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Abstract
We provide a framework formodeling risk and quantify-
ing payment shortfalls in cleared markets with multiple
central counterparties (CCPs). Building on the stylized
fact that clearing membership is shared among CCPs,
we develop a modeling framework that captures the
interconnectedness of CCPs and clearing members. We
illustrate stress transmission mechanisms using sim-
ple examples as well as empirical evidence based on
calibrated data. Furthermore, we show how stress mit-
igation tools such as variation margin gains haircutting
by oneCCP canhave spillover effects on other CCPs. The
framework can be used to enhance CCP stress-testing,
which currently relies on the “Cover 2” standard requir-
ing CCPs to be able to withstand the default of their
two largest clearing members. We show that who these
two clearing members are can be significantly affected
if one considers higher-order effects arising from inter-
connectedness through shared clearing membership.
Looking at the full network of CCPs and shared clear-
ing members is, therefore, important from a financial
stability perspective.
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1 INTRODUCTION

Central clearing has become a key feature of global derivatives markets in the aftermath of the
Global Financial Crisis. The mandates to centrally clear derivatives have significantly altered
the shape of financial networks—in centrally clearedmarkets a central counterparty (CCP) sits at
the center, becoming the buyer to every seller and the seller to every buyer. Much of the academic
and policy effort in understanding and managing risks in centrally cleared markets has been on
the CCPs themselves and their ability to withstand a severe shock.1 In theory, there are efficiency
gains arising from having a single CCP (Duffie & Zhu, 2011). In practice, however, derivatives
clearing is characterized not by a single CCP, but by a small set of CCPs. Importantly, linking
these CCPs is a limited number of large banks representing the joint clearing membership that
together account for the lion’s share of clearing volumes.2
In this paper, we analyze the role of joint clearingmembership atmultiple CCPs for stress trans-

mission and financial stability. Joint clearingmembership affects the structure of interconnections
in financial networks, connecting CCPs via their shared clearingmembers and connecting the lat-
ter via CCPs. As such, it can affect risk transmission (see, e.g., Faruqui et al., 2018 for a discussion
of the economic mechanisms characterizing the nexus between CCPs and clearing members). In
this context, the default management mechanism of CCPs plays a central role.3 This is usually
described in terms of the “default waterfall,” which specifies the order of loss absorption for the
resources available to CCPs (see, e.g., Duffie, 2014).
We show how joint clearing membership can affect several layers of the default waterfall. The

exact structure of a waterfall varies between CCPs, but as outlined in Gregory (2014), it can be
split into losses paid by defaulters and by survivors. In particular, initial losses are paid for by

1 SeeMenkveld and Vuillemey (2021) for a recent literature survey. A large part of the literature on central clearing focuses
on counterparty credit risk and netting efficiency. Duffie and Zhu (2011) show that clearing different products in separate
CCPs decreases netting efficiency and increases counterparty credit exposure, compared to clearing all products in one
CCP. Despite the theoretical advantages, central clearing today is done by a group of CCPs and not just a single CCP. Cont
and Kokholm (2014) consider a generalization of the Duffie and Zhu (2011) framework and show that some of the con-
clusions depend on distributional assumptions on exposures. Garratt and Zimmerman (2015) generalize this framework
further by considering more general network structures (e.g., scale-free networks).
2 BCBS-CPMI-FSB-IOSCO (2018) show that, empirically, central clearing is characterized by a strong concentration around
clearing members. These tend to be the largest global dealer banks that have long dominated derivatives trading. The cen-
tral role of these banks implies that they tend to be connected to more than one CCP, as they facilitate trading across both
markets and jurisdictions. Huang (2019) provides a theoretical model of competition between CCPs, whereas Demange
and Piquard (2021) provide empirical evidence of competition between CCPs in Europe.
3While CCP defaults are very rare events, they are not without historical precedent (Bignon & Vuillemey, 2020; Faruqui
et al., 2018). Furthermore, recent empirical evidence based on European repo market data suggests the potential failure
of a CCP is perceived as a real possibility by market participants and is priced into repo rates (Boissel et al., 2017).
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VERAART and ALDASORO 3

the defaulting clearing members (in the form of initial margins (IMs) and their default fund
contributions) and higher losses are paid for by the CCP (skin-in-the-game) and surviving clear-
ing members (via their default fund contributions and potentially additional contributions). We
show that joint clearing membership affects both parts of the default waterfall, that is, how the
defaulters pay and how the survivors pay, giving rise to different contagion channels.
We consider two contagion channels associated with the default waterfall. The first is the fire-

sale channel of IMs. IMs, typically in the form of collateral, serve as the first line of defense in the
waterfall to cover losses associated with individual positions cleared via CCPs. A simultaneous
default at more than one CCP by a joint clearing member can lead to losses larger than those
covered by IMs at all the CCPs where the member clears—a situation which is only worsened
if collateral is illiquid.4 The second channel we consider is associated with one of the last layers
of the default waterfall: VM gains haircutting (VMGH).5 If a stressed CCP uses VMGH, then all
clearingmemberswho owe variationmargin (VM) to this CCP are required tomake full payments,
but the CCP itself only pays out a fraction of the VM it owes. We show that one CCP’s VMGH
can transmit losses to another CCP via their joint clearing members. In the extreme, a clearing
member could cause the default of an unrelated CCP if the CCP where it clears employs VMGH.
Finally, we show how illiquid collateral and VMGH interact, potentially leading to even larger

losses, notably when the CCP-bank nexus consists of cycles (i.e., when CCPs are connected to
each other via joint clearing members).6
To illustrate these channels, we build a network model where clearing members are connected

to multiple CCPs through derivatives market obligations. The trigger for contagion is an exoge-
nous change in market conditions giving rise to VMs between clearing members and CCPs. As
VMs come due, counterparties attempt tomeet them. If they cannot, then they are put on “techni-
cal default” and IMs anddefault fund contributionswill be used. But if the collateral underpinning
IMs is illiquid, the realized equilibrium price will likely be smaller than originally anticipated—
further fueling shock transmission. If payment obligations cannot be met, clearing members
effectively default, whereas CCPs can rely on VMHG, which in turn may curtail effective pay-
ments to other clearing members and further contribute to contagion. Along the way, at each
stage, stress can be transmitted across CCPs and clearing members due to the shared member-
ship across CCPs. The model builds on the literature on systemic risk in financial networks and
is particularly related to approaches that consider CCPs or the presence of collateral. Concretely,
we build on Ghamami et al. (2022), who derive a modeling framework for clearing payments in
collateralized networks (without a CCP) based on the seminal contribution by Eisenberg and Noe
(2001). We adapt this framework to markets with multiple CCPs, allow for a more detailed default

4 Glasserman et al. (2015), who refer to this mechanism as “hidden illiquidity,” show that convex margin requirements
incentivize clearingmembers to split their positions among several CCPs. They analyze the existence and characteristics of
equilibria of margin schedules, such that CCPs collect sufficient margins in the presence of optimizing clearing members.
However, they do not model the contagion mechanism itself that arises from illiquid collateral, which is what we study
here. Throughout the paper, we use the short-hand of “illiquid margins” to refer to the illiquidity of the collateral with
which margins are met.
5We cover details of the default waterfall below. ISDA (2013) advocates the use of variation margin gains haircutting for
failing CCPs: “For Default Losses, this paper advocates VariationMargin Gains Haircutting (‘VMGH’) as a robust recovery
and continuity mechanism which will operate as part of the default waterfall following the exhaustion of all other layers
of the default waterfall.”
6 Throughout, the default of a clearing member (given by an inability to meet payments due on derivatives) is invariably
at the root of a CCP’s default.
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4 VERAART and ALDASORO

mechanism of CCPs, and include frictions such as default costs (in the spirit of Rogers & Veraart,
2013) and the possibility of VMGH by CCPs.7
The modeling framework we present works for general network structures and does not make

any assumptions about the magnitudes of different layers of the default waterfall. A growing lit-
erature considers design aspects of central clearing. For example, Amini et al. (2015) study the
problem of designing central clearing such that it reduces systemic risk and is consistent with
the preferences of those using it. Biais et al. (2016) study the optimal design for central clear-
ing and margin calls to increase resilience in derivatives markets. Lopez et al. (2017) propose a
methodology for estimating margin requirements that accounts for interdependencies of market
participants. Wang et al. (2022) propose a normative analysis on the design of collateral require-
ments for central clearing. They consider both IMs and default funds in their analysis. Huang
(2019) consider the incentive problem of thin skin-in-the-game of CCPs. In contrast to these
approaches, we take the design as given and analyze the outcome for a given design. There is
considerable flexibility, however, in the specific design that can be considered in our analysis.
We use three stylized examples to illustrate how contagion through joint clearing membership

andmultiple CCPs operates in themodel. The first andmost simple has a clearingmember jointly
clearing in two CCPs and two additional clearing members clearing only at each of the two CCPs.
The default of the joint clearing member can cause large losses to both CCPs, in the extreme
potentially leading to their default if the collateral posted by the defaulting member is illiquid.8
The second example has a similar structure, but the default is of a clearingmember that only clears
at one CCP. This example helps to illustrate the possibility that the default of a clearing member
can adversely affect a CCP in which the member does not clear. The third example involves a
cycle where two clearing members jointly clear at two CCPs, and it helps to illustrate how the
interaction of illiquid collateral andVMGHcanhelp propagate distress anddefault in the network.
Our analysis extends earlier work on the nexus between CCPs and clearingmembers (as analyzed
for example in Faruqui et al., 2018) by providing a quantitative model to measure the magnitude
of losses arising from the feedback loops between these agents.
Beyond these stylized examples, we provide empirical evidence of CCP-clearing member inter-

connectedness by analyzing public data on interest rate and credit default swaps (IRS and CDS,
respectively). We calibrate our model based on data on clearing membership, notional amounts
cleared (for bothmembers and CCPs), default funds, skin-in-the-game, and aggregate IMs, as well
as estimates of the network of payments obligations and liquidity buffers. We use this to quantify
the shortfall in payments when accounting for higher-order effects and the different contagion
channels discussed above. Our analysis helps to illustrate that the mechanisms captured by the
model could be of relevance when calibrated to real-world data. That said, our exercises aremeant
as illustrative of the mechanisms we model, rather than a real-world stress test—in other words,
we cannot quantify the likelihood of any scenario leading to an actual CCP default.
Our results carry important policy implications, in particular regarding CCP stress-testing.9

At the heart of the current practice is the Cover-2 standard, which, generally speaking, seeks to

7 Our work also relates to Paddrik et al. (2020) and Paddrik and Young (2021), who model payment shortfalls in centrally
cleared markets with a single CCP. In contrast, we consider markets with multiple CCPs, model in more detail the CCP
default waterfall and include additional frictions such as default costs and different magnitudes of variation margin gains
haircutting into the modeling framework.
8 In both the model and the simulations that follow, a CCP can default if it is not able to meet its payment obligations to
clearing members (after recourse to available elements from the default waterfall).
9 See CPMI-IOSCO (2018) for a general framework of supervisory stress testing of CCPs. For details on current market
practice for stress testing CCPs in the European Union, we refer to ESMA (2020).
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VERAART and ALDASORO 5

identify the two groups of clearing members that would lead to the largest shortfall of prefunded
resources for a given CCP or alternatively across all CCPs.10Paddrik and Young (2021) argue that
the Cover-2 standard can underestimate the vulnerability of the system because it does not con-
sider network effects. They provide empirical evidence for such network effects in a single-CCP
market, allowing for VMGH. By considering only one CCP, however, their analysis abstracts from
the effects of joint clearingmembers in loss transmission between several CCPs—whatwe analyze
here. In our simulations, the total loss can increase by a factor of around four when consider-
ing network effects with multiple CCPs, shared clearing members and the contagion channels
discussed above.
We argue that who the top two clearing members are (that cause the highest losses) will signif-

icantly depend on the contagion mechanisms included in the modeling framework. In particular,
we show that the ranking of institutions according to first-order losses can differ notably from
that obtained when considering higher-order losses that account for shared clearing member-
ship.11 From a financial stability perspective, it is thus important to take into account the network
of joint clearing membership across multiple CCPs.
The main contributions of our paper are two-fold. First, we develop a framework to quantify

payment shortfalls in centrally cleared markets with multiple CCPs and identify different roles
of joint clearing members for loss transmission. Furthermore, we show how stress mitigation
mechanisms such as VMGH by one CCP can have spill-over effects to other CCPs. Second, we
discuss policy implications for stress testing CCPs focusing in particular on the Cover-2 standard.
We show that who the two top clearing members are varies significantly depending on whether
one accounts for contagion effects via joint clearing membership and defaults at multiple CCPs.
Our analysis, therefore, can serve as a tool to select stress scenarios inmarketswithmultiple CCPs.
The rest of the paper is structured as follows. Section 2 presents the modeling framework

and its various variants. Section 3 provides simple stylized examples to illustrate how conta-
gion unfolds in the model. Section 4 presents evidence of CCP interconnectedness through joint
clearing membership in interest rate and credit default swap markets. Section 5 shows how our
modeling framework can be used for CCP stress testing and discusses policy implications. Finally,
Section 6 concludes.

2 MODELING CONTAGION INMARKETSWITHMULTIPLE CCPS

Wedevelop amodel for a clearing equilibrium in derivativesmarkets whenVMs become due. Our
model is a generalized version of themodel proposed byGhamami et al. (2022), which itself builds
on the clearing framework developed by Eisenberg and Noe (2001). We adapt this to markets with
multiple CCPs and introduce additional frictions to account for risk-mitigation tools available to
CCPs, in particular VMGH.
Ghamami et al. (2022) propose a clearing mechanism for collateralized markets that proceeds

in two rounds. The first round determines who defaults, as well as the initial payments made
between counterparties. In the second round, collateral (IM) that was not used is returned to the
nodes that originally set it aside and is used tomake additional payments if thosemade in the first

10 See Section 5 for details on the two different types of applications of the Cover-2 standard.
11 Cont (2017) highlights the importance of addressing liquidity risk in stress tests of CCPs rather than focusing only on
counterparty credit risk and insolvency risk. Indeed,more recent stress tests, for example, ESMA (2020) explicitly consider
liquidity risk in their stress test. Our analysis focuses on liquidity stress testing as well.
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6 VERAART and ALDASORO

round fell short of obligations. We will generalize the first round of clearing to allow for market
frictions (such as exogenous default costs) or different magnitudes of VMGH by CCPs, and use
the second round of clearing without any modifications.12
We consider a financial market consisting of 𝑛𝑀 ∈ ℕ clearing members, with indices in =

{1, … , 𝑛𝑀} and 𝑛𝐶 ∈ ℕCCPswith indices in  = {𝑛𝑀 + 1, … , 𝑛𝑀 + 𝑛𝐶}. Wewrite =  ∪  and
set 𝑁 = 𝑛𝑀 + 𝑛𝐶 . We assume that every clearing member clears their trades with at least one of
the CCPs. Clearing members can have trading relationships with more than one CCP and indeed
this can be observed in practice, as we will discuss in Section 4.
We assume that clearing members and CCPs are connected through a network of obligations

arising from derivative positions.13 For example, these could represent a network of obligations
arising from CDS written on a specific reference entity. Then, if the reference entity defaults, pay-
ments become due from the protection seller to the protection buyer in the CDS contract. But
even if no default occurs, changes to market conditions can trigger payment obligations between
the counterparties in the form of VM payments. In the following, we focus on networks of VM
payment obligations, as, for example, in Paddrik et al. (2020) who consider such a setting in a
market with one CCP.14

2.1 First round of clearing and assessment of defaults

We assume that due to changes in market conditions, VMs become due. We denote by �̄�R1 ∈

[0, ∞)𝑁×𝑁 the VM obligations matrix, with element �̄�R1
𝑖𝑗
, where 𝑖, 𝑗 ∈  , capturing the VM pay-

ment obligation from 𝑖 to 𝑗. SinceVMs are usually bilaterally netted,we assume that for all 𝑖, 𝑗 ∈ 

with 𝑖 ≠ 𝑗 at most one of 𝑝𝑖𝑗 and 𝑝𝑗𝑖 is strictly positive and 𝑝𝑖𝑖 = 0 for all 𝑖 ∈  . Furthermore,

�̄�R1
𝑖

=

𝑁∑
𝑗=1

�̄�R1
𝑖𝑗

denotes the total variation payment obligation of firm 𝑖 ∈  .
There are a number of resources available to the nodes in the system to meet payment obli-

gations. For one, as part of the contractual arrangement that gives rise to potential payment
obligations, counterparties post IM. We denote by 𝑚𝑘𝑖 ≥ 0 the number of shares of the asset used
as IM posted by 𝑘 to 𝑖, where 𝑘, 𝑖 ∈  , 𝑘 ≠ 𝑖 and 𝑚𝑖𝑖 = 0 for all 𝑖 ∈  . As in Ghamami et al.
(2022), we assume that all margin accounts are held in the same (potentially) illiquid asset. An
important difference betweenCCPs and clearingmembers is that the latter are required to provide

12 As our setting is similar to that in Ghamami et al. (2022), we try to use the same notation whenever possible, with
adjustments to allow for the existence of CCPs.
13We take this network as given and do not investigate further the mechanism that led to this particular network. In
addition to clearing trades, CCPs often offer other services as well that could potentially influence the resulting net-
work structure. For example, some offer portfolio compression, which is a post-trade mechanism in which positions that
are economically redundant are eliminated, see Domanski et al. (2015), Schrimpf (2015), and Gregory (2014, Subsection
8.2.3) for further details. It is, for example, offered by LCH’s SwapClear service (https://www.lch.com/services/swapclear/
enhancements). For further details on the mechanisms of portfolio compression, we refer to O’Kane (2017) and D’Errico
and Roukny (2021). Possible implications for systemic risk have been analyzed in Veraart (2022), and Amini and Feinstein
(2023) have looked into portfolio compression focussing on an optimal market design.
14 It would be possible to explicitly model how the original obligations network can be mapped into a network of variation
margin payments as in Veraart (2022), but for the purpose of our analysis, this is not strictly necessary.

 14679965, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12446 by T
est, W

iley O
nline L

ibrary on [02/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.lch.com/services/swapclear/enhancements
https://www.lch.com/services/swapclear/enhancements


VERAART and ALDASORO 7

IMs to the CCP at which they clear, whereas CCPs do not provide IMs to their clearing members
(Ghamami et al., 2022, Appendix B). Hence, in our setting with multiple CCPs, we have 𝑚𝑘𝑖 = 0

for all 𝑘 ∈  and for all 𝑖 ∈  . Furthermore, clearing members also have liquidity buffers to deal
with fluctuations in payment obligations and receipts (e.g., cash). We assume that 𝑏M ∈ [0, ∞)𝑛𝑀

is the vector capturing such liquidity buffers, that is, each clearing member 𝑖 ∈ {1, … , 𝑛𝑀} has a
liquidity buffer 𝑏M

𝑖
≥ 0.

We account for the special structure of CCPs’ liquidity buffers. As discussed above, a key feature
of CCPs’ risk management is the so-called default waterfall, which sets out the hierarchy and
sequence of resources that CCPs can draw from to meet payment obligations arising from the
default of one or more clearing members.
We explicitly model two prefunded resources that form part of the default waterfall of a CCP

(in addition to the IMs), namely the default fund and the skin-in-the-game. The default fund
refers to the contribution of clearing members to the financial resources of the CCP, whereas the
skin-in-the-game refers to the (usually very thin) CCP’s equity.15 This part of our model is a slight
generalization of the model by Paddrik et al. (2020), who—in addition to modeling contagion
in a single-CCP setting—consider only the default fund as a liquidity buffer. We denote by 𝛿 ∈

[0, ∞)𝑛𝐶 the vector of CCPs’ default funds, that is, 𝛿𝑗 is the default fund of CCP 𝑗. In particular,

𝛿⊤ = 1⊤
𝑛𝑀

𝛿,

where 1𝑛𝑀
is the 𝑛𝑀-dimensional unit vector and 𝛿 ∈ [0, ∞)𝑛𝑀×𝑛𝐶 is the matrix with element 𝛿𝑖𝑗

representing the default fund contribution of member 𝑖 to CCP 𝑗.
We denote by 𝜎 ∈ [0, ∞)𝑛𝐶 the skin-in-the-game vector, that is, 𝜎𝑗 is the skin-in-the-game of

CCP 𝑗. We then define a vector 𝑏 ∈ [0, ∞)𝑁 as follows:

𝑏𝑖 =

{
𝑏M

𝑖
, if 𝑖 ∈ ,

𝛿𝑖 + 𝜎𝑖, if 𝑖 ∈ .

Hence, 𝑏 represents additional resources that are in principle available to cover payment shortfalls
that are not covered by IMs.
Figure 1 depicts the stylized CCP waterfall considered in our model. The prefunded layers of

the default waterfall are included in a solid frame, whereas the last layer (indicated by a dashed
frame) represents unfunded resources (we discuss the unfunded layer in more detail when we
define the first round of clearing). As mentioned in Faruqui et al. (2018), the skin-in-the-game
of the CCP “can come before, along with, and/or after the default fund contributions of non-
defaulting members, depending on the CCP’s specific rules.” For further discussion on CCPs’
default waterfalls, we refer to Cont (2015). In our analysis, the order inwhich the skin-in-the-game
is used relative to the default fund contributions of the surviving members does not matter.
In practice, if a clearing member defaults, its portfolio will be sold by the CCP in an auc-

tion (CPMI-IOSCO, 2020). The design of auction mechanisms and their implications have been
studied in, for example, Huang and Zhu (2024) and Ferrara et al. (2020). Huang and Zhu (2024)
show that juniorization of the guarantee fund contributions of those clearing members that sub-
mit bad bids in the auction increases the auction price. In our model, any possible difference in

15 Huang and Takats (2020) provide empirical evidence that higher skin-in-the-game—even though very limited in size –
is associated with more prudent risk management of CCPs (e.g., fewer margin breaches).
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8 VERAART and ALDASORO

F IGURE 1 A stylized default
waterfall of CCP 𝑗 in a situation
where only clearing member 𝑖

defaults. The first four layers
(included in a solid frame) are the
prefunded resources of CCP 𝑗.
The remaining layer (in a dashed
frame) indicates unfunded
resources of CCP 𝑗.

seniority of the guarantee fund contributions of the surviving members will not affect the con-
tagion mechanism, since we assume that each CCP 𝑖 will use its full resources 𝑏𝑖 (in addition to
the IMs that correspond to defaulted positions) before it transmits any losses to clearing members
directly. We will, therefore, not consider aspects of mechanism design in our contagion model.
First round price–payment–equilibrium: We are now interested in determining a price-

payment equilibrium in the first clearing round (R1), that is, we aim to determine an𝑁 × 𝑁-matrix
𝑝⋆,R1, where each component 𝑝

⋆,R1
𝑖𝑗

represents the VM payments made from 𝑖 to 𝑗. In addition,
some collateral will need to be liquidated if defaults occur, potentially affecting its market price.
Accordingly, we also aim to determine the price 𝜋⋆,R1 of the collateral in equilibrium. To do
so, we consider an inverse demand function modeled along the lines of Cifuentes et al. (2005)
which returns the price of the collateral as a function of the amount of collateral sold.16 The
price-payment equilibrium can be characterized by a suitable fixed point. Considering a func-
tion ΦR1 ∶ [0, 1] × [0, �̄�R1] → [0, 1] × [0, �̄�R1], the goal is to obtain a fixed point of this function,
that is, we want to find (𝜋⋆,R1, 𝑝⋆,R1) such that

(𝜋⋆,R1, 𝑝⋆,R1) = ΦR1(𝜋⋆,R1, 𝑝⋆,R1).

Here, ΦR1 is defined as follows:

ΦR1
1

(𝜋, 𝑝) = exp(−𝛼Δ(𝜋, 𝑝)),

ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝) =

{
min

{
�̄�R1

𝑖𝑗
, 𝜋𝑚𝑖𝑗 + 𝑎R1

𝑖𝑗
(𝜋)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

∑𝑁

𝑘=1
𝑝𝑘𝑖

)}
, if 𝑖 ∈ (𝑝),

�̄�R1
𝑖𝑗

, if 𝑖 ∈  ⧵ (𝑝),

(1)

where

(𝑝) =
{

𝑖 ∈  ∣ 𝐴𝑖(𝑝) < �̄�R1
𝑖

}
,

16We use an exponential inverse demand function, which is a common choice in the fire sales literature. It was used by
Cifuentes et al. (2005) in a financial contagion model in which illiquid assets are sold to satisfy payment obligations and
it has also been used in several other contagion models since then including, for example, by Ghamami et al. (2022). An
alternative to an exponential price impact, would be, for example, a linear price impact, as considered by Greenwood et al.
(2015).
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VERAART and ALDASORO 9

specifies the nodes in default in a system with payments 𝑝 ∈ [0, �̄�R1], that is, these are the
nodes that have fewer assets than payment obligations, where 𝐴𝑖(𝑝) = 𝑏𝑖 +

∑𝑁

𝑘=1
𝑝𝑘𝑖 denotes the

available assets of node 𝑖 ∈  .
In the following, we describe the parameters used in Equation (1) by considering ΦR1

1
first, and

then ΦR1
2
.

ΦR1
1
models the inverse demand function for the price of the illiquid collateral. The constant𝛼 ≥

0 models the price impact of (fire) sales of collateral.17 If 𝛼 = 0, then there is no price impact and
ΦR1

1
(𝜋, 𝑝) = 1 for all𝑝 ∈ [0, �̄�R1] and for all𝜋 ∈ [0, 1]. If𝛼 > 0 andΔ(𝜋, 𝑝) > 0, thenΦR1

1
(𝜋, 𝑝) < 1

for all𝑝 ∈ [0, �̄�R1] and for all𝜋 ∈ [0, 1], hence capturing the decline in the price of collateral when
the number of shares Δ(𝜋, 𝑝) of collateral is sold. In particular, Δ(𝜋, 𝑝) is given by

Δ(𝜋, 𝑝) =

𝑁∑
𝑖=1

𝑁∑
𝑗=1

Δ𝑖𝑗(𝜋, 𝑝),

where the total shares of collateral seized and sold by node 𝑗 after the default of node 𝑖 is given by

Δ𝑖𝑗(𝜋, 𝑝) =

⎧⎪⎨⎪⎩
min

{
𝑚𝑖𝑗,

�̄�R1
𝑖𝑗

𝜋

}
, if 𝑖 ∈ (𝑝),

0, if 𝑖 ∈  ⧵ (𝑝),

if 𝜋 > 0, and when 𝜋 = 0, it is given by

Δ𝑖𝑗(𝜋, 𝑝) =

{
𝑚𝑖𝑗, if 𝑖 ∈ (𝑝) and �̄�R1

𝑖𝑗
> 0,

0, otherwise.

Hence, only collateral of nodes that default (i.e., which are in(𝑝)) can in principle be sold. The
number of shares of collateral sold is capped by the collateral available for a given position 𝑚𝑖𝑗

and by the payment obligations due relative to the price of the collateral.
ΦR1

2
models the payments made between the nodes. If a node 𝑖 does not default then it pays �̄�R1

𝑖𝑗

to a node 𝑗. If 𝑖 does default, it will never paymore to 𝑗 than its original payment obligation �̄�R1
𝑖𝑗
and

it uses the value of its collateral 𝜋𝑚𝑖𝑗 and parts of its liquidity buffer and payments made by other
banks to pay other nodes. In particular, the matrix 𝑎R1(𝜋) ∈ [0, 1]𝑁×𝑁 specifies the repayment
proportions and it is given by

𝑎R1
𝑖𝑗

(𝜋) =

⎧⎪⎨⎪⎩
max{0,�̄�R1

𝑖𝑗
−𝜋𝑚𝑖𝑗}∑𝑁

𝑘=1 max{0,�̄�R1
𝑖𝑘

−𝜋𝑚𝑖𝑘}
, if

∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
− 𝜋𝑚𝑖𝑘} > 0,

0 otherwise,

17 For a discussion and further results related to the choice of the parameter 𝛼 for the exponential inverse demand function,
we refer to Amini et al. (2016). In particular, they show that the functionmodeling the cash proceeds from liquidationΔ ↦

Δ exp(−𝛼Δ) is increasing in [0, Δtotal] if and only if 𝛼 ≤
1

Δtotal
. Here, Δtotal > 0 denotes the maximum collateral available

for sale, that is, Δtotal =
∑𝑁

𝑖=1

∑𝑁

𝑗=1
𝑚𝑖𝑗 . In the following, we will always choose 𝛼 such that this condition is satisfied.
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10 VERAART and ALDASORO

for all 𝑖, 𝑗 ∈  , where 𝑎R1
𝑖𝑗

(𝜋) specifies the relative payment obligations due from 𝑖 to 𝑗 while
accounting for IMs. In other words, 𝑎R1

𝑖𝑗
(𝜋) describes the relative payment obligations from 𝑖 to 𝑗

that are not covered by collateral (i.e., IMs) when the price of the collateral per share is 𝜋.
The parameters 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

∈ [0, 1], 𝑖 ∈  are used to model exogenous default costs (Rogers &
Veraart, 2013) and the severity of VMGH, respectively. When 𝛾

(1)
𝑖

< 1 or 𝛾
(2)
𝑖

< 1, we can capture
the effect that, in case of default, not all assets are available or used to pay counterparties. In the
special case where 𝛾

(1)
1

= ⋯ = 𝛾
(1)
𝑁 = 1 and 𝛾

(2)
1

= ⋯ = 𝛾
(2)
𝑁 = 1, the first round mathematically

corresponds to the model in Ghamami et al. (2022).
The parameters 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖
, 𝑖 ∈  only play a role if there are defaulting nodes. Every node 𝑖 that

defaults (i.e., is in (𝑝)), uses the proportion 𝛾
(1)
𝑖

of its liquidity buffer 𝑏𝑖 and the proportion 𝛾
(2)
𝑖

of the payments it received (
∑𝑁

𝑘=1
𝑝𝑘𝑖) tomake payments to other nodes. Howmuch an individual

node 𝑗 receives from 𝑖 is determined both by the proportion 𝑎R1
𝑖𝑗

(𝜋), which is used to distribute
the cash available to 𝑗, and the IM evaluated at the market price 𝜋𝑚𝑖𝑗 .
If a node 𝑖 ∈ (𝑝) is a CCP18, then, formula (1) simplifies to

ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝) = min

{
�̄�R1

𝑖𝑗
,
�̄�R1

𝑖𝑗

�̄�R1
𝑖

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)}
,

since CCPs do not post IM to their clearing members. In particular, the payments of CCP 𝑖 to its
clearing members do not directly depend on the price of the collateral 𝜋.
For each CCP 𝑖, we will assume that 𝛾

(1)
𝑖

= 1, which means that the full prefunded resources
from the default waterfall 𝑏𝑖 are used to make payments to its clearing members.
If all prefunded resources are not enough to meet its payment obligations, then we think of

CCP 𝑖 as being in default (i.e., 𝑖 ∈ (𝑝)). What this implies is that not all due payments are made
in full. In this case, we distinguish two subcases, which we refer to as variants of VMGH. The
severity of the VMGH is modeled by the parameter 𝛾

(2)
𝑖
. If 𝛾

(2)
𝑖

= 1, then node 𝑖 pays out the full
amount of VMs received from its clearing members to clearing members to which payments are
due, but this is still not enough to meet payment obligations—we refer to this situation as one of
soft VMGH. If 𝛾

(2)
𝑖

< 1, however, then node 𝑖 does not pay out the full amount of VMs received
to clearing members to which payments are due—a situation we refer to as severe VMHG.19 In

practice, VMGH is done pro rata (Gregory, 2014) and this is captured by the proportion
�̄�R1

𝑖𝑗∑𝑁
𝑘=1 �̄�R1

𝑖𝑘

.

For each clearing member 𝑖, we will also consider different choices of 𝛾
(1)
𝑖

, 𝛾
(2)
𝑖
. In particular,

𝛾
(1)
𝑖

= 𝛾
(2)
𝑖

= 1 would correspond to a soft default and 𝛾
(1)
𝑖

= 𝛾
(2)
𝑖

= 0 would correspond to a hard
default of the clearing member, as in Paddrik and Young (2021). We will allow for intermediate
cases, that is, 𝛾(1)

𝑖
, 𝛾

(2)
𝑖

∈ (0, 1) as well.
The introduction of the parameters 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

∈ [0, 1], 𝑖 ∈  has implications for the fire sale of
collateral as well. If some of these parameters are strictly smaller than one, this can increase the
losses spreading through the system. If those losses cause additional defaults of clearingmembers,
then more collateral will be liquidated, causing a stronger price decline of the collateral, which
itself can feed back to further losses and defaults. Therefore, these two channels interact and can
amplify the contagion effects.

18 Since 𝑖 ∈ (𝑝), we have that
∑𝑁

𝑘=1
�̄�R1

𝑖𝑘
> 0.

19 Strictly speaking, this second variant is closer to VMGH as commonly discussed.
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VERAART and ALDASORO 11

Using Tarksi’s fixed point theorem, we show in Appendix A that the set of fixed points of the
function ΦR1 is a nonempty complete lattice. Throughout this paper, we will always consider the
greatest fixed point of ΦR1 and denote this by (𝜋⋆,R1, 𝑝⋆,R1).20

Definition 2.1 (Defaults). We will refer to all nodes in the set

(𝑝⋆,R1) =
{

𝑖 ∈  ∣ 𝐴𝑖(𝑝
⋆,R1) < �̄�R1

𝑖

}
=

{
𝑖 ∈  ∣ 𝑏𝑖 +

𝑁∑
𝑘=1

𝑝
⋆,R1
𝑘𝑖

< �̄�R1
𝑖

}

as nodes in default. We refer to all nodes in the set  = (�̄�R1) = {𝑖 ∈  ∣ 𝑏𝑖 +
∑𝑁

𝑘=1
�̄�R1

𝑘𝑖
< �̄�R1

𝑖
}

as fundamental defaults. We refer to all nodes in the set(𝑝⋆,R1) ⧵  as contagious defaults.

Hence, all nodes that cannot satisfy their payment obligations even if all other nodes satisfy
theirs are referred to as fundamental defaults. We show in Corollary A.3 in the Appendix that
 ⊆ (𝑝⋆,R1).

Remark 2.2 (No fundamental defaults among CCPs). CCPs have matched books, that is, for each
𝑖 ∈ , it holds that

∑𝑁

𝑘=1
�̄�R1

𝑘𝑖
= �̄�R1

𝑖
, whichmeans that the total variationmargins that 𝑖 ∈  is due

to pay (�̄�R1
𝑖
) coincide with the variation margin payments that the clearing members are due to

pay to CCP 𝑖 (namely,
∑𝑁

𝑘=1
�̄�R1

𝑘𝑖
). This implies (together with 𝑏𝑖 ≥ 0 for all 𝑖 ∈ ), that the set of

fundamental defaults  cannot contain CCPs, that is,  ∩  = ∅.

Second round price-payment equilibrium: Next, we consider the same mechanism for
a second round of clearing (R2), as proposed in Ghamami et al. (2022). The main idea of the
second round of clearing is that collateral not used in the first round is freed and becomes avail-
able to make still-outstanding payments. This can be modeled by considering a second fixed
point problem.
Let (𝜋⋆,R1, 𝑝⋆,R1) ∈ [0, 1] × [0, �̄�R1] be the greatest fixed point of ΦR1 defined in Equation (1).

Then, the payments that are still outstanding at the start of the second round are given by �̄�R2 =

�̄�R1 − 𝑝⋆,R1 ∈ [0, �̄�R1]. We define a functionΦR2 ∶ [0, 𝜋⋆,R1] × [0, �̄�R2] → [0, 𝜋⋆,R1] × [0, �̄�R2] and
the aim is to determine a fixed point of this function, that is, we want to find (𝜋⋆,R2, 𝑝⋆,R2) such
that

(𝜋⋆,R2, 𝑝⋆,R2) = ΦR2(𝜋⋆,R2, 𝑝⋆,R2),

where

ΦR2
1

(𝜋, 𝑝) = 𝜋⋆,R1 exp(−𝛼Γ(𝜋, 𝑝)),

ΦR2
2,(𝑖𝑗)

(𝜋, 𝑝) = min

{
�̄�R2

𝑖𝑗
, 𝑎R2

𝑖𝑗

(
𝜋𝑟𝑖(𝜋

⋆,R1, 𝑝⋆,R1) +

𝑁∑
𝑘=1

𝑝𝑘𝑖

)}
,

(2)

20 It would be possible to also consider the least fixed point, which can arise as the outcome of a decentralized clearing
mechanism, see, for example, Csóka andHerings (2018). For example, Bardoscia et al. (2019) provide a payment algorithm
inwhichmarket participants delay their payments under liquidity stress. Such a strategic response corresponds to a special
least fixed point, see Veraart and Zhang (2021) for further details.
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12 VERAART and ALDASORO

and

𝑎R2
𝑖𝑗

=

⎧⎪⎨⎪⎩
�̄�R2

𝑖𝑗∑𝑁
𝑘=1 �̄�R2

𝑖𝑘

, if
∑𝑁

𝑘=1
�̄�R2

𝑖𝑘
> 0,

0, otherwise,

denotes the repayment proportions for 𝑖, 𝑗 ∈  in the second round. Here, Γ(𝜋, 𝑝) denotes the
total shares of collateral sold in the second round, that is,

Γ(𝜋, 𝑝) =

𝑁∑
𝑖=1

Γ𝑖(𝜋, 𝑝),

where the total shares of collateral sold by node 𝑖 ∈  is given by

Γ𝑖(𝜋, 𝑝) = min

{
𝑟𝑖(𝜋

⋆,R1, 𝑝⋆,R1),
1

𝜋
max

{
0,

𝑁∑
𝑗=1

�̄�R2
𝑖𝑗

−

𝑁∑
𝑗=1

𝑝𝑗𝑖

}}
,

if 𝜋 > 0. For 𝜋 = 0, we set

Γ𝑖(𝜋, 𝑝) =

{
𝑟𝑖(𝜋

⋆,R1, 𝑝⋆,R1), if 𝑖 ∈ (𝑝⋆,R1) and
∑𝑁

𝑗=1
�̄�R2

𝑖𝑗
>
∑𝑁

𝑗=1
𝑝𝑗𝑖,

0, otherwise.

Furthermore, 𝑟𝑖(𝜋
⋆,R1, 𝑝⋆,R1) is the collateral returned to node 𝑖 ∈  and is defined as

𝑟𝑖(𝜋
⋆,R1, 𝑝⋆,R1) =

{∑𝑁

𝑗=1
(𝑚𝑖𝑗 − Δ𝑖𝑗(𝜋⋆,R1, 𝑝⋆,R1)), if 𝑖 ∈ (𝑝⋆,R1),∑

𝑗∈(𝑝⋆,R1) 𝑚𝑖𝑗, if 𝑖 ∈  ⧵ (𝑝⋆,R1).

In our setting, the market consists of clearing members and CCPs. Since we assume that CCPs
do not post IMs to their clearing members, only clearing members can have collateral returned to
them in Round 2. In particular, this implies that 𝑟𝑖(𝜋

⋆,R1, 𝑝⋆,R1) = 0 for all 𝑖 ∈ .
The existence of a greatest fixed point of ΦR2 for the second round of clearing follows directly

from Ghamami et al. (2022, Proposition 3.1), in addition to the arguments provided in the
Appendix for the modified first round of clearing. We denote the greatest fixed point of ΦR2 by
(𝜋⋆,R2, 𝑝⋆,R2).
The second round of clearing can only increase payments made between the nodes compared

to the first round. It will not affect which nodes default since defaults are solely determined in the
first round by looking at available assets to make payments, see Definition 2.1.21

21 It is possible that for a node 𝑖 ∈ (𝑝⋆,R1), it holds that �̄�R1
𝑖𝑗

= 𝑝
⋆,R1
𝑖𝑗

+ 𝑝
⋆,R2
𝑖𝑗

for all 𝑗 ∈  , that is, it satisfies its obliga-
tions in full once its collateral is seized and used to compensate for shortfalls. In particular, the actual payments made
between institutions cannot reveal whether an institution defaults or not, since the default event can make additional
resources available (the collateral), see Ghamami et al. (2022) for further discussion. A similar situation also arises in Kus-
netsov and Veraart (2019) in a setting with multiple maturities, and in Banerjee and Feinstein (2019) in a network with
contingent payments.
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VERAART and ALDASORO 13

F IGURE 2 Example
#1—Default of a joint clearing
member affecting several CCPs.
Color code: fundamental defaults
(red), clearing members not in
fundamental default (blue), CCPs
(orange). [Color figure can be
viewed at wileyonlinelibrary.com]

Remark 2.3 (Seniority of payments). The definitions ofΦR1 andΦR2 reflect the fact that all payment
obligations have the same seniority. It is possible to change this assumption to allow, for example,
for situations inwhich clearingmembers pay CCPs according to a pecking order rather than based
on a proportionality assumption. In Appendix C, we discuss thismodification in detail. While this
change in clearing method will lead to different price-payment equilibria, we show that the key
insights developed in this paper remain the same under both types of clearing mechanisms.

3 JOINT CLEARINGMEMBERS AND LOSS TRANSMISSION

With the fundamentals of the model behind us, we now provide stylized examples that illustrate
different types of loss transmissions arising from multiple CCPs with joint clearing members. To
do this, we compute the clearing payments and clearing price of the collateral in both rounds and
consider the pair-specific payment shortfalls 𝑆𝑖𝑗 , where 𝑖, 𝑗 ∈  , after the two rounds of clearing,
given by

𝑆𝑖𝑗 = max
{

0, �̄�R1
𝑖𝑗

− 𝑝
⋆,R1
𝑖𝑗

− 𝑝
⋆,R2
𝑖𝑗

}
, 𝑖, 𝑗 ∈  ,

and the total payment shortfall 𝑆, which measures the amount of unfulfilled payment obligations
after the two clearing rounds (using the IMs where applicable), defined as

𝑆 =

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑆𝑖𝑗.

Furthermore, we define the relative payment shortfall as 𝑆𝑖𝑗∕�̄�R1
𝑖𝑗

for all 𝑖, 𝑗 ∈  and the

total relative payment shortfall as 𝑆∕
∑𝑁

𝑖=1

∑𝑁

𝑗=1
�̄�R1

𝑖𝑗
. The relative payment shortfall and the

total relative payment shortfall take values in [0, 1] and capture payment shortfalls relative to
payment obligations.

3.1 Example #1: Default of a joint clearing member

First, we consider the situation where a joint clearing member defaults simultaneously at two
CCPs. We show that this can result in both CCPs suffering severe losses and could poten-
tially even cause their default if the collateral posted by the defaulting clearing member is
illiquid.
We consider a system consisting of 𝑛𝐶 = 2 CCPs and 𝑛𝑀 = 3 clearing members. Figure 2 pro-

vides an illustration of the network of payment obligations. Theweights along the edges represent
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14 VERAART and ALDASORO

the payment obligation due from 𝑖 to 𝑗 in the first round, that is, �̄�R1
𝑖𝑗
, and the numbers in paren-

theses represent the corresponding IMs (𝑚𝑖𝑗). For simplicity, we assume that the liquidity buffers
are zero, but the example can be easily generalized to include positive liquidity buffers, default
funds, and skin-in-the-game.
There is one joint clearingmember (M1) that clears at both CCPs. The other two clearingmem-

bers only clear at one CCP each (M2 at CCP1 and M3 at CCP2). We label the clearing members
Mi with index 𝑖 for 𝑖 ∈ {1, 2, 3}, CCP1 with index 4 and CCP2 with index 5 in the matrices and
vectors below.
Formally,

�̄�R1 =

⎛⎜⎜⎜⎜⎜⎝

0 0 0 2 2

0 0 0 0 0

0 0 0 0 0

0 2 0 0 0

0 0 2 0 0

⎞⎟⎟⎟⎟⎟⎠
, 𝑚 =

⎛⎜⎜⎜⎜⎜⎝

0 0 0 2 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
, 𝑏 = (0, 0, 0, 0, 0)⊤.

The joint clearing member M1 is the only node in fundamental default, that is,  = {1} = {M1}.
We assume that 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

∈ [0, 1] for all 𝑖 ∈  . We consider various cases.

1. First, we consider the case of fully liquid collateral that can be liquidated at no discount, that
is, 𝛼 = 0.
In this scenario, the price of the collateral cannot change, that is, 𝜋⋆,R1 = 𝜋⋆,R2 = 1. Fur-

thermore, we obtain that 𝑝⋆,R1 = �̄�R1 and 𝑝⋆,R2 = 0, implying that all payments are made in
full (the total shortfall is 𝑆 = 0). Here,(𝑝⋆,R1) =  = {1}. Hence, even though clearing mem-
ber M1 is in fundamental default, CCP1 still receives 2 fromM1 by seizing the IM 𝑚14 = 2 and
the same situation arises for CCP2, which seizes 𝑚15 = 2. Therefore, both CCP1 and CCP2 are
able to satisfy their payment obligations of 2 to M2 and M3, respectively, in full.
Note that in this example, the values of 𝛾

(1)
𝑖

and 𝛾
(2)
𝑖

do not matter, since the joint clear-
ing member M1 does not pay the CCPs directly (these payments would be affected by the
parameters 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖
) as it does not have any resources to use. The CCPs seize the IMs instead,

and therefore the clearing payments 𝑝⋆,R1 = �̄�R1 correspond to the full payment obligations in
Round 1 and there is nothing left to be paid in Round 2, that is, 𝑝⋆,R2 = 0.

2. Second, we assume that the collateral is illiquid by setting 𝛼 = 0.25 > 0. The total shares of
collateral sold in the first round are Δ = 4, and in the second round Γ = 0. Furthermore, the
clearing price of the collateral in both rounds is given by 𝜋⋆,R1 = 𝜋⋆,R2 = exp(−4𝛼) ≈ 0.3679.
It does not decrease from the first to the second round, since no collateral is sold in the second
round in this case. The clearing payments in the first round are given by

𝑝⋆,R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2𝜋⋆,R1 2𝜋⋆,R1

0 0 0 0 0

0 0 0 0 0

0 𝛾
(2)
4

2𝜋⋆,R1 0 0 0

0 0 𝛾
(2)
5 2𝜋⋆,R1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and the clearing payments in the second round are given by the zero matrix, that is, 𝑝⋆,R2 = 0.
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VERAART and ALDASORO 15

F IGURE 3 Example
#2—Loss transmission due to
joint clearing members network.
Color code as in Figure 2. [Color
figure can be viewed at
wileyonlinelibrary.com]

This implies that the total shortfall is 𝑆 = 2(2 − 2𝜋⋆,R1) + (2 − 2𝛾
(2)
4

𝜋⋆,R1) + (2 −

2𝛾
(2)
5 𝜋⋆,R1). In particular, the total shortfall depends on 𝛾

(2)
𝑖
, 𝑖 ∈ {4, 5}. For example, for

𝛾
(2)
4

= 𝛾
(2)
5 = 1, 𝑆 ≈ 5.057 and for 𝛾

(2)
4

= 𝛾
(2)
5 = 0.5, 𝑆 ≈ 5.793.

Furthermore, for all choices of 𝛾
(2)
4

, 𝛾
(2)
5 , both CCPs suffer a contagious default and

(𝑝⋆,R1) = {1, 4, 5}. Hence, even though the liabilities of the joint clearing member were fully
collateralized at both CCPs, the fact that this collateral was illiquid still caused the (contagious
default) of both CCPs, which caused knock-on losses to clearing members that only clear at
one CCP.

The scenario from this stylized example has been considered by Glasserman et al. (2015) before,
but not in the context of a model involving different contagion channels. They show that con-
vex IM schedules provide incentives for clearing members to split their positions across multiple
CCPs. This gives rise to what they refer to as hidden illiquidity—that is, the CCPs involved are not
aware that the positions of some of their joint clearing members are in fact undercollateraliszed.
We demonstrate how this effect can be captured by the different contagion mechanisms in our

model. In our example, CCP1 does not know thatM1 has the same position at CCP1 and CCP2 and
therefore for CCP1, it may appear that the position of M1 is sufficiently collateralized. For illiquid
collateral, however, we find that both CCPs can default, and if these two CCPs use more severe
VMGH (achieved by setting 𝛾

(2)
4

= 𝛾
(2)
5 = 0.5 as in our last example) then other clearing members

can suffer substantial additional losses.

3.2 Example #2: Default of clearing member at only one CCP

Next, we show that even if there is no fundamental default among the joint clearing members,
they can still act as a transmission channel of losses from one CCP to another. To illustrate this
effect, we consider a situation where there is only one fundamental default in a clearing member
that only clears at one CCP.
As before, we consider an example consisting of 𝑛𝐶 = 2 CCPs and 𝑛𝑀 = 3 clearing members.

Figure 3 provides an illustration of the network of payment obligations. The notation is the same
as in Figure 2.
Formally,

�̄�R1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 0

0 0 0 0 0

0 0 0 0 2

0 2 0 0 0

2 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 0

0 0 0 0 0

0 0 0 0 2

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝑏 = (0, 0, 0, 0, 0)⊤.
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16 VERAART and ALDASORO

Here,  = {3} = {M3}, hence the clearing member (labeled M3 in Figure 3) is the only fundamen-
tal default. As in the first example, we consider two alternative cases by varying the liquidity of
the collateral.

1. As before, when collateral is liquid (i.e., 𝛼 = 0), the price of collateral cannot change and all
payments are made in full (the total shortfall is 𝑆 = 0). There are no contagious defaults and
the default set is comprised only of the original fundamental default ((𝑝⋆,R1) =  = {3} =

{M3}), as CCP2 still receives 2 from M3 by seizing the IM 𝑚35 = 2 and is able to satisfy its
payment obligations in full. As in the previous example, the value of 𝛾

(2)
3
does not matter, since

CCP2 seizes the collateral and there are no other payments fromM3 to CCP2 (which would be
affected by the parameter 𝛾

(2)
3
). Also note that, since 𝑏3 = 0, the value of 𝛾

(1)
3

does not matter
either.

2. Second, we assume that collateral is illiquid (𝛼 = 0.01 > 0). In this case, both defaults and
shortfall depend on 𝛾

(2)
1

, 𝛾
(2)
4

, 𝛾
(2)
5 . In particular, we find that both CCP2 and M1 suffer a conta-

gious default for all choices of 𝛾
(1)
𝑖

, 𝛾
(2)
𝑖
, 𝑖 ∈  , but whether CCP1 suffers a contagious default

or not depends on the particular values of 𝛾
(2)
1

, 𝛾
(2)
4

, 𝛾
(2)
5 .

For all 𝛾(1)
𝑖

, 𝛾
(2)
𝑖

∈ [0, 1], the total shares of collateral sold areΔ = 4, Γ = 0, resulting in prices
for the collateral of 𝜋⋆,R1 = 𝜋⋆,R2 = exp(−4𝛼) ≈ 0.9608. Furthermore,

𝑝
⋆,R1
14

= min
{

2, 2𝜋⋆,R1(1 + 𝛾
(2)
1

𝛾
(2)
5 )

}
,

𝑝
⋆,R1
35

= 2𝜋⋆,R1,

𝑝
⋆,R1
42

= min
{

2, 𝛾
(2)
4

𝑝
⋆,R1
14

}
= min

{
2, 𝛾

(2)
4

min
{

2, 2𝜋⋆,R1(1 + 𝛾
(2)
1

𝛾
(2)
5 )

}}
,

𝑝
⋆,R1
51

= 𝛾
(2)
5 2𝜋⋆,R1,

and 𝑝
⋆,R1
𝑖𝑗

= 0 for the remaining index pairs (𝑖, 𝑗) and 𝑝⋆,R2 = 0. The shortfall is given by

𝑆 =
(

2 − min
{

2, 2𝜋⋆,R1
(

1 + 𝛾
(2)
1

𝛾
(2)
5

)})
+ (2 − 2𝜋⋆,R1)

+
(

2 − min
{

2, 𝛾
(2)
4

min
{

2, 2𝜋⋆,R1
(

1 + 𝛾
(2)
1

𝛾
(2)
5

)}})
+ (2 − 𝛾

(2)
5 2𝜋⋆,R1),

that is, it depends on 𝛾
(2)
1

, 𝛾
(2)
4

, 𝛾
(2)
5 . For example, for 𝛾

(2)
1

= 𝛾
(2)
4

= 𝛾
(2)
5 = 1, 𝑆 ≈ 0.1568 and

(𝑝⋆,R1) = {1, 3, 5} = {M1,M3,CCP2}.
If CCP2 does very severe VMGH, achieved by, for example, setting 𝛾

(2)
5 = 0 (and 𝛾

(2)
1

=

𝛾
(2)
4

= 1), then 𝑆 ≈ 2.2353 and (𝑝⋆,R1) = {1, 3, 4, 5} = {M1,M3,CCP1,CCP2}. Hence, there is
the additional default of CCP1.
If both CCPs do severe VMGH, by, for example, setting 𝛾

(2)
4

= 𝛾
(2)
5 = 0 (and 𝛾

(2)
1

= 1), then
the total shortfall increases even further to 𝑆 ≈ 4.1568, but the default set remains the same,
that is,(𝑝⋆,R1) = {1, 3, 4, 5} = {M1,M3,CCP1,CCP2}.
This example serves to illustrate that the default of an institution (M3) can trigger the default

of a CCP (CCP1) at which it is not a clearing member. In particular, here the VMGH of CCP2
is one of the causes of the default of CCP1. So, while VMGH can serve as a defense mechanism

 14679965, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

afi.12446 by T
est, W

iley O
nline L

ibrary on [02/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VERAART and ALDASORO 17

F IGURE 4 Example
#3—Cycle of loss transmission
due to joint clearing members
network. Color code as in
Figure 2. [Color figure can be
viewed at wileyonlinelibrary.com]

for CCP2 on a stand-alone basis, it can have contagion effects and ultimately lead to the default
of another CCP.

3.3 Example #3: Circular loss transmission via joint clearing
members and multiple CCPs

Finally, we consider a situation with multiple joint clearing members that create a circle of loss
transmission between them and CCPs, which can cause the default of both types of institutions.
We still consider a system with 𝑛𝐶 = 2 CCPs, but now have 𝑛𝑀 = 6 clearing members. Figure 4
provides an illustration of the network of payment obligations. The notation is the same as in
Figure 2. In contrast to the previous examples, we now consider two joint clearing members that
clear at both CCPs, which leads to a circular structure of payment obligations.
Formally,

�̄�R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0

0 3 2 0 0 0 0 0

2 0 0 0 0 0 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑏 = (0, 0, 0, 0, 0, 0, 0, 0)⊤.

(3)

There are three fundamental defaults,  = {2, 4, 5} = {M2,M4,M5}. The node M4 is only a clear-
ing member of CCP1, the node M5 is only a clearing member of CCP2 and the node M2 is a joint
clearing member of both CCPs, but only has payment obligations to CCP2. As before, we consider
alternative cases:

1. We first consider the case of liquid collateral, that is, 𝛼 = 0. We now distinguish between two
subcases: fully versus not fully collateralized obligations from clearing members to CCPs.
(a) Fully collateralized obligations correspond to the IMs given by 𝑚 in Equation (3). In this

case,𝑝⋆,R1 = �̄�R1 and𝑝⋆,R2 = 0: all payments aremade in full and the total shortfall is zero.
Collateral sold amounts to Δ = 9 in the first round and Γ = 0 in the second round. There
are, thus, no contagious defaults ((𝑝⋆,R1) =  ). As in previous examples, the values of
𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

do not matter in this case.
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18 VERAART and ALDASORO

(b) If we reduce IMs by considering 0.99𝑚 rather than 𝑚 in Equation (3), the situation
changes. Fundamental defaults remain the same, but the overall default set is larger. In par-
ticular, (𝑝⋆,R1) = {M1,M2,M4,M5,CCP1,CCP2}, that is, both CCPs and the additional
joint clearing member M1 default as well (even for 𝛾

(1)
𝑖

= 𝛾
(2)
𝑖

= 1 for all 𝑖 ∈  ).
The total shortfall depends on the parameters 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖
. For example, for 𝛾

(1)
𝑖

= 𝛾
(2)
𝑖

= 1

for all 𝑖 ∈  , the total shortfall is 𝑆 = 0.1, whereas for 𝛾
(2)
7 = 𝛾

(2)
8

= 0.5 (and 𝛾
(1)
𝑖

= 1 for all
𝑖 ∈  and 𝛾

(2)
𝑖

= 1 for all 𝑖 ∈ ), the shortfall increases to 𝑆 = 5.575. In this example, the
collateral sold is Δ = 11 ⋅ 0.99 = 10.89 in the first round and Γ = 0 in the second round.

2. Second, we assume that collateral is illiquid (𝛼 > 0). We further assume that IMs are given
by 𝑚 in Equation (3), that is, payment obligations of clearing members to the CCPs are fully
collateralized. We then consider two subcases, based on differences in liquidity buffers.
(a) First, we consider a liquidity buffer of 0 for all nodes, that is, 𝑏 as given in Equation (3).

For all 𝛾
(1)
𝑖

, 𝛾
(2)
𝑖

∈ [0, 1], 𝑖 ∈  , collateral sold in the two rounds is given by Δ = 11 and
Γ = 0, with corresponding collateral collateral price 𝜋⋆,R1 = 𝜋⋆,R2 = exp(−11𝛼). For 𝛼 =

−
log(0.99)

Δ
≈ 0.00091, that is, one obtains the same outcome as in 1(b) above. In other words,

for 𝛾
(1)
𝑖

= 𝛾
(2)
𝑖

= 1 for all 𝑖 ∈  , the shortfall is 𝑆 = 0.1, whereas for 𝛾
(2)
7 = 𝛾

(2)
8

= 0.5 (and
𝛾

(1)
𝑖

= 1 for all 𝑖 ∈  and 𝛾
(2)
𝑖

= 1 for all 𝑖 ∈ ), the shortfall increases to 𝑆 = 5.575 and
again(𝑝⋆,R1) = {M1,M2,M4,M5,CCP1,CCP2}.

(b) Second, we increase the liquidity buffers of two nodes. For members M2 and M4, we take
the buffers to 𝑏2 = 1 and 𝑏4 = 3, respectively, which ensures that neither of them is in the
fundamental default set, now given by  = {M5}.
With 𝛼 = 0.1 and 𝛾

(1)
𝑖

= 𝛾
(2)
𝑖

= 1 for all 𝑖 ∈  , the fundamental default of M5 causes
the contagious default of CCP2 and the joint clearing member M1, that is, (𝑝⋆,R1) =

{M1,M5,CCP2}, and the shortfall amounts to 𝑆 ≈ 1.3187. Still, CCP1 does not default.
Changing 𝛾

(2)
8

= 1 to 𝛾
(2)
8

= 0.25, that is, assuming that CCP2 uses more
severe VMGH (while keeping all other parameters the same), yields (𝑝⋆,R1) =

{M1,M2,M5,CCP1,CCP2} and the shortfall increases to 𝑆 ≈ 7.2629. Hence, more severe
VMGH by CCP2 triggers the default of CCP1 and the joint clearing member M2.

This example shows that insufficient collateral, either because itwas not posted in the first place
(example 1b)) or because it is illiquid (example 2a)), can cause contagion and defaults of CCPs.
Example 2(b) shows how the default of a clearingmember (M5) at one CCP (CCP2) can ultimately
trigger the default of another CCP (CCP1) of which M5 is not a clearing member, conditional on
the first affected CCP (CCP2) using VMGH. This then triggers the default of M2, in turn leading
to further losses at CCP2 due to the circular structure arising from joint clearing membership.

3.4 Joint clearing members and trapped liquidity

So far, we have assumed that when VMs become due, both clearing members and CCPs make
these payments at the same time. In practice, however, this might not be the case. As described
in ESRB (2020, p. 51), “CCPs typically only pay out VM gains to counterparties the next morning
[. . . ]. In times of highmarket volatility, this practice results in liquidity being trapped in CCPs and
could create or amplify liquidity stress in the financial system.” In the following, we will illustrate
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VERAART and ALDASORO 19

the consequences of trapped liquidity in situations with joint clearing members, revisiting the
previous three examples.
In Example 3.1 (default of a joint clearing member, M1), the effects of trapped liquidity in the

two CCPs would imply that clearing members M2 and M3 would not receive any payments at
time 1, since both CCPs withhold their payments. But since clearing members M2 and M3 do
not have any payment obligations, there is no further contagion. In Example 3.2, the payment
delays of CCP2 can have consequences for CCP1, as joint clearing member M1 is due to receive
payments from CCP2 and must make payments to CCP1. Suppose we equip clearing member M3
with a liquidity buffer of 2. Then, if all VM gains are passed through all CCPs simultaneously,
there are no defaults. If only clearing members make payments, however, then clearing member
M1 only has its liquidity buffer (assumed to be 0) available to make the required VM payments of
2 to CCP1 and hence cannot meet this payment. A joint clearing member with a matched book
can, therefore, become a source of liquidity stress to a CCP (here CCP2) due to another CCP (here
CCP1) not passing through its VM gains.
This mechanism (i.e., joint clearing members becoming a liquidity stress to a CCP), can occur

repeatedly if we have a circular structure as in Example 3.3.

4 EMPIRICAL EVIDENCE FOR THE INTERCONNECTEDNESS OF
CENTRALLY CLEAREDMARKETS

We now present empirical evidence for the interconnectedness of centrally cleared markets. The
presence of CCPs affects financial interconnections in various ways. The most obvious, and the
one that has attracted the most attention, is the reconfiguration of the financial network to a
star-shaped form—whereby the CCP stands in the middle as a large node centralizing all traf-
fic. While useful as a focal point to think about how CCPs affect the nature of counterparty and
liquidity risks, this is still a stylized representation. In practice, the CCP ecosystem gives rise to
layers of interconnections. As discussed above, CCP membership consists of a reduced group of
large financial institutions that simultaneously clears in multiple CCPs. Quite often, these same
institutions will provide additional services to CCPs giving rise to further interconnections, such
as liquidity provision, credit lines, and custodianship (BCBS-CPMI-FSB-IOSCO, 2018).
Figures 5 and 6 present two key stylized facts that informed ourmodeling. Figure 5 captures the

time series of notional amounts cleared by different CCPs in IRS and CDSmarkets.While concen-
trated, both markets feature a few CCPs, that is, the network is not exactly star-shaped. Moreover,
some CCPs clear in both markets, whereas others do so only in one market. Figure 6 in turn
captures the bipartite network of clearing members (left) and CCPs (right). An edge between a
clearingmember and a CCP indicates that themember clears at this particular CCP. As is evident,
there is a strong overlap between the clearing members at multiple CCPs.
Next, we further investigate the overlap in clearingmembership through one-mode projections.

One-mode projections are a way to condense information in bipartite networks.22 While the orig-
inal bipartite network consists of two types of nodes (clearing members and CCPs), a one-mode
projection projects this bipartite network onto a network that consists only of one of the two
groups. Edges appear between the nodes in the new network if there is a relationship between
those two nodes in the dimension that is no longer directly visible. So an edge in the network of

22 For background on one-mode projections, see Newman (2010).
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F IGURE 5 Notional amounts of derivatives cleared by market. (Note that the y-axes are on different scales
due to the large volume of the IRS market.)
[Color figure can be viewed at wileyonlinelibrary.com]
Source: Clarus FT.
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F IGURE 6 Bipartite network of clearing members and CCPs. [Color figure can be viewed at
wileyonlinelibrary.com]
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(a) Levelplot of P members; each cell P members
ij shows the total

number of CCPs at which both institutions i and j clear.
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F IGURE 7 Graphical illustrations of 𝑃members (left) and 𝑃CCPs (right). [Color figure can be viewed at
wileyonlinelibrary.com]

clearing members means that they are joint clearing members in at least one CCP. An edge in the
network of CCPs means that they share at least one clearing member.
First, we consider a one-mode projection that will create a network whose nodes are all the

clearingmembers. The edges in the new network are undirected andweighted, where the weights
represent the number of CCPs at which both clearing members clear. Formally, this is computed
as follows. The original bipartite network consists of clearing members and CCPs. We consider
the incidence matrix 𝐵 for 𝑛𝐶 groups (the CCPs) and 𝑛𝑀 participants (the clearing members),
which is given by 𝐵 ∈ {0, 1}𝑛𝐶×𝑛𝑀 , where

𝐵𝑖𝑗 =

{
1, if institution 𝑗 is a clearing member of CCP 𝑖,

0, otherwise.

Then, for 𝑖, 𝑗 ∈ {1, … , 𝑛𝑀} and 𝑘 ∈ {1, … , 𝑛𝐶}, it holds that 𝐵𝑘𝑖𝐵𝑘𝑗 = 1 if and only if both institu-
tions 𝑖 and 𝑗 clear at CCP 𝑘. Therefore, the total number of CCPs where both 𝑖 and 𝑗 are clearing
members is given by

𝑃members
𝑖𝑗

=

𝑛𝐶∑
𝑘=1

𝐵𝑘𝑖𝐵𝑘𝑗 =

𝑛𝐶∑
𝑘=1

𝐵⊤
𝑖𝑘

𝐵𝑘𝑗.

In particular, 𝑃members = 𝐵⊤𝐵 ∈ {0, 1, … , 𝑛𝐶}𝑛𝑀×𝑛𝑀 and its diagonal element 𝑃members
𝑖𝑖

=∑𝑛𝐶

𝑘=1
𝐵𝑘𝑖𝐵𝑘𝑖 =

∑𝑛𝐶

𝑘=1
𝐵𝑘𝑖 represents the total number of CCPs where 𝑖 ∈ {1, … , 𝑛𝑀} is a

clearing member.
Figure 7a presents a heatmap of 𝑃members: roughly half of all institutions are clearing members

of all six CCPs (red area).
The second one-mode projection creates a network that consists only of CCPs. Its edges are

again undirected and weighted, with weights representing the number of shared clearing mem-
bers. Formally, the total number of institutions that are clearing members at both CCPs 𝑖 and 𝑗 is
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given by

𝑃CCPs
𝑖𝑗

=

𝑛𝑀∑
𝑘=1

𝐵𝑖𝑘𝐵𝑗𝑘 =

𝑛𝑀∑
𝑘=1

𝐵𝑖𝑘𝐵⊤
𝑘𝑗

.

In particular, 𝑃CCPs = 𝐵𝐵⊤ ∈ {0, 1, … , 𝑛𝑀}𝑛𝐶×𝑛𝐶 and its diagonal element 𝑃CCPs
𝑖𝑖

=
∑𝑛𝑀

𝑘=1
𝐵𝑖𝑘

represents the total number of clearing members that CCP 𝑖 ∈ {1, … , 𝑛𝐶} has.
Figure 7 presents a heatmap of 𝑃CCPs. There exists exactly one CCP, namely LCH, which has

all 23 institutions considered here as its clearing members.
Both one-mode projections 𝑃members and 𝑃CCPs derived from our empirical data represent com-

plete networks. This implies that losses from one CCP can in principle spill over to all other CCPs
and losses of clearing members can in principle spill over to all other clearing members, if the
corresponding liquidity buffers/IMs/default funds/and so forth are not large enough to stop the
loss transmission.

5 STRESS-TESTING CCPS

We will now show how our modeling framework can be used for stress-testing CCPs and discuss
policy implications. CCPs run regular in-house stress tests to ensure that adequate resources are
available to withstand a variety of stress scenarios. In addition, authorities conduct system-wide
stress tests.
Our model and findings have important implications for CCP stress testing. The most notable

feature of CCP stress-testing is the Cover-2 standard, used in practice both for single CCP and
system stress-testing (ESMA, 2020). The European Securities and Markets Authority (ESMA)
coordinates EU-wide stress-testing of CCPs and has used the Cover-2 standard. In particular,
ESMA distinguishes between two different types: the “Cover-2 groups per CCP” and “EU-wide
Cover-2 groups.” Under the first type, the top 2 clearing members for each CCP are assumed to
default only for that individual CCP. Under the second type, the top 2 clearing members chosen
to be in default are identified based on exposures across all CCPs and are assumed to default
at all CCPs (see ESMA (2020, p. 20/21) for details). Importantly, stress tests do not consider
second-round effects arising from joint clearing membership (ESMA, 2020).
A key contribution of our paper is to illustrate how accounting for higher-order effects aris-

ing from shared clearing membership can affect stress-testing results. Two key insights emerge:
higher-order effects increase losses, and, when coupled with frictions such as default costs or
severe VMGH, they can change the identity of the top two clearingmembers that cause the largest
losses. To illustrate this point, we perform an extensive stress-testing exercise based on IRS data.

5.1 Calibrating the model

To calibrate the model for our stress testing case study, we use data for end-2019, available from
public disclosures and sourced fromClarus FT. As in Figure 6, we focus on clearingmembers that
are large globally systemic banks.
We are able to match various model elements. In particular, our data contain information on

the CCPs (total notional cleared, default funds 𝛿𝑖 , skin-in-the-game 𝜎𝑖 , aggregate IMs
∑𝑛𝑀

𝑗=1
𝑚𝑗𝑖
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VERAART and ALDASORO 23

for all 𝑖 ∈ ) and the clearing members (total notional cleared, which we denote by 𝑙𝑖). These
data provide a good picture of the default waterfall of CCPs. Furthermore, we know the clearing
members for each CCP.
There are, however, two keymodel quantities that we do not observe in the data: (i) the liquidity

buffers of clearingmembers (𝑏𝑀), and (ii) the network of payment obligations (�̄�R1).23 For clearing
members’ liquidity buffers, we simulate numbers such that preshock (i.e., before setting some
liquidity buffers to zero) there are no fundamental defaults.
The estimation of the matrix of payment obligations is more involved. Appendix B provides

details on the network reconstruction approach, we use to estimate the matrix �̄�R1 from available
information. In a nutshell, we design a constrained optimization problem that takes into account
the data we know (total notional cleared by CCPs and members and adjacency matrix of con-
nections between them) and some assumptions that constrain the target matrix, such as CCPs
having matched books and netting positions, and clearing members not trading bilaterally. From
this constrained optimization, we obtain an estimate of the matrix of derivative positions (𝑋𝑖𝑗),
and we set the matrix of VM payment obligations as a proportion 𝜈 to those (�̄�R1 = 𝜈𝑋𝑖𝑗 , for some
constant 𝜈 ≥ 0; in the simulation studies we present below, we chose 𝜈 = 0.01).24

5.2 Case study and policy implications

For our stress testing exercise in the IRS market, we consider the default of all possible clearing
member pairs by wiping out their liquidity buffers and computing the attendant total shortfall for
each case. Figure 8 presents the results. The 𝑥-axis represents the different clearing member pairs
shocked and the 𝑦-axis represents the total relative payment shortfalls.25
We start by evaluating the shortfall based only on first-order effects (black line) and use it to sort

the pairs as the benchmark. We then compute the corresponding shortfalls in equilibrium (i.e.,
accounting for higher order effects) and additionally consider fire sales of collateral (i.e., 𝛼 > 0),
default frictions (i.e., 𝛾

(1)
𝑖

< 1 and/or 𝛾
(2)
𝑖

< 1 for some 𝑖) and combinations thereof. Throughout
this case study, if we consider 𝛼 > 0, we set 𝛼 = − log(0.4)∕Δtotal ≈ 3.89 × 10−6, where againΔtotal
represents total IMs available in the system. This implies, that if all available collateral was sold,
then the price of the collateral would decrease from 1 to 0.4.
Accounting for higher-order effects indeed results in higher shortfalls (black vs. red lines in

Figure 8). More interesting, however, is the fact that the red line is no longer monotonically
decreasing. If we account for additional frictions (𝛾(1)

𝑖
< 1 and or 𝛾

(2)
𝑖

< 1 for some 𝑖 ∈  ) then
this nonmonotonicity becomes even more evident (e.g., blue and purple lines). This implies that
a pair that leads to high first-order losses need not rank equally high when considering higher-
order effects (with or without frictions). The very large spike in Figure 8 indicates that there is

23 Note that it is in principle possible to collect or estimate these data. However, this requires access to proprietary data
that are typically only accessible to regulators (see, e.g., Paddrik et al. (2020)).
24 This assumption is a shortcut taken for calibration in the absence of actual data on variationmargin payment obligations.
It should not be taken to imply that in reality, variationmargin payment obligations are proportional to notional amounts.
We do not put stock in the numbers we obtain being representative of how that matrix looks in reality, nor in our stress-
testing exercise being a real-world stress test. Our goal in this simulation exercise is to obtain a matrix of variation margin
payment obligations to illustrate the mechanisms in the model.
25 Since there are 𝑛𝑀 = 23 clearing members in our data, there are

(𝑛𝑀

2

)
= 253 ways to select two clearing members to

be shocked.
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F IGURE 8 First- and higher-order total relative payment shortfalls when different pairs of clearing
members are shocked for different parameter choices in ΦR1. Relative payment shortfalls in the system can range
between 0 and 1 (see Section 3). [Color figure can be viewed at wileyonlinelibrary.com]

one pair of clearing members that has very small losses when only considering first-order effects,
but very high losses when accounting for higher-order effects and various frictions.
Default frictions are particularly powerful in affecting pair-specific shortfalls (and much more

so than illiquid collateral). When considering default frictions of clearing members by setting
𝛾

(1)
𝑖

= 𝛾
(2)
𝑖

= 0 for all 𝑖 ∈  (blue line), shortfalls increase significantly, and the ordering of pairs
leading to highest losses changes. When frictions are only associated with CCPs (purple line),
that is, 𝛾

(1)
𝑖

= 1 and 𝛾
(2)
𝑖

= 0 for all 𝑖 ∈  (and 𝛾
(1)
𝑖

= 𝛾
(2)
𝑖

= 1 for all 𝑖 ∈ ), shortfalls increase
even more and similarly the ordering of pairs leading to largest losses again varies considerably.
In particular, the pair leading to the largest shortfalls is not the same as the pair that leads to the
largest first-order shortfalls. When combining these two frictions for liquid (black dotted line) or
illiquid collateral (green dotted line), shortfalls increase even further.
We next look at shortfalls for two specific pairs of clearing members. On the one side, the pair

linked to the largest loss when looking at first-order effects; on the other side, we consider the
pair linked to the largest losses when accounting for higher-order effects with illiquid collateral,
and default frictions of clearing members and CCPs. We consider the parameters corresponding
to Figure 8. In this example, there is no fundamental default before any pair is shocked. Under
this scenario, the first pair (first-order effects only) is Deutsche Bank and Barclays, whereas the
second pair is Deutsche Bank and the Royal Bank of Canada.
Figure 9 presents the results, with the first two panels focusing on the first pair and the last

two panels focusing on the second pair. Figure 9a shows the first-order relative payment shortfall
when Deutsche Bank and Barclays have their liquidity buffers set to 0, and Figure 9b shows the
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(a) First order relative payment shortfall for stress to

Deutsche Bank and Barclays; total first order payment

shortfall is 291,134 million USD.
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(b) Higher order relative payment shortfall (with illiquid

collateral and default frictions of both clearing members

and CCPs) for stress to Deutsche Bank and Barclays; the

total payment shortfall is 1,275,039 million USD.
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(c) First order relative payment shortfall for stress to

Deutsche Bank and the Royal Bank of Canada; total first

order payment shortfall is 248,592 million USD.

ICE Clear Credit (29)
ICE Clear Europe (28)

Eurex (27)
JSCC (26)
CME (25)

LCH SwapClear (24)
Morgan Stanley (23)

JPMorgan Chase (22)
Goldman Sachs (21)

Citigroup (20)
Bank of America (19)
Sumitomo Mitsui (18)

Mitsubishi UFJ (17)
Mizuho (16)

UniCredit (15)
Standard Chartered (14)

Royal Bank of Scotland (13)
Lloyds (12)
HSBC (11)

Barclays (10)
Societe Generale (9)

Credit Agricole (8)
BNP Paribas (7)

Banco Santander (6)
Deutsche Bank (5)
Commerzbank (4)

UBS (3)
Credit Suisse (2)

Royal Bank of Canada (1)

1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829

0.0

0.2

0.4

0.6

0.8

1.0

(d) Higher order relative payment shortfall (with illiquid

collateral and default frictions of both clearing members

and CCPs) for stress to Deutsche Bank and the Royal Bank

of Canada; total payment shortfall is 1,297,541 million

USD.

F IGURE 9 First-order (left) and higher-order (right) relative payment shortfall when two different pairs of
clearing members have their liquidity buffer set to 0. In the first row, Deutsche Bank and Barclays are selected to
have 0 liquidity buffer, in the second row, Deutsche Bank and the Royal Bank of Canada are selected. The
liquidity buffers are chosen such that there is no fundamental default prior to the stress-testing exercise. [Color
figure can be viewed at wileyonlinelibrary.com]

corresponding higher-order relative payment shortfall that accounts for illiquid collateral, hard
defaults of clearing members and severe VMGH, that is, 𝛼 ≈ 3.89 × 10−6 > 0, 𝛾

(1)
𝑖

= 𝛾
(2)
𝑖

= 0 for
all 𝑖 ∈ , and 𝛾

(1)
𝑖

= 1, 𝛾
(2)
𝑖

= 0 for all 𝑖 ∈ . In this example, accounting for these higher-order
effects increases the total shortfall from 291,134 (million USD) to 1,275,039 (million USD), that is,
the shortfall is more than 4.4 times larger.
For the second pair, the picture that emerges is similar. Figure 9c shows the first-order rela-

tive payment shortfall when Deutsche Bank and the Royal Bank of Canada have their liquidity
buffers set to 0, and Figure 9d shows the corresponding higher-order relative payment shortfall
that accounts for the same frictions as before. Accounting for higher-order effects takes the total
shortfall from 248,592 to 1,297,541 (million USD), that is, the shortfall is more than 5.2 times larger.
In particular, four CCPs default under this scenario.
Taken together, these results illustrate that higher-order effects and frictions interact and affect

the ordering of pairs causing the largest losses. Considering only first-order effects would yield
Deutsche Bank and Barclays as the top pair, with a shortfall of 291,134 (million USD) (Figure 9a).
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However, accounting for higher-order effects and frictions would deliver a considerably larger
shortfall (1,297,541millionUSD) by a different pair (DeutscheBank and theRoyal Bank of Canada,
Figure 9d). To be sufficiently severe, stress testing should consider higher-order effects as well as
potential market-related frictions.

6 CONCLUSION

This paper underscores the important role that joint clearing members can have in loss trans-
mission between several CCPs, especially in a context with realistic frictions. As such, it serves
to highlight the need to incorporate these features into the current CCP stress testing practice.
Furthermore, it also highlights the importance of stress testing CCPs simultaneously and not just
in isolation.
As our case studies illustrate, in the presence of joint clearing members, it is even theoreti-

cally possible that a clearing member triggers the default of a CCP at which it does not clear.
This can happen indirectly via fire sales of illiquid collateral, or directly via VMGH of the CCP
at which the member clears, or a combination of both. Admittedly, situations like this would be
rare, but nevertheless, they illustrate the importance of accounting for second- and higher-order
interconnections between CCPs in their risk management.
It is important to bear in mind that our model is stylized and results are illustrative of the

mechanisms we aim to highlight. Throughout we analyze how the effects of a clearing members’
default play out mechanically through CCP’s rulebooks, by incorporating key elements of the
latter on an enhanced version of a canonical network contagionmodel.When interpreting results,
it should be clear thatwe are not able to quantify the likelihood of any scenario leading to an actual
CCP default.
That said, we are able to illustrate important issues regarding contagion in markets with mul-

tiple CCPs and joint clearing membership. In our case studies, we made a number of simplifying
assumptions not required by our key results to go through, such as clearing members novating
all their trades to CCPs, having no bilateral positionswith other clearingmembers, or disregarding
the links between clearing members and the clients they clear for. Even under these assump-
tions, which essentially remove several additional ways in which contagion can spread through
the network of payment obligations, we still find strong contagion effects that can amplify losses
considerably. Importantly, these contagion effects significantly change the ranking of clearing
members, which cause the largest losses in case of default.
These results suggest that any Cover-2 standard that excludes network effects has the risk of

being not conservative enough. One of the key lessons after the Great Financial Crisis was that
stress scenarios need to be “sufficiently severe” (Basel Committee on Banking Supervision, 2018,
Principle 4). Our paper provides evidence that accounting for network effects and joint clearing
membership can be crucial to achieving this objective.
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APPENDIX A: EXISTENCE RESULTS AND PROOFS
Lemma A.1 (Properties of ΦR1). Let ΦR1 ∶ [0, 1] × [0, �̄�R1] → [0, 1] × [0, �̄�R1] be the function
defined in Equation (1), then ΦR1 is order-preserving, that is, for all �̃�, 𝜋 ∈ [0, 1] with �̃� ≤ 𝜋 and
for all �̃�, 𝑝 ∈ [0, �̄�R1] with �̃�𝑖𝑗 ≤ 𝑝𝑖𝑗 for all 𝑖, 𝑗 ∈  , it holds that

ΦR1
1

(�̃�, �̃�) ≤ ΦR1
1

(𝜋, 𝑝),

ΦR1
2,(𝑖𝑗)

(�̃�, �̃�) ≤ ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝) ∀𝑖, 𝑗 ∈  .

Proof of LemmaA.1. Let �̃�, 𝜋 ∈ [0, 1]with �̃� ≤ 𝜋 and let �̃�, 𝑝 ∈ [0, �̄�R1]with �̃�𝑖𝑗 ≤ 𝑝𝑖𝑗 for all 𝑖, 𝑗 ∈

 .
We show that ΦR1

1
is order-preserving. The total assets satisfy

𝐴𝑖(�̃�) = 𝑏𝑖 +

𝑁∑
𝑘=1

�̃�𝑘𝑖 ≤ 𝑏𝑖 +

𝑁∑
𝑘=1

𝑝𝑘𝑖 = 𝐴𝑖(𝑝).

This implies that all nodes that default under 𝑝 also default under �̃�, in particular

(𝑝) ⊆ (�̃�), (A.1)

since for 𝑖 ∈ (𝑝), it holds that �̄�R1
𝑖

> 𝐴𝑖(𝑝) ≥ 𝐴𝑖(�̃�), and hence 𝑖 ∈ (�̃�).
Next, we need to show that the number of shares of collateral sold satisfies

Δ𝑖𝑗(�̃�, �̃�) ≥ Δ𝑖𝑗(𝜋, 𝑝) ∀𝑖, 𝑗 ∈  . (A.2)

Once this has been shown, we immediately obtain that

Δ(�̃�, �̃�) =

𝑁∑
𝑖=1

𝑁∑
𝑗=1

Δ𝑖𝑗(�̃�, �̃�) ≥

𝑁∑
𝑖=1

𝑁∑
𝑗=1

Δ𝑖𝑗(𝜋, 𝑝) = Δ(𝜋, 𝑝),
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and hence

ΦR1
1

(�̃�, �̃�) = exp(−𝛼Δ(�̃�, �̃�)) ≤ exp(−𝛼Δ(𝜋, 𝑝)) = ΦR1
1

(𝜋, 𝑝),

since 𝛼 ≥ 0.
We now prove Equation (A.2). Let 𝑖, 𝑗 ∈  .

∙ First, let 𝑖 ∈ (𝑝). By Equation (A.1), 𝑖 ∈ (�̃�). We distinguish between three cases:

Case 1: Let �̃� > 0, then,Δ𝑖𝑗(�̃�, �̃�) = min

{
𝑚𝑖𝑗,

�̄�R1
𝑖𝑗

�̃�

}
and Δ𝑖𝑗(𝜋, 𝑝) = min

{
𝑚𝑖𝑗,

�̄�R1
𝑖𝑗

𝜋

}
. Since

0 < �̃� ≤ 𝜋, it holds that
�̄�R1

𝑖𝑗

�̃�
≥

�̄�R1
𝑖𝑗

𝜋
, which implies that

Δ𝑖𝑗(�̃�, �̃�) = min

{
𝑚𝑖𝑗,

�̄�R1
𝑖𝑗

�̃�

}
≥ min

{
𝑚𝑖𝑗,

�̄�R1
𝑖𝑗

𝜋

}
= Δ𝑖𝑗(𝜋, 𝑝).

Case 2: Let �̃� = 𝜋 = 0, then if �̄�R1
𝑖𝑗

> 0, it holds thatΔ𝑖𝑗(�̃�, �̃�) = 𝑚𝑖𝑗 = Δ𝑖𝑗(𝜋, 𝑝). If �̄�R1
𝑖𝑗

= 0, then
Δ𝑖𝑗(�̃�, �̃�) = 0 = Δ𝑖𝑗(𝜋, 𝑝).

Case 3: Let 0 = �̃� < 𝜋, then if �̄�R1
𝑖𝑗

> 0, it holds that Δ𝑖𝑗(�̃�, �̃�) = 𝑚𝑖𝑗 ≥ min

{
𝑚𝑖𝑗,

�̄�R1
𝑖𝑗

𝜋

}
=

Δ𝑖𝑗(𝜋, 𝑝). If �̄�R1
𝑖𝑗

= 0, then Δ𝑖𝑗(�̃�, �̃�) = 0 = min

{
𝑚𝑖𝑗,

�̄�R1
𝑖𝑗

𝜋

}
= Δ𝑖𝑗(𝜋, 𝑝).

∙ Second, let 𝑖 ∈  ⧵ (𝑝). Then, Δ𝑖𝑗(𝜋, 𝑝) = 0 ≤ Δ𝑖𝑗(�̃�, �̃�). Hence, Equation (A.2) holds.

Next, we show that ΦR1
2
is order-preserving. Let 𝑖, 𝑗 ∈  . We distinguish between two cases.

Case 1: Let 𝑖 ∈  ⧵ (𝑝). Then,

ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝) = �̄�R1
𝑖𝑗

≥ ΦR1
2,(𝑖𝑗)

(�̃�, �̃�).

Case 2: Let 𝑖 ∈ (𝑝). Then, 𝑖 ∈ (�̃�). Then,

ΦR1
2,(𝑖𝑗)

(�̃�, �̃�) = min

{
�̄�R1

𝑖𝑗
, �̃�𝑚𝑖𝑗 + 𝑎R1

𝑖𝑗
(�̃�)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖

)}
,

ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝) = min

{
�̄�R1

𝑖𝑗
, 𝜋𝑚𝑖𝑗 + 𝑎R1

𝑖𝑗
(𝜋)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)}
.

We distinguish between two cases.
First, let ΦR1

2,(𝑖𝑗)
(𝜋, 𝑝) = �̄�R1

𝑖𝑗
, then ΦR1

2,(𝑖𝑗)
(𝜋, 𝑝) = �̄�R1

𝑖𝑗
≥ ΦR1

2,(𝑖𝑗)
(�̃�, �̃�).

Second, let

�̄�R1
𝑖𝑗

> ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝) = 𝜋𝑚𝑖𝑗 + 𝑎R1
𝑖𝑗

(𝜋)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)
. (A.3)
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We show that

�̄�R1
𝑖𝑗

> ΦR1
2,(𝑖𝑗)

(�̃�, �̃�) = �̃�𝑚𝑖𝑗 + 𝑎R1
𝑖𝑗

(�̃�)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖

)
. (A.4)

Rearranging Equation (A.3) gives �̄�R1
𝑖𝑗

− 𝜋𝑚𝑖𝑗 > 𝑎R1
𝑖𝑗

(𝜋)
(

𝛾
(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

∑𝑁

𝑘=1
𝑝𝑘𝑖

)
≥ 0 and hence

0 <
�̄�R1

𝑖𝑗
− 𝜋𝑚𝑖𝑗∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
− 𝜋𝑚𝑖𝑘}

= 𝑎R1
𝑖𝑗

(𝜋),

which implies that

�̄�R1
𝑖𝑗

− 𝜋𝑚𝑖𝑗>𝑎R1
𝑖𝑗

(𝜋)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)
=

�̄�R1
𝑖𝑗

− 𝜋𝑚𝑖𝑗∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
− 𝜋𝑚𝑖𝑘}

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)
,

⟺ 1>

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

∑𝑁

𝑘=1
𝑝𝑘𝑖

)
∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
− 𝜋𝑚𝑖𝑘}

. (A.5)

It also holds that 𝑎R1
𝑖𝑗

(�̃�) > 0. We prove this by contradiction. Assume that 𝑎R1
𝑖𝑗

(�̃�) = 0. This
implies that �̄�R1

𝑖𝑗
≤ �̃�𝑚𝑖𝑗 . But since 0 = 𝑎R1

𝑖𝑗
(�̃�) < 𝑎R1

𝑖𝑗
(𝜋), we obtain

�̃�𝑚𝑖𝑗 + 𝑎R1
𝑖𝑗 (�̃�)

(
𝛾

(1)

𝑖 𝑏𝑖 + 𝛾
(2)

𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖

)
≤ 𝜋𝑚𝑖𝑗 + 𝑎R1

𝑖𝑗 (𝜋)

(
𝛾

(1)

𝑖 𝑏𝑖 + 𝛾
(2)

𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)
= ΦR1

2,(𝑖𝑗)
(𝜋, 𝑝) < �̄�R1

𝑖𝑗 ,

which is a contradiction to �̄�R1
𝑖𝑗

≤ �̃�𝑚𝑖𝑗 . Hence, 𝑎R1𝑖𝑗
(�̃�) > 0.

From 𝑎R1
𝑖𝑗

(�̃�) > 0, it follows directly that

𝑁∑
𝑘=1

max
{

0, �̄�R1
𝑖𝑘

− �̃�𝑚𝑖𝑘

}
> 0 and �̄�R1

𝑖𝑗
− �̃�𝑚𝑖𝑗 > 0. (A.6)

Then,

�̃�𝑚𝑖𝑗 + 𝑎R1
𝑖𝑗

(�̃�)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖

)
= �̃�𝑚𝑖𝑗 +

max{0, �̄�R1
𝑖𝑗

− �̃�𝑚𝑖𝑗}∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
− �̃�𝑚𝑖𝑘}

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖

)

≤ �̃�𝑚𝑖𝑗 +
max{0, �̄�R1

𝑖𝑗
− �̃�𝑚𝑖𝑗}∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
− 𝜋𝑚𝑖𝑘}

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)
< �̃�𝑚𝑖𝑗 + max

{
0, �̄�R1

𝑖𝑗
− �̃�𝑚𝑖𝑗

}
= �̄�R1

𝑖𝑗
,

(A.7)

where the last inequality follows from Equation (A.5). Observe that Equation (A.3) implies that
indeed

∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
− 𝜋𝑚𝑖𝑘} > 0. Hence, Equation (A.4) holds.

It remains to show that

ΦR1
2,(𝑖𝑗)

(�̃�, �̃�) = �̃�𝑚𝑖𝑗 + 𝑎R1
𝑖𝑗

(�̃�)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖

)
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32 VERAART and ALDASORO

≤ 𝜋𝑚𝑖𝑗 + 𝑎R1
𝑖𝑗

(𝜋)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)
= ΦR1

2,(𝑖𝑗)
(𝜋, 𝑝).

It is clear that ΦR1
2,(𝑖𝑗)

is order-preserving in the argument 𝑝. So we only need to show that it is
also order-preserving in 𝜋. If 𝑚𝑖𝑗 = 0, then it follows directly that 𝑎R1

𝑖𝑗
(�̃�) ≤ 𝑎R1

𝑖𝑗
(𝜋) and hence

ΦR1
2,(𝑖𝑗)

(�̃�, �̃�) ≤ ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝). If 𝑚𝑖𝑗 > 0, we define a function 𝑓𝑖𝑗(⋅; �̂�) ∶ [�̃�, 𝜋] → [0, �̄�R1
𝑖𝑗

) by

𝑓𝑖𝑗(�̂�; �̂�) = �̂�𝑚𝑖𝑗 + 𝑎R1
𝑖𝑗

(�̂�)

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̂�𝑘𝑖

)
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

=𝐴𝑖(�̂�;𝛾
(1)
𝑖

,𝛾
(2)
𝑖

)

= �̂�𝑚𝑖𝑗 + 𝑎R1
𝑖𝑗

(�̂�)𝐴𝑖

(
𝑝; 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

)
,

where �̂� ∈ [�̃�, 𝑝]. In particular, 𝑓𝑖𝑗(�̂�; �̂�) = ΦR1
2,(𝑖𝑗)

(�̂�, �̂�) under the given constraints on the param-
eters.
Furthermore, since 𝑎R1(�̃�) > 0 and 𝑎R1(𝜋) > 0, we obtain for all �̂� ∈ [�̃�, 𝜋] that �̃�𝑚𝑖𝑗 ≤ �̂�𝑚𝑖𝑗 ≤

𝜋𝑚𝑖𝑗 < �̄�R1
𝑖𝑗
and hence 𝑎R1

𝑖𝑗
(�̂�) > 0.

From Equations (A.3) and (A.4), it follows directly that 𝐴𝑖(𝑝; 𝛾
(1)
𝑖

, 𝛾
(2)
𝑖

) <
∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
−

𝜋𝑚𝑖𝑘} and 𝐴𝑖(�̃�; 𝛾
(1)
𝑖

, 𝛾
(2)
𝑖

) <
∑𝑁

𝑘=1
max{0, �̄�R1

𝑖𝑘
− �̃�𝑚𝑖𝑘}. Hence, for all �̂� ∈ [�̃�, 𝑝], we obtain

𝐴𝑖

(
�̃�; 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

)
≤ 𝐴𝑖

(
�̂�; 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

)
≤ 𝐴𝑖

(
𝑝; 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

)
<

𝑁∑
𝑘=1

max
{

0, �̄�R1
𝑖𝑘

− 𝜋𝑚𝑖𝑘

}
≤

𝑁∑
𝑘=1

max
{

0, �̄�R1
𝑖𝑘

− �̂�𝑚𝑖𝑘

}
≤

𝑁∑
𝑘=1

max
{

0, �̄�R1
𝑖𝑘

− �̃�𝑚𝑖𝑘

}
.

(A.8)

The function 𝑓𝑖𝑗 is continuous and piecewise differentiable.26 Similarly to the argument used
in Ghamami et al. (2022, Proof of Lemma A.1), we can consider the derivative of 𝑓𝑖𝑗 , and obtain

𝜕𝑓𝑖𝑗(�̂�; �̂�)

𝜕�̂�
= 𝑚𝑖𝑗 +

𝜕𝑎R1
𝑖𝑗

(�̂�)

𝜕�̂�
𝐴𝑖

(
�̂�; 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

)
,

𝜕𝑎R1
𝑖𝑗

(�̂�)

𝜕�̂�
=

(∑𝑁

𝑘=1
max

{
0, �̄�R1

𝑖𝑘
− �̂�𝑚𝑖𝑘

})
(−𝑚𝑖𝑗) +

(
�̄�R1

𝑖𝑗
− �̂�𝑚𝑖𝑗

)+ ∑𝑁

𝑘=1
𝑚𝑖𝑘𝕀{

�̄�R1
𝑖𝑘

>�̂�𝑚𝑖𝑘

}
(∑𝑁

𝑘=1
max

{
0, �̄�R1

𝑖𝑘
− �̂�𝑚𝑖𝑘

})2
,

and hence,

𝜕𝑓𝑖𝑗(�̂�; �̂�)

𝜕�̂�
= 𝑚𝑖𝑗

(
1 −

𝐴𝑖(�̂�; 𝛾
(1)

𝑖
, 𝛾

(2)

𝑖
)∑𝑁

𝑘=1
max

{
0, �̄�R1

𝑖𝑘
− �̂�𝑚𝑖𝑘

}) +

(
�̄�R1

𝑖𝑗
− �̂�𝑚𝑖𝑗

)+ ∑𝑁

𝑘=1
𝑚𝑖𝑘𝕀{�̄�R1

𝑖𝑘
>�̂�𝑚𝑖𝑘}(∑𝑁

𝑘=1
max

{
0, �̄�R1

𝑖𝑘
− �̂�𝑚𝑖𝑘

})2
𝐴𝑖

(
�̂�; 𝛾

(1)

𝑖 , 𝛾
(2)

𝑖

)
.

26 The only points where 𝑓𝑖𝑗 is not differentiable are points �̄�R1
𝑖𝑘

∕𝑚𝑖𝑘 ∈ [�̃�, 𝜋] with 𝑚𝑖𝑘 > 0, 𝑘 ∈  .
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VERAART and ALDASORO 33

The first term of the derivative satisfies

1 −
𝐴𝑖

(
�̂�; 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

)
∑𝑁

𝑘=1
max

{
0, �̄�R1

𝑖𝑘
− �̂�𝑚𝑖𝑘

} ≥ 0,

because of Equation (A.8). Furthermore, it is clear that the second term of the derivative is non-
negative. Hence, the derivative is non-negative. Together with the continuity of 𝑓𝑖𝑗 , this implies
that 𝑓𝑖𝑗 is order-preserving on [�̃�, 𝜋] and hence ΦR1

2,(𝑖𝑗)
(�̃�, �̃�) ≤ ΦR1

2,(𝑖𝑗)
(𝜋, 𝑝). □

TheoremA.2 (Existence of a least and greatest price-payment equilibrium in Round 1). LetΦR1 ∶

[0, 1] × [0, �̄�R1] → [0, 1] × [0, �̄�R1] be the function defined in Equation (1).

1. The set of fixed points of ΦR1 is a complete lattice. In particular, ΦR1 admits a greatest and a least
fixed point.

2. Let (𝜋(0), 𝑝(0)) = (1, �̄�R1) and define recursively for 𝑘 ∈ ℕ0

(𝜋(𝑘+1), 𝑝(𝑘+1)) = ΦR1(𝜋(𝑘), 𝑝(𝑘)).

Then,
(a) (𝜋(𝑘), 𝑝(𝑘))𝑘∈ℕ0

is a monotonically nonincreasing sequence, that is, 𝜋(𝑘+1) ≤ 𝜋(𝑘) and
𝑝

(𝑘+1)
𝑖𝑗

≤ 𝑝
(𝑘)
𝑖𝑗

for all 𝑖, 𝑗 ∈  and for all 𝑘 ∈ ℕ0.
(b) The limit lim𝑘→∞(𝜋(𝑘), 𝑝(𝑘)) exists and is the greatest fixed point of ΦR1.

Proof of Theorem A.2.

1. We will prove the statement using Tarksi’s fixed point theorem (Tarski, 1955). First, [0, 1] ×

[0, �̄�R1] is a complete lattice with respect to the component-wise ordering. Second, it fol-
lows directly from the definition of ΦR1 in Equation (1) that indeed ΦR1 ∶ [0, 1] × [0, �̄�R1] →

[0, 1] × [0, �̄�R1]. Third, ΦR1 is an order-preserving function by Lemma A.1. By Tarski’s fixed
point theorem, the set of fixed points ofΦR1 is a complete lattice and hence a least and greatest
fixed point exist.

2. Next, we show that the greatest fixed point can be obtained by fixed point iteration.
(a) We prove that 𝜋(𝑘+1) ≤ 𝜋(𝑘) and 𝑝

(𝑘+1)
𝑖𝑗

≤ 𝑝
(𝑘)
𝑖𝑗

for all 𝑖, 𝑗 ∈  and for all 𝑘 ∈ ℕ0

by induction.
For 𝑘 = 0, it follows directly from the definition of ΦR1 in Equation (1) that 𝜋(1) =

ΦR1
1

(𝜋(0), 𝑝(0)) = exp(−𝛼Δ(𝜋(0), 𝑝(0))) ≤ 1 = 𝜋(0) and 𝑝
(1)
𝑖𝑗

= ΦR1
2,(𝑖𝑗)

(𝜋(0), 𝑝(0)) ≤ �̄�R1
𝑖𝑗

= 𝑝
(0)
𝑖𝑗

for all 𝑖, 𝑗 ∈  .
Our induction hypothesis is that 𝜋(𝑘+1) ≤ 𝜋(𝑘) and 𝑝

(𝑘+1)
𝑖𝑗

≤ 𝑝
(𝑘)
𝑖𝑗

for all 𝑖, 𝑗 ∈  and for
a 𝑘 ∈ ℕ0.
Then, by the definition of the sequence

(𝜋(𝑘+2), 𝑝(𝑘+2)) = ΦR1(𝜋(𝑘+1), 𝑝(𝑘+1)) ≤ ΦR1(𝜋(𝑘), 𝑝(𝑘)) = (𝜋(𝑘+1), 𝑝(𝑘+1)),

where the inequality follows from the induction hypothesis and the fact that ΦR1 is order-
preserving by Lemma A.1. Hence, this completes the induction step.
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34 VERAART and ALDASORO

It follows directly from the definition of ΦR1 that it is bounded from below by (0, 0)

(where the first 0 is one-dimensional and the second zero is the𝑁 × 𝑁 zeromatrix). Hence,
there exists a monotone limit (�̂�, �̂�) = lim𝑘→∞(𝜋(𝑘), 𝑝(𝑘)). This limit is a fixed point ofΦR1,
since

ΦR1(�̂�, �̂�) = ΦR1( lim
𝑘→∞

(𝜋(𝑘), 𝑝(𝑘))) = lim
𝑘→∞

ΦR1(𝜋(𝑘), 𝑝(𝑘)) = lim
𝑘→∞

(𝜋(𝑘+1), 𝑝(𝑘+1)) = (�̂�, �̂�),

where the second equality follows from the right-continuity ofΦR1. It remains to show that
(�̂�, �̂�) = (𝜋⋆,R1, 𝑝⋆,R1), that is, that it is the greatest fixed point of ΦR1.
We show by induction that (𝜋(𝑘), 𝑝(𝑘)) ≥ (𝜋⋆,R1, 𝑝⋆,R1) for all 𝑘 ∈ ℕ0. It is clear that

(𝜋(0), 𝑝(0)) = (1, �̄�R1) ≥ (𝜋⋆,R1, 𝑝⋆,R1). Suppose (𝜋(𝑘), 𝑝(𝑘)) ≥ (𝜋⋆,R1, 𝑝⋆,R1) for a 𝑘 ∈ ℕ0.
Then,

(𝜋(𝑘+1), 𝑝(𝑘+1)) = ΦR1(𝜋(𝑘), 𝑝(𝑘)) ≥ ΦR1(𝜋⋆,R1, 𝑝⋆,R1) = (𝜋⋆,R1, 𝑝⋆,R1),

where the inequality follows from the induction hypothesis and the fact that ΦR1 is order-
preserving. The last equality holds because (𝜋⋆,R1, 𝑝⋆,R1) is a fixed point of ΦR1.
Hence,

(�̂�, �̂�) = lim
𝑘→∞

(𝜋(𝑘), 𝑝(𝑘)) ≥ (𝜋⋆,R1, 𝑝⋆,R1)

and since (�̂�, �̂�) = ΦR1(�̂�, �̂�), we obtain that (�̂�, �̂�) = (𝜋⋆,R1, 𝑝⋆,R1). □

Corollary A.3. It holds that  ⊆ (𝑝⋆,R1).

Proof of Corollary A.3. From Theorem A.2,  = (𝑝(0)). Since, (𝑝(𝑘))𝑘∈ℕ0
is monotonically

nonincreasing, it holds that for all 𝑘 ∈ ℕ

(𝑝(𝑘)) =

{
𝑖 ∈  ∣ 𝑏𝑖 +

𝑁∑
𝜈=1

𝑝
(𝑘)
𝜈𝑖

< �̄�R1
𝑖

}
⊆

{
𝑖 ∈  ∣ 𝑏𝑖 +

𝑁∑
𝜈=1

𝑝
(𝑘+1)
𝜈𝑖

< �̄�R1
𝑖

}
= (𝑝(𝑘+1)).

Hence, in particular  = (𝑝(0)) ⊆ (𝑝⋆,R1). □

Remark A.4. The existence of a greatest and least fixed point for the second round of clearing
was proved in Ghamami et al. (2022). In particular, [0, 𝜋⋆,R1] × [0, �̄�R2] is a complete lattice with
respect to the component-wise ordering and ΦR2 is order-preserving. The greatest fixed point of
ΦR2, therefore, exists by Tarksi’s fixed point theorem.
Additionally, sinceΦR2 is also right-continuous, one can showusing the same type of arguments

as forΦR1, that the greatest fixed point (𝜋⋆,R2, 𝑝⋆,R2) ofΦR2 can be obtained by setting (𝜋(0), 𝑝(0)) =

(𝜋⋆,R1, �̄�R2) and then defining recursively for 𝑘 ∈ ℕ0

(𝜋(𝑘+1), 𝑝(𝑘+1)) = ΦR2(𝜋(𝑘), 𝑝(𝑘)),
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VERAART and ALDASORO 35

which is a nonincreasing sequence that is bounded from below by (0, 0) (as it was the case for
ΦR1). In particular, (𝜋⋆,R2, 𝑝⋆,R2) = lim𝑘→∞ ΦR2(𝜋(𝑘), 𝑝(𝑘)), that is, it converges to the greatest
fixed point.

APPENDIX B: DATA DESCRIPTION AND NETWORK RECONSTRUCTION FOR THE
CASE STUDIES
Our case studies rely on data fromCCP public disclosures, whichwe source fromClarus FT. These
data provide a substantial amount of information that can be directly used to calibrate our model.
For each CCP 𝑖 ∈ {1, … , 𝑛𝐶}, we know its clearing members and we observe the total notional
cleared (denoted by 𝑎𝑖), the default fund (𝛿𝑖), the CCP’s capital (i.e., skin-in-the-game 𝜎𝑖), and
the aggregate IMs (

∑𝑛𝑀

𝑗=1
𝑚𝑗𝑖). This is enough to have a well-rounded picture of CCP’s waterfalls,

which we illustrate in Figure B.1 for the CCPs in our sample (aggregated over both IRS and CDS
data). As the figure shows, the bulk of loss-absorbing resources are given by IMs and the default
fund, whereas skin-in-the-game is thin to a level that is almost imperceptible in the graphs. In
addition, we also obtain, for each clearing member 𝑖 ∈ {1, … , 𝑛𝑀}, the total notional cleared by
market (denoted by 𝑙𝑖).
There are, however, some important model objects that we do not observe, most notably the

network of VMpayment obligations (�̄�R1). Accordingly, we need to estimate it based on observable
data. In the following, we describe how we estimate this network.
We start with amatrix of notional positions,𝑋 ∈ [0, ∞)𝑁×𝑁 , where𝑋𝑖𝑗 is the total liability from

𝑖 to 𝑗 arising from a derivative contract.We assume that the first 𝑛𝑀 rows and columns correspond
to the clearing members, and the last 𝑛𝐶 rows and columns correspond to CCPs. Hence,

𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋1,1 … 𝑋1,𝑛𝑀
𝑋1,(𝑛𝑀+1) 𝑋1,(𝑛𝑀+2) … 𝑋1,(𝑛𝑀+𝑛𝐶)

… … … … … … …

𝑋𝑛𝑀,1 … 𝑋𝑛𝑀,𝑛𝑀
𝑋𝑛𝑀,(𝑛𝑀+1) 𝑋𝑛𝑀,(𝑛𝑀+2) … 𝑋𝑛𝑀,(𝑛𝑀+𝑛𝐶)

𝑋(𝑛𝑀+1),1 … 𝑋(𝑛𝑀+1),𝑛𝑀
𝑋(𝑛𝑀+1),(𝑛𝑀+1) 𝑋(𝑛𝑀+1),(𝑛𝑀+2) … 𝑋(𝑛𝑀+1),(𝑛𝑀+𝑛𝐶)

… … … … … … …

𝑋(𝑛𝑀 + 𝑛𝐶), 1 … 𝑋(𝑛𝑀+𝑛𝐶),𝑛𝑀
𝑋(𝑛𝑀+𝑛𝐶),(𝑛𝑀+1) 𝑋(𝑛𝑀+𝑛𝐶),(𝑛𝑀+2) … 𝑋(𝑛𝑀+𝑛𝐶),(𝑛𝑀+𝑛𝐶)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
𝐴 𝐵

𝐶 𝐷

)
,

where 𝐴 ∈ [0, ∞)𝑛𝑀×𝑛𝑀 , 𝐵 ∈ [0, ∞)𝑛𝑀×𝑛𝐶 , 𝐶 ∈ [0, ∞)𝑛𝐶×𝑛𝑀 , 𝐷 ∈ [0, ∞)𝑛𝐶×𝑛𝐶 .
In our empirical analyses, we assume that clearing members do not trade bilaterally. This

implies that the upper left 𝑛𝑀 × 𝑛𝑀-dimensional submatrix 𝐴 is the zero matrix. Similarly,
since the CCPs do not have any trading relationships with other CCPs, the lower right 𝑛𝐶 × 𝑛𝐶-
dimensional submatrix 𝐷 is also the zero matrix. Hence, we need to estimate the following two
submatrices:

𝐵 =

⎛⎜⎜⎜⎝
𝑋1,(𝑛𝑀+1) … 𝑋1,(𝑛𝑀+𝑛𝐶)

… … …

𝑋𝑛𝑀,(𝑛𝑀+1) … 𝑋𝑛𝑀,(𝑛𝑀+𝑛𝐶)

⎞⎟⎟⎟⎠,
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F IGURE B . 1 Default waterfall for the six CCPs (original (top left), normalized by total exposure (top right)
and by the size of the default waterfall (bottom left)), and boxplot of the normalized skin-in-the game (bottom
right). [Color figure can be viewed at wileyonlinelibrary.com]

𝐶 =

⎛⎜⎜⎜⎝
𝑋(𝑛𝑀+1),1 … 𝑋(𝑛𝑀+1),𝑛𝑀

… …

𝑋(𝑛𝑀 + 𝑛𝐶), 1 … 𝑋(𝑛𝑀+𝑛𝐶),𝑛𝑀

⎞⎟⎟⎟⎠.
Since positions at CCPs are netted, we assume that there are no index pairs 𝑖, 𝑗 ∈  such that

both 𝑋𝑖𝑗 > 0 and 𝑋𝑗𝑖 > 0 for 𝑖, 𝑗 ∈  . This implies that there are no index pairs for which both
𝐵𝑖𝑗 > 0 and 𝐶𝑗𝑖 > 0, where 𝑖 ∈ {1, … , 𝑛𝑀} and 𝑗 ∈ {1, … , 𝑛𝐶}.
Hence, we can estimate the two matrices 𝐵, 𝐶 simultaneously, by estimating the matrix 𝑌 ∈

ℝ𝑛𝑀×𝑛𝐶 , where 𝑌 = 𝐵 − 𝐶⊤. In particular, 𝑌 can take positive and negative entries. Fix 𝑖 ∈

{1, … , 𝑛𝑀} and 𝑗 ∈ {1, … , 𝑛𝐶}. First, if 𝑌𝑖,𝑗 ≥ 0, we set 𝐵𝑖𝑗 = 𝑋𝑖,(𝑛𝑀+𝑗) = 𝑌𝑖,𝑗 , which means that
clearing member 𝑖 has an obligation to CCP 𝑗 and we set 𝐶𝑗,𝑖 = 𝑋(𝑛𝑀+𝑗),𝑖 = 0 (i.e., no obligation
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VERAART and ALDASORO 37

fromCCP 𝑗 to clearingmember 𝑖). Second, if𝑌𝑖𝑗 < 0, thenwe set𝐵𝑖𝑗 = 𝑋𝑖,(𝑛𝑀+𝑗) = 0, that is, clear-
ing member 𝑖 does not have any obligations to CCP 𝑗, and we set 𝐶𝑗,𝑖 = 𝑋(𝑛𝑀+𝑗),𝑖 = |𝑌𝑖𝑗|, that is,
the CCP 𝑗 has an obligation to clearing member 𝑖.
We have the following information about 𝑌. From public disclosures, we know the clearing

members of each CCP. This means that we know the adjacency matrix that corresponds to 𝑌,
which we denote by 𝐴observed ∈ {0, 1}𝑛𝑀×𝑛𝐶 . In particular,

𝐴observed
𝑖𝑗

=

{
1, if 𝑖is a clearing member of 𝑗,

0, else.

Furthermore, as mentioned above, for each clearing member 𝑖 ∈ {1, … , 𝑛𝑀}, we know the total
notional amount that it clears (𝑙𝑖). In turn, for each CCP 𝑗 ∈ {1, … , 𝑛𝐶}, we know the total notional
that it clears, denoted by 𝑎𝑗 . Moreover, we also know that each CCP has a matched book, as that
is the essence of their business model. These considerations together give rise to the following
mathematical constraints on matrix 𝑌:

𝑛𝐶∑
𝑗=1

|𝑌𝑖𝑗𝐴observed
𝑖𝑗

| = 𝑙𝑖 ∀𝑖 ∈ {1, … , 𝑛𝑀} (total notional cleared by clearing member)

𝑛𝑀∑
𝑖=1

|𝑌𝑖𝑗𝐴observed
𝑖𝑗

| = 𝑎𝑗 ∀𝑗 ∈ {1, … , 𝑛𝐶} (total notional cleared by CCP)

𝑛𝑀∑
𝑖=1

𝑌𝑖𝑗𝐴observed
𝑖𝑗

= 0 ∀𝑗 ∈ {1, … , 𝑛𝐶} (matched book of CCP).

(B.1)

Given these additional constraints, we cannot use standard methods available to reconstruct
financial networks from the observed row and column sums, see, for example, Gandy and Veraart
(2017) and the references therein.
To obtain amatrix𝑌, we solve an optimization problem that penalizes deviations from the con-

straints formulated in Equation (B.1). We consider the following objective function 𝑓 ∶ 𝑅𝑛𝑀×𝑛𝐶 →

ℝ, where

𝑓(𝑦) =

𝑛𝑀∑
𝑖=1

(
𝑙𝑖 −

𝑛𝐶∑
𝑗=1

|𝑌𝑖𝑗𝐴observed
𝑖𝑗

|)2

+

𝑛𝐶∑
𝑗=1

(
𝑎𝑗 −

𝑛𝑀∑
𝑖=1

|𝑌𝑖𝑗𝐴observed
𝑖𝑗

|)2

+ 𝑃

𝑛𝐶∑
𝑗=1

(
𝑛𝑀∑
𝑖=1

𝑌𝑖𝑗𝐴observed
𝑖𝑗

)2

,

where 𝑃 > 0 is a constant that we include to put an additional penalty weight on the term that
captures how well the CCPs’ books are matched. Then, we consider the following optimization
problem:

min
𝑌∈𝑅𝑛𝑀×𝑛𝐶

𝑓(𝑌)

subject to Adj(𝑌) = 𝐴observed,
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38 VERAART and ALDASORO

ICE Clear Credit (29)
ICE Clear Europe (28)
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F IGURE B . 2 Reconstructed network of derivative positions for interest rate swaps (in million USD). [Color
figure can be viewed at wileyonlinelibrary.com]

where Adj(𝑌)𝑖𝑗 = 1 if 𝑌𝑖𝑗 > 0 and 0 otherwise, hence it computes the adjacency matrix that
corresponds to 𝑌.27
When solving this optimization problem for our data for the IRS andCDSmarkets, we obtain in

both cases matrices in which CCPs have indeed (essentially) matched books, and the deviations
from the observed row and column sums are very small28. After having obtained the matrix𝑌, we
can use it to compute the matrix𝑋 of notional positions as described before. Figure B.2 shows the
reconstructed matrix of IRS notional amounts.
Finally, we then assume that the VM payments due from derivative positions are proportional

to the original estimated position, that is, if the derivative position is 𝑋𝑖𝑗 , then we set �̄�R1
𝑖𝑗

= 𝜈𝑋𝑖𝑗

for some constant 𝜈 ≥ 0.
The final quantities we need are the liquidity buffers of the clearing members, that is, 𝑏𝑖 , where

𝑖 ∈ . Since we do not have this information, we simulate numbers such that preshock (i.e.,
before setting some liquidity buffers to 0) there are no fundamental defaults.

APPENDIX C: CLEARINGWITH PECKING ORDER
In this appendix, we develop a clearingmechanism inwhich clearingmembers that default do not
pay the CCPs pro rata (as assumed in our benchmarkmodel) but according to a pecking order, and
compare the results.We use ideas developed in Elsinger (2011) for clearing networkswith different
seniorities of debt. We characterize the pecking order in terms of a matrixΩ ∈ {0, 1, … , 𝑛𝐶}𝑛𝑀×𝑛𝐶 ,
where Ω𝑖𝑗 represents the rank of CCP 𝑗 in clearing member i’s pecking order. If Ω𝑖𝑗 = 1, this
means that CCP 𝑗 is paid first by clearing member 𝑖, and payments to other CCPs are only made if
assets are left after the payments to 𝑗 are made. If Ω𝑖𝑗 = 0, then this means that clearing member
𝑖 does not have any payment obligations to CCP 𝑗. In the following, we assume that each clearing

27 In fact, we only need to find those 𝑌𝑖𝑗 for which 𝐴observed
𝑖𝑗

= 1. Hence, the number of unknown parameters can be

reduced from 𝑛𝑀 ⋅ 𝑛𝐶 to
∑𝑛𝑀

𝑖=1

∑𝑛𝐶

𝑗=1
𝐴

(𝑌)
𝑖𝑗
.

28 For the IRS data, the objective function is 1.061781e-11 and for the CDS data, the objective function is 1.967258e-15.
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VERAART and ALDASORO 39

member has a strict ranking of CCPs to which it makes payments, so no two CCPs are considered
of equal seniority in a clearing member’s pecking order.29
Our mathematical model does not depend on which criteria are used by the clearing members

to decide on their pecking order. For our case studies, we assume that the pecking order is obtained
by considering the size of the payment obligations, that is, a clearing member ranks the CCP to
which it has the highest payment obligations first in the pecking order and then pays other CCPs
according to decreasing nominal amounts of payments due. As before, we assume that CCPs still
pay their clearing members pro rata and not according to a pecking order.

C.1 First round of clearing with pecking order
In the following, we assume that �̄�R1

𝑖
> 0 for all 𝑖 ∈ , that is, all CCPs have strictly positive

payment obligations. Since CCPs have matched books, this means that we do not have redun-
dant CCPs in the model. To simplify notation, we assume that  = {1, … , 𝑛𝑀} and  = {𝑛𝑀 +

1, … , 𝑛𝑀 + 𝑛𝐶}, that is, the first 𝑛𝑀 indices correspond to the clearingmembers and the remaining
indices to the CCPs.
We can characterize a price-payment equilibrium as a suitable fixed point. We consider

a function ΦR1, pecking ∶ [0, 1] × [0, �̄�R1] → [0, 1] × [0, �̄�R1], and are interested in a fixed point
(𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking) such that

(𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking) = ΦR1, pecking(𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking),

where ΦR1, pecking is defined as follows.

ΦR1
1

(𝜋, 𝑝) = exp(−𝛼Δ(𝜋, 𝑝)),

Φ
R1, pecking
2,(𝑖𝑗)

(𝑝) =

⎧⎪⎪⎨⎪⎪⎩
min

{
�̄�R1

𝑖𝑗
,

�̄�R1
𝑖𝑗∑𝑁

𝑘=1 �̄�R1
𝑖𝑘

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

∑𝑁

𝑘=1
𝑝𝑘𝑖

)}
, if 𝑖 ∈  ∩ (𝑝),

min

{
�̄�R1

𝑖𝑗
, 𝜋𝑚𝑖𝑗 +

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

∑𝑁

𝑘=1
𝑝𝑘𝑖 − 𝑊𝑖𝑗(𝜋)

)+
}

, if 𝑖 ∈  ∩ (𝑝),

�̄�R1
𝑖𝑗

, if 𝑖 ∈  ⧵ (𝑝),

(C.1)

where as before (𝑝) = {𝑖 ∈  ∣ 𝐴𝑖(𝑝) < �̄�R1
𝑖

}, specifies the nodes in default in a system with
payments 𝑝 ∈ [0, �̄�R1], and again 𝐴𝑖(𝑝) = 𝑏𝑖 +

∑𝑁

𝑘=1
𝑝𝑘𝑖 denotes the available assets of node 𝑖 ∈

 .
Furthermore,

𝑊𝑖𝑗(𝜋) =

𝑛𝐶∑
𝑘=1

(
�̄�R1

𝑖,𝑛𝑀+𝑘
− 𝜋𝑚𝑖,𝑛𝑀+𝑘

)+

𝕀{Ω𝑖𝑘<Ω𝑖𝑗},

29 Ourmodel is related to that of Elsinger (2011), who adapt theEisenberg andNoe (2001) framework to a settingwith differ-
ent seniorities of debt. In contrast to Elsinger (2011), our framework includes (possibly illiquid) collateral and bankruptcy
costs and is, therefore, more general. We have formulated our model for a strict pecking order, but this assumption can be
relaxed and one can consider a situation in which more than one CCP can have the same rank in the pecking order. This
would lead to a slightly different definition of ΦR1, pecking.
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40 VERAART and ALDASORO

that is, 𝑊𝑖𝑗(𝜋) are the payment obligations (that remain after seizing the IMs for these positions
at a current price of 𝜋 ∈ [0, 1] per share) of clearing member 𝑖 to the CCPs that are before CCP 𝑗

in the pecking order. Again Δ(𝜋, 𝑝) models the total number of shares of collateral sold in Round
1 and it is defined exactly as in Section 2.
When comparing ΦR1, pecking in Equation (C.1) to ΦR1 in Equation (1), the only difference is

for 𝑖 ∈  ∩ (𝑝), that is, for defaulting clearing members. In Equation (1), defaulting clearing
members paid the CCPs pro rata, that is, they distributed their available assets according to the

proportions 𝑎R1
𝑖𝑗

(𝜋) =
max{0,�̄�R1

𝑖𝑗
−𝜋𝑚𝑖𝑗}∑𝑁

𝑘=1 max{0,�̄�R1
𝑖𝑘

−𝜋𝑚𝑖𝑘}
. When there is a pecking order, this is no longer the

case. A defaulting clearing member first uses all its assets to pay the CCP ranked first, then uses
the remaining assets to pay the CCP ranked second, and so on. This is captured by the second

branch ofΦR1, pecking in Equation (C.1). The term
(

𝛾
(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

∑𝑁

𝑘=1
𝑝𝑘𝑖 − 𝑊𝑖𝑗(𝜋)

)+

captures the
resources that clearing member 𝑖 can use to pay the CCP 𝑗 with pecking order rank Ω𝑖𝑗 on top of
the IMs.

Lemma C.1 (Properties of ΦR1, pecking). Let ΦR1, pecking ∶ [0, 1] × [0, �̄�R1] → [0, 1] × [0, �̄�R1] be the
function defined in Equation (C.1), then ΦR1, pecking is order-preserving.

Proof of Lemma C.1. Let �̃�, 𝜋 ∈ [0, 1]with �̃� ≤ 𝜋 and let �̃�, 𝑝 ∈ [0, �̄�R1]with �̃�𝑖𝑗 ≤ 𝑝𝑖𝑗 for all 𝑖, 𝑗 ∈

 .
Since Φ

R1, pecking
1

is identical to ΦR1
1
, we know from the proof of Theorem A.2 that Φ

R1, pecking
1

is order-preserving.
Next, we show thatΦ

R1, pecking
2

is order-preserving. Based on the same arguments as in the proof
of Theorem A.2, it holds that

(𝑝) ⊆ (�̃�). (C.2)

Next, we show that ΦR1
2
is order-preserving. Let 𝑖, 𝑗 ∈  . We distinguish between three cases.

Case 1: Let 𝑖 ∈  ⧵ (𝑝). Then,

Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) = �̄�R1
𝑖𝑗

≥ Φ
R1, pecking
2,(𝑖𝑗)

(�̃�, �̃�).

Case 2: Let 𝑖 ∈  ∩ (𝑝). Then, 𝑖 ∈  ∩ (�̃�). Then,

Φ
R1, pecking
2,(𝑖𝑗)

(�̃�, �̃�) = min

⎧⎪⎨⎪⎩�̄�R1
𝑖𝑗

,
�̄�R1

𝑖𝑗∑𝑁

𝑘=1
�̄�R1

𝑖𝑘

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖

)⎫⎪⎬⎪⎭,

Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) = min

⎧⎪⎨⎪⎩�̄�R1
𝑖𝑗

,
�̄�R1

𝑖𝑗∑𝑁

𝑘=1
�̄�R1

𝑖𝑘

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)⎫⎪⎬⎪⎭.
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VERAART and ALDASORO 41

We distinguish between two cases. First, let Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) = �̄�R1
𝑖𝑗
, then

ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝) = �̄�R1
𝑖𝑗

≥ Φ
R1, pecking
2,(𝑖𝑗)

(�̃�, �̃�).

Second, let

�̄�R1
𝑖𝑗

> Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝). (C.3)

Then,

�̄�R1
𝑖𝑗

> Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) =
�̄�R1

𝑖𝑗∑𝑁

𝑘=1
�̄�R1

𝑖𝑘

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖

)
≥

�̄�R1
𝑖𝑗∑𝑁

𝑘=1
�̄�R1

𝑖𝑘

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖

)

= Φ
R1, pecking
2,(𝑖𝑗)

(�̃�, �̃�),

where the last equality follows from assumption (C.3).
Case 3: Let 𝑖 ∈  ∩ (𝑝). Then, 𝑖 ∈  ∩ (�̃�). Then,

Φ
R1, pecking
2,(𝑖𝑗)

(�̃�, �̃�) = min

⎧⎪⎨⎪⎩�̄�R1
𝑖𝑗

, �̃�𝑚𝑖𝑗 +

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖 − 𝑊𝑖𝑗(�̃�)

)+⎫⎪⎬⎪⎭,

Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) = min

⎧⎪⎨⎪⎩�̄�R1
𝑖𝑗

, 𝜋𝑚𝑖𝑗 +

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖 − 𝑊𝑖𝑗(𝜋)

)+⎫⎪⎬⎪⎭.

Again, we distinguish between two cases. First, let Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) = �̄�R1
𝑖𝑗
, then

ΦR1
2,(𝑖𝑗)

(𝜋, 𝑝) = �̄�R1
𝑖𝑗

≥ Φ
R1, pecking
2,(𝑖𝑗)

(�̃�, �̃�).

Second, let

�̄�R1
𝑖𝑗

> Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝). (C.4)

It follows directly from the definition of 𝑊𝑖𝑗 , that 𝑊𝑖𝑗(𝜋) ≤ 𝑊𝑖𝑗(�̃�) and hence −𝑊𝑖𝑗(𝜋) ≥

−𝑊𝑖𝑗(�̃�). Hence,

�̄�R1
𝑖𝑗

> Φ
R1, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) = min

⎧⎪⎨⎪⎩�̄�R1
𝑖𝑗

, 𝜋𝑚𝑖𝑗 +

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

𝑝𝑘𝑖 − 𝑊𝑖𝑗(𝜋)

)+⎫⎪⎬⎪⎭
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42 VERAART and ALDASORO

≥ min

⎧⎪⎨⎪⎩�̄�R1
𝑖𝑗

, �̃�𝑚𝑖𝑗 +

(
𝛾

(1)
𝑖

𝑏𝑖 + 𝛾
(2)
𝑖

𝑁∑
𝑘=1

�̃�𝑘𝑖 − 𝑊𝑖𝑗(�̃�)

)+⎫⎪⎬⎪⎭
= Φ

R1, pecking
2,(𝑖𝑗)

(�̃�, �̃�),

where the last equality follows from assumption (C.4). Hence, indeed ΦR1, pecking is order-
preserving. □

Theorem C.2 (Existence of a least and greatest price-payment equilibrium in Round 1 in the
setting with a pecking order). Let ΦR1, pecking ∶ [0, 1] × [0, �̄�R1] → [0, 1] × [0, �̄�R1] be the function
defined in Equation (C.1).

1. The set of fixed points ofΦR1, pecking is a complete lattice. In particular,ΦR1, pecking admits a greatest
and a least fixed point.

2. Let (𝜋(0), 𝑝(0)) = (1, �̄�R1) and define recursively for 𝑘 ∈ ℕ0

(𝜋(𝑘+1), 𝑝(𝑘+1)) = ΦR1, pecking(𝜋(𝑘), 𝑝(𝑘)).

Then,
(a) (𝜋(𝑘), 𝑝(𝑘))𝑘∈ℕ0

is a monotonically nonincreasing sequence, that is, 𝜋(𝑘+1) ≤ 𝜋(𝑘) and
𝑝

(𝑘+1)
𝑖𝑗

≤ 𝑝
(𝑘)
𝑖𝑗

for all 𝑖, 𝑗 ∈  and for all 𝑘 ∈ ℕ0.
(b) The limit lim𝑘→∞(𝜋(𝑘), 𝑝(𝑘)) exists and is the greatest fixed point of ΦR1, pecking.

Proof of Theorem C.2.

1. We will prove the statement using Tarksi’s fixed point theorem (Tarski, 1955). First, [0, 1] ×

[0, �̄�R1] is a complete lattice with respect to the component-wise ordering. Second, it follows
directly from the definition of ΦR1, pecking in Equation (1) that indeed ΦR1, pecking ∶ [0, 1] ×

[0, �̄�R1] → [0, 1] × [0, �̄�R1]. Third, ΦR1, pecking is an order-preserving function by Lemma C.1.
By Tarski’s fixed point theorem, the set of fixed points of ΦR1, pecking is a complete lattice and
hence a least and greatest fixed point exist.

2. This statement can be proved along the lines of the proof of Theorem A.2. We provide the
details below.
(a) We prove that 𝜋(𝑘+1) ≤ 𝜋(𝑘) and 𝑝

(𝑘+1)
𝑖𝑗

≤ 𝑝
(𝑘)
𝑖𝑗

for all 𝑖, 𝑗 ∈  and for all 𝑘 ∈ ℕ0

by induction.
For 𝑘 = 0, it follows directly from the definition of ΦR1, pecking in Equa-

tion (C.1) that 𝜋(1) = Φ
R1, pecking
1

(𝜋(0), 𝑝(0)) = exp(−𝛼Δ(𝜋(0), 𝑝(0))) ≤ 1 = 𝜋(0) and
𝑝

(1)
𝑖𝑗

= Φ
R1, pecking
2,(𝑖𝑗)

(𝜋(0), 𝑝(0)) ≤ �̄�R1
𝑖𝑗

= 𝑝
(0)
𝑖𝑗

for all 𝑖, 𝑗 ∈  .

Our induction hypothesis is that 𝜋(𝑘+1) ≤ 𝜋(𝑘) and 𝑝
(𝑘+1)
𝑖𝑗

≤ 𝑝
(𝑘)
𝑖𝑗

for all 𝑖, 𝑗 ∈  and for
a 𝑘 ∈ ℕ0.
Then, by the definition of the sequence

(𝜋(𝑘+2), 𝑝(𝑘+2)) = ΦR1, pecking(𝜋(𝑘+1), 𝑝(𝑘+1)) ≤ ΦR1, pecking(𝜋(𝑘), 𝑝(𝑘)) = (𝜋(𝑘+1), 𝑝(𝑘+1)),
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VERAART and ALDASORO 43

where the inequality follows from the induction hypothesis and the fact that ΦR1, pecking is
order-preserving by Lemma C.1. Hence, this completes the induction step.
It follows directly from the definition of ΦR1, pecking that it is bounded from below by

(0, 0) (where the first 0 is one-dimensional and the second zero is the 𝑁 × 𝑁 zero matrix).
Hence, there exists amonotone limit (�̂�, �̂�) = lim𝑘→∞(𝜋(𝑘), 𝑝(𝑘)). This limit is a fixed point
of ΦR1, pecking, since

ΦR1, pecking(�̂�, �̂�) = ΦR1, pecking( lim
𝑘→∞

(𝜋(𝑘), 𝑝(𝑘))) = lim
𝑘→∞

ΦR1, pecking(𝜋(𝑘), 𝑝(𝑘))

= lim
𝑘→∞

(𝜋(𝑘+1), 𝑝(𝑘+1)) = (�̂�, �̂�),

where the second equality follows from the right-continuity of ΦR1, pecking. It remains to
show that (�̂�, �̂�) = (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking), that is, that it is the greatest fixed point of
ΦR1, pecking.
We show by induction that (𝜋(𝑘), 𝑝(𝑘)) ≥ (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking) for all 𝑘 ∈ ℕ0. It is

clear that (𝜋(0), 𝑝(0)) = (1, �̄�R1) ≥ (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking). Suppose
(𝜋(𝑘), 𝑝(𝑘)) ≥ (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking) for a 𝑘 ∈ ℕ0. Then,

(𝜋(𝑘+1), 𝑝(𝑘+1)) = ΦR1, pecking(𝜋(𝑘), 𝑝(𝑘))

≥ ΦR1, pecking(𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking) = (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking),

where the inequality follows from the induction hypothesis and the fact that ΦR1, pecking

is order-preserving. The last equality holds because (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking) is a fixed
point of ΦR1, pecking.
Hence,

(�̂�, �̂�) = lim
𝑘→∞

(𝜋(𝑘), 𝑝(𝑘)) ≥ (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking)

and since (�̂�, �̂�) = ΦR1, pecking(�̂�, �̂�), we obtain (�̂�, �̂�) = (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking). □

C.2 Second round of clearing with pecking order
We now adapt the second round of clearing by Ghamami et al. (2022) to the pecking order setting.
Let (𝜋⋆,R1, pecking, 𝑝⋆,R1, pecking) ∈ [0, 1] × [0, �̄�R1] be the greatest fixed point of ΦR1, pecking.
Again, the payments outstanding at the start of the second round are given by �̄�R2, pecking =

�̄�R1 − 𝑝⋆,R1, pecking ∈ [0, �̄�R1]. Consider the function ΦR2, pecking ∶ [0, 𝜋⋆,R1, pecking] × [0, �̄�R2] →

[0, 𝜋⋆,R1, pecking] × [0, �̄�R2]. Our aim is to determine a fixed point of this function, that is, we want
to find (𝜋⋆,R2, pecking, 𝑝⋆,R2, pecking) such that

(𝜋⋆,R2, pecking, 𝑝⋆,R2, pecking) = ΦR2, pecking(𝜋⋆,R2, pecking, 𝑝⋆,R2, pecking),
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44 VERAART and ALDASORO

where ΦR2, pecking(𝜋, 𝑝) is defined as follows:

Φ
R2, pecking
1

(𝜋, 𝑝) = 𝜋⋆,R1, pecking exp(−𝛼Γ(𝜋, 𝑝)),

Φ
R2, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) =

⎧⎪⎨⎪⎩
min

{
�̄�R2

𝑖𝑗
,

�̄�R2
𝑖𝑗∑𝑁

𝑘=1 �̄�R2
𝑖𝑘

∑𝑁

𝑘=1
𝑝𝑘𝑖

}
, if 𝑖 ∈ ,

min

{
�̄�R2

𝑖𝑗
,
(

𝜋𝑟𝑖(𝜋
⋆,Round 1, 𝑝⋆,Round 1) +

∑𝑁

𝑘=1
𝑝𝑘𝑖 − �̃�𝑖𝑗

)+
}

, if 𝑖 ∈ ,

(C.5)

where

�̃�𝑖𝑗 =

𝑛𝐶∑
𝑘=1

�̄�R2
𝑖,𝑛𝑀+𝑘

𝕀{Ω𝑖𝑘<Ω𝑖𝑗}

are the payment obligations of member 𝑖 to CCPs that come before CCP 𝑗 in the pecking order.
As before, Γ(𝜋, 𝑝) denotes the total shares of collateral sold in the second round, that is,

Γ(𝜋, 𝑝) =

𝑁∑
𝑖=1

Γ𝑖(𝜋, 𝑝),

where the total shares of collateral sold by node 𝑖 ∈  is given by

Γ𝑖(𝜋, 𝑝) = min

{
𝑟𝑖(𝜋

⋆,R1, pecking, 𝑝⋆,R1, pecking),
1

𝜋
max

{
0,

𝑁∑
𝑗=1

�̄�
R2, pecking
𝑖𝑗

−

𝑁∑
𝑗=1

𝑝𝑗𝑖

}}
,

if 𝜋 > 0. For 𝜋 = 0, we set

Γ𝑖(𝜋, 𝑝) =

⎧⎪⎨⎪⎩
𝑟𝑖(𝜋

⋆,R1, pecking, 𝑝⋆,R1, pecking), if 𝑖 ∈ (𝑝⋆,R1, pecking) and max
{

0,
∑𝑁

𝑗=1
�̄�
R2, pecking
𝑖𝑗

−
∑𝑁

𝑗=1
𝑝𝑗𝑖

}
> 0,

0, otherwise.

Furthermore, 𝑟𝑖(𝜋
⋆,R1, pecking, 𝑝⋆,R1, pecking) is the collateral returned to node 𝑖 ∈  and is

defined as

𝑟𝑖(𝜋
⋆,R1, pecking, 𝑝⋆,R1, pecking) =

{∑𝑁

𝑗=1
(𝑚𝑖𝑗 − Δ𝑖𝑗(𝜋

⋆,R1, pecking, 𝑝⋆,R1, pecking)), if 𝑖 ∈ (𝑝⋆,R1, pecking),∑
𝑗∈(𝑝⋆,R1, pecking)

𝑚𝑖𝑗, if 𝑖 ∈  ⧵ (𝑝⋆,R1, pecking).

In our setting, the market consists of clearing members and CCPs. Since we assume that CCPs
do not post IMs to their clearing members, only clearing members can have collateral returned to
them in Round 2. In particular, 𝑟𝑖(𝜋

⋆,R1, pecking, 𝑝⋆,R1, pecking) = 0 for all 𝑖 ∈ .

Lemma C.3 (Properties of ΦR2, pecking). Let ΦR2, pecking ∶ [0, 𝜋⋆,R1, pecking] × [0, �̄�R2, pecking] →

[0, 𝜋⋆,R1, pecking] × [0, �̄�R2, pecking] be the function defined in Equation (C.5), thenΦR2, pecking is order-
preserving.
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VERAART and ALDASORO 45

Proof of Lemma C.3. Let �̃�, 𝜋 ∈ [0, 𝜋⋆,R1, pecking] with �̃� ≤ 𝜋 and let �̃�, 𝑝 ∈ [0, �̄�R2, pecking] with
�̃�𝑖𝑗 ≤ 𝑝𝑖𝑗 for all 𝑖, 𝑗 ∈  .
We first show that Φ

R2, pecking
1

is order-preserving. To see that for all 𝑖 ∈  , it holds that
Γ𝑖(𝜋, 𝑝) ≤ Γ𝑖(�̃�, �̃�), we consider three cases.
Case 1: Let �̃� > 0. Then, 0 < �̃� ≤ 𝜋 and therefore

Γ𝑖(𝜋, 𝑝) = min

{
𝑟𝑖(𝜋

⋆,R1, pecking, 𝑝⋆,R1, pecking),
1

𝜋
max

{
0,

𝑁∑
𝑗=1

�̄�
R2, pecking
𝑖𝑗

−

𝑁∑
𝑗=1

𝑝𝑗𝑖

}}

≤ min

{
𝑟𝑖(𝜋

⋆,R1, pecking, 𝑝⋆,R1, pecking),
1

𝜋
max

{
0,

𝑁∑
𝑗=1

�̄�
R2, pecking
𝑖𝑗

−

𝑁∑
𝑗=1

�̃�𝑗𝑖

}}

≤ min

{
𝑟𝑖(𝜋

⋆,R1, pecking, 𝑝⋆,R1, pecking),
1

�̃�
max

{
0,

𝑁∑
𝑗=1

�̄�
R2, pecking
𝑖𝑗

−

𝑁∑
𝑗=1

�̃�𝑗𝑖

}}
= Γ𝑖(�̃�, �̃�).

Case 2: Let 0 = �̃� = 𝜋, then it follows directly from the definition that Γ𝑖(𝜋, 𝑝) = Γ𝑖(�̃�, �̃�).
Case 3: Let 0 = �̃� < 𝜋. If 𝑖 ∈ (𝑝⋆,R1, pecking) and max

{
0,
∑𝑁

𝑗=1
�̄�
R2, pecking
𝑖𝑗

−
∑𝑁

𝑗=1
𝑝𝑗𝑖

}
> 0,

then

Γ𝑖(�̃�, �̃�) = 𝑟𝑖(𝜋
⋆,R1, pecking, 𝑝⋆,R1, pecking)

≥ min

{
𝑟𝑖(𝜋

⋆,R1, pecking, 𝑝⋆,R1, pecking),
1

𝜋
max

{
0,

𝑁∑
𝑗=1

�̄�
R2, pecking
𝑖𝑗

−

𝑁∑
𝑗=1

𝑝𝑗𝑖

}}
= Γ(𝜋, 𝑝),

otherwise it holds that Γ𝑖(�̃�, �̃�) = 0 = Γ(𝜋, 𝑝).
Hence, Γ(𝜋, 𝑝) =

∑𝑁

𝑖=1
Γ𝑖(𝜋, 𝑝) ≤

∑𝑁

𝑖=1
Γ𝑖(�̃�, �̃�) = Γ𝑖(�̃�, �̃�) and therefore

Φ
R2, pecking
1 (𝜋, 𝑝) = 𝜋⋆,R1, pecking exp(−𝛼Γ(𝜋, 𝑝)) ≥ 𝜋⋆,R1, pecking exp(−𝛼Γ(�̃�, �̃�)) = Φ

R2, pecking
1 (�̃�, �̃�).

It is clear from the definition ofΦR2, pecking
2

thatΦR2, pecking
2,(𝑖𝑗)

(�̃�, �̃�) ≤ Φ
R2, pecking
2,(𝑖𝑗)

(𝜋, 𝑝) for all 𝑖, 𝑗 ∈

 . □

TheoremC.4 (Existence of a least and greatest price-payment equilibrium in Round 2 in the set-
ting with a pecking order). Let ΦR2, pecking ∶ [0, 𝜋⋆,R1, pecking] × [0, �̄�R2, pecking] → [0, 𝜋⋆,R1, pecking] ×

[0, �̄�R2, pecking] be the function defined in Equation (C.5).

1. The set of fixed points ofΦR2, pecking is a complete lattice. In particular,ΦR2, pecking admits a greatest
and a least fixed point.

2. Let (𝜋(0), 𝑝(0)) = (𝜋⋆,R1, pecking, �̄�R2) and define recursively for 𝑘 ∈ ℕ0

(𝜋(𝑘+1), 𝑝(𝑘+1)) = ΦR2, pecking(𝜋(𝑘), 𝑝(𝑘)).

Then,
(a) (𝜋(𝑘), 𝑝(𝑘))𝑘∈ℕ0

is a monotonically nonincreasing sequence, that is, 𝜋(𝑘+1) ≤ 𝜋(𝑘) and
𝑝

(𝑘+1)
𝑖𝑗

≤ 𝑝
(𝑘)
𝑖𝑗

for all 𝑖, 𝑗 ∈  and for all 𝑘 ∈ ℕ0.
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46 VERAART and ALDASORO

F IGURE C . 1 Example in
which clearing with a pecking
order can reduce the number of
contagious defaults. [Color figure
can be viewed at
wileyonlinelibrary.com]

(b) The limit lim𝑘→∞(𝜋(𝑘), 𝑝(𝑘)) exists and is the greatest fixed point of ΦR2, pecking.

Proof of Theorem C.4.

1. We will prove the statement using Tarksi’s fixed point theorem (Tarski, 1955). First,
[0, 𝜋⋆,R1, pecking] × [0, �̄�R2, pecking] is a complete lattice with respect to the component-
wise ordering. Second, it follows directly from the definition of ΦR2, pecking in Equa-
tion (C.5) that indeed ΦR2, pecking ∶ [0, 𝜋⋆,R1, pecking] × [0, �̄�R2, pecking] → [0, 𝜋⋆,R1, pecking] ×

[0, �̄�R2, pecking]. Third, ΦR2, pecking is an order-preserving function by Lemma C.3. Hence, by
Tarski’s fixed point theorem, the set of fixed points ofΦR2, pecking is a complete lattice and hence
a least and greatest fixed point exist.

2. SinceΦR2, pecking is right-continuous, the same arguments as in the proof of Theorem C.2 (part
2) can be used to prove the statement. □

C.3 Pecking order: Two simple examples
We now show that clearing with a pecking order can lead to a different equilibrium compared
to clearing based on the pro rata rule. We provide two examples, the first showing situations
when a pecking order can reduce the number of contagious defaults, and the second illustrat-
ing that clearing with a pecking order can also increase the number of contagious defaults. We
consider a similar situation as in Example 1 in Subsection 3.1, where a joint clearing member
defaults.

C.3.1 Example #1: Clearing with a pecking order can reduce the number of conta-
gious defaults

We consider a system consisting of 𝑛𝐶 = 2 CCPs and 𝑛𝑀 = 3 clearing members. Figure C.1 pro-
vides an illustration of the network of payment obligations. Theweights along the edges represent
the payment obligation due from 𝑖 to 𝑗 in the first round, that is, �̄�R1

𝑖𝑗
, and the numbers in paren-

theses represent the corresponding IMs (𝑚𝑖𝑗). For simplicity, we assume that the liquidity buffers
are zero for all nodes except for the joint clearing member M1, which has a liquidity buffer
of 2.5.
There is one joint clearingmember (M1) that clears at both CCPs. The other two clearingmem-

bers only clear at one CCP each (M2 at CCP1 and M3 at CCP2). Again we label the clearing
membersMi with index 𝑖 for 𝑖 ∈ {1, 2, 3}, CCP1with index 4 and CCP2with index 5 in thematrices
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VERAART and ALDASORO 47

and vectors below. Formally,

�̄�R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 3 2

0 0 0 0 0

0 0 0 0 0

0 3 0 0 0

0 0 2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑏 = (2.5, 0, 0, 0, 0)⊤.

The joint clearing member M1 is the only node in fundamental default, that is,  = {1} = {M1}.
We assume that 𝛾

(1)
𝑖

, 𝛾
(2)
𝑖

∈ [0, 1] for all 𝑖 ∈  and assume that 𝛼 = 0.
Then, if we use clearing with pro rata payments, that is, by using ΦR1 and ΦR2 in Equations (1)

and (2), respectively, then both CCPs default. In particular, here

𝑝⋆,R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
8

3

11

6

0 0 0 0 0

0 0 0 0 0

0
8

3
0 0 0

0 0
11

6
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and Δ = 2, that is, all IMs are used in the first round. Therefore, no IMs are returned in round 2
and therefore Γ = 0 and 𝑝⋆,R2 = 0. The total shortfall is 𝑆 = 1. Assuming illiquid collateral
(𝛼 > 0) increases the shortfall, but cannot lead to more defaults because all nodes with payment
obligations are already in default.
If, however, clearing is done using a pecking order of the clearing members, that is, by using

ΦR1, pecking and ΦR2, pecking in Equations (C.1) and (C.5) respectively—where clearing members
rank CCPs according to the size of their payment obligations—then only CCP2 defaults. In partic-
ular, clearing member M1 ranks CCP1 on rank 1 of its pecking order and CCP2 on rank 2, because
M1’s payment obligations to CCP1 are larger than those to CCP2. Then,

𝑝⋆,R1, pecking =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 3 1.5

0 0 0 0 0

0 0 0 0 0

0 3 0 0 0

0 0 1.5 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
,

and Δ = 2, that is, all IMs are used in the first round. Therefore, no IMs are returned in round 2
and therefore Γ = 0 and 𝑝⋆,R2, pecking = 0. Then the total shortfall is the same as before (𝑆 = 1).
Hence, this is an example in which the pecking order causes a smaller number of contagious

defaults. This is not always the case. Here, CCP1 is on rank 1 in M1’s pecking order. Hence, all
available assets are used to pay CCP1 first before CCP2 is paid. In this example, this results in
CCP1 being paid in full (all IMs are used), but now there is a payment shortfall of 1∕2 fromM1 to
CCP2. With pro rata payments, this shortfall was only 1∕6.
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48 VERAART and ALDASORO

F IGURE C . 2 Example in which clearing with a pecking order can increase the number of contagious
defaults. [Color figure can be viewed at wileyonlinelibrary.com]

If M3 has payment obligations, the higher shortfall can cause additional contagious default, as
the next example shows.

C.3.2 Example #2: Clearing with a pecking order can increase the number of
contagious defaults

For this example, we add onemore CCP and onemore clearing member to the previous situation.
Figure C.2 provides a graphical illustration. Formally,

�̄�R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 3 2 0

0 0 0 0 0 0 0

0 0 0 0 0 0
7

4

0 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0
7

4
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑏 = (2.5, 0, 0, 0, 0, 0, 0)⊤.

Then, if we use clearing with pro rata payments, that is, by using ΦR1 and ΦR2 in Equations (1)
and (2), respectively, then as before CCP1, CCP2 are the only contagious defaults. In particular,
here

𝑝⋆,R1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
8

3

11

6
0

0 0 0 0 0 0 0

0 0 0 0 0 0
7

4

0 0 0 0 0 0 0

0
8

3
0 0 0 0 0

0 0
11

6
0 0 0 0

0 0 0
7

4
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and Δ = 2. Furthermore, Γ = 0 and 𝑝⋆,R2 = 0. The total shortfall is 𝑆 = 1.
If, however, clearing is done using a pecking order of the clearing members, that is, by using

ΦR1, pecking andΦR2, pecking in Equations (C.1) and (C.5), respectively, thenCCP1 no longer defaults,
CCP2 still defaults and now additionally both CCP3 and M3 default.
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F IGURE C . 3 Difference in
relative shortfall when clearing
members use a pecking order
(ΦR1, pecking and ΦR2, pecking) rather
than the pro rata repayment (ΦR1

and ΦR2) when different pairs of
clearing members are shocked.

In particular, here

𝑝⋆,R1, pecking =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 3 1.5 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1.6

0 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 1.5 0 0 0 0

0 0 0 1.6 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and Δ = 2.1, that is, all IMs are used in the first round. Therefore, no IMs are returned in round 2
and therefore Γ = 0 and 𝑝⋆,R2, pecking = 0. The total shortfall has now increased to 𝑆 = 1.3. Hence,
this is an example in which using a pecking order for clearing can increase the total shortfall.

C.4 Pecking order: A case study
We now investigate the impact of clearing with pecking order when conducting a stress test as
before using the IRS data bywiping out the liquidity buffers of different pairs of clearingmembers.
Figure C.3 shows the difference in the shortfall between clearing with pecking order and clearing
pro rata for different combinations of clearingmember pairs being shocked. Here, we assume that
the collateral is liquid and that there are no further frictions. We find that in this example clearing
with a pecking order results in a slightly larger shortfall in the system.
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