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• Leverages advances in AI image recog-
nition to mobile-phone based digital
phenotyping tools for breeding pro-
grams in the Global South

• Achieves improved trait accuracy and
objectivity on breeder plots relative to
manual phenotyping, reducing labor
requirements

• Enable low-cost, quantitative pheno-
typing at scale across multi-environment
variety trials, including direct in farmer
fields

• AI-supported tools for multi-modal data
collection and analysis enhance quali-
tative insights into farmer preferences
and goals

• Inclusive innovation of breeding sys-
tems to produce high yielding varieties
in target production environments,
responsive to farmer preferences
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A B S T R A C T

CONTEXT: Crop breeding in the Global South faces a ‘phenotyping bottleneck’ due to reliance on manual visual
phenotyping, which is both error-prone and challenging to scale across multiple environments, inhibiting se-
lection of germplasm adapted to farmer production environments. This limitation impedes rapid varietal turn-
over, crucial for maintaining high yields and food security under climate change. Low adoption of improved
varieties results from a top-down system in which farmers have been more passive recipients than active par-
ticipants in varietal development.
OBJECTIVE: A new suite of research at the Alliance of Bioversity and CIAT seeks to democratize crop breeding by
leveraging mobile phenotyping technologies for high-quality, decentralized data collection. This approach aims
to resolve the inherent limitations and inconsistencies in traditional visual phenotyping methods, allowing for
more accurate and efficient crop assessment. In parallel, the research seeks to harness multimodal data on farmer
preferences to better tailor variety development to meet specific production and consumption goals.
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METHODS: Novel mobile phenotyping tools were developed and field-tested on breeder stations in Colombia and
Tanzania, and data from these trials were analyzed for quality and accuracy, and compared with traditional
manual estimates and absolute ground truth data. Concurrently, Human-Centered Design (HCD) methods were
applied to ensure the technology suits its context of use, and serves the nuanced requirements of breeders.
RESULTS AND CONCLUSIONS: Computer vison (CV)-enabled mobile phenotyping achieved a significant
reduction in scoring variation, attaining imagery-modeled trait accuracies with Pearson Correlation values be-
tween 0.88 and 0.95 with ground truth data, and reduced labor requirements with the ability to fully phenotype
a breeder’s plot (4 m × 3 m) in under a minute. With this technology, high-quality quantitative phenotyping data
can be collected by anyone with a smartphone, expanding the potential to measure crop performance in
decentralized on-farm environments and improving accuracy and speed of crop improvement on breeder
stations.
SIGNIFICANCE: Inclusive innovations in mobile phenotyping technologies and AI-supported data collection
enable rapid, accurate trait assessment and actively involve farmers in variety selection, aligning breeding
programs with local needs and preferences. These advancements offer a timely solution for accelerating varietal
turnover to mitigate climate change impacts, while ensuring developed varieties are both high-performing and
culturally relevant.

1. Introduction

The increase in genetic gain observed for improved crops in research
settings often fails to materialize on-farm, particularly in low-resource
smallholder systems across the Global South (Masuka et al., 2017).
This gap arises in part from the logistical and biophysical complexities
involved in evaluating germplasm performance in farmer production
environments, coupled with the challenges of integrating farmer feed-
back into formal breeding processes. Adoption of improved varieties
remains low in this context, suggesting, among other factors, a poor
product-market fit between released germplasm and the production and
consumption objectives of farmers and local markets (Ragot et al.,
2018). In the Global South, where smallholder and subsistence farming
remain the backbone of rural economies, rapid varietal turnover in
farmer fields is a cornerstone of sustainable livelihoods and global food
security (Atlin et al., 2017). Addressing this challenge requires trans-
formational change in breeding systems. In a growing trend towards
decentralization, public and private sector breeding programs are
increasingly conducting trials in environments that better reflect the
growing conditions of farmer fields (Ceccarelli and Grando, 2007).
Participatory plant breeding (PPB) methodologies enhance these efforts
by integrating farmer feedback at every stage of varietal development
(Fadda et al., 2020). Yet large data requirements for accurate breeding
remain a bottleneck for diversifying the conditions captured in breeding
trials and eliciting nuanced and actionable feedback from farmers (Cobb
et al., 2019). Technological developments in artificial intelligence (AI),
deployed within an inclusive innovation framework, may be able to
overcome major logistical barriers to on-farm breeding by facilitating
high-throughput flow of information from farmers to breeders (Singh
et al., 2016).

Computer vision (CV) technologies can replicate visual-estimation
phenotyping via smartphone-deployable software – often exceeding
the precision generated by classical methods (Xie and Yang, 2020a,
2020b). This technology has been around for at least a decade, but
relegated to high-income breeding programs and requiring the use of
expensive hardware (e.g. drones, robotics) and high-performance
computational infrastructure (Peshlov et al., 2017). Recently, the
release of large, open-source foundation models (e.g. DINOv2, LLaMA)
has not only reduced the hardware requirements, but also lowered
barriers to entry in terms of time and specialized skillsets needed to train
and deploy models at scale. With this technology, high-quality quanti-
tative phenotyping data can be collected by anyone with a smartphone,
expanding the potential to measure crop performance in decentralized
on-farm environments (Roitsch et al., 2019). Initial trials with common
bean (P. vulgaris) support the validity of these tech-enabled approaches.
Preliminary results suggest high correspondence of CV-based pheno-
typing with traditional analogue phenotyping methods for several traits,
enabling performant direct-from-mobile imagery phenotyping models.

Collecting unparalleled amounts of quantitative on-farm phenotype data
could be key to unlocking mechanistic drivers of genotype by environ-
ment (GxE) interaction and enabling climate-resilient trait development
in novel varieties for vulnerable farmers and environments. In parallel,
novel AI-assisted data collection and analysis tools offer insights into the
context and needs of farmers by eliciting farmer-prioritized crop traits to
incorporate in breeder selection indices, leveraging farmers’ expertise in
identifying important visual indicators of crop performance and satis-
faction. In this short communication, we explore pathways for trans-
forming public sector breeding programs through the integration of AI
tools for multimodal data collection and analytics. Targeting under-
resourced programs in the Global South, these tools magnify the po-
tential to produce locally adapted, high yielding and resilient seeds that
meet the production and consumption objectives of resource-
constrained farmers at decreased development time.

We situate our discussion within the framework of inclusive inno-
vation for development (Heeks et al., 2013; Heeks et al., 2014; Swaans
et al., 2014). In contrast to conventional models of innovation, which
have focused on increasing the efficiency and productivity of
high-income users, inclusive innovation seeks multidimensional impact
for historically marginalized groups by engaging diverse stakeholders in
a process of co-creation and reflexive learning (Heeks et al., 2014). If
adopted, the technologies we discuss will transform the ability of
breeding programs to effectively characterize seed users and target
production environments, and may be the key to developing varieties
that respond to the needs of previously excluded groups such as sub-
sistence farmers, women, and those most vulnerable to climate change.
In other words, the technologies will enable inclusive innovation of seed
technologies by breeding programs, via the incorporation of robust
farmer involvement in breeding decisions. However, achieving these
outcomes also requires an initial phase of inclusive innovation within
plant breeding institutions themselves. Resource-constrained breeding
programs have historically been excluded from technological advances
that have transformed plant breeding in other contexts. With unprece-
dented decreases in the cost and capital requirements of CV-based
phenotyping and AI-assisted language processing, these technologies
have become more accessible. Yet, integrating them into established
institutional practices will require close collaboration with breeding
teams in product design from the outset—directly considering the
workflows, constraints, and incentives that govern plant breeding. We
discuss the application of Human Centered Design (HCD) methodologies
to achieve this, which involve ideation and iteration of proposed in-
novations with active involvement from target users, focusing on un-
derstanding their needs and capacities to identify appropriate solutions
(Coggins et al., 2022; Holeman and Kane, 2020; Steinke et al., 2024).
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2. Background

2.1. Inclusive innovations in crop breeding

Breeding data systems are complex. Globally, many breeding pro-
grams struggle to make effective use of basic analogue phenotyping
data. Where resources are available, modern crop breeding in developed
countries is a technology-intensive and data-driven process. Sophisti-
cated sensors capture the details of observable plant characteristics,
documenting the interaction of genetic variation with the environment,
and breeders act on advanced computational insights to identify the
most promising traits or combinations thereof (Araus and Cairns, 2014).
In parallel, advances in market research align crop development with
consumer trends, identifying desirable attributes that contribute to the
uptake and commercial success of new varieties (Singh et al., 2006).
However, these data-driven advancements in crop breeding haven’t
translated equitably across agricultural landscapes. Genetic gain and
profits associated with innovations in data-driven crop breeding have
largely accumulated in regions with technological advantages already in
place, while agricultural yields continue to stagnate in the resource-
constrained and marginal production environments that typify much
of the Global South (Furbank and Tester, 2011). A major challenge at the
core of this disparity is data availability, in part due to the logistical and
biophysical complexities of measuring germplasm performance in
farmer production environments and eliciting farmer feedback to inform
selection. A centralized, top-down breeding paradigm does not cater to
the reality of diverse and highly localized user profiles, as evidenced by
the well-documented and systematic underperformance and under-
adoption of improved seeds, particularly in smallholder systems
(McEwan et al., 2021, Macours, 2019).

Public and private sector breeding programs have trended towards
decentralization in recent years, pushing variety trials into environ-
ments that more closely resemble farmer fields and reflect the hetero-
geneity of agroecological conditions (Ceccarelli and Grando, 2007;
Fadda et al., 2020; Singh et al., 2006). Decentralization efforts range
from bolstering national breeding programs, where germplasm selected
on local research stations is better adapted to the relevant soil and
climate conditions compared to material developed internationally, to
conducting variety trials directly in farmer fields. The more accurately
breeding conditions approximate the target production environment of
the end user, the more precisely the breeder can select for adaptive traits
that provide localized agronomic advantage. The most challenging
production environments, characterized by low input use, water stress,
weed pressure, and degraded soils stand to gain the most from decen-
tralized breeding, as they differ most substantially from agronomic
research stations. Traits that may be adaptive to these conditions are
unlikely to be selected for in on-station trials. While not intentional,
many generations of parental breeding under ideal edaphic and other
environmental conditions has inadvertently reduced genetic diversity of
adaptations to real-world conditions, particularly those faced by
smallholder farmers in the global south (Renzi et al., 2022).

Concurrently, increasing emphasis is placed on diversifying the user
profiles considered for variety development by soliciting qualitative
feedback directly from farmers who interact with novel germplasm
through participation in crop trials. Together, these participatory plant
breeding (PPB) methodologies integrate the efficiencies of modern
breeding programs in accelerating genetic gain through genomics and
phenotyping technologies with decentralized farmer involvement. This
approach serves to identify local preferences and climate-adaptive traits,
diversify genetic material with farmer varieties and landraces, and
evaluate improved varieties in-situ (Fadda et al., 2020). By incorpo-
rating stakeholder input at every stage of the crop improvement process,
PPB can deliver highly targeted variety recommendations built around
farmer preferences, and promote adoption by engaging farmers in the
selection and evaluation of high-quality seeds uniquely suited to their
on-farm needs.

These innovations can be described in terms of the ladder of inclusive
innovation, a framework put forth by Heeks et al. (2014) to define the
levels of inclusivity, “with each succeeding step representing a greater
notion of inclusivity in relation to innovation.” First, an innovation can
be inclusive with respect to its intention, i.e. to address the needs of an
excluded or marginalized group. The second level, consumption, is
reached if the innovation is in fact adopted by the intended users, and
third level, impact, requires that the innovation has positive outcomes
for adopters. Seed technologies developed through decentralized plant
breeding are intended to serve farmers whose needs have not been met
by conventional varieties bred to maximize yields under optimal pro-
duction conditions. Early evidence suggests that adoption of the
resulting varieties is high, and impact has been measured along several
socioeconomic dimensions (Fadda et al., 2020; Teeken and Temudo,
2021; van Etten et al., 2023). The fourth level of inclusivity pertains to
the process: “an innovation is inclusive if the excluded group is involved
in the development of the innovation” (Heeks et al., 2014). This gets at
the core of decentralized plant breeding - running farmer-managed va-
riety trials in diverse on-farm environments, and incorporating farmer
feedback to identify priority traits for distinct user groups. Levels five
and six regard the inclusiveness of the institution leading the innovation
and the frame of knowledge and discourse surrounding it. The CGIAR
research centers who are leading public sector innovation in this domain
have a mandate to “Improve the food system to ensure an adequate and
nutritious diet, especially for the world’s most vulnerable people.1”

2.2. The phenotyping bottleneck

Despite strong theoretical advantages and promising results from
early implementations, quantity and quality of plant performance data
remains a critical bottleneck to decentralized PPB at scale, particularly
for resource-constrained breeding programs in the Global South. His-
torically, logistical limitations of phenotyping relegated most selection
decisions to the research station, where crop trials require intensive
phenotypic data collection. In low-resource breeder settings, pheno-
typing is carried out manually by trained technicians who are often in
short supply and high demand by national breeding programs. Techni-
cians count pods, measure leaves, and score disease using a combination
of rigorous techniques and subjective intuition. The data is collected at a
high cadence and analyzed by the breeder to inform which parents will
be used for future crosses. This process has substantial room for error
and inconsistencies across individuals. Considering these major chal-
lenges to data collection even on the research station, quantitative
analogue phenotyping across decentralized multi-environment trials
(METs) is a non-starter.

As trials move farther from research hubs and multiply across loca-
tions, resources are stretched thin, necessitating tradeoffs. Successful
MET methodologies often sacrifice depth of data for breadth. For
example, triadic comparisons of technology, or tricot, is a scalable
approach to on-farm trials where participating farmers grow and eval-
uate three varieties on their own farm, using an incomplete block design
wherein many more varieties can be compared overall (Van Etten et al.,
2019; Van Etten et al., 2020; De Sousa et al., 2021a; de Sousa et al.,
2021b; Steinke and van Etten, 2016). Farmers qualitatively rank each
variety along various attributes, providing guidance for the release and
marketing of varieties to appropriate target environments based on
farmer preferences. While tricot works well for qualitative evaluation of
non-segregating pre-release germplasm, it does not provide the quanti-
tative phenotyping data required at earlier stages of breeding, necessary
to make informed crossing and selection decisions. Acquiring this type of
data using analogue methods would entail sending trained technicians
on a weekly or even daily basis to hundreds or thousands of trial sites
spread across the target population of environments. The largest

1 https://www.cgiar.org/introduction/
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proportion of trait segregation and selection pressure occurs during
early phases of the breeding process, yet it is only at the last stages of the
varietal development process where some breeding programs integrate
on-farm evaluative feedback (Cobb et al., 2019). At these later stages,
most of the genetic characteristics governing plant performance are
fixed. Many programs omit this step altogether if the attainable quali-
tative data alone does not warrant the cost of an on-farm trial.

2.3. Technology-supported quantitative phenotyping: Progress and
limitations

The limitations of analog phenotyping on-station have been effec-
tively overcome by technology in state-of-the-art breeding settings.
Digital phenotyping enables unprecedented levels of speed, accuracy,
and objectivity in crop assessment (Furbank and Tester, 2011). Beyond
improving the quality and quantity of phenotypic data, digital pheno-
typing opens the door to types of data that physically could not be
collected by hand, for example continuous time series of the flower
count across an entire field over the growing season. As selection ac-
curacy is one of the main drivers of genetic gain in breeding programs,
reduced error via CV has strong implications for genetic gain and
shortening of breeding cycles. Higher selection accuracy can better
inform breeding decisions to eliminate a larger portion of crosses and
progeny earlier based on subtle but meaningful insights derived from
higher quality phenotypic data (Cobb et al., 2019).

However, no amount of phenotypic data from a static or controlled
setting can replace the insights gained from observing crops in their
target environments. There is a high level of environmentally-mediated
phenotypic plasticity in many crops that is not observable in highly
managed trial station locations (Brooker et al., 2022). The same variety
that performs well in breeder settings with abundant nitrogen and irri-
gation may underperform in drought conditions or nutrient-poor soils
often found in smallholder systems, relative to another variety that is
bred for resilience over potential yield. Indeed, the genetic gains
measured in research stations are substantially lower when evaluated
on-farm, confirming the pivotal role of environmental interactions in
shaping crop performance outcomes (Magorohosho et al., 2010). While
some environmental pressures can be replicated or simulated for a trial,
capturing the influence of the local environment on variety performance
can only occur in-situ due to the complexities of real-world environ-
ments and cropping systems.

High caliber quantitative data from farmer field trials will shed light
on the complex interactions between genotype, environment, and
management (GxExM), and guide breeders to optimize germplasm for
diverse production conditions (de Sousa et al., 2021b). Advanced CV
phenotyping technologies will supercharge decentralized breeding
methodologies and the production of seeds tailored for varied and
extreme production environments. This supports marginalized groups
today and prepares seed systems for the changing climates of the future.
A corps of research at the Alliance aims to democratize advanced phe-
notyping technologies and other AI-powered tools for multimodal data
collection by extending access to anyone with a smartphone, opening
the door to transformative data-driven insights into crop-environment
interaction. The ladder of inclusive innovation (Heeks et al., 2014) is
a useful framework here as well, with resource constrained breeding
programs in the Global South as the group historically excluded from
technological advances. Appropriate tools that leverage the state of the
art AI technologies for plant breeding in this context must be developed
by and for the intended users through an inclusive, human-centered
design process to ensure adoption and impact (Table 1).

3. Materials and methods

3.1. Mobile phenotyping tools

Housed within the digital inclusion arm of the Alliance, the Artemis

project is developing mobile phone-based imagery phenotyping tools to
support CGIAR and associated National Agriculture Research Systems
(NARS) breeding programs in the Global South. A core innovation for
enabling high-throughput digital phenotyping both on- and off-station,
mobile phenotyping tools have transformative potential to enhance
and expand the datasets that inform crop improvement processes. These
tools can augment and replace analogue phenotyping on research sta-
tions, enhancing the accuracy, objectivity, and consistency of mea-
surements while reducing labor requirements. We have measured
imagery-modeled trait accuracies with Pearson Correlation values be-
tween 0.88 and 0.95 with ground truth data, with the ability to fully
phenotype a breeder’s plot (4 m × 3 m) in under a minute. Moreover,
they open the door to unprecedented expansion of data collection to
remote and heterogeneous agricultural settings.

3.1.1. Leveraging computer vision
Success for breeding programs supported by mobile imagery-based

phenotyping involves increased selection accuracy powered by CV
trait imagery models. Initially, imagery models learn from large quan-
tities of images sourced from rovers and mobile-image trials. The data is
manually labeled by agronomic experts and data technicians, which
implies substantial upfront costs for adapting models to new crops or
environments. However, recent advancements in AI offer ways to miti-
gate the cost of operationalized image-based phenotyping by making it
possible to train trait imagery models with significantly fewer images
than before, and reducing labeling requirements. Specifically, by
employing state-of-the-art foundation models such as DdinoV2 (Oquab
et al., 2023) and Segment Anything (Kirillov et al., 2023), trait imagery
models can now be trained on just a few hundred images. Foundation
models are pre-trained on vast datasets, allowing them to recognize
intricate patterns and generalize knowledge across domains. Few-shot
learning techniques enable models to learn from a small amount of
labeled data, while zero-shot learning allows them to infer patterns and
make predictions for unseen or novel classes without any labeled ex-
amples. Ultimately, these advances will enable breeding program staff
with limited technical expertise to swiftly and effectively deploy flexible
phenotyping models tailored for specific crop-trait applications, for
example, parasitic weed detection on sorghum in West Africa.

3.1.2. Refining image collection SOPs
Model performance still remains subject to image quality, which may

be challenging to standardize on-farm or globally across multiple
breeding stations. Successful image recognition requires clear and
consistent images of plants throughout the growth cycle. While existing
models work well with standardized, high-quality images taken from
crops in a regulated growth environment, collecting operational images
from field sites is a non-trivial challenge. Complications inherent to low-
resource research settings, such as the presence of multiple crop diseases
and nutrient deficiencies, inconsistent field layouts, and lower quality
hardware for image collection can compromise model performance. In
the highly decentralized multi-environment trials, where the impact of
mobile phenotyping data may be strongest, there is the additional
challenge of hiring and training locally-based staff to collect images.
Breeder trials have traditionally been spatially constrained by the

Table 1
Plant stand count CV model accuracies (Pearson Correlation) relative to in-field
ground-truth across multiple evaluation locations. Multiple Plant are single
images that contain between three and four plants. Whole Plot are single images
that encompass the entire breeding plot (4 m × 5 m) into one image. Panorama
are a composite mosaic of multiple images taken across one plot.

Multiple Plant Whole Plot Panorama

Colorado 0.84 0.96 NA
Tanzania 0.99 0.85 0.96
Colombia 0.85 NA 0.72
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substantial costs of sending trained technicians to environments far from
the research base. The introduction of mobile phenotyping drastically
reduces the requirements of specialized skillsets for data collectors. An
ongoing pilot study uses a decentralized enumerator model, in which
recent college graduates are employed to manage data collection from
clusters of on-farm trials in their own villages. In this initial round,
enumerators were trained in-person at a central location, but we are
developing digital instruction materials to enable fully remote training,
eliminating all but local transportation costs. However, clear protocols
are required to train individuals to collect images of sufficient quality to
meet model requirements with minimal oversight. All of these chal-
lenges can be met through a dual approach: defining straightforward,
intuitive standard operating procedures (SOPs) for image collection
(which may be guided by tailored user interface software), and fine-
tuning machine learning models using more diverse, field-realistic
training datasets.

SOP development requires a tight feedback loop between breeders,
field technicians, enumerators, and AI engineers. Breeding traits are
highly specific, for example, disease scoring of lower leaves in early
season crops, and flower count during early reproductive stages. Imag-
ery types need to replicate what field technicians ‘see’ in the field: angle
of view, time of day, etc. AI engineers use these images to determine how
image-type affects model quality with respect to the trait of interest for
the breeding programs. For example, image angle, soil color, time if day
the imagery were collected, etc. Once the optimal image type has been
identified, field technicians are required to determine the best method
for effective execution (considering both time and tedium). Appropriate
methods may differ on and off station, for example on-station pheno-
typing may prioritize data quality and quantity per trial, using more
capital intensive and complex methods such as push-carts, panorama
images, and specialized angles. If the goal of on-farm phenotyping is to
get basic quantitative data from as many environments as possible,
simpler SOPs that can be implemented with minimal training may suf-
fice. This entire process needs to be replicated per crop species and trait,
and is only successful if the interactions between all users are open and
fluid. An inclusive innovation approach integrates breeders, technicians,
and enumerators from the earliest stages in development and delivers an
end product built through a process of co-creation, giving all a sense of
ownership and laying the groundwork for meaningful adoption and
impact within breeding programs.

3.1.3. Integrating Mobile phenotyping with existing breeder workflows
Much like the consideration given to farmers in the inclusive

development of seeds and crop varieties, the intended users of a new
digital toolkit need to be integrated from the onset. Many technologi-
cally advanced interventions falter when the goals and capacities of the
existing system are not adequately assessed, frequently imposing solu-
tions to problems that may not be perceived as pressing by users (Heeks
et al., 2014; Steinke et al., 2022; Masiero, 2016; Krell et al., 2021).
Identifying specific user needs can make digital tools more relevant and
likely to be adopted. Limited digital literacy and skillsets present a
further challenge to the introduction of technologies if users are reluc-
tant to take them on (Agyekumhene et al., 2020; Radovanović et al.,
2020). New tools should be user-friendly, catering to users’ demands
and acknowledging varying digital capacities and infrastructure. Prior-
itizing simplicity over flexibility is key, and sticking as closely as
possible to existing manual workflows can reduce user burden and avoid
unnecessary complexities (McCampbell et al., 2021; Steinke et al., 2022;
Antonini, 2021). Phenotyping is already a laborious process, and a new
tool is unlikely to be adopted if it increases workload or does not
improve outcomes in a way that is apparent and relevant to users. These
considerations are imperative for the proposed innovations to reach the
second and third levels in the ladder of inclusivity, passing from inten-
tion to adoption by breeding programs, and eventually impact.

Following a HCD approach to technology development, a series of
interviews and observations were conducted with breeders, breeding

technicians, on-farm trial enumerators, and other support staff in
Tanzania to understand the breeding ecosystem and identify motiva-
tions and pain points throughout the process. Archetypal ‘user profiles’
were distilled from these interviews to better characterize users’ needs
and capacities, and to identify entry points for the integration of imagery
phenotyping tools to improve and facilitate existing workflows. A
detailed ‘breeder’s journey’ map was developed to elucidate specific
tasks that can gain efficiency from digitalization. These tasks require
high physical labor, are prone to human error, and lack supporting tools
and software, including: trial design, phenotyping data collection, data
analysis, and results sharing (Fig. 1). This process revealed that a viable
mobile phenotyping tool should meet the breeder-demand of increased
data accuracy, reduce labor requirements for technicians, and contain
clear instructions for users with limited digital literacy.

We are currently exploring ways to leverage multimodal datasets to
further efficiently execute standardized SOPs on-farm and ease the
transition to digital phenotyping for breeding staff. Recent advances in
Large Language Models (LLM) such as GPT4 from Open AI and LLaMA
from Meta have been able to replicate more interactive and conversa-
tional approaches to interacting with technology. By integrating CVwith
Natural Language Processing (NLP) and LLMs we may be able to provide
a more intuitive way to support SOP execution and data quality. In this
scenario, the LLM will instruct users of the mobile phenotyping tool to
collect images using a specific SOP. The CV model will analyze the data
quality and if needed for enhancement will request the user to collect
additional images. This process can be repeated until data of sufficient
quantity and quality are collected. Integration with NLP can close the
loop by allowing the user to input audio data corresponding to issues
present in the field (e.g. pests or diseases). These attributes further
reduce the barriers to entry and specialized skillsets necessary to collect
and analyze high quality data, and can be used in conjunction with
digital training materials to on-board phenotypers and moderate data
collection across locations with little to no in-person oversight.

4. Results and discussion

4.1. Preliminary results from mobile phenotyping trials

4.1.1. Optimization for accuracy
It is widely acknowledged that there are a range of inconsistencies

common to manual visual phenotyping (Cobb et al., 2013; Furbank and
Tester, 2011). The process is highly subjective, and the accuracy is
influenced by multiple factors including the experience of the evaluator,
the time of day affecting fatigue levels (cool mornings vs. hot and sunny
afternoons), and overall tedium associated with phenotyping hundreds
to thousands of plots in some breeding programs. Though recognized,
these inconsistencies are rarely quantified. We have analyzed pheno-
typic disease scoring data for common bean taken by highly trained
technicians and pathologists in the Alliance fields in Cali, Colombia, and
found significant variation in scores by these professionals (Fig. 2). In
contrast, CV-based estimates from mobile-phone crop images obtained
high-levels of accuracy relative to absolute ground truth (i.e. measuring
every plant in every plot by hand). In the specific case of disease, there is
no absolute ground truth, but the CV models can estimate leaf area and
segment the percent infected pixels per leaf, something human eyes are
incapable of achieving.

One of the benefits of imagery-based phenotyping is consistency in
measurement. Provided clear SOPs and imagery quality, machines
produce modeled trait outputs of consistent quality. Further, models can
integrate multiple computer vision estimates that are highly correlated
with the best in-field visual assessment. For example, we have validated
that a CV-based plant health index (drone executed) can equal the ac-
curacy of the best human disease score estimates (Fig. 3). One of the
many benefits is that these imagery tasks can be executed throughout
the day or at a high cadence throughout the growing season to provide
near continuous data generation.
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4.1.2. Throughput efficiency and reduced labor
For mobile phone-based imagery phenotyping, accurate models are

necessary, but not sufficient for full integration in breeding programs.
Considerations have to be made for throughput efficiency in addition to
accuracy. In the Artemis project, initial manual SOPs required 12
person-hours to fully phenotype 30 breeding plots. This is an order of
magnitude more than traditional visual estimations. Labor is the limiting
factor in this scenario. To overcome this challenge, technicians worked
again with AI engineers to test and develop low-cost and low-tech
companion devices (Fig. 4) to aid the efficiency of phenotyping
throughput. With this device, technicians are able to phenotype an

entire breeding plot (4 m × 3 m) in less than 30 s, exceeding manual
visual methods.

4.1.3. Increased data quantity on-station and on-farm
The increased efficiency of digital phenotyping relative to analogue

methods vastly increases the amount of data that can be collected, both
within and across trials. Within a given trial, digital phenotyping enables
technicians to capture phenotypic data from every plant (analogue
methods typically involve random selection of plants to measure), and at
much higher cadence. On initial on-station trials on common bean at the
Alliance office in Tanzania, plots are imaged daily. This has increased

Fig. 1. Entry points for a digital solution throughout the breeding cycle.

Fig. 2. Visual-based disease scores for common bean bacterial blight among Alliance pathologists. Score is a 1–9 scale. Two different bean populations were tested
(Andean and mesoamerican). Three different evaluators were considered (evaluator 1 was in training and evaluators 2 and 3 were experts) and two timing points
(Eval1 and Eval2 for each evaluator).
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the quantity of data from around a dozen measurements per genotype
per season with traditional visual estimation by about one order of
magnitude with imagery-based methods. As discussed, a key advantage
of digital phenotyping is the ability to collect data from any trial using
only a smartphone. The ongoing on-farm pilot study described in Section
3.1.2 has successfully captured images and ground truth for two traits -
stand count and pod count - from 480 trial sites across five districts in
Tanzania, spanning distinct agro-ecologies. To our knowledge, this is the
first digital phenotyping data ever to be collected from an on-farm trial,
and the first quantitative phenotyping data in general to be collected
from such a large scale and spatially diverse on-farm trial.

4.2. Mechanisms for farmer feedback

Beyond improving yields in farmer production environments, in-
novations in digital data collection can bolster seed system inclusivity by
strengthening communication between farmers and formal breeding
programs. Historically, elicitation of farmer feedback required costly
and time-consuming structured surveys. While informative, this format
is limited by logistical constraints on the depth and breadth of infor-
mation that can be collected. Leveraging innovations in LLMs to inte-
grate automatic speech recognition and chat functionality into on-farm
trials may better capture farmers’ opinions in natural language, poten-
tially providing greater insight than text-based approaches (Hase and
Nimbhore, 2023; Becker, 2016; Jones-Garcia, 2022). As smartphone
penetration and digital literacy increase, this technology could even

Fig. 3. Comparison of visual disease score estimations (CBB) and plant health index measurement (HIS) using drone imagery. The left side of the figure (CBB) and the
right side (HIS) illustrate the correlation between the ground-truth visual score and the drone-derived metrics. The metrics derived from RGB images include Canopy
Cover (CC), Canopy Volume (CV), and Canopy Height (CH), while other Vegetation indices are derived from multispectral images.

Fig. 4. Companion phenotyping device (Tanzania).
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bypass the need for an in-person survey, with farmers interacting
directly with a mobile survey tool. With these techniques, we can collect
valuable and previously inaccessible insights into the preferences, pri-
orities, and challenges faced by farmers, which can inform current and
future crop breeding strategies and ultimately improve livelihoods. This
approach may provide farmer feedback on the traits collected during the
phenotyping process, prioritizing traits that matter most to farmers
which can be considered in breeder selection indices.

NDIZI (NLP to Develop and Innovate Zero-Shot Intelligence), a sister
project to Artemis, is leveraging the same on-farm pilot study introduced
in Section 3.1.2 to explore the feasibility and effectiveness of NLP and
LLMs in collecting farmer feedback from field trials across different
agro-ecological zones in Tanzania, enabling real-world testing and
validation. Interviews have been conducted with smallholder farmers to
collect audio feedback from trial participants, testing different methods
for prompting and facilitating meaningful dialogue around variety
preferences The recorded audio, predominantly in Swahili, is then
transcribed to create the necessary training data for fine tuning and
evaluating automatic speech recognition models (ASR) and NLP models
for analysis and extraction of traits. In particular, we finetune Whisper, a
multilingual foundation model for ASR trained on 680,000 hours of
multilingual and multitask supervised data collected from the web.
While the initial results are promising, additional data is required to
further improve the model performance, as shown in Fig. 5. The final
NLP model will identify traits mentioned by farmers (trait extraction),
produce a score for each variety with respect to each trait mentioned - e.
g. yield scored from 1 to 5, and distinguish between a range of positive to
negative attitudes towards each trait (sentiment analysis). The model
will also produce a ranking of traits in order of importance for each
farmer, as well as a proxy ranking for the entire sample or subsets (e.g.
women, drought-prone, etc) based on the number of times a trait was
mentioned. These methods reproduce and expand on the gold-standard
in participatory variety selection (see e.g. Kolech et al., 2017; Nchanji
et al., 2021; Van Etten et al., 2019) increasing both the quality (depth)
and quantity (breadth) of attainable farmer feedback.

In combination with speech data, we are also collecting image data
from which we learn about the visual indicators of crop performance
that are noticed by farmers, thereby integrating farmers’ knowledge of
crop selection to improve the phenotyping technology (Ragot et al.,
2018). This multimodal data provides insights on how farmers relate to
their bean crops and evaluate new varieties. An explicit research focus is
placed on the manner in which farmers articulate their needs, including
communication style (e.g. questions vs storytelling), wording, socio-
economic markers of speech such as gender and age, and non-verbal
cues such as facial expressions and tone of voice which may influence
the meaning of what is being expressed. By identifying nuanced
response patterns, the research aims to refine digital data collection
methods and extend the scope of in-depth qualitative processes to a
broader range of participants. Besides classical machine learning,
prompting of large foundation models, with multimodality capabilities,
is applied to perform trait extraction and assist the flow of dialogue
between farmers and enumerators, suggesting flexible follow-up ques-
tions based on response patterns beyond the pre-set skip-logic available
in hardcoded electronic questionnaires.

5. Conclusion

The emergence of AI tools for high-throughput multi-modal data
collection and analysis offers a unique opportunity for equitable and
inclusive transformation of crop breeding systems. Inclusive innovation,
which involves the development of goods and services both for and by
historically underserved communities, is at the core of the envisioned
transformation (Heeks et al., 2014; Opola et al., 2021). Moving towards
technology-enabled participatory breeding systems, farmers are actively
integrated into the variety improvement process from the earliest stages
and play a key role in driving the development of genotypes that are
adapted to their specific biophysical and socioeconomic conditions.
Prioritizing stakeholder engagement in digital knowledge creation em-
powers breeding systems to respond in a data-driven way to localized
cultural preferences, food security requirements, and agroecological
conditions (Birhane et al., 2022). The technology is ready to facilitate
this fundamental shift, but must be met with a shift in traditional
mindsets about how breeding is done. The inclusive innovation model
for technology development can ease this transition, ensuring that new
tools are easy and appealing to use and address a relevant challenge.
Engaging the broader plant breeding community is crucial for large-
scale adoption of new methods, and for concurrent advances in seed
accessibility and information transfer required for meaningful systemic
change.

While the transformative potential of these technologies exists
within the domain of inclusive crop improvement, to our knowledge no
technology solution has been successfully deployed at scale. While
digital capacities across the Global South are increasing, substantial
barriers to technology access remain for much of the rural population,
including high costs for mobile phone handsets and data, lack of relevant
content in local languages and dialects, and low digital literacy (Digital
Frontiers, 2023). However, the technology landscape is not static, the
tech startup ecosystem is growing across most of the Global South with
indications that developing countries may become the largest growing
market for technology (Lambrechts et al., 2021). Inclusive innovation
and human centered design will be of greater importance given this
dynamic nature of technology development (Foster and Heeks, 2013).

Development and maintenance costs to set up an AI-enabled phe-
notyping system are additional unknowns. Engineering time and cloud-
compute infrastructure to build and maintain a system operating at the
global-level will be substantial. A rough estimate is on the order of a few
million USD per year. While the costs and challenges are high, these
technologies may be transformative towards the rapid development of
locally-adapted and climate resilient crop varieties for vulnerable pop-
ulations. The costs of inaction may be many orders of magnitude more
than the fixed and variable costs to build and maintain the phenotyping
system. Finally, considerations have to be made regarding the social and
ethical impacts of using AI-enabled tools with smallholder farmers
(Ryan, 2022). Many of the large and open-source foundational models
were not trained on data generated by the target beneficiaries of the
work presented here. There is concern that ‘out-of-the-box’ usage of
these general models may provide a bias along gender, ethnicity, or
socio-economic dimensions. As developers of AI for agriculture, it is
important to ensure that HCD and inclusive design approaches account

Fig. 5. Automated transcription using finetuned Whisper model.
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for these considerations. As this field of technology is rapidly evolving it
is more important than ever to address social and ethical issues during
the development process.
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