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Participants in socio-economic systems are often ranked
based on their performance. Rankings conveniently reduce
the complexity of such systems to ordered lists. Yet, it
has been shown in many contexts that those who reach
the top are not necessarily the most talented, as chance
plays a role in shaping rankings. Nevertheless, the role
played by chance in determining success, i.e. serendipity, is
underestimated, and top performers are often imitated by
others under the assumption that adopting their strategies
will lead to equivalent results. We investigate the tradeoff
between imitation and serendipity in an agent-based model.
Agents in the model receive payoffs based on their actions
and may switch to different actions by either imitating
others or through random selection. When imitation prevails,
most agents coordinate on a single action, leading to non-
meritocratic outcomes, as a minority of them accumulate
the majority of payoffs. Yet, such agents are not necessarily
the most skilled ones. When serendipity dominates, instead,
we observe more egalitarian outcomes. The two regimes
are separated by a sharp transition, which we characterize
analytically in a simplified setting. We discuss the implications
of our findings in a variety of contexts, ranging from academic
research to business.

1. Introduction
Rankings of individuals, companies and institutions based on
their performance have become ubiquitous, reducing complex
systems to ordered lists that reflect the ability of their partici-
pants to perform precise functions [1]. Rankings are used in a
variety of domains, ranging from natural to social, and from
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economic to infrastructural ones [2], with the aim of a better allocation of resources, funds and rewards
[3]. The emphasis on rankings has spurred considerable interest in their dynamics over time [4],
leading to the birth of a novel research field named ‘ranking of rankings’, which investigates the
goodness of a ranking’s evaluation criteria [5].

One of the main functions of rankings is to help identify the strategies of top performers, which are
often recognized as the best practices that others should adopt. In fact, individuals, organizations and
institutions often assume that they will be equally successful if they imitate top performers’ strategies.
However, there is considerable evidence that such an approach can sometimes backfire and result in
a weak association between skills and measured performance [6], and that the agents can be more
successful when they develop their own strategies [7] or pursue risky ones [6,8] rather than imitate
those of others.

Imitation in ranking dynamics is often grounded in social influence, which often drives individuals’
decision-making and shapes the collective wisdom of the crowd [9–12]. A prime example of these
effects was illustrated in a much-celebrated experiment in an artificial music market, which resulted in
very low correlations between a song’s success when social interactions between market participants
were switched on/off [13].

The role played by chance in successful paths is often underestimated. For instance, in [14,15] it
was shown that in a synthetic society of agents, luck prevails over talent in favouring an agent’s rise
to the top. At the same time, chance rarely compensates over time for self-reinforcing mechanisms
usually referred to as the ‘rich-get-richer’ effect or the Matthew effect [16,17], according to which
success breeds more success, often to the point that a (sometimes random) early competitive advantage
can lead to long-lasting consequences [18]. The interplay between chance and those effects has been
extensively investigated in the literature. Recently, an agent-based models has shown that when some
degree of skill is necessary to be successful in life, it is rare for the most talented individuals to reach
the highest peaks of success, while averagely talented but sensibly luckier individuals reach the top of
rankings [14].

In this article, we explore the consequences of imitation versus chance in an artificial society whose
agents are ranked based on a notion of performance. After characterizing the agents’ intrinsic skills,
we analyse the payoff gained by the society under different scenarios, and show which of those
leads to more/less meritocratic outcomes. Our results capture quite nicely some of the aforementioned
phenomena. When imitation prevails, the top performers are not the most skilled ones and, at the same
time, the most skilled agents are not the ones who accumulate the highest payoffs. On the contrary,
when chance is the dominant mechanism, society becomes more meritocratic. In the latter scenario, we
can speak of serendipity, namely positive developments of events that occur in an unplanned manner
[19].

2. Results
2.1. Model implementation
We consider an agent-based model with discrete-time dynamics, in which agents have to decide at
each time step whether to persist with their current action or switch to a different one. It is conceived
as a memory-less process since each move is independent of the previous ones. A schematic represen-
tation of the dynamics is shown in figure 1. In more detail, there are N agents, labelled with indicesi ∈ N = 1, . . . ,  N , who are empowered to take M actions, labelled with indices j ∈ M = 1, . . . ,  M .
In the following, we will write j(i, t) to denote the fact that agent i plays action j at time t. In order
to keep our notation as light as possible, we will simply indicate j(i, t) as j whenever possible. Each
action j is associated with a societal impact πj ∈ [0, 1]. Actions with high societal impact (πj 1) have
beneficial effects on society as a whole, whereas actions with low societal impact (πj 0) do not. For
instance, in the context of academic research, we may think of an action characterized by a high πj as a
research field such as, e.g. cancer research, whereas an action with low πj would correspond to a niche
field.

As mentioned above, agents in the model may switch to a different action at any given time step.
The switching mechanism is not trivial and depends on a few factors. Among these, we find an agent’s
skills, defined through a random matrix whose elements are denoted with αij ∈ [0, 1]. A high value ofαij indicates that agent i is skilled at action j, a low value indicates the opposite. Note that both αij and
πj are randomly extracted from a uniform distribution in [0, 1] and are assigned at the beginning of
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each simulation. Another relevant quantity is the appeal of each action, represented by the fraction of
agents fj(t) who are performing action j at time t. We identify an action’s appeal with its popularity
to encapsulate some of the mechanisms discussed in §1, namely the effects of imitation and social
influence on individual choices.

The model’s dynamics work as follows. At time t = 0 agents are allocated to the available actions
with probability πj, i.e. proportionally to the actions’ societal impact. At each time step t = 0, ...,T, each
agent receives a payoff αij fj(t). This assumption reflects the fact that agents will receive higher payoffs
when they play actions that they are good at and/or that are popular, regardless of their societal
impact. In fact, a large fj(t) may compensate for a relatively low αij. Let us note that the payoff lies in
[0, 1].

At t′ = t + 1 (with t = 0, ...,T − 1) agents persevere with the action of time t with probability equal
to the previous time step’s payoff, i.e. αij fj(t), reflecting the incentive to stick with actions that are
rewarding. In the electronic supplementary material, we implement a slightly different dynamics, for
which agents persevere in their current action with probability αij fj(t) πj, i.e. by taking into account an
action’s societal impact as well.

In the baseline scenario, an agent will choose to switch actions with probability 1 − αij fj(t). In this
case, an additional parameter q ∈ [0, 1] is introduced to interpolate between imitation and chance.
Namely, with probability q agents pick a new action at random. With complementary probability 1 − q,
they pick their new action with probability fj(t), i.e. proportionally to its current popularity.

In this respect, q quantifies to what extent agents pay attention to the rankings induced by the
accumulation of payoffs (see next section) and choose to imitate the actions of their peers [7]: whenq 0, imitation becomes the dominant mechanism, while if q 1 agents randomly explore the space
of available actions. Let us remark here that high values of q are amenable to different interpretations.
In fact, q 1 may be interpreted either as genuine serendipity or as an intrinsic propensity of the
agents to explore different options. Being deliberately stylized, our model cannot distinguish between
such interpretations. For the sake of simplicity, throughout the rest of the article, we shall mostly refer
to serendipity when q 1. However, we will briefly explore a different model specification aimed at
partially highlighting the difference between serendipity and exploration.

We implement simulations of our model for several values of q to achieve a comprehensive
understanding of the different scenarios. For each parameter set, we run S = 1000 simulations to ensure
robust statistical analysis, and we let each simulation run for T = 500 time steps, for which a steady
or absorbing state (depending on the value) is reached. We checked that outcomes of the simulations
do not vary when we keep the ratio N /M fixed, so in the following we will use N = 250 agents
and M = 100 actions. The rationale behind the choice of N > M is that there are likely more agents
than possible actions to play in the most realistic settings. Anyway, the qualitative outcomes of the
model for N ≶ M are the same unless explicitly mentioned. Error bars in the figures represent sample
standard deviations.

{i, j, t}

{i, s, t + 1} with s

'

M

{i, r, t + 1} with r

{i, j, t + 1}

'

M
1 – α

ij fj  (t)

α ij 
f j
 (t)

(1 – q) . 
 fs  (t)

q . 1
 / M

Figure 1. Representation of the model dynamics for a generic agent i who is in state j at time t. All the possible transition outcomes
are reported with their probability. The parameter αi j represents the skill of agent i in field j, f j(t) is the fraction of agents playing
action j at time t, M is the number of possible actions and the parameter q accounts for randomness in the switching.
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2.2. Success and social disparity
To investigate the outcome(s) of different scenarios, it is necessary to introduce some observables. First,
we define the cumulative payoff that agent i gains with their actions over time, from t = 0 to t = T, as

(2.1)Pi T = ∑t = 0

T αijfj t .

We remind the reader that in the above and the following equations j = j(i, t), i.e. the action played by
agent i at time t. The overall societal payoff collectively generated by all agents is thus given by

(2.2)P T = ∑i = 1

N
∑t = 0

T αijfj t .

We combine the analysis of P(T) with the study of the Gini coefficient, a measure of inequality in a
society, which is defined as

(2.3)G T = 1N P T ∑i < k |Pi T − Pk T |,
leading to G(T) = 0 for perfect equality and G(T) 1 when cumulative payoffs are concentrated in
the hands of very few agents. The results of these investigations are shown in figure 2. When imita-
tion is the prevailing mechanism, i.e. q 0, the overall payoff P(T) reaches its maximum, though
this happens at a cost. In fact, the Gini coefficient G(T) shows that this corresponds to an unequal
society, in which the majority of the payoff is generated by a minority of the agents. On the contrary,
when randomness dominates (for q 1), we observe a lower societal payoff distributed more equally.
Between these two limiting conditions, a sharp transition happens for a certain value q*, for which
we provide some intuition in a simplified setting in the following section. Note that error bars are
particularly large at the phase transition, in line with behaviours observed for phase transitions in
condensed matter physics.

It is fair to wonder which of the two above societies represents a better outcome: a ‘richer’ but
unequal one or a ‘poorer’ but more egalitarian one? Intuitively, the former would be preferable when
higher individual payoffs reflect an agent’s superior skills, i.e. when outcomes are meritocratic. To this
aim, we compute the Kendall rank correlation coefficient τ— a measure of similarity between two
rankings [20]—between the agents’ cumulative payoff Pi(T) and intrinsic fitness. We define the latter as
the average skill of an agent across all possible actions:

(2.4)ϕiavg = 1M ∑j = 1

M αij .

As shown in figure 3, for q < q*, there is no correlation between the agents’ payoffs and fitness. As q
increases, we find again a sharp transition at q = q* and, for q > q*, some correlation between payoffs
and fitness (i.e. meritocracy) is restored. This behaviour changes slightly depending on the ratio N /M.
When M > N, τ behaves non-monotonically; when N > M, instead, it increases monotonically. In line
with [14], the above results further confirm that the most successful agents (i.e. those who accumulate
the highest payoff) in general are not the most skilled ones. Intuitively, this occurs because—when
imitation prevails—during the model’s early time steps a few lucky agents ‘stumble’ upon actions that
they are good at, resulting in high payoffs. This, in turn, triggers the imitation of other agents, who
flock towards the same actions, resulting in a feedback loop that effectively prevents most agents from
discovering actions that would be more profitable for them.

Combining the different elements, these analyses show that imitation could be the winning strategy
only for a limited number of agents and that the most skilled ones would not be the most successful.
On the contrary, when chance dominates, outcomes are serendipitous and society becomes more
egalitarian. It should be noted that these results qualitatively do not change even when the agents are
given the opportunity to improve their skills when playing actions repeatedly over time (see below the
section devoted to time-varying skills).
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2.3. Condensation and resource allocation
This subsection is dedicated to the investigation of the distribution of the actions played by agents. In
particular, we focus on the participation ratio, a measure of concentration borrowed from condensed
matter and quantum physics, defined as

(2.5)PR(t) = 1M ∑j fj(t) 4
−1

; fj(t) =
fj(t)
∑i fi2(t)

with j ∈ M . In the above expression, fj(t) is the normalized (in L2 norm) counterpart of the quantityfj(t). In a nutshell, the participation ratio effectively counts the fraction of entries that are significantly
different from zero in a list. Let us consider two extreme examples. When all agents play the same
action, the list fj(t) is maximally concentrated, i.e. f̃ℓ t = 1 for some action ℓ and fj(t) = 0 for each other

action j ≠ ℓ, resulting in PR(t) = M−1. When, on the contrary, each action is played by an equal number
of agents, i.e. fj(t) = M−1/2 for each action j, one has PR(t) = 1.

We focus our attention on PR(T). As shown in figure 4, for q < q* all agents condense on a single
action s, as reflected by the fact that the participation ratio becomes equal to M−1. The action s
resembles an absorbing state, as agents can temporarily leave it through the switching mechanism
(when q > 0), but are bound to return to it through the very same mechanism. After the transition atq = q*, other actions start to be populated, as evidenced by the fact that the participation ratio increases
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Figure 2. (a) Cumulative societal payoff P(T) for several values of the parameter q. (b) Gini coefficient G(T) for the same values of q.
Simulations have been implemented with N = 250 agents, M = 100 actions and T = 500 time steps. Results are an average over a
sample of size S = 1000.
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Figure 3. Mean Kendall rank correlation coefficient τ between an agent’s cumulative payoff and their average skill. (a)
N = 250, M = 100. (b) N = 100, M = 250. Other simulation parameters are the same as for figure 2.
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monotonically and becomes significantly different from zero. Yet, it always remains well below one,
signalling that a substantial fraction of actions do not get played by any agent. We further elaborate on
these points in the section devoted to analytical considerations below.

Condensation on a single action is a positive outcome when such action is beneficial to society. For
that reason, we study the distribution across simulations of the societal payoffs for the most played
action, which we refer to as the ‘winning’ one, when q = 0. As we can see from figure 4b, in the majority
of simulations the winning activity is associated with an above-average societal payoff (πw > 1/2). Yet,
in a sizeable minority of cases (approximately 20% of simulations) it is not unlikely for the agents
to coordinate on an action with a below average societal payoff as a consequence of imitation. It is
remarkable that the same scenario occurs even when the societal payoff πj is explicitly accounted for in
the switching mechanism, namely agents keep playing the same action with probability proportional
to αij fj(t) πj, as shown in the electronic supplementary material.

Finally, we aim to address the following question: are the agents playing actions that are beneficial
to society good at them? To this end, we introduce a simple measure of societal benefit

(2.6)B t = ∑i = 1

N
 αij i, t  πj i, t

whose cumulative value over time is given by B(T) = ∑t = 0
T B(t). Let us remind the reader that in the

above expression j(i, t) denotes that agent i undertakes action j at time step t. The above quantity,
therefore, depends both on time and on the list of actions being played by the agent population at that
time. We omit the latter dependence to keep the notation as light as possible. Higher values of B(T)
indicate that the model’s dynamics naturally incentivize agents to play actions that generate societal
benefits when they are good at them.

As shown in figure 5, on average B(T) is higher for q < q*, yet its standard deviation is particularly large in
this regime. After the transition, q > q* societal benefit decreases, together with its standard deviation.

2.4. Different model specifications
In this section, we briefly explore different specifications of our model aimed at addressing some of its
possible limitations. First, we consider a version of the model in which the agent population is split
into a sub-group of agents characterized by different values of q. We do this to account for the fact
that what we refer to as serendipity in our model may also be interpreted as an agent’s propensity to
explore different options in the action space, in line with game-theoretic literature in economics [21,22].
In this respect, when the two sub-groups are characterized by very low and very high values of q,
respectively, we can study the model’s outcomes produced by the interaction between ‘explorer’ (highq) and ‘imitator’ (low q) agents. Obviously, when one of the two sub-groups becomes exceedingly
more numerous than the other, the model produces results which are identical to those obtained with
a homogeneous population characterized by a low/high value of q. Therefore, we study this version
of the model only in settings where neither of the two sub-group dominates. We do so by keeping q
fixed to a low value in one sub-group and varying its value in the other one. The results are reported
in the electronic supplementary material, and are qualitatively very similar to the ones obtained with
a homogeneous population. Namely, we again observe a transition when q in the other sub-group
exceeds a critical value. Once again, this critical value separates regimes characterized, respectively, by
high/low inequality and low/high correlation between an agent’s fitness and their accumulated payoff.

We also explore the model’s behaviour when the agents become better at playing a given action
when given the opportunity to do so repeatedly over time. So far, we have considered an agent’s skill
set αij to remain constant over time. Here, we instead allow the αij’s to evolve over time with the
following simple rule. Whenever an agent i plays a given action j at time t, they receive a reward that
depends on their skill at playing such action αij(t). Should they continue to play such action, their skill
will increase to a new value αij(t + 1), drawn at random from the uniform distribution on the interval
[αij(t), 1].

The typical dynamics that result from the above rule are shown in figure 6, where we represent

the temporal evolution of αj(t) = ∑i = 1
N αij(t)/N, i.e. the average agent skill at playing action j. Figure 6a

reports the results in an imitation-driven setting (q = 0.1), whereas figure 6b shows results obtained in a
serendipity-driven setting (q = 0.8). As it can be seen, when imitation prevails the agents eventually all
become excellent at one action (the one played by the entire population in the long run), and basically
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do not improve their other skills. Conversely, when imitation is low, all agents eventually become good
at playing all strategies, with αj(t) 1, ∀ j, for sufficiently long times.

In the electronic supplementary material, we report results for the payoff–fitness correlation and
societal benefit obtained with this version of the model, illustrating that they do not qualitatively differ
from those obtained with constant skills.

2.5. Analytical considerations
In order to gain some analytical insights on the model’s behaviour, we consider a simplified version
with M = 2 activities and αij = α (∀i, j = 1, 2). We define nj(t) as the number of agents who play actionj at time t, so that n1(t) + n2(t) = N. In addition, we replace the model’s probabilistic dynamics with
deterministic transition rates. According to the dynamics shown in figure 1, we study the flux of agents
who enter and exit from activity 1 at time t′ = t + 1. Focusing on agents who play action 1 at time t, att′ = t + 1 there are
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– α f1(t) n1(t) agents who at time t are taking action 1 and choose to keep playing it;
– (1 − α f1(t)) n1(t) agents who consider leaving activity 1. Out of this group, q (1 − α f1(t)) n1(t)/2

agents keep action 1 as a consequence of random selection and (1 − q) f1(t) (1 − α f1(t)) n1(t) agents
pick action 1 because of its popularity.

Correspondingly, examining agents who are in action 2 at time t, we have a total of (1 − α f2(t)) n2(t)
agents who consider leaving it. Out of these, q (1 − α f2(t)) n2(t)/2 agents end up in action 1 through
random selection and (1 − q) f1(t) (1 − α f2(t)) n2(t) agents end up in it because of its popularity.

Considering the relations n2(t) = N − n1(t) and f2(t) = 1 − f1(t), we combine the previous contributions
and write:

(2.7)n1 t + 1 = n1 t  α f1 t + 1 − α f1 t q
2 + 1 − q  f1 t + N − n1 t 1 − α 1 − f1 t q

2 + 1 − q f1 t .

We now convert the previous relation into an equation for the increment n1(t + 1) − n1(t). After a few
simplifications, dividing by N and taking the continuous limit ultimately delivers an equation for the
time derivative f1′ (t):

(2.8)f1′ t = 2 f1 t − 1 αf1 t 1 − f1 t 1 − q + q
2 α − 1 .

After writing the corresponding equation for f2′ (t), it can be shown that f1′ (t) + f2′ (t) = 0, as it should be.
Therefore, the system is effectively described by just one differential equation. We choose the one in
equation (2.8), we remove the index 1 from f and set f′(t) = 0 to find steady-state solutions. This is a
cubic equation, yielding three solutions f∞ = limt→ ∞

f(t) which can be expressed as functions of q and α.

One solution is trivial and equal to the constant 1/2, reflecting the fact that an initial condition in whichf1(0) = f2(0) = 1/2 remains unchanged. The two non-trivial solutions read

(2.9)f∞± = 1
2 ± 1

2
q α − 2 + αα 1 − q ,

with f∞+ + f∞− = 1, capturing the fact that each solution describes the popularity of one of the two fields

in the stationary state. Notably, from the above expression we can see that f∞±  are real numbers only
for q ≤ α/(2 − α), which we can then identify with the threshold q* in this simplified two-state setting.
This, in fact, is the point where the constant solution f∞± = 1/2 becomes the stable one. In figure 7, we
show the three steady-state solutions as functions of q for α = 1/2, resulting in q* = 1/3. Notably, this
holds despite the fact that such critical value is obtained under the assumption of a constant value forα, which in this case is assumed to be equal to its average value, i.e. α = α = 1/2. All in all, this highly
stylized version of our model is sufficient to illustrate that a threshold separates a regime where actions
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Figure 6. Temporal evolution of the average agent skill α j(t) = ∑i = 1
N

αi j(t)/N in a model with time-varying skills, N = 25, M = 10.
(a) q = 0.1. (b) q = 0.8.
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are equally played from one where one action dominates, eventually resulting in condensation whenq 0.

3. Discussion
Individuals and organizations are encouraged to imitate the behaviour of top performers in rankings.
However, there is mounting evidence that this strategy is not the best one [6,7,14]. In this article, we
further support this assertion by considering an agent-based model to investigate the role of imitation
and serendipity in social dynamics. In particular, we study the cumulative payoff that agents gain by
choosing actions within a set based on these two mechanisms. We find that society reaches a higher
payoff when imitation prevails, but at the cost of higher inequality. Moreover, in this scenario, we find
no correlation between an agent’s accumulated payoff and their fitness. This is evident in the fact that
the most skilled agents are not necessarily the most successful ones, clearly indicating that society is
not meritocratic.

We also examine how agents distribute themselves among the available actions. Our conclusion is
that, when imitation is the predominant mechanism diversity is significantly reduced, as all agents
tend to concentrate on one single action, which may not even be associated with meaningful societal
benefits. On the contrary, when decisions are left to chance, outcomes become more serendipitous. In
fact, the society becomes more egalitarian, with a higher correlation between payoffs and skills, and
a significant portion of available actions are played at any given time. These results are reminiscent
of some of the findings published in [14,15]. However, let us remark that the driving mechanisms
underpinning the two models are different, as we consider interactions between agents through
imitation.

The two extremal conditions are separated by a sharp transition. Notably, sharp transitions have
been observed in other social systems where agents tend to conform to one another, e.g. in social
climbing phenomena [23], in the formation of political parties with a strong leader [24], in stock
markets [25] or even in the sudden emergence of traffic jams [26]. This transition can be related to
mechanisms which are similar to the ones responsible for phase transitions in physical systems [27].

Our model is rather stylized, but at the same time, extremely general, as we deliberately avoid to
specify the details of the social system it describes. As such, its agents and their interactions capture
a wide variety of situations. For instance, when the COVID-19 pandemic broke out it immediately
became—through imitation—the main theme of research in most STEM fields, and in just a few
months an incredible volume of papers on this subject were published [28]. Notably, the rush led to
several documented errors in methodology and conclusions [29]. In fact, in a ‘publish or perish’ [30]
environment incentives—both at the level of authors and publishers—often favour condensation-like
phenomena, i.e. the crowding towards certain research topics.

Switching to an entirely different domain, agents in our model may be interpreted as entrepreneurs
starting a new business, needing to decide whether they should pursue the latest trend or something
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Figure 7. Fraction of agents f ∞ as a steady-state solution in a simplified scenario with two available actions. The horizontal line marks
the trivial solution f ∞ = 1/2, while the vertical one underlines the value q = q* for which a sharp transition occurs.
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novel. The literature on the recent startup bubble shows that imitation-based entrepreneurial strategies
lead to mixed results [31], which is in line with the outcomes produced by our model.

A possible extension of our model could incorporate time-varying societal payoffs, i.e. allowing the
πj parameters to be functions of time. This could capture the fact that the importance of certain actions
could change owing to exogenous events impacting society. For instance, going back to the aforemen-
tioned example, the sudden emergence of the COVID-19 pandemic obviously drove a massive change
in the importance of the research topics related to it. In this respect, our model captures scenarios
in which the agents’ decision-making evolves over time scales that are much shorter than those that
characterize changes in the societal payoffs of actions.
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