1, i) ⊕ P ′′.

If we go one more step in the syzygy calculations we will see that

�3(S1, 0, 0) � �3(I2, 0, 0) ⊕ (0, P3, 0),

which is exactly the same relation the first coordinates had in the previous step. This illustrates
Lemma 4.1 and implies that

rk
〈[�3(S1, 0, 0)], [�3(I2, 0, 0)]

〉 = rk
〈[�m(S1, 0, 0)], [�m(I2, 0, 0)]

〉 = 1,∀m ≥ 3;
which means that �(X , 0, 0) = 3.

In the next lemma we take one step further in studying the relationship between the value
of the � function in a 4-tuple representing a �M module and the corresponding values on
the coordinates.

Lemma 4.9 Let (A, M ⊗T P, f , g) and (N ⊗U Q, B, f ′, g′) ∈ mod�M such that P ∈
proj T and Q ∈ projU. Then,

�
(
(A, M ⊗T P, f , g) ⊕ (N ⊗U Q, B, f ′, g′)

) ≤ max{�(A),�(B)} + 1.

Proof Assume, to the contrary, that

�
(
(A, M ⊗T P, f , g) ⊕ (N ⊗U Q, B, f ′, g′)

) = n > max{�(A),�(B)} + 1,

which implies n ≥ 2. Let {(Ai , Qi , fi , gi )}ri=1 and {(Q′
j , Bj , f ′

j , g
′
j )}r

′
j=1 be complete sets

of indecomposables, pairwise non-isomorphic, direct summands of (A, M ⊗T P, f , g) and
(N ⊗U Q, B, f ′, g′) respectively. Then there is a linear combination of the form:

r∑
i=1

ai [(�n Ai , M ⊗T P Ai
n−1, 1 ⊗ i, 0)] +

r ′∑
j=1

b j [(N ⊗U P
Bj
n−1,�

n B j , 0, 1 ⊗ i)] = 0.

In particular, sinceM⊗T P Ai
n−1 and N⊗U P

Bj
n−1 are projective for all i, j , there are relations

of the form
r∑

i=1

ai [�n Ai ] = 0;
r ′∑
j=1

b j [�n B j ] = 0. (8)
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Because of our initial assumption, those relations had to be present at the n − 2 level of
syzygy, which is impossible because, from Lemmas 4.1 and 4.4, we would obtain a relation
of the form

r∑
i=1

ai [(�n−1Ai , M ⊗T P Ai
n−2, 1 ⊗ i, 0)] +

r ′∑
j=1

b j [(N ⊗U P
Bj
n−2,�

n−1Bj , 0, 1 ⊗ i)] = 0,

which contradicts the fact that �
(
(A, M ⊗T P, f , g) ⊕ (N ⊗U Q, B, f ′, g′)

) = n. ��
All this leads to the next theorem which gives us a full picture of the relation between the

values of � in mod�M, mod T and modU .

Theorem 4.10 Let (A, B, f , g) ∈ mod�M. Then

�(A, B, f , g) ≤ max{�(�A),�(�B)} + 2.

Proof From the properties of the Igusa-Todorov functions we know that

�(A, B, f , g) ≤ � (�(A, B, f , g)) + 1

= �
(
(�A, M ⊗T P A

0 , 1 ⊗ i, 0) ⊕ (N ⊗U PB
0 ,�B, 0, 1 ⊗ i)

)
+ 1.

If we apply now Lemma 4.9 we get

�(A, B, f , g) ≤ max{�(�A),�(�B)} + 2.

��
In the particular case the Morita algebra is a finite dimensional k-algebra, the authors in

[6, Prop 3.5] give sufficient conditions for the Morita algebra to have finite �-dimension in
terms of the quiver with relations. As a consequence of the previous results we obtain the
following bounds involving the�-dimension of aMorita algebra and the�-dimension of the
diagonal subalgebra. We want to emphasize that the conditions in [6] and ours differ in many
ways, for instance we work with Artin algebras instead of finite dimensional algebras and
their hypotheses imply the bimodules in the Morita context are semisimple as right modules,
while in our case we ask that they are projective.

Corollary 4.11 Let M = (T , N , M,U , 0, 0) be a Morita context such that U M, MT ,

T N , NU are projective modules and M ⊗T N = N ⊗U M = 0. Then,

� dim(�M) ≤ max{� dim(�(mod T )),� dim(�(modU ))} + 2

≤ max{� dim(T ),� dim(U )} + 2,

where �M is the Morita algebra associated to M.

The next theorem gives us a full picture of the relation between the �-dimensions of T ,
U and �M.

Theorem 4.12 Let M = (T , N , M,U , 0, 0) be a Morita context such that U M, MT ,

T N , NU are projective modules and M ⊗T N = N ⊗U M = 0. Then,

max{� dim(T ),� dim(U )} ≤ � dim(�M) ≤ max{� dim(T ),� dim(U )} + 2.

where �M is the Morita algebra associated to M.
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The following theorem gives us, under some assumptions on the Morita context, a nec-
essary and sufficient condition for a Morita algebra to be GLIT. We recall that the families
of IT, LIT and GLIT algebras are related by proper inclusion, so GLIT algebra is the more
general concept. For the other two definitions the problem of when the Morita algebra also
satisfy them has been studied in [19, Theorem 1.2] and [5, Prop 3.2 and 3.3].

Theorem 4.13 Let M = (T , N , M,U , 0, 0) be a Morita context such that U M, MT ,

T N , NU are projective modules and M ⊗T N = N ⊗U M = 0. Then, the algebra

�M =
(
T N
M U

)
is GLIT if and only if T and U are GLIT.

Proof (⇐) We first prove that if T and U are GLIT, then �M is GLIT. Assume that T is
(n, t, V , T )-GLIT and U is (n, u,W ,U)-GLIT, observe that, because of Proposition 3.12,
there is no loss of generality in assuming that both have the same parameter n ≥ 0.

We will show that �M is (n + 1, λ, Z ,DM
� )-GLIT, where λ = t · u, Z = �(V ,W , 0) ⊕

�M and DM
� = add(�(T ,U, 0, 0)). The first step is to build, for any (A, B, f , g) ∈

mod�M, a short exact sequence as in Definition 3.8 and after doing so we will see that the
parameters we have fixed satisfy the conditions needed. Let us recall item (1) of Remark 2.12
stating that for any n ≥ 1 we have

�n(A, B, f , g) = (�n(A), M ⊗ PA
n−1, 1 ⊗ in, 0) ⊕ (N ⊗U PB

n−1,�
n(B), 0, 1 ⊗ in).

The strategy then is to construct a s.e.s for each summand separately and then combine them
via direct sums.

Since T and U are n-GLIT algebras, there are short exact sequences as these:

0 �� T1 ⊕ V1
α �� T0 ⊕ V0

β �� �n(A) �� 0 ,

where T1, T0 ∈ T , V1, V0 ∈ add V ;

0 �� U1 ⊕ W1
α′

�� U0 ⊕ W0
β ′

�� �n(B) �� 0 ,

where U1,U0 ∈ U, W1,W0 ∈ addW .

Since MT is projective, the following diagram is commutative with exact rows:

0 �� M ⊗T (T1 ⊕ V1)
1⊗α ��

0

��

M ⊗T (T0 ⊕ V0)

1⊗in◦β

��

1⊗β �� M ⊗T �n(A)

1⊗in
��

�� 0

0 �� 0 0 �� M ⊗ PA
n−1

id �� M ⊗ PA
n−1

�� 0

From this diagram we get the following s.e.s. in mod�M:

(T1 ⊕ V1, 0, 0, 0)
� � (α,0) �� (T0 ⊕ V0, M ⊗ PA

n−1, 1 ⊗ in ◦ β, 0)
(β,id) �� �� (�n(A), M ⊗ PA

n−1, 1 ⊗ in , 0)

In a similar way, since NU is projective, the following diagram is commutative and has
exact rows:
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0 �� N ⊗U (U1 ⊕ W1)
1⊗α′

��

0

��

N ⊗U (U0 ⊕ W0)

1⊗in◦β ′
��

1⊗β ′
�� N ⊗U �n(B)

1⊗in
��

�� 0

0 �� 0 0 �� N ⊗ PB
n−1

id �� N ⊗ PB
n−1

�� 0

From this diagram we get the following s.e.s. in mod�M:

(0,U1 ⊕ W1, 0, 0)
� � (0,α′) �� (N ⊗ PB

n−1,U0 ⊕ W0, 0, 1 ⊗ in ◦ β ′)
(id,β′) �� �� (N ⊗ PB

n−1, �
n(B), 0, 1 ⊗ in)

Combining both sequences via direct sums we obtain the following s.e.s:

δ : X �
� �� Y �� �� �n(A, B, f , g) ,

where Y = (T0 ⊕ V0, M ⊗ PA
n−1, 1⊗ in ◦ β, 0) ⊕ (N ⊗ PB

n−1,U0 ⊕ W0, 0, 1⊗ in ◦ β ′) and
X = (T1 ⊕ V1,U1 ⊕ W1, 0, 0).

Next, let us apply the Horseshoe Lemma to the sequence δ:

�X �
� �� �Y ⊕ Q̃ �� �� �n+1(A, B, f , g) , (9)

where �X = �(T1,U1, 0) ⊕ �(V1,W1, 0), �Y = �(T0,U0, 0) ⊕ �(V0,W0, 0) and Q̃ ∈
proj�M.

As one can see the terms �X and �Y ⊕ Q̃ are in the classDM
� ⊕ add Z , so all we need to

check is that the conditions on DM
� are satisfied. Using Remark 3.11 we only need to prove

thatD′
� := �(T ,U, 0, 0) is closed under direct sums, is λ-syzygy invariant in mod�M and

has finite �-dimension.
First, it is straightforward that D′

� is closed under direct sums. To see that it is λ-syzygy
invariant, take �(A, B, 0, 0) ∈ D′

�. Then,

�λ (�(A, B, 0, 0)) = �λ+1(A, B, 0, 0) = �(�λ(A),�λ(B), 0, 0).

The last equality follows from Remark 2.12 and the fact that syzygies commute with direct
sums. Since λ = t · u, we have �λ(A) ∈ T and �λ(B) ∈ U .

Finally to see that the �-dimension is finite, take �(A, B, 0, 0) ∈ D′
�. Using Proposition

2.3 and Lemma 4.9 we get

�(�(A, B, 0, 0)) ≤ �
(
�λ(A, B, 0, 0)

) + λ − 1

≤ max{�(�λA),�(�λB)} + λ

≤ max{� dim(T ),� dim(U)} + λ < ∞.

(⇒)Nowwe prove that if�M is GLIT then both T andU are GLIT. Assume that�M is
(n, λ, V�,D�)-GLIT, where V� = (X , E, f , j). We will show that T is (n, λ, X , T )-GLIT
where T = add{Y ∈ mod T | ∃G, g1, g2 : (Y ,G, g1, g2) ∈ D�} and that U is (n, λ, E,U),
where U = add{Z ∈ modU | ∃H , h1, h2 : (H , Z , h1, h2) ∈ D�}.

We only include the proof for T , since the one for U is analogous. Let A ∈ mod T , then
(A, 0, 0, 0) ∈ mod�M so there is a short exact sequence of the form

0 �� D1 ⊕ V1 �� D0 ⊕ V0 �� �n(A, 0, 0, 0) �� 0 ,
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where D1, D0 ∈ D�, V1, V0 ∈ add V�. If we restrict to the first components we get the
following short exact sequence in mod T

0 �� Y1 ⊕ X1 �� Y0 ⊕ X0 �� �n(A) �� 0 ,

where Y1, Y0 ∈ T and X1, X0 ∈ add X . Because of Remark 3.11 all we need to show to
conclude that T is GLIT, is that the class T ′ = {Y ∈ mod T | ∃G, g1, g2 : (Y ,G, g1, g2) ∈
D�} is closed under direct sums, is λ-syzygy invariant and has finite �-dimension.

It is clear that T ′ is closed under direct sums. To see that it is λ-syzygy invariant, take
Y ∈ T ′, since D� is λ-syzygy invariant and closed under direct summands, we get that
�λ(Y , 0, 0, 0) ∈ D� and this proves that �λ(Y ) ∈ T ′. To prove that the �-dimension of
T ′ is finite, take Y ∈ T ′ and by Corollary 4.3 we know that �(Y ) ≤ �(Y , 0, 0, 0). Using
Proposition 2.3 we get

�(Y ) ≤ �(Y , 0, 0, 0) ≤ �(�λ(Y , 0, 0, 0)) + λ ≤ � dim(D�) + λ.

Hence, � dim(T ′) ≤ � dim(D�) + λ < ∞. ��
The next theorem states that fin.dim(�M) < ∞ if and only if fin.dim(T ) < ∞ and

fin.dim(U ) < ∞. After carefully reviewing the literature we were able to find that the direct
implication can also be obtained from [20, Theorem 5.1 and Theorem 5.5(i)] and also from
[18, Proposition 10]. Note that for the converse implication we cannot use [20, Theorem
5.5(iii)] since the hypotheses are not satisfied, so as far as we know, there are no published
results that prove the converse, which came as a surprise to us, particularly since it was not
in the objectives of this paper.

Theorem 4.14 Let M = (T , N , M,U , 0, 0) be a Morita context such that U M, MT ,

T N , NU are projective modules and M ⊗T N = N ⊗U M = 0. Then, the algebra

�M =
(
T N
M U

)
satisfies the finitistic dimension conjecture if and only if T and U sat-

isfy the finitistic dimension conjecture.

Proof First we recall that satisfying the fin.dim conjecture is the same as being special GLIT.
In addition it is not hard to show that (A, B, f , g) ∈ mod�M has finite projective dimension
if and only if A and B have finite projective dimension. Then, using Theorem 4.12, together
with the fact that the � function coincides with projective dimension if the last one is finite,
we get:

max{fin.dim(T ),fin.dim(U )} ≤ fin.dim(�M) ≤ max{fin.dim(T ),fin.dim(U )} + 2.

Hence, �M is special GLIT if and only if T and U are special GLIT. ��
As a direct consequence of Theorems 4.13 and 4.14 we obtain the following corollary

which gives necessary and sufficient conditions for a triangular matrix algebra to be GLIT
or special GLIT. The question of when a triangular algebra is IT or LIT has been studied in
[9] and [22].

Corollary 4.15 Let T and U be Artin algebras and U MT a U-T -bimodule such that U M and

MT are projective. Then, the triangular matrix algebra

(
T 0
M U

)
is (special)GLIT if and only

if T and U are (special)GLIT.

We finish the paper with an application of the previous result, obtaining a partial answer
to the question of whether the tensor product of GLIT algebras is again GLIT.
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Proposition 4.16 Let T be a GLIT K-algebra and Q a finite quiver without oriented cycles.
Then T ⊗K KQ is GLIT.

Proof From [1, Lemma 1.12 ] we know that

T ⊗K KQ =

⎛
⎜⎜⎜⎝
T d1,1 0 · · · 0
T d2,1 T d2,2 · · · 0

...
...

...
...

T dn,1 T dn,2 · · · T dn,n

⎞
⎟⎟⎟⎠ ,

where di, j = dimK εiKQε j . Because of the way this isomorphism is defined one can see
that this algebra can be thought of as a triangular matrix algebra of the form

⎛
⎜⎜⎜⎝
T d1,1 0 · · · 0
T d2,1 T d2,2 · · · 0

...
...

...
...

T dn,1 T dn,2 · · · T dn,n

⎞
⎟⎟⎟⎠ ,

where the bimodule M = (T dn,1 , T dn,2 , · · · , T dn,n−1) is free as a left T dn,n = T -module and
projective as a right module over the top left matrix algebra, since it is a direct sum of certain
number of copies of each of the previous rows. Using induction on n we get the desired result
by applying Corollary 4.15. ��
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