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ABSTRACT
This work aims to study off-policy evaluation (OPE) under scenarios where two key reinforcement learning
(RL) assumptions—temporal stationarity and individual homogeneity are both violated. To handle the
“double inhomogeneities”, we propose a class of latent factor models for the reward and transition functions,
under which we develop a general OPE framework that consists of both model-based and model-free
approaches. To our knowledge, this is the first article that develops statistically sound OPE methods in
offline RL with double inhomogeneities. It contributes to a deeper understanding of OPE in environments,
where standard RL assumptions are not met, and provides several practical approaches in these settings.
We establish the theoretical properties of the proposed value estimators and empirically show that our
approach outperforms state-of-the-art methods. Finally, we illustrate our method on a dataset from the
Medical Information Mart for Intensive Care. An R implementation of the proposed procedure is available at
https://github.com/ZeyuBian/2FEOPE. Supplementary materials for this article are available online, including
a standardized description of the materials available for reproducing the work.
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1. Introduction

Reinforcement learning (RL, Sutton and Barto 2018) aims to
optimize an agent’s long-term reward by learning an optimal
policy that determines the best action to take under every
circumstance. RL is closely related to the dynamic treatment
regimens (DTR) or adaptive treatment strategies in statistical
research for precision medicine (Murphy 2003; Robins 2004;
Qian and Murphy 2011; Kosorok and Moodie 2015; Shi et al.
2018; Tsiatis et al. 2019; Qi et al. 2020; Zhou, Zhu, and Qu 2024),
which seeks to obtain the optimal treatment policy in finite
horizon settings with a few treatment stages that maximizes
patients’ expected outcome. Nevertheless, statistical methods for
DTR mentioned above normally cannot handle large or infinite
horizon settings. They require the number of trajectories to tend
to infinity to achieve estimation consistency, unlike RL, which
works even with finite number of trajectories under certain con-
ditions. In addition to precision medicine, RL has been applied
to various fields, such as games (Silver et al. 2016), ridesharing
(Xu et al. 2018), mobile health (Liao, Klasnja, and Murphy 2021)
and robotics (Levine et al. 2020).

In this article, we focus on off-policy evaluation (OPE), whose
objective is to evaluate the value function of a given target
policy using data collected from a potentially different policy,
known as the behavior policy. OPE is important in applica-
tions in which directly implementing a policy involves poten-
tial risks and high costs. For instance, in healthcare, it would
be expensive to conduct a randomized experiment to recruit
many individuals and follow them up for the duration of the
entire experiment. Meanwhile, it might be unethical to directly

CONTACT Chengchun Shi C.Shi7@lse.ac.uk Department of Statistics, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

apply a new treatment policy to some individuals without offline
validation. It is therefore important to develop RL methods only
using historical data, and OPE is particularly vital in offline RL.
Generally speaking, existing OPE methods can be divided into
four categories: model-based methods (Gottesman et al. 2019;
Zhang et al. 2020), importance sampling methods (Precup 2000;
Liu et al. 2018; Wang, Qi, and Wong 2021), direct methods
(Luckett et al. 2020; Liao, Klasnja, and Murphy 2021; Shi et al.
2022), and doubly robust methods (Jiang and Li 2016; Uehara,
Huang, and Jiang 2020; Kallus and Uehara 2022; Liao et al. 2022).
See Uehara, Shi, and Kallus (2022) and the references therein for
an overview.

Motivation. Most methods in the RL literature rely on the
following two critical assumptions: temporal stationarity and
individual homogeneity. The temporal stationarity assumption
requires that the system dynamics for each subject do not
depend on the time whereas individual homogeneity requires
the system dynamics at each time to be identical across all
subjects. Nonetheless, both conditions are likely to be violated
in many RL applications, for example, mobile health and infec-
tious disease control (Hu et al. 2022). This work draws partial
motivation from the longitudinal data of septic patients obtained
from the Medical Information Mart for Intensive Care (MIMIC-
III, Johnson et al. 2016), a database containing information on
critical care patients. Sepsis is a severe and potentially fatal
condition that occurs when the human body’s response to an
infection injures its own tissues and organs (Singer et al. 2016). It
can progress rapidly and cause multiple organ failures, resulting
in an increased risk of death. Prompt treatment of sepsis is
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thus essential for improving patient outcomes and reducing
mortality rates. However, the heterogeneity in patients’ response
to sepsis treatments (Evans et al. 2021), as well as a potentially
nonstationary environment (the data includes patients’ medical
information over 10 years) make it challenging to effectively
manage the illness using existing RL methods. Our analysis
provides insights into evaluating the impact of different treat-
ment strategies, facilitating the development of effective and
personalized approaches to sepsis care.

In the statistical literature, Li et al. (2022) and Wang, Shi, and
Wu (2023) developed hypothesis testing procedures to assess
the stationarity assumption in RL, based on which policy learn-
ing procedures were proposed to handle possibly nonstation-
ary environments. Chen, Song, and Jordan (2022) developed
a transferred Q-learning algorithm and an auto-clustered pol-
icy iteration algorithm to handle heterogeneous data. However,
these methods require either temporal stationarity or individual
homogeneity, and would fail in doubly inhomogeneous envi-
ronments when both assumptions are violated. Hu et al. (2022)
proposed an algorithm to adaptively split the data into rectangles
in which the system dynamics are identical over time and across
individuals. They studied policy learning instead of OPE. In
addition, they imposed a latent group structure over time and
population. This structural assumption can be violated when the
dynamics vary smoothly over both population and time.

Challenges. OPE is substantially more challenging under the
doubly inhomogeneous environments. First, the evaluation tar-
get is different. In particular, most existing solutions devel-
oped in doubly homogeneous environments have predomi-
nantly focused on evaluating the expected long-term reward
following the target policy aggregated over time and population.
In contrast, the following four time- and/or individual-specific
values are of particular interest in the presence of double inho-
mogeneities:

1. The expected long-term reward aggregated over both time
and population;

2. The expected long-term reward aggregated over time for a
given subject;

3. The expected reward at a given time aggregated over popula-
tion;

4. The expected reward at a given time for a given subject.

Second, an unresolved challenge is how to efficiently borrow
information over time and population for OPE. On one hand, to
account for the subject heterogeneity or temporal nonstation-
arity, one could conduct OPE based on the data within each
individual trajectory or at a given time. However, this approach
may result in an estimator with a high variance. On the other
hand, naively pulling data over population and time without
careful considerations would lead to biased estimators.

Contributions. This work makes the following contributions.
First, to our knowledge, it is the first study to investigate OPE
in doubly inhomogeneous RL domains. Unlike prior works that
primarily focused on evaluating the average effect over time and
population, we provide a systematic approach for examining val-
ues that are specific to time and/or individuals. These values hold
particular importance in the context of double inhomogeneities.

Second, we present a comprehensive framework for doubly
inhomogeneous OPE which comprises both model-free and
model-based methods. To effectively use information in the
presence of temporal nonstationarity and individual hetero-
geneity, we introduce a class of two-way doubly inhomogeneous
decision process (TWDIDP) models and develop correspond-
ing policy value estimators. Our proposal shares similar spirits
with the two-way fixed effects model that is widely studied in
economics and social science (Angrist and Pischke 2009; Imai
and Kim 2021). Nonetheless, our model is substantially more
complicated due to the incorporation of carryover effects: in
our model, the current treatment not only affects its immediate
outcome, but also impacts the future outcomes through its effect
on the future observation via the transition function. In contrast,
the fixed effects models commonly employed in the panel data
literature tend to exclude carryover effects (Imai and Kim 2019;
Arkhangelsky et al. 2021).

Finally, we systematically investigate the theoretical prop-
erties of the proposed model-free method. In particular, we
derive the convergence rates of various proposed value esti-
mators, showing that the estimated average effect, individual-
specific effect, time-specific effect and individual- and time-
specific effect converge at a rate of (NT)−1/2, T−1/2, N−1/2

and min−1/2(N, T), respectively, up to some logarithmic factors,
where N is the number of trajectories and T is the number of
time points. We further establish the limiting distributions of
these estimators.

Organization. The rest of this article is organized as follows. In
Section 2, we introduce the proposed doubly inhomogeneous
decision process model to incorporate temporal nonstationarity
and individual heterogeneity. In Sections 3 and 4, we present our
proposed model-free and model-based methods. We analyze
their statistical properties in Section 5. A series of compre-
hensive simulation studies are conducted in Section 6. Finally,
in Section 7, we illustrate the proposed approach using the
MIMIC-III dataset.

2. Two-way Doubly Inhomogeneous Decision
Processes

Data. We first describe the dataset. We assume the offline data
consists of N independent trajectories, each with T many time
points, and can be summarized as the following observation-
action-reward triplets {(Oi,t , Ai,t , Ri,t) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}
where i indexes the ith individual and t indexes the tth time
point. For example, in mobile health applications, Oi,t ∈ R

d

denotes the vector of covariates measured from the ith individ-
ual at time t where d is the dimension of the observation, Ai,t
denotes the treatment assigned to the ith individual at time t,
and Ri,t ∈ R denotes the ith individual’s clinical outcome at
time t. Let O and A denote the observation and action space,
respectively. We assume A is a discrete space whereas, O is a
compact subspace of Rd, and the reward is uniformly bounded.
The bounded rewards assumption is commonly imposed in the
RL literature (see e.g., Fan et al. 2020; Li et al. 2023).

Model. We next present the proposed two-way doubly inhomo-
geneous decision process model. In the RL literature, a common
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practice is to employ the Markov decision process (MDP, Puter-
man 2014) to model the data generating process. For simplicity,
for now we assume both the observation and reward spaces are
discrete, the MDP model essentially requires the reward and
future observation to be conditionally independent of the past
data history given the current observation-action pair so that
the system dynamics are uniquely determined by the following
Markov transition function p,

P(Oi,t+1 = o′, Ri,t = r|Ai,t = a, Oi,t = o,
{Oi,j, Ai,j, Ri,j}1≤j<t) = p(o′, r|a, o), (2.1)

which is assumed to be doubly homogeneous, that is, constant
over time and population.

Instead of adopting the MDP model, we propose to use a
more general model that relies on two key assumptions. First,
we assume the existence of a set of individual- and time-specific
latent factors {Ui}N

i=1 and {Vt}T
t=1 conditional on which the

Markov assumption holds. More specifically, for any i and t, we
assume

P(Oi,t+1 = o′, Ri,t = r|Ui = ui, Vt = vt , Ai,t = a, Oi,t = o,
{Oi,j, Ai,j, Ri,j, Vj}1≤j<t)

= p(o′, r|ui, vt , a, o). (2.2)

Remark 1. Unlike (2.1), the transition function in (2.2) is both
individual- and time-dependent due to the inclusion of Ui and
Vt . The individual-specific factors can be viewed as certain
individual baseline information (e.g., educational background)
that does not vary over time whereas the time-specific factors
correspond to certain external factors (e.g., holidays) that have
common effects on all individuals.

Remark 2. Both {Ui}N
i=1 and {Vt}T

t=1 are unobserved in practice,
leading to the violation of the Markov assumption. Indeed, the
proposed data generating process can be viewed as a special class
of partially observable MDPs (POMDPs, Sutton and Barto 2018)
where the unobserved factors either do not evolve over time
(e.g., {Ui}N

i=1) or do not vary across individuals (e.g., {Vt}T
t=1).

More generally, one may allow the latent factors to evolve over
both time and population. However, this makes the subsequent
policy evaluation extremely challenging. In contrast, our pro-
posal decomposes these factors into individual-only and time-
only effects, which can be consistently estimated when both N
and T diverge to infinity. Such latent factor models are widely
used in finance (Ross 1976), economics (Bai and Ng 2002) and
psychology (Bollen 2002).

Remark 3. The assumption of discrete rewards and observa-
tions is used merely to simplify the presentation. Our proposed
methodology can be equally applied to scenarios with con-
tinuous observation/reward spaces as well. In these cases, we
use p(•, •|Ui, Vt , Ai,t , Oi,t) to represent the conditional density
function of (Oi,t+1, Ri,t) given Ui, Vt , Ai,t , and Oi,t .

Second, we impose an additivity assumption, which requires
the transition function p to be additive in u, v and (a, o), i.e.,

p(o′, r|ui, vt , a, o) = πupui(o′, r|ui)

+πvpvt (o′, r|vt) + π0p0(o′, r|a, o) (2.3)

for some nonnegative constants πu, πv, and π0 that satisfy πu +
πv +π0 = 1 and some unknown conditional probability density
(mass) functions pu, pv, and p0.

The additivity assumption in (2.3) essentially assumes that
the transition function corresponds to a mixture of pu, pv, and
p0, with the mixing weights given by πu, πv, and π0, respec-
tively. Under the additivity assumption, pu and pv correspond
to the individual- and time-specific effects, respectively, and
are independent of the current observation-action pair. The
function p0 corresponds to the main effect shared over time
and subjects. Meanwhile, such an additivity assumption can be
further relaxed; see Section 3.2 for details.

Multiplying both sides of (2.3) by r and integrating with
respect to r and o′, we obtain

Ri,t = θi + λt + r1(a, o) + εi,t , (2.4)

where θi = πu
∫

rpui(o′, r|ui)drdo′, λt =
πv

∫
rpvt (o′, r|vt)drdo′, r1(a, o) = π0

∫
rp0(o′, r|a, o)drdo′,

and εi,t = Ri,t − E(Ri,t|Ai,t = a, Oi,t = o) has conditional
mean zero. Models of this type are referred to as the two-way
fixed-effects (2FE) model in the panel data literature (see e.g.,
Imai and Kim 2021). Nonetheless, our model allows the current
treatment to not only affect the immediate outcome, but also
impact the future outcomes through its effect on the future
observations via the transition function in (2.3).

Remark 4. Our additivity assumption (2.3) is motivated by the
increased popularity of the fixed-effect models in the panel data
literature, due to its interpretability and the ability to account for
unobserved variables. As commented by Green, Kim, and Yoon
(2001), fixed effects regression can scarcely be faulted for being
the bearer of bad tidings. Such a model has emerged as a crucial
tool assisting researchers in various fields such as medical and
political science, facilitating the derivation of scientific conclu-
sions (Hotz and Xiao 2011; Bachhuber et al. 2014; Dwivedi et al.
2022).

To summarize the data generating process, the latent factors
{Ui}i and {Vt}t are sampled prior to all interactions with the
environment. For a specific trajectory i, at each time point t, we
observe Oi,t according to the transition model (2.3). Next, the
agent takes an action Ai,t according to the observed data history
and receives an immediate reward Ri,t according to (2.3). Finally,
the environment transits into the next state, yielding Oi,t+1. A
causal diagram illustrating the data generating procedure can
be found in Figure 1 of the supplementary article. In what
follows, we assume the latent factors {Ui}i and {Vt}t are fixed and
use {ui}i and {vt}t to denote their realizations. Other random
variables in the environment will not alter their values. In the
sequel, all the expectations mentioned are implicitly conditional
on {Ui}i and {Vt}t .

Estimands. Finally, we define our target estimand of interest.
A policy prescribes how an agent acts and makes decisions.
Mathematically, it maps the space of observed data history to
a probability mass function on the action space, representing
the probability that a given individual receives a given treatment
at each time point. Throughout this article, we focus on evalu-
ating stationary policies where the action selection probability
depends on history only through the current observation and
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this dependence is stationary over time. More specifically, fol-
lowing a given stationary policy π , the ith individual will receive
treatment a with probability π(a|Oi,t). Meanwhile, the proposed
method can be extended to evaluate possibly history-dependent
policies; see Section A.2 of the supplementary article.

For a target policy π , we define the following four
estimands of interest: (i) the average effect ηπ :=
(NT)−1 ∑N

i=1
∑T

t=1 E
π (Ri,t); (ii) the individual-specific

effect given the observed initial observation ηπ
i :=

T−1 ∑T
t=1 E

π (Ri,t|Oi,1); (iii) the time-specific effect
ηπ

t := N−1 ∑N
i=1 E

π (Ri,t) and (iv) the individual- and time-
specific effect ηπ

i,t := E
π (Ri,t|Oi,1). Here, Eπ means that the

expectation is taken by assuming the system dynamics follow
the target policy π . In defining ηπ

i and ηπ
i,t , we include Oi,1 in

the conditioning set to eliminate their variability resulting from
marginalizing over the initial observation distribution. This
is reasonable, as the initial observation distribution may no
longer be identical across different subjects due to individual
heterogeneity, making it impossible to infer consistently from
the data. We focus on estimating (iv) ηπ

i,t in the next two sections,
based on which estimators for (i)–(iii) can be easily derived by
taking the average over time and/or population.

3. Model-free OPE

We now develop model-free methodologies to learn ηπ
i,t : the

ith subject’s average reward at time t given Oi,1. Model-free
methods construct the estimator without directly learning the
transition function. Compared to model-based methods which
directly learn the transition function to derive the estimator,
they are preferred in settings with a large observation space, or
where the transition function is highly complicated and can be
misspecified. In RL, both model-free and model-based methods
have their own unique strengths, and we discuss this point
thoroughly in Section A.3 of the supplementary article.

Challenge. Before presenting our proposal, we outline the chal-
lenges in consistently estimating the policy value. First, existing
model-free methods developed in the RL literature (see e.g.,
Luckett et al. 2020; Shi et al. 2022) focused on learning the long-
term reward in a stationary environment. These methods are
not applicable to learn the expected reward at a given time with
nonstationary transition functions. Second, in the DTR litera-
ture, backward induction or dynamic programming is widely
employed to evaluate the value function in the sparse reward
setting where the reward is obtained at the last stage and all
the immediate rewards equal zero. It is applicable to evaluate
E

π (Ri,t) in nonstationary environments. Nonetheless, it requires
all individual trajectories to follow the same distribution and is
thus inapplicable to our setting.

Q-function. Our proposal extends the backward induction to
the doubly inhomogeneous environments. We first define the
following individual- and time-specific Q-function

Qπ
i,t1,t2(o, a) = E

π (Ri,t2 |Ai,t1 = a, Oi,t1 = o), (3.1)

for any 1 ≤ i ≤ N and 1 ≤ t1 ≤ t2 ≤ T. To elaborate on
this definition, we consider two particular choices of t1. First,
when t1 = t2, (3.1) reduces to the conditional mean of Ri,t2 given

(Ai,t2 , Oi,t2 ), which equals θi +λt + r1(Ai,t , Oi,t) (see (2.4)) under
additivity. Second, when t1 = 1, it is immediate to see that

ηπ
i,t2 =

∑
a

Qπ
i,1,t2(Oi,1, a)π(a|Oi,1). (3.2)

As such, it suffices to learn Qπ
i,1,t to construct estimators for ηπ

i,t .

Remark 5. In the RL literature, the Q-function is typically
defined as the cumulative reward starting from a given time
t1. Our Q-function in (3.1) differs in that: (i) it is individual-
specific where the subscript i encodes its dependence upon the
latent factor ui; (ii) it is the conditional mean of the immediate
reward at time t2 only instead of the cumulative reward since our
objective here lies in evaluating E

π (Ri,t2).

Backward induction. We propose to use backward induction to
compute an estimated Q-function Q̂π

i,1,t for Qπ
i,1,t and then plug

this estimator into (3.2) to construct the policy value estima-
tor. To begin with, consider the reward function {Qπ

i,t,t}i,t . As
shown in (2.4), under the two-way fixed-effect model, we have
Qπ

i,t,t(o, a) = r1(o, a) + θi + λt for any i and t. This motivates us
to consider the following optimization problem:

(̂θ , λ̂, r̂1) = arg min
θ ,λ, r1

∑
i,t

[Ri,t − θi − λt − r1(Oi,t , Ai,t)]2, (3.3)

where θ = (θ1, . . . , θN)� ∈ R
N , and λ = (λ1, . . . , λT)� ∈ R

T .
To guarantee the uniqueness of the solution to (3.3), we impose
the identifiability constraints

∑
i θi = ∑

t λt = 0. There are
other constraints one could consider, but they all lead to the
same final estimators.

We next estimate {Qi,t−1,t}i,t . According to the Bellman equa-
tion, we obtain

Qi,t−1,t(Oi,t−1, Ai,t−1)

= E

[ ∑
a

π(a|Oi,t)Qi,t,t(Oi,t , a)
∣∣Ai,t−1, Oi,t−1

]
.

Under the additivity assumption, we can similarly obtain a two-
way decomposition for Qi,t−1,t ; see Proposition 1 for a formal
statement. This allows us to solve a constrained optimization
problem similar to (3.3) to estimate Qi,t−1,t . We next repeat this
procedure to recursively estimate {Qi,t−2,t}i,t , {Qi,t−3,t}i,t , · · · ,
{Qi,1,t}i,t based on the Bellman equation and finally construct the
policy value estimator via (3.2). We summarize our estimating
procedure in Algorithm 1. The following proposition formally
states the two-way structure of these Q-functions.

Proposition 1. For any integer k < t, the Q-function
Qπ

i,t−k+1,t(o, a) satisfies

Qπ
i,t−k+1,t(o, a) = rπ

k (o, a) + θπ
k,i + λπ

k,t ,

where θπ
k,i and λπ

k,t depend only on i, k, π and t, k, π , respectively.

In what follows, we omit π in rπ
k (o, a), θπ

k,i, and λπ
k,t when

there is no confusion.
To conclude this section, we draw a comparison with the

classical backward induction in the DTR literature (Murphy
2003; Robins 2004). First, the classical backward induction algo-
rithm aims to learn the Q-function under an optimal policy and
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Algorithm 1 Pseudocode for Estimating ηπ
i,t∗ .

1: function (Ri,t , Ai,t , Oi,t for 1 ≤ i ≤ N, 1 ≤ t ≤ T)
2: Set iteration counter k ← 1.
3: Solve (θ̂i, λ̂t , r̂1) = arg minθi ,λt ,r1

∑
i,t[Ri,t − θi − λt − r1(Oi,t , Ai,t)]2.

4: Compute Q̂π
i,t,t(Oi,t , a) = r̂1(Oi,t , a) + θ̂i + λ̂t , for all i, t, and a ∈ A.

5: repeat
6: k ← k + 1
7: For all i and t ≥ k, solve

min
θk,i ,λk,t ,rk

∑
i,t

[∑
a∈A

π(a|Oi,t−k+2)Q̂π
i,t−k+2,t(Oi,t−k+2, a) − θk,i − λk,t − rk(Oi,t−k+1, Ai,t−k+1)

]2

.

8: Compute Q̂π
i,t−k+1,t(Oi,t−k+1, a) = r̂k(Oi,t−k+1, a) + θ̂k,i + λ̂k,t , for a ∈ A.

9: until k = t∗
10: η̂π

i,t∗ = ∑
a Q̂π

i,1,t∗ (Oi,1, a)π(a|Oi,1)

derive the optimal policy as the greedy policy with respect to the
estimated Q-function. To the contrary, the proposed algorithm
learns the Q-function under a fixed target policy for the pur-
pose of policy evaluation. Second, classical backward induction
requires the computation of the Q-function recursively from
time t till the beginning. However, it is worth mentioning that
our estimated Q-function converges exponentially fast to a con-
stant function with respect to the lag k (see Section B.2.2 of the
supplementary material). We refer to this phenomenon as Q-
function degeneracy. As such, early stopping can be potentially
employed in Algorithm 1 to speed up the computation.

Finally, the proposed backward induction allows us to to
efficiently borrow information under the additivity assumption.
Specifically, during each iteration, we pull all the relevant data
together to estimate the Q-function. This allows us to consis-
tently estimate the main effect (shared by all observations) at
a rate of (NT)−α which depends on both N and T, and the
exponent 0 < α ≤ 1/2 depends on the nonparametric methods
being used to solve the optimization problem. Meanwhile, the
two-way fixed effects θs and λs converge at T−1/2 and N−1/2,
respectively, up to some logarithmic factors. To the contrary, the
estimator obtained via the classical backward induction typically
converges at a rate of N−α′ for some 0 < α′ ≤ 1/2 in individual-
homogeneous and history-dependent1 environments.

3.1. A Linear Sieve Estimator for Two-Way Fixed Effects
Model

Notation. Given arbitrary {xi,t}1≤i≤N,1≤t≤T , let x ∈ R
NT denote

the vector whose ((t − 1)N + i)th element equals xi,t . That is,
x is constructed by stacking the N elements at the first time
point, followed by the N elements at the second time point, and
continuing in this manner until the N elements from the final
time point are included, that is,

x = (x1,1, x2,1, . . . , xN,1, x1,2, . . . , xN−1,T , xN,T)�.

Similarly, given a set of vectors {xi,t}i,t , let X denote the matrix
whose ((t−1)N+i)th row equals xi,t . To implement Algorithm 1,
we need to solve two-way fixed effects models repeatedly for
value function estimation. To simplify the presentation, we focus

1The transition function depends on the entire history instead of the current
observation-action pair.

on the estimation of Qπ
i,t,t(Oi,t , ai,t) (see (3.3)). We propose to

approximate the main effect function r1(o, a) using linear sieves
(Huang 1998; Chen and Christensen 2015). Under mild condi-
tions, there exists a set of vectors {β∗

a} such that the approxima-
tion error is negligible, that is, supo,a |r1(o, a) − �L(o)�β∗

a| =
O(L−p/d), where �L(o) is a vector consisting of L sieve basis
functions, for example, splines or wavelet bases, and p > 0
measures the smoothness of the system dynamics; see Section
B.2.1 for more details. For simplicity, we now focus on the binary
action space setting, in which A = {0, 1}.

The two-way fixed effects model in (2.3) can be repre-
sented in the following matrix form: R = Bα + M + ε,
where R = (R1,1, R2,1, . . . , RN,1, R1,2, . . . , RN−1,T , RN,T)� ∈
R

NT , α = (θ�, λ�)�, B = (1T ⊗ IN , IT ⊗ 1N) ∈
R

NT×(N+T) is the design matrix, IN is a N × N identity
matrix, 1T is a vector of length T with all elements one,
M = (r1(O1,1, A1,1), r1(O2,1, A2,1), . . . , r1(ON,1, AN,1), r1(O1,2
, A1,2), · · · , r1(ON,T , AN,T))� ∈ R

NT , and ⊗ is the Kronecker
product. In what follows, we will omit the indices of these
matrices and vectors when there is no confusion. Let �i,t =
((1 − Ai,t)�

�
L (Oi,t), Ai,t�

�
L (Oi,t))�, and let � be the R

NT×2L

matrix
(��

1,1, ��
2,1, . . . , ��

N,1, ��
1,2, . . . , ��

N−1,T , ��
N,T)�.

By the Frisch–Waugh–Lovell theorem (Frisch and Waugh 1933;
Lovell 1963), a closed-form estimator of β = (β�

0 , β�
1 )� can be

obtained accordingly:
β̂ = (��(I − P)�)−1��(I − P)R, (3.4)

where P is the projection matrix: P = B(B�B)+B�, and
(B�B)+ is the Moore–Penrose inverse of the matrix B�B.
Given β̂ , the estimator for the main effect function r1(Oi,t , Ai,t)
(denoted by r̂1) can then be obtained, based on which the fixed
effects can be estimated. Specifically, under the constraints that∑N

i=1 θi = ∑T
t=1 λt = 0, we have

θ̂i = T−1
T∑

t=1
(Ri,t − r̂1(Oi,t , Ai,t)), and

λ̂t = N−1
N∑

i=1
(Ri,t − r̂1(Oi,t , Ai,t)).

The resulting estimated Q-function is given by Q̂π
i,t,t(o, a) = θ̂i+

λ̂t + �L(o)�β̂a.
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3.2. Beyond the Additivity Assumption

In this section, we discuss two extensions of the additivity
assumption (2.3). This first extension allows the time- and
individual-specific latent factors to additionally depend on
the action, whereas the second extension permits the system
dynamics to incorporate interactive effects between time and
individual.

Action-dependent time- and individual-specific effects. We first
consider the following relaxation of the additivity assumption:

p(o′, r|ui, vt , a, o) = πupui,a(o′, r|ui) + πvpvt ,a(o′, r|vt)

+π0p0(o′, r|a, o),

such that πu + πv + π0 = 1. That is, we now allow both the
pui(o′, r|ui) and pvt (o′, r|vt) in (2.2) to depend on the action a,
and now the Q-function Qπ

i,t−k+1,t(o, a) satisfies

Qπ
i,t−k+1,t(o, a) = rπ

k (o, a) + θπ
k,i(a) + λπ

k,t(a),

where θπ
k,i(a) and λπ

k,t(a) are action-dependent. Since a is binary,
each iteration requires to estimate 2N + 2Tk fixed effects. The
proposed approach can be easily extended to solve this new
problem without extra complications. We omit the details to save
space.

Interactive time- and individual-specific effects. The second
extension is motivated by the factor model, which is exten-
sively used in the panel data literature to relax the additivity
assumption (Bai and Ng 2002). In our setup, consider the reward
regression model in (2.4). The factor model replaces the additive
terms θi + λt in (2.4) with an interaction term γ �

i αt , resulting
in

Ri,t = γ �
i αt + r1(Ai,t , Oi,t) + εi,t , (3.5)

where γ i ∈ R
h and αt ∈ R

h denote the vectors of unobserved
common time- and individual-specific factors, respectively. By
definition, it covers the additive model as a special case by setting
h = 2, γ i = (1, θi)� and αt = (λt , 1)�.

Combining (3.5) together with a completeness assumption,
which requires functions in the form of the right-hand-side of
(3.5) to be closed under the Bellman operator (see Assumption 2
in Section 5), we can show that Qi,t−k+1,t maintains a factor
structure for any k < t. Similar to Algorithm 1, backward
induction remains applicable for estimating ηπ

i,t .
Finally, we provide a model diagnostic procedure in Sec-

tion A.1 in the supplementary article to assess the additivity
assumption. Specifically, we tackle the model selection problem
of determining whether the additive or interactive model better
fits the data. Therein, we apply this procedure across various of
synthetic environments to demonstrate its effectiveness.

4. Model-based OPE

In this section, we develop model-based methods that derive
the off-policy value estimator by learning the system dynamics.
Recall that under the additivity assumption,

Ri,t = θi + λt + r1(Oi,t , Ai,t) + εi,t .

As we discussed in Section 3, the main effect r1, as well as the
individual- and time-specific effects can be estimated by solving
the following optimization problem,

arg min
{θi}i,{λt}t ,r1

∑
i,t

[Ri,t − θi − λt − r1(Oi,t , Ai,t)]2.

In addition, we need to estimate the mixing probabilities πu,
πv, π0 as well as the distribution functions pui(o′|ui), pvt (o′|vt),
p0(o′|a, o), obtained by marginalizing over pui(o′, r|ui),
pvt (o′, r|vt), p0(o′, r|a, o) in (2.3).

Given these estimators, we employ a simulation-based
method to construct the policy value. To be more specific,
based on the estimated transition function, we simulate an
observation O∗

i,2 based on the observed Oi,1 under the target
policy π . We next sequentially simulate a sequence of obser-
vations {O∗

i,t}t under π and compute the estimated reward
π(a|O∗

i,t)(̂r1(O∗
i,t , a) + θ̂i + λ̂t). Finally, we repeat this procedure

sufficiently many times and average all the estimated rewards
across different simulations.

Likelihood. It remains to estimate pu, pv, p0 and πu, πv, π0. Given
the latent factors, the likelihood function is proportional to the
following,

N∏
i=1

T∏
t=2

p(Oi,t|ui, vt−1, Ai,t−1, Oi,t−1; 	)

=
N∏

i=1

T∏
t=2

[πupui(Oi,t|ui; 	u) + πvpvt (Oi,t|vt−1, 	v)

+π0p0(Oi,t|Ai,t−1, Oi,t−1; 	0)], (4.1)

where we parameterize the transition model by 	 =
{π0, πu, πv, 	0, 	v, 	u}, and 	0, 	v, 	u are the parameters
corresponding to models p0, pv, and pu, respectively.

We introduce a latent variable Zi,t ∈ {0, 1, 2} such that Zi,t =
0, if Oi,t is generated by p0, Zi,t = 1, if Oi,t is generated by pv,
and Zi,t = 2 otherwise. Directly maximizing the likelihood in
(4.1) is challenging, since it requires to marginalize over Zi,t .
We propose to use the EM (Dempster, Laird, and Rubin 1977)
algorithm for parameter estimation. The EM algorithm recur-
sively alternates between an E-step for computing conditional
expectation and an M-step for maximizing the likelihood. We
detail the two steps below.

E-step. Similar to (4.1), the complete log-likelihood involving
{Oi,t}i,t and {Zi,t}i,t is

l(O, Z|U , V , A; 	)

∝
N∑

i=1

T∑
t=2

log p(Oi,t|Zi,t , ui, vt−1, Ai,t−1, Oi,t−1; 	)p(Zi,t ; 	)

=
N∑

i=1

T∑
t=2

[I(Zi,t = 0) log(π0p0(Oi,t|Ai,t−1, Oi,t−1; 	0))

+ I(Zi,t = 1) log(πvpvt (Oi,t|vt ; 	v))

+ I(Zi,t = 2) log(πupui(Oi,t|ui; 	u))]. (4.2)

Given a current estimate of 	, say 	̃, define �(	|	̃)

as the expected value of l(O, Z|U , V , A; 	) with respect
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to the currently estimated conditional distribution function
p(Z|U , V , O, A; 	̃). We aim to calculate � in this step. It follows
from (4.2) that

�(	|	̃) =
N∑

i=1

T∑
t=2

[p(Zi,t = 0|Oi,t , Ai,t−1, Oi,t−1; 	̃0)

log(π0p0(Oi,t|Ai,t−1, Oi,t−1; 	0))

+ p(Zi,t = 1|Oi,t , vt ; 	̃v) log(πvpvt (Oi,t|vt ; 	v))

+ p(Zi,t = 2|Oi,t , ui; 	̃u) log(πupui(Oi,t|ui; 	u))].
(4.3)

M-step. We aim to update the model parameter 	new that
maximizes �(	|	̃) with respect to 	, that is, 	new =
arg max	 �(	|	̃). It follows from (4.3) that

π0,new = 1
N(T − 1)

N∑
i=1

T∑
t=2

p(Zi,t = 0|Oi,t , Ai,t−1, Oi,t−1; 	̃0),

πv,new = 1
N(T − 1)

N∑
i=1

T∑
t=2

p(Zi,t = 1|Oi,t , vt ; 	̃v),

πu,new = 1
N(T − 1)

N∑
i=1

T∑
t=2

p(Zi,t = 2|Oi,t , ui; 	̃u).

The rest of the parameters can be updated using any derivative-
based (e.g., quasi-Newton) or derivative-free (e.g., Nelder-
Mead) algorithm. Our final estimator is obtained by repeating
the E-step and the M-step until convergence.

Choice of the parametric family. In our implementation,
when the observation is continuous, we posit normal distri-
bution functions for pui(o′|ui), pvt (o′|vt), p0(o′|a, o), that is,
pui(o′|ui) = φ(o′; μui , 
ui), pui(o′|vt) = φ(o′; μvt , 
vt ) and
p0(o′|a, o) = φ(o′; μ0(a, o), 
0(a, o)) where φ(•; μ, 
) denotes
a d-dimensional multivariate normal density function with
mean vector μ and covariance matrix 
. We further use a linear
model for the mean function μ0, that is, μ0(a, o) = �o+ψa and
a constant model for the covariance function, that is, 
0(a, o) =

0 for any a and o. As such, the set of parameters 	 can be sum-
marized by {π0, πv, πu, {μui}i, {
ui}i, {μvt }t , {
vt }t , �, ψ , 
0}.

5. Theoretical Results

In this section, we focus on investigating the theoretical prop-
erties of our proposed model-free estimators. Consistencies and
convergence rates of the model-based estimators can be estab-
lished based on existing analyses of EM algorithms (see e.g., Wu
1983; Balakrishnan, Wainwright, and Yu 2017) and we omit the
details to save space.

Summary. We begin with a summary of our theoretical results.
Theorem 1 presents the convergence rates of the proposed value
estimators. In particular, for a sufficiently large L, we show that
the estimated average effect η̂π , individual-specific effect η̂π

i ,
time-specific effect η̂π

t and individual- and time-specific η̂π
i,t

converge at a rate of (NT)−1/2, T−1/2, N−1/2 and min−1/2(N, T),
respectively, up to some logarithmic factors. Theorem 2 estab-
lishes the limiting distributions of these estimators. We next
impose some technical assumptions.

Assumption 1 (Realizability). Assume that there exist some con-
stants p and C, such that for any a ∈ A, the reward function
r1(·, a) ∈ �(p, C), where �(p, C) is the Hölder class with the
smoothness parameter p (see Section B.2.1 for the definition).

Assumption 2 (Completeness). For any function g such that
g(·, a) ∈ �(p, C) for all action a, Bπ g(·, a) ∈ �(p, C)

where Bπ denotes the Bellman operator, that is, (Bπ g)(o, a) =∑
a′ EO′∼p0(O′|o,a)[π(a′|O′)g(O′, a′)].

Assumption 3 (Basis functions). (i) supo ‖�L(o)‖2 = O(
√

L)

and λmax[
∫

o∈O �L(o)��
L (o)do] = O(1); (ii) For any C > 0,

supf ∈�(p,C) infβ∈RL supo |��
L (o)β−f (o)| = O(L−p/d); (iii) L �

min(N, T)/ log(NT); (iv) NT � L2p/d.

Assumption 4 (System dynamics). (i) Assume that there exist
random errors {ei,t}i,t that are iid copies of E such that the future
observation Oi,t+1 can be represented as κ(Oi,t , Ai,t , ui, vt , ei,t)
for some function κ that satisfies

sup
a,u,v

E‖κ(o, a, u, v, E) − κ(o′, a, u, v, E)‖2 ≤ q‖o − o′‖2,

sup
o,a

‖κ(o, a, u, v, E) − κ(o, a, u, v, E′)‖2 = O(‖E − E′‖2),

for some 0 ≤ q < 1; (ii) each element of the error E vector
has sub-exponential tail, that is, maxj E exp(t|Ej|) < ∞ for
some t > 0, where Ej denotes the jth element of E; (iii)
the reward function r1, the density functions p0, pu, pv and
N−1 ∑N

i=1 pOi,1 (pOi,1 denotes the density function of Oi,1) are
uniformly bounded. (iv) there exists some constant c ≥ 1 such
that E(

∑T
k=1 ε2

k,i,t|Oi,t = o, Ai,t = a) > c−1, for any i, t, o ∈ O,
a ∈ A, where εk,i,t denotes the Bellman error defined in Section
B.3 of the supplementary article.

Assumption 5 (Stability). For any backward step k (the kth
iteration in Algorithm 1),

λmin[E(��
k Sk�

new
k−1)] ≥ (NT)ρ0 and

‖[E(��
k Sk�k)]−1

E(��
k Sk�

new
k−1)‖2 ≤ ρ1,

for some constants ρ0 > 0 and 0 < ρ1 < 1, where �k is the
matrix consisting of the first N(T − k + 1) rows of matrix �,
Sk and Bk are the residual maker matrix and the design matrix
for the fixed effects at step k, respectively (see Section B.2.4.5
of the supplementary article for the detailed formulation), and
the matrix �new

k is a variant of �k, with its detailed definition
provided in Section B.2.4.5 of the supplementary article.

The realizability and the Bellman completeness assumptions
are commonly imposed in the RL literature (see e.g., Chen
and Jiang 2019; Uehara, Shi, and Kallus 2022). Realizability
essentially requires the Hölder class to be sufficiently rich to
contain r1. The Bellman completeness requires the Hölder class
to be “complete” in the sense that it remains closed under the
Bellman operator. It holds automatically when the transition
function belong to the Hölder class as well. The Hölder smooth-
ness assumption is frequently imposed in the sieve estimation
literature (Huang 1998; Chen and Christensen 2015). It has seen
increasing adoption in the RL literature as well (Fan et al. 2020;
Chen and Qi 2022; Shi et al. 2022). Assumption 3(i) and (ii) are
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automatically satisfied when tensor product B-spline or wavelet
bases is used; see Section 6 of Chen and Christensen (2015)
for a review of these basis functions. Assumption 3(i) upper
bounds the �2 norm of the sieve basis vector and the maximum
eigenvalue of

∫
o∈O �L(o)��

L (o)do whereas Assumption 3(ii)
upper bounds the approximation error of the sieve estimator.
Assumption 3(iii) upper bounds the number of basis functions
and is to guarantee the consistency of the estimator. Assump-
tion 3(iv) lower bounds the number of basis functions, requiring
the bias of our estimator to be much smaller than its standard
deviation so as to establish its asymptotic normality.

Assumption 4(i) requires κ to be Lipschitz continuous.
Assumption 4(ii) requires the error distribution to possess the
sub-exponential tail. These two conditions allow us to establish
concentration inequalities in doubly inhomogeneous environ-
ments. Under the additivity assumption (2.3), there exist func-
tions κ0, κu, κv and random errors E0, Eu, and Ev such that
κ(o, a, u, v, E)

d= I(Z = 0)κ0(o, a, E0) + I(Z = 1)κv(v, Ev) +
I(Z = 2)κu(u, Eu) where the latent variable Z is independent of
(E0, Eu, Ev) and satisfies that P(Z = 0) = π0, P(Z = 1) =
πv, P(Z = 2) = πu. As such, Assumption 4(i) and (ii) are
automatically satisfied if E0, Ev, and Eu have sub-exponential
tails, κ0, κu and κv are Lipschitz continuous as functions of the
error term and

sup
a

E‖κ0(o, a, E0) − κ0(o′, a, E0)‖2 ≤ q‖o − o′‖2, (5.1)

for some 0 ≤ q < 1. Notice that (5.1) is automatically satisfied
for the auto-regressive model O′ = f (O, A)+g(E0) for any f such
that supa |f (o, a) − f (o′, a)| ≤ q‖o − o′‖2. Other examples are
provided in Diaconis and Freedman (1999). Assumption 4(iii)
requires the density of the latent factors and the initial observa-
tions to be upper bounded, thus yielding the uniform bounded-
ness of marginal density functions of {Oi,t}i,t . Assumption 4(iv)
lower bounds the second moment of the temporal difference
error to invoke the martingale central limit theorem (McLeish
1974) to establish the asymptotic normality of our estimator.

The first part of Assumption 5 essentially requires
(NT)−1

E(��
k Sk�k) to be invertible. The second part is

closely related to the irrepresentable or mutual incoherence
condition in the variable selection literature for the selection
consistency of the least absolute shrinkage and selection
operator (Meinshausen and Bühlmann 2006). It imposes a
norm constraint on the regression coefficients of the irrelevant
predictors �new

k−1 on the relevant predictors �k. This type
of assumption is necessary to ensure the consistency of the
subsequent value estimator (Perdomo et al. 2022). Similar
assumptions have been imposed in the statistics literature
(Luckett et al. 2020; Shi et al. 2022).

Results. Finally, we present our theories. Recall that both ηπ
i ,

ηπ
i,t as well as their estimators implicitly depend on the ini-

tial observation Oi,1. As such, it is proper to write them as
functions of Oi,1, for example, ηπ

i,t(o) = E
π (Ri,t|Oi,1 = o),

η̂π
i,t(o) = ∑

a Q̂π
i,1,t(o, a)π(a|o) (ηπ

i (o) and η̂π
i (o) can be sim-

ilarly defined). For these values, instead of considering the
differences η̂π

i,t(Oi,1) − ηπ
i,t(Oi,1) and η̂π

i,t(Oi,1) − ηπ
i (Oi,1), we

focus on the aggregated differences
∫

o∈O [̂ηπ
i,t(o)−ηπ

i,t(o)]do and∫
o∈O[ηπ

i (o) − η̂π
i,t(o)]do to eliminate the variability due to Oi,1.

Theorem 1 (Rates of Convergence). Assume Assumptions 2, 3(i)–
(iii), 4(i)–(iii), and 5 hold. Then with probability approaching 1,
we have for any 1 ≤ i ≤ N and 1 ≤ t ≤ T,

max
i,t

∣∣∣∣∫
o∈O

[̂ηπ
i,t(o) − ηπ

i,t(o)]do
∣∣∣∣

= O(L−p/d) + O(
√

log(NT)/N) + O(
√

log(NT)/T),

max
i

∣∣∣∣∫
o∈O

[̂ηπ
i (o) − ηπ

i (o)]do
∣∣∣∣

= O(L−p/d) + O(
√

log(NT)/T),

max
t

|̂ηπ
t − ηπ

t | = O(L−p/d) + O(
√

log(NT)/N) and

|̂ηπ − ηπ | = O(L−p/d) + O(
√

log(NT)/NT).

Theorem 1 highlights a noteworthy property of our method:
the error bounds of value estimator depend solely on p, d, L,
N, and T, and are independent of the number of backward
inductions conducted. This is due to an important feature of
our approach: the error term at the kth backward stage is of
order O(πk

0 ) (as demonstrated by Lemma 1 in the supplemen-
tary article). Specifically, the error bounds for each value esti-
mator comprise two components: the bias term O(L−p/d) and
the variance term O(N−1/2√log(NT)), O(T−1/2√log(NT)) or
O(

√
log(NT)/NT). The bias term quantifies the approximation

error incurred by using linear sieves to approximate the under-
lying Q-function. Evidently, this bias term diminishes as the
smoothness parameter p increases. As such, it implies that the
smoother the system dynamics are, the smaller the approxi-
mation error becomes. Moreover, for sufficiently large L, it is
evident that due to aggregation over time and population, the
average effect η̂π converges the fastest, whereas the individual-
and time-specific effect η̂π

i,t demonstrates a relatively slower
convergence.

Theorem 2 (Asymptotically Normality). Assume Assump-
tions 2–5 hold. Then when both N and T goes to infinity,

√
min(N, T)σ−1

ηπ
i,t

∫
o∈O

(̂
ηi,t − ηi,t

)
do d−−→ N (0, 1),

√
Tσ−1

ηπ
i

∫
o∈O

(̂ηπ
i − ηπ

i )do d−−→ N (0, 1),

√
Nσ−1

ηπ
t

(̂ηπ
t − ηπ

t )
d−−→ N (0, 1), and

√
NTσ−1

ηπ (̂ηπ − ηπ)
d−−→ N (0, 1),

where σηπ
i,t

, σηπ
i

, σηπ
t and σηπ are some quantities bounded from

below and above (for a detailed formulation, refer to Section B.3
in the supplementary article).

Theorem 2 establishes the asymptotic normality of the value
estimators when both N and T diverges. It lays the founda-
tions for statistical inference (e.g., constructing confidence inter-
vals) of these policy values. Specifically, one could estimate
the standard deviations σηπ

i,t
, σηπ

i
, σηπ

t , σηπ from the data, and
then employ these estimators to construct Wald-type confidence
intervals.
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6. Simulation Studies

In this section, we evaluate our proposed model-based and
model-free approaches through extensive simulations. We begin
by specifying the competing methods. Next, we evaluate the
performance of our model-free method using the RL benchmark
dataset D4RL (Fu et al. 2020). Finally, we investigate the sensi-
tivity of the proposed model-free and model-based estimators to
the additivity assumption. We focus on evaluating the following
four targets: (i) the average reward ηπ ; (ii) the ith subject’s
average reward aggregated over time ηπ

i ; (iii) the average reward
in the population at time t ηπ

t ; (iv) the ith subject’s expected
reward at time t, denoted by ηπ

i,t . Throughout, we evaluate these
four targets for all subjects over the first five time periods in the
offline dataset. Additional numerical results and details about
the environments, can be found in Section C of the supplemen-
tary article.

Competing methods. We compare our proposed approaches
against the following methods, including two direct methods
(DM), three importance sampling (IS) methods, three doubly
robust (DR) methods, and one model-based (MB) method:

(i) DM1: an adaptation of fitted Q-evaluation (Le, Voloshin,
and Yue 2019) to the average reward;

(ii) DM2 : an adaptation of Q-function based least-squares
temporal difference (see, e.g., Shi et al. 2022) to the average
reward setting;

(iii) IS1: sequential IS that uses the product of IS ratios at
each time to address the distributional shift between the
behavior and target policies (Precup 2000);

(iv) IS2: marginalized IS that replaces the product of IS ratios
with the marginalized IS ratio to break the curse of hori-
zon (Liu et al. 2018; Kallus and Uehara 2020);

(v) IS3: marginalized IS based on minimax weight learning
(Uehara, Huang, and Jiang 2020);

(vi) DR1: a doubly robust method that employs the influence
function developed by Jiang and Li (2016) to construct
the estimator and uses approaches from DM1 and IS1 to
compute the Q-function and the IS ratio;

(vii) DR2: a doubly robust method that employs the influence
function developed by Kallus and Uehara (2020) to con-
struct the estimator and uses approaches from DM1 and
IS2 to compute the Q-function and the IS ratio;

(viii) DR3: a doubly robust method that employs the influence
function developed by Liao et al. (2022) to construct the
estimator and uses approaches from DM2 and IS3 to
compute the Q-function and the IS ratio;

(ix) MB: a standard model-based method developed in doubly
homogeneous environments.

We also remark that the three IS and DR methods primarily
differ in their utilization of IS ratios. Specifically, IS1 and DR1
use the sequential IS ratio, requiring the environment to be
individually homogeneous—meaning all individuals’ data tra-
jectories share the same distribution. In contrast, IS2 and DR2
employ the marginalized IS ratio, whose validity additionally
depends on the Markov assumption. Meanwhile, IS3 and DR3
apply another marginalized IS ratio that further requires the
stationarity assumption. However, all the three aforementioned

assumptions are violated in doubly inhomogeneous environ-
ments due to the presence of {Ui}i and {Vt}t . Further details of
these methods are relegated to Section C.1 of the supplementary
article.
Application to D4RL. D4RL consists of a collection of bench-
mark datasets specifically designed for evaluating RL algo-
rithms. Its primary goal is to provide standardized and diverse
data that assist researchers and practitioners in developing
advanced methodologies for offline RL. We evaluate the perfor-
mance of our method across four D4RL environments: Maze2D,
Hopper, HalfCheetah, and Walker2d. For each environment, we
further consider four distinct settings. For Maze2D, the settings
differ in maze layouts and the level of difficulty in reaching the
goal state. The four specific settings we consider include “open,”
“umaze,” “medium,” and “large”. For HalfCheetah, Walker2D
and Hopper, the settings are defined by varying behavior poli-
cies, and we consider the four settings labeled “noisy,” “medium,”
“medium-replay,” and “medium-expert”. The datasets can be
directly downloaded from http://rail.eecs.berkeley.edu/datasets/
offline_rl/. More details can be found in Section C.2 of the
supplementary article and the D4RL Wiki page2.

In all settings, the target policy we aim to evaluate is fixed to a
randomized policy that follows a uniform distribution across the
action space. To simulate doubly inhomogeneous environments,
we inject two-way fixed effects into the original reward Ri,t
from the D4RL datasets, leading to the modified reward R̃i,t =
Ri,t + cos(t) + sin(i). All observations and actions from the
original data remain unchanged. To ensure fair comparison, the
Q-functions in the proposed, direct and doubly robust methods
are all modeled via linear sieves with a quadratic basis function.
For IS and DR, we use a conditional Gaussian model with
a linear conditional mean function and constant variance to
approximate the behavior policy.

MSEs of various model-free estimators are reported in
Tables 1 and 23. Recall that for each environment, we consider
four settings, each containing four evaluation targets. This yields
16 cases for each environment. Overall, the proposed model-free
method (denoted by P1) achieves the best performance in most
cases:

• In Maze2D, our proposed method ranks first in 15 out of 16
cases;

• In HalfCheetah, our method ranks first in 14 out of 16 cases;
• In Walker2D, our proposed method ranks first in 12 out of 16

cases;
• In Hopper, our method ranks first in 8 out of 16 cases.

Meanwhile, there are a few exceptions: In the Hopper-noisy
setting, DR3 outperforms our method for evaluating all the four
estimands. Likewise, for Hopper-medium-replay, IS1 achieves
the best performance for estimating ηπ , ηπ

i , and ηπ
t . Despite

these specific cases, our method exhibits superior performance
in general. It is also worth noting that our proposed method
is not overly sensitive to diverse behavior policies. In contrast,

2https://github.com/Farama-Foundation/d4rl/wiki/Tasks.
3To enhance clarity, we remove the two model-based methods in the tables,

as their performance are much worse than the model-free methods, due
to the difficulty in accurately modeling the complex transition function in
D4RL.

http://rail.eecs.berkeley.edu/datasets/offline_rl/
http://rail.eecs.berkeley.edu/datasets/offline_rl/
https://github.com/Farama-Foundation/d4rl/wiki/Tasks
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Table 1. MSEs of the estimated value (four targets) using our proposed methods and other competing methods for Maze2D and Halfcheetah with N = T = 20 over 20
replications.

Maze2D-open Maze2D-umaze Maze2D-medium Maze2D-large

ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t

P1 0.01 0.45 0.30 0.75 0.02 0.47 0.28 0.73 0.00 0.45 0.31 0.76 0.00 0.45 0.32 0.77
DM1 0.01 0.49 0.34 0.83 0.03 0.52 0.33 0.82 0.01 0.51 0.35 0.85 0.00 0.50 0.36 0.85
DM2 3.75 4.25 3.72 4.23 2.98 3.49 3.93 4.43 0.75 1.26 1.12 1.64 0.55 1.07 0.96 1.48
IS1 0.66 1.17 1.26 3.63 0.42 0.93 0.39 2.06 0.35 0.87 0.62 2.56 0.62 1.13 1.12 3.34
IS2 1.52 2.03 6.10 10.12 1.81 2.32 4.65 8.06 0.93 1.44 3.43 6.67 1.28 1.80 5.22 8.94
IS3 0.01 0.52 0.35 0.85 0.03 0.54 0.33 0.84 0.01 0.52 0.35 0.87 0.00 0.52 0.36 0.87
DR1 0.25 2.99 0.44 7.03 0.99 12.81 3.11 60.60 0.15 1.80 0.38 7.45 0.21 1.41 0.28 4.31
DR2 0.25 3.09 1.16 13.04 0.13 2.68 0.65 9.86 0.18 2.35 0.64 8.82 0.21 1.95 0.64 8.06
DR3 0.01 0.51 0.36 0.86 0.03 0.54 0.33 0.84 0.01 0.52 0.36 0.87 0.00 0.52 0.36 0.88

Halfcheetah-medium Halfcheetah-noisy Halfcheetah-medium-replay Halfcheetah-medium-expert

ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t

P1 0.06 0.56 0.44 0.95 0.06 0.57 0.44 0.95 0.05 0.57 0.46 0.97 0.06 0.57 0.45 0.96
DM1 0.06 0.56 0.44 0.95 0.06 0.57 0.45 0.96 0.05 0.57 0.46 0.97 0.06 0.57 0.45 0.96
DM2 1.46 1.96 1.92 2.43 0.36 0.87 0.87 1.38 0.50 1.02 1.01 1.52 1.46 1.97 1.92 2.44
IS1 0.06 0.57 0.47 0.99 0.27 0.77 1.07 1.89 0.08 0.60 0.46 1.06 0.06 0.58 0.48 1.00
IS2 0.05 0.56 0.45 0.96 0.63 1.14 2.69 3.46 0.10 0.62 0.95 1.87 0.05 0.57 0.46 0.97
IS3 0.05 0.56 0.46 0.97 0.06 0.57 0.48 0.99 0.05 0.57 0.46 0.97 0.06 0.57 0.46 0.98
DR1 0.15 0.77 0.86 1.92 3.82 3.13 4.25 6.34 0.38 2.88 1.77 12.80 0.15 0.78 0.87 1.92
DR2 0.06 0.57 0.44 0.96 0.06 0.60 0.45 1.08 0.10 0.80 0.52 2.50 0.06 0.57 0.45 0.97
DR3 0.08 0.59 0.51 1.02 0.22 0.73 0.70 1.21 0.05 0.57 0.46 0.98 0.09 0.60 0.51 1.02

NOTE: The best method with smallest MSE in each column were highlighted with blue.

Table 2. MSEs of the estimated value (four targets) using our proposed methods with other competing methods for Walker2D and Hopper with N = T = 20 over 20
replications.

Walker2D-medium Walker2D-noisy Walker2D-medium-replay Walker2D-medium-expert

ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t

P1 0.51 1.03 0.55 1.07 0.52 1.03 0.55 1.07 0.53 1.03 0.55 1.06 0.52 1.03 0.55 1.07
DM1 0.52 1.03 0.56 1.08 0.52 1.04 0.55 1.07 0.53 1.04 0.56 1.07 0.52 1.04 0.56 1.08
DM2 38.93 39.45 38.60 39.12 22.15 22.66 23.29 23.80 31.70 32.21 39.07 39.58 38.94 39.46 38.60 39.11
IS1 0.52 1.03 0.57 1.09 8.31 8.82 51.74 57.08 0.53 1.04 0.56 1.07 0.53 1.04 0.57 1.08
IS2 0.52 1.03 0.57 1.09 0.36 0.87 0.40 1.42 0.53 1.04 0.55 1.08 0.53 1.04 0.57 1.08
IS3 0.52 1.03 0.57 1.09 0.53 1.04 0.57 1.08 0.53 1.04 0.57 1.07 0.53 1.04 0.57 1.08
DR1 0.56 1.07 1.02 1.55 3.09 6.55 22.45 28.16 0.59 1.12 0.98 1.58 0.56 1.08 1.02 1.55
DR2 0.52 1.03 0.56 1.08 0.48 1.00 0.48 1.53 0.53 1.06 0.56 1.18 0.52 1.04 0.56 1.08
DR3 0.52 1.03 0.56 1.09 0.53 1.04 0.57 1.08 0.52 1.03 0.56 1.07 0.52 1.04 0.56 1.08

Hopper-medium Hopper-noisy Hopper-medium-replay Hopper-medium-expert

ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t

P1 0.43 0.92 0.76 1.25 0.38 0.87 0.67 1.17 0.43 0.92 0.76 1.25 0.42 0.90 0.76 1.25
DM1 0.44 0.96 0.79 1.30 0.39 0.90 0.69 1.21 0.44 0.96 0.80 1.31 0.44 0.94 0.80 1.31
DM2 40.91 41.44 40.98 41.50 4.02 4.53 4.29 4.81 26.61 27.13 27.09 27.60 21.99 22.49 22.29 22.80
IS1 0.48 1.00 0.86 1.39 0.48 1.00 2.12 2.85 0.37 0.89 0.70 1.42 0.55 1.05 1.12 1.93
IS2 0.48 1.00 0.87 1.39 0.42 0.93 1.17 1.88 0.41 0.93 0.78 1.58 0.46 0.96 0.82 1.61
IS3 0.46 0.98 0.86 1.37 0.44 0.95 0.83 1.35 0.46 0.98 0.86 1.37 0.45 0.96 0.85 1.36
DR1 0.45 0.97 0.81 1.32 0.41 1.23 0.75 2.54 0.50 1.11 0.82 1.91 0.39 1.47 0.81 4.77
DR2 0.44 0.95 0.79 1.30 0.59 1.39 1.05 3.18 0.46 1.04 0.81 2.33 0.51 1.18 0.84 2.43
DR3 3.48 4.00 3.88 4.39 0.22 0.74 0.60 1.12 0.93 1.45 1.30 1.81 8.42 8.92 8.75 9.26

NOTE: The best method with the smallest MSE in each column is highlighted in blue.

competing methods like IS1 and IS2, which require to learn the
behavior policy, vary considerably across different settings.

Sensitivity analysis. We have designed four synthetic environ-
ments with binary actions and continuous observations to inves-
tigate the sensitivity of our model-free (P1) and model-based
(P2) estimators to the additivity assumption. These environ-
ments differ from D4RL in that, unlike the D4RL where only
the reward is doubly inhomogeneous, in these environments, we
introduce latent factors into the transition function to make it
doubly inhomogeneous as well.

Specifically, we consider two reward models: an additive
model (2.4) and a factor model (3.5). In the additive model, the
two-way fixed effects θi and λt are set to sin(i) and cos(t), respec-
tively. In the factor model, we set γ i = (sin(i), sin(2i), sin(3i))�
and αt = (cos(t), cos(2t), cos(3t))�. In both models, the reward
function is fixed to r1(o, a) = a−0.25o and residuals εi,ts are iid
Gaussian random errors with mean zero and variance 0.25.

Moreover, we consider three transition models: (i) an additive
model where Oi,t+1 = −0.25Oi,t + Ai,t + sin(i) + cos(t) + ei,t ;
(ii) a factor model where Oi,t+1 = −0.25Oi,t +Ai,t +γ �

i αt +ei,t ;
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(iii) a regime switching model where

Oi,t+1 =

⎧⎪⎨⎪⎩
−0.25Oi,t + Ai,t + 2ei,t , if both i and t is odd,
Oi,t − Ai,t + ei,t , if i is odd, and t is even,
0.25Oi,t − Ai,t + 2ei,t , if i is even, and t is odd,
−Oi,t + Ai,t + ei,t , otherwise.

Similarly, ei,ts are set to iid Gaussian errors with mean zero and
variance 0.25.

Table 3 summarizes reward and transition models of the four
environments. It can be seen that in each environment, either
the reward or the transition model does not satisfy the addi-
tive structure, leading to the violation of the proposed model
assumption. For all the environments, we set N = 40, T = 40.
The behavior policy is a uniform random policy whereas the
target policy is another random policy where π(1|o) = 0.8
for any o. The results are reported in Table 4. In first three
environments where the additivity assumption holds for either
the reward or the transition model, our proposed method gen-
erally outperforms the competing methods in estimating ηπ

i ,
ηπ

t , and ηπ
i,t . In the last environment where both models are

interactive, our proposed method no longer dominates other
methods, but its performance remains comparable to those of
the best competing methods.

7. Real Data Analysis

In this section, we apply our proposed method to a sepsis dataset
from MIMIC-III (Johnson et al. 2016), a database that contains
information on critical care patients from Beth Israel Deaconess
Medical Center in Boston, MA. As mentioned earlier, the het-
erogeneity in patients’ response to treatment (Evans et al. 2021),
along with potentially non-stationary environments makes it
difficult to consistently assess the impact of conducting a given
target policy on patient outcomes.

Table 3. A summary of environments in the sensitivity analysis.

Environment I II III IV

Reward Additive Additive Factor Factor
Transition Regime switching Factor Additive Factor

We focus on a subset of patients who received treatments
sequentially over 20 stages. The primary outcome in this anal-
ysis is the sequential organ failure assessment (SOFA) score
(Jones, Trzeciak, and Kline 2009), which monitors the progres-
sion of organ failure over time and measures the degree of
organ dysfunction or failure in critically ill patients. A higher
SOFA score indicates a higher risk of mortality. At any time
point t, we consider a binary treatment At ∈ {0, 1} where
At = 1 indicates that the patient received an intravenous fluid
intervention with a dose greater than the median value for the
group of patients being studied, and At = 0 otherwise. In
previous studies, Zhou et al. (2022) examined joint action spaces
with both vasopressors and intravenous fluid interventions. We
focus solely on the intravenous fluid intervention in light of the
findings of Zhou et al. (2022), which detected a limited impact of
vasopressors.

The following five covariates are included in the analysis:
gender, age, the Elixhauser comorbidity index, weight, and the
systemic inflammatory response syndrome score. Three deter-
ministic policies were evaluated using our proposed methods:
(i) always administering a high dose, (ii) always administering
a low dose, and (iii) administering a low dose when the SOFA
score is less than 11, and a high dose otherwise. The third
policy is tailored to the SOFA score, taking into account evidence
that a SOFA score of more than 11 is associated with a 100%
mortality rate (Jones, Trzeciak, and Kline 2009). To estimate
the Q-function, we employed a second-order degree polynomial
two-way fixed effects model at each iteration. The average value
estimators for the three policies are as follows: 7.26 (always high
dose), 6.85 (always low dose), and 6.51 (tailored by SOFA score).
These results indicate that the tailored policy is the most effective
policy as it yields the lowest estimated SOFA score. Figure 1
summarizes the estimated ηπ

i s and ηπ
t s, clearly demonstrating

that the tailored policy outperforms the other two policies, while
the always high dose policy performs the worst. Our conclusion
is in line with these existing results, which recommend the low
dose policy over the high dose policy. It is also consistent with
physicians’ recommendations in the behavior data (Zhou et al.
2022).

Table 4. MSEs of the estimated value (four targets) using our proposed methods with other competing methods.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t ηπ ηπ
i ηπ

t ηπ
i,t ηπ ηπ

i ηπ
t ηπ

i,t

P1 0.01 0.48 0.17 3.54 0.66 0.73 0.10 1.78 0.41 0.51 0.07 4.65 0.03 0.17 0.05 9.00
P2 0.04 0.76 0.10 3.43 0.33 1.04 0.35 2.04 0.47 0.60 0.10 4.70 0.09 0.28 0.11 9.11
MB 0.01 1.56 0.84 4.80 0.14 1.72 2.17 4.52 0.09 0.64 0.31 4.82 0.01 0.15 0.11 9.12
DM1 0.01 1.40 0.85 4.02 0.01 1.26 1.26 3.06 0.04 0.51 0.37 4.36 0.02 0.02 0.08 8.37
DM2 0.37 1.77 0.98 4.16 0.39 1.64 0.85 2.31 0.81 1.27 0.51 4.08 0.77 0.77 0.73 8.25
IS1 0.20 1.60 0.58 5.25 0.84 2.08 0.55 3.41 0.63 1.09 0.63 4.74 0.30 0.30 0.78 8.83
IS2 0.05 1.45 0.13 4.82 1.26 2.50 0.31 3.43 0.93 1.40 0.33 4.48 0.41 0.41 0.36 8.23
IS3 2.89 4.28 3.14 6.32 7.04 8.29 4.63 6.09 7.47 7.94 5.17 8.74 6.48 6.49 5.72 13.24
DR1 0.16 1.56 0.35 5.14 0.53 1.78 0.29 3.00 0.67 1.14 0.33 4.54 0.24 0.24 0.37 8.36
DR2 0.23 1.63 0.85 6.32 0.58 1.82 0.25 3.67 0.95 1.41 0.60 5.07 0.22 0.22 0.37 8.38
DR3 2.21 3.61 2.54 5.72 7.02 8.26 4.61 6.08 6.84 7.31 4.66 8.24 5.54 5.54 4.86 12.38

NOTE: The best method with the smallest MSE in each column is highlighted in blue. P1 and P2 are our proposed model-free and model-based methods, respectively.
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Figure 1. The estimated value function of ηπ
i and ηπ

t under three target policies, where π1 is the always high dose policy, π2 is always low dose policy, and π3 is the
tailored policy.

Supplementary Materials

The supplementary article includes the following content: Section A.1
presents a diagnostic procedure for assessing the additivity assumption. Sec-
tion A.2 discusses extending our approach to evaluate history-dependent
and subject-specific target policies. Section A.3 provides a comparison
between model-based and model-free approaches. Sections B.1, B.2, and
B.3 contain the proofs of Proposition 1, Theorem 1, and Theorem 2,
respectively. Section C provides details on the baseline methods, the D4RL
dataset, additional numerical results, and real data analysis.
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