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We study the competition complexity of dynamic pricing relative to the optimal auction in the fundamental

single-item setting. In prophet inequality terminology, we compare the expected reward Am(F ) achievable by

the optimal online policy on m i.i.d. random variables distributed according to F to the expected maximum

Mn(F ) of n i.i.d. draws from F . We ask how big m have to be to ensure that (1+ ε)Am(F )≥Mn(F ) for all

F .

We resolve this question and characterize the competition complexity as a function of ε. When ε = 0,

the competition complexity is unbounded. That is, for any n and any m there is a distribution F such

that Am(F ) < Mn(F ). In contrast, for any ε > 0, it is sufficient and necessary to have m = ϕ(ε)n where

ϕ(ε) =Θ(log log 1/ε). Therefore, the competition complexity not only drops from unbounded to linear, it is

actually linear with a very small constant.

The technical core of our analysis is a loss-less reduction to an infinite dimensional and non-linear opti-

mization problem that we solve optimally. A corollary of this reduction is a novel proof of the factor ≈ 0.745

i.i.d. prophet inequality, which simultaneously establishes matching upper and lower bounds.

1. Introduction. An important line of work at the intersection of Economics and Computa-

tion concerns the competition complexity of auctions [4, 14, 15, 3]. The basic idea is to examine how

many bidders need to be added to a simple, suboptimal auction mechanism so that its performance

is guaranteed to match that of the optimal but more complicated auction mechanism.

This competition complexity approach originates in a seminal paper by Bulow and Klemperer

[4], who asked this question for the revenue achievable by the simple but suboptimal second-price

auction and Myerson’s optimal auction. They showed that for i.i.d. bidders whose valuations are

drawn from a regular distribution F , the second-price auction with n+1 bidders is guaranteed to

achieve at least the expected revenue of the optimal auction with n bidders. They concluded that

rather than going for the more complicated auction mechanism, one could simply attract one more

buyer to the simpler auction mechanism.
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Subsequent work has extended this basic result to a variety of more complex auction settings

[14, 29, 3], and also introduced the idea of approximate competition complexity where instead of

shooting for optimality, one aims at 99% or 99.9% of optimal [15].

1.1. Our Question. In this work, we initiate the study of the competition complexity of

posted pricing. We focus on the fundamental single-item case and compare optimal dynamic pric-

ing versus the optimal auction. While we study the social welfare case, all our results translate

to revenue maximization under the standard regularity assumption (see Section 2 for a detailed

discussion).

Since we are focusing on social welfare, the simplest way to state our question is in prophet

inequality terminology. Our goal is to compare the expected reward Am(F ) achievable by the

optimal policy found by backward induction on m≥ n i.i.d. draws from a distribution F , to the

expected maximum Mn(F ) of n i.i.d. draws from F . For fixed ε≥ 0 and fixed n, we want to find

the smallest m≥ n such that for every F we have

(1+ ε) ·Am(F )≥Mn(F ).

We refer to the functional dependence of m on n and ε as the competition complexity of dynamic

pricing. We sometimes refer to the case ε= 0 as exact competition complexity and to the case ε > 0

as the approximate version.

1.2. Warm-Up: The Uniform Case. As a warm-up and to illustrate some of the key ideas

in our general competition complexity analysis, consider the case where F = U [0,1] is a uniform

distribution over [0,1], and convince ourselves that in this case A2n ≥Mn for all n, so the exact

competition complexity is linear. We have that Mn is just the maximum of n i.i.d. draws from a

uniform distribution over [0,1], and therefore Mn = n/(n+1). On the other hand, we can compute

An through the usual backward induction: The recursion is An+1 = E(max{X,An}) for n≥ 1 and

A1 =E(X) where X ∼U [0,1]. That is, A1 = 1/2, and for n≥ 1,

An+1 =E(max{X,An})

=AnPr(X <An)+E(X |X ≥An)Pr(X ≥An)

=A2
n +

(1+An)

2
(1−An) =

1

2
(1+A2

n).

Observe that apart from getting an exact formula for the recurrence, we get a simple expression

for An+1 −An, that is, the marginal gain of the optimal algorithm when we add one more buyer:

An+1 −An = (1−An)
2/2 for n≥ 1. In particular, this idea will be further exploited to understand

the competition complexity of general distributions.
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To analyze the competition complexity for the uniform case, we proceed by induction. It is easy

to verify that the claim holds for n= 1 since A2 = 5/8> 1/2 =M1. So we assume A2n ≥Mn, and

we want to show A2n+2 ≥Mn+1. Note that if A2n+1 ≥Mn+1 then also A2n+2 ≥A2n+1 ≥Mn+1, and

there we are done, so we consider the case A2n+1 <Mn+1. We have

A2n+2 =A2n +(A2n+2 −A2n+1)+ (A2n+1 −A2n)

=A2n +
1

2
(1−A2n+1)

2 +
1

2
(1−A2n)

2.

Since the function f(x) = x+ 1
2
(1−x)2 is increasing in R+, and given that A2n ≥Mn, we obtain a

lower bound that together with A2n+1 < (n+1)/(n+2) yields

A2n+2 ≥Mn +
1

2

((
1

n+1

)2

+

(
1

n+2

)2
)
.

The argument is completed by observing that what we add to Mn on the right-hand side is at

least Mn+1 −Mn = 1/((n+1)(n+2)). We conclude that for the uniform distribution, it suffices to

choose m≥ 2n. A closer examination of the asymptotic behavior of Am and Mn shows that this

analysis is in fact tight. Indeed for large m and n, Am ≈ 1−2/(m+log(m)+1.76799) [17, 30] while

Mn ≈ 1− 1/n which roughly shows that we need m= 2n+ o(n).

1.3. Our Contribution. The above analysis of the uniform case already rules out a “plus

constant” result as in Bulow and Klemperer [4]. It leaves some hope that the exact competition

complexity of dynamic pricing may be linear or, if not, then at least polynomial with a small

polynomial. Our first main result shows that this hope is unfounded. Indeed, the exact competition

complexity is not only “large,” it is in fact unbounded.

Main Result 1 (exact competition complexity): For any m≥ n, there exists a distribution

F such that Am(F )<Mn(F ).

In light of this strong impossibility, a natural question is whether this impossibility persists if we

relax our goals and aim for 99% or 99.99% of optimal. It turns out that things change, and quite

drastically so. This is formalized by our second main result, which nails down the approximate

competition complexity in terms of function ϕ :R+ →R+ given by

ϕ(ε) =

∫ 1

0

1

y(1− log(y))+ ε
dy.

Main Result 2 (approximate competition complexity): Consider ε > 0 and any n. Then,

we have (1+ ε)Am(F )≥Mn(F ) for every F if m≥ ϕ(ε)n, and for large n this is tight.
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Figure 1. Plot of ϕ(ε) as a function of ε on the left, and as a function of 1/ε on the right. Plotting ϕ(ε) as a function

of 1/ε serves to illustrate the very slow growth of ϕ(ε) as Θ(log log 1/ε) when ε→ 0. The dashed blue line in the left

plot is at ε= ϕ−1(1)≈ 0.342 which implies the optimal factor 1/(1+ϕ−1(1))≈ 0.745 for the i.i.d. prophet inequality.

In the other plot the two blue dashed lines are at 1/ε= 100 and 1/ε= 1000 which correspond to approximation ratios

of 99.9% and 99.99%. The value of ϕ(ε) at these points is the constant required to obtain these approximation ratios.

While our first main result shows that the exact competition complexity of dynamic pricing

is unbounded, our second main result shows that if we aim for approximate optimality, then the

competition complexity not only drops from being unbounded to being linear, it is actually linear

with a very small constant.

We illustrate this in Figure 1. In the technical part of the paper, we show that the function

ϕ(ϵ) grows as Θ(log log 1/ε) as ε→ 0, with very small constants hidden in the big-O notation. For

example, to obtain 99% of optimal it is sufficient to have m ≥ 2.30 · n, and to obtain 99.99% of

optimal it is sufficient to have m≥ 2.53 ·n.

An interesting implication of our analysis is that it yields the factor 0.745 i.i.d. prophet inequality

[8, 26, 33, 28] and its tightness [21] as a special case. Here is how: Rather than fixing ε and finding

m(n, ε), we may fix m(n, ε) = n and find ε. The equality m(n, ε) = ϕ(ε)n corresponds to solving

ϕ(ε) = 1. This yields ε= ϕ−1(1) and corresponds to an approximation guarantee of 1/(1+ϕ−1(1))≈

0.745.

1.4. Our Techniques. Our argument for the uniform distribution F = U [0,1] that we pre-

sented above relied on a formula for the differences between two consecutive terms An+1 and An,

and at its core compared A2(n+1) −A2n to Mn+1 −Mn. Intuitively, we explored properties of the

rate of growth and curvature of the two sequences A1,A2, . . . ,Am and M1,M2, . . . ,Mn.

Our general argument builds on this intuition. Our first key observation characterizes the

sequences A1,A2, . . . ,Am that can arise. Namely, we show that for any distribution F , the cor-

responding infinite sequence (Ai(F ))i∈N satisfies the following three properties. Moreover, for any
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infinite sequence (Ai)i∈N satisfying these properties there is a distribution F that leads to this

sequence. The three properties are:

(1) The sequence (Ai)i∈N is non-decreasing,

(2) The sequence (Ai+1 −Ai)i∈N is non-increasing, and

(3) The sequence ((Ai+2 −Ai+1)/(Ai+1 −Ai))i∈N is non-decreasing.

Our second key observation is that given a fixed infinite sequence (Ai)i∈N with these properties,

we can identify the compatible distribution F that maximizes Mn. This worst-case distribution

is a simple piece-wise constant distribution, and allows us to express the largest possible Mn as

a function of the (Ai)i∈N. We thus reduce the problem of checking whether for a fixed n and m,

(1 + ε)Am(F )−Mn(F )≥ 0 for all F , to an infinite dimensional optimization problem that seeks

to minimize (1 + ε)Am(F )−Mn(F ) over all infinite sequences satisfying properties (1)–(3): The

inequality is satisfied by all F if and only if the objective value of this infinite-dimensional optimiza-

tion problem is non-negative. To show our two main results, we then solve this infinite-dimensional

optimization problem optimally. This reduces the problem to the analysis of a recursion, which can

be pointwise bounded by a differential equation, which, by a careful analysis, leads to the function

ϕ(ε).

1.5. Other Gaps and Future Work. An additional set of questions that fits the wider

theme of this paper concerns the competition complexity of static pricing. Here—unlike in the

case of dynamic pricing—there are two questions we could ask. The first comparison is between

static pricing A′
m and the optimal auction Mn; the other is between static pricing A′

m and dynamic

pricing An.

For the first comparison between A′
m and Mn, we observe the following. First, since A′

m ≤Am

for all m, our impossibility (Main Result 1) implies that the exact competition complexity of

static pricing is unbounded. Moreover, while the approximate competition complexity of static

pricing may be linear (similar to our Main Result 2 for dynamic pricing), the dependence on

ε certainly has to be worse. This follows from considering the uniform case: For m sufficiently

large, we have that 1 − 2 log(m)/m ≤ A′
m ≤ 1 − log(m)/(3m) (see Appendix 5 for a derivation

of these inequalities). Since Mn ≈ 1 − 1/n, for large m and n, this means that to ensure that

(1+ε)A′
m ≥Mn, we approximately need that (1+ε)(1− log(m)/(3m))≥ 1−1/n. Then, for ε small

with respect to n, say ε= 1/n2, we can approximate by subtracting ε from the left-hand side. We

get 1− (1+ ε) log(m)/(3m)≥ 1− 1/n, which happens if and only if 3m/ log(m)≥ n(1+ ε), which

for ε of this order implies that we need at least m= cn with c=Ω(log(1/ε)).

For the other comparison, between A′
m and An, observe that for the exact version, we need

m=Ω(n log(n)), even for the uniform distribution. This again follows from the asymptotic formulas
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for A′
m ≈ 1− 2 log(m)/m and An ≈ 1− 2/(n+ log(n) + 1.76799), which show that roughly what

we need is that m/ log(m)≥ n and therefore m=Ω(n log(n)). We leave the full resolution of these

gaps, which will shed additional light on the relative power of static and dynamic pricing, to future

work.

1.6. Further Related Work. Our work examines the relative power of a simple mechanism

(dynamic pricing) to that of an optimal mechanism (the optimal auction) and thus fits under the

broader umbrella of simple vs. optimal mechanisms (e.g., [20, 19]).

At the technical core of our work, we rely on a connection between posted-price mechanisms

and prophet inequalities that was pioneered and explored in the last fifteen years [18, 5, 6, 9]. This

line of work motivated work on prophet inequalities more generally. Most relevant for us is the

work on the i.i.d. single-item prophet inequality [1, 8, 26, 33, 7, 28], but there is also exciting work

on combinatorial extensions such as [27, 16, 11, 13]. A closely related line of work has examined

the gap between various simple mechanisms including posted-price mechanisms and the optimal

mechanism on the same number of bidders [2, 12, 23, 24, 22].

2. Formal Statement of our Results. For our analysis, it will be convenient to consider

N = {0,1,2, . . .}, the natural numbers including zero. We consider distributions F over the non-

negative reals with finite expectation. For a distribution F , we let M0(F ) = 0 and for n ≥ 1 we

let Mn(F ) = E(max{X1,X2, . . . ,Xn}), where X1, . . . ,Xn is an i.i.d. sample distributed according

to F . We denote by An(F ) the value of the optimal policy and the sequence (An(F ))n∈N satisfies

the following recurrence: A0(F ) = 0, A1(F ) = E(X) and An+1(F ) = E(max{X,An(F )}), where X

is a random variable distributed according to F . We now formally state our main results.

Theorem 1. For every positive integer n> 1, and every positive integer m≥ n, there exists a

distribution F such that Am(F )<Mn(F ).

Theorem 2. Let ε > 0 and let n be a positive integer. Then, for every m ≥ ϕ(ε)n =

Θ(log log 1/ε)n, and every distribution F we have (1 + ε)Am(F ) ≥ Mn(F ). Conversely, for any

δ > 0, there exists a distribution G such that for n sufficiently large and m< (ϕ(ε)− δ)n, we have

(1+ ε)Am(G)<Mn(G).

While Theorem 1 shows that the exact competition complexity of dynamic pricing is unbounded,

Theorem 2 shows that the approximate competition complexity not only drops from being

unbounded to being linear, it is actually linear with a very small constant (see Figure 1).

As mentioned in the introduction, Theorems 1 and 2 translate to the case of revenue by using

standard reductions between social welfare and revenue optimization for the i.i.d. case [9, 6, 18].
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Given a distribution F , the virtual valuation of F is the function ϕF (x) = x− (1− F (x))/f(x),

where f is the probability density function of F . To construct an algorithm for the revenue set-

ting in the i.i.d. case with distribution F and n buyers, we reduce to the social welfare case as

follows: We run the optimal dynamic welfare policy for an instance with n buyers identically and

independently distributed according to F ϕ, where F ϕ is the distribution of the random variable

ϕ̃F (X) =max(0, ϕF (X)) when X is distributed according to F . By doing so, the optimal dynamic

welfare policy is defined by thresholds τ1, . . . , τn, which can be converted into optimal dynamic

revenue prices (a posted price mechanism) with pi = ϕ̃−1
F (τi), for every i ∈ {1, . . . , n}}, when F is

regular, i.e., ϕF is monotone non-decreasing [18]. We remark that this reduction is based in the

classic result of Myerson for revenue maximizing single-item auctions [31].

3. An Equivalent Optimization Problem. In this section, we develop the main building

block of our analysis. The key result of this section, Theorem 3, shows that the question of whether

for a given ε≥ 0, n≥ 1, and m≥ 1 it holds that (1+ε)Am(F )≥Mn(F ) for all F reduces to showing

whether the following infinite-dimensional, non-linear optimization problem has a non-negative

objective.

minimize (1+ ε)
m−1∑
i=0

δi −
∞∑
i=0

(
1−

(
δi+1

δi

)n)
δi (1)

subject to δj+1 ≤ δj for every integer j ≥ 0, (2)

δ2j ≤ δj−1δj+1 for every integer j ≥ 1, (3)

δ0 = 1 and δj > 0 for every integer j ≥ 1. (4)

Theorem 3. Let ε≥ 0, and let n and m be two positive integers. Then, we have (1+ε)Am(F )≥

Mn(F ) for every distribution F if and only if the optimal value of the optimization problem (1)-(4)

is non-negative.

We prove this theorem by characterizing the sequences (Aj(F ))j∈N that can result from dis-

tributions F and by relating the value of Mn(F ) to the values of the sequence (Aj(F ))j∈N. The

characterization uncovers the properties of the sequences that can arise. Given a sequence of non-

negative real values (Sn)n∈N, we denote by (∂Sn)n∈N the sequence such that ∂Sn = Sn+1 − Sn for

every non-negative integer n. Consider the following properties:

(a) The sequence (Sn)n∈N is strictly increasing.

(b) The sequence (∂Sn)n∈N is non-increasing.

(c) The sequence (∂Sn+1/∂Sn)n∈N is non-decreasing.
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Observe that the properties (b)-(c) imply that the sequence (∂Sn+1/∂Sn)n∈N is not only non-

decreasing, but also bounded with ∂Sn+1/∂Sn ≤ 1 for every n∈N, and therefore it is convergent to a

limit value of at most one. In what follows, given a distribution F , let ω0(F ) = inf{y ∈R : F (y)> 0}

and ω1(F ) = sup{y ∈R : F (y)< 1} be the left and right endpoints of the support of F .

We need a few lemmas to prove Theorem 3. We also use the following proposition about the

optimal policy.

Proposition 1. For every distribution F the following holds:

(i) An+1(F ) =An(F )+
∫∞
An(F )

(1−F (y))dy for every n∈N.

(ii) An+2(F ) =An+1(F )+
∫ An+1(F )

An(F )
F (y)dy for every n∈N.

(iii) limn→∞An(F ) = ω1(F ).

(iv) If ω0(F )<ω1(F ) and F has finite expectation, then An(F )<An+1(F ) for every n∈N.

Proof. Since An+1(F ) =E(max{An(F ),X}), where X is distributed according to F , we get

An+1(F ) =An(F )F (An(F ))+

∫ ∞

An(F )

sf(s)ds.

By integrating by parts, we have∫ ∞

An(F )

sf(s)ds= (1−F (An(F )))An(F )+

∫ ∞

An(F )

(1−F (s))ds,

and therefore (i) holds since we have

An+1(F ) =An(F )F (An(F ))+ (1−F (An(F ))An(F )+

∫ ∞

An(F )

(1−F (s))ds

=An(F )+

∫ ∞

An(F )

(1−F (s))ds.

To prove (ii), observe that∫ ∞

An(F )

(1−F (s))ds=

∫ An+1(F )

An(F )

(1−F (s))ds+

∫ ∞

An+1

(1−F (s))ds

=An+1(F )−An(F )−
∫ An+1(F )

An(F )

F (s)ds+

∫ ∞

An+1(F )

(1−F (s))ds,

and therefore, (i) implies that∫ An+1(F )

An(F )

F (s)ds=

∫ ∞

An+1(F )

(1−F (s))ds=An+2(F )−An+1(F ),

where the last equality holds also by (i).

We now show (iii). Let L= limn→∞An(F ) and assume, for the sake of contradiction, that L<

ω1(F ). Since (An(F ))n∈N is non-decreasing, we have An(F ) ≤ L for every n. Let U = min{L +

1, (L+ω1(F ))/2}. From (i), we have
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An+1(F )−An(F ) =

∫ ∞

An(F )

(1−F (y))dy

=

∫ ω1(F )

An(F )

(1−F (y))dy

≥
∫ U

L

(1−F (y))dy≥ (U −L)(1−F (U))> 0,

where the first inequality holds since An(F ) ≤ L < U ≤ ω1(F ), and the second inequality holds

since F is non-decreasing. The last inequality follows by the definition of ω1(F ) and using that

L<U <ω1(F ). Since this inequality holds for all n∈N, it implies that

An+1(F ) =
n∑

j=0

(Aj+1(F )−Aj(F ))≥ n+1

2
(U −L)(1−F (U))→∞

as n → ∞, which contradicts that L < ω1(F ) ≤ ∞. Finally, we show (iv). Since F has a finite

expectation, ω0(F )< ω1(F ) and the support is contained in the non-negative reals, we have that

A1(F ) =E(X)> 0 =A0(F ). Then, the property holds by induction on n and property (ii). □

An important implication of Proposition 1(iv) is that the sequence (Aj(F ))j∈N is strictly increas-

ing unless F is a distribution that puts probability one on a single value. For these distributions

F , however, Am(F ) =Mn(F ) for all m,n≥ 1, so they trivially satisfy (1+ ε)Am(F )≥Mn(F ).

In the remainder, we will consider distributions F with ω0(F ) < ω1(F ). We begin by showing

that for such distributions F the sequence (Aj(F ))j∈N satisfies properties (a)-(c).

Lemma 1. For every distribution F with ω0(F ) < ω1(F ), the sequence (An(F ))n∈N satisfies

properties (a)-(c).

Proof. Consider a distribution F with ω0(F ) < ω1(F ) and a non-negative integer n. Observe

that property (a) holds directly for the sequence (An(F ))n∈N from Proposition 1(iv). By Proposition

1(ii), it holds that

An+2(F )−An+1(F ) =

∫ An+1(F )

An(F )

F (y)dy≤An+1(F )−An(F ),

where the inequality holds since F (y)≤ 1 for every y ∈R. Therefore, property (b) holds. Observe

that thanks to Proposition 1(ii) again, we have

An+2(F )−An+1(F )

An+1(F )−An(F )
=

1

An+1(F )−An(F )

∫ An+1(F )

An(F )

F (y)dy,

and since F is monotone non-decreasing, we therefore have

F (An(F ))≤ An+2(F )−An+1(F )

An+1(F )−An(F )
≤ F (An+1(F )),

from where we conclude that that (An(F ))n∈N satisfies property (c). □
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Next we show that for the type for distributions we are interested in, it is possible to prove an

upper bound on the value of Mn(F ) in terms of the values of the sequence (Aj(F ))j∈N.

Lemma 2. For every distribution F with ω0(F )<ω1(F ), we have

Mn(F )≤
∞∑
j=0

(
1−

(
∂Aj+1(F )

∂Aj(F )

)n)
∂Aj(F ).

Proof. Consider the concave function φ : R → R given by φ(x) = 1− xn, and for every non-

negative integer j let µj(y) = 1/∂Aj(F ) for every y ∈ [Aj(F ),Aj+1(F )) and zero elsewhere. In

particular, µj is a probability density function over [Aj(F ),Aj+1(F )). Then, by Jensen’s inequality,

we have

1

∂Aj(F )

∫ Aj+1(F )

Aj(F )

(1−F (y)n)dy=

∫
R
φ(F (y))µj(y)dy

≤φ

(∫
R
F (y)µj(y)dy

)
= 1−

(
1

∂Aj(F )

∫ Aj+1(F )

Aj(F )

F (y)dy

)n

= 1−
(
∂Aj+1(F )

∂Aj(F )

)n

,

where the last equality holds by Proposition 1(ii). In particular, for every non-negative integer j

we have ∫ Aj+1(F )

Aj(F )

(1−F (y)n)dy≤
(
1−

(
∂Aj+1(F )

∂Aj(F )

)n)
∂Aj(F ). (5)

Therefore, we have

Mn(F ) =

∫ ∞

0

(1−F (y)n)dy=
∞∑
j=0

∫ Aj+1(F )

Aj(F )

(1−F (y)n)dy

≤
∞∑
j=0

(
1−

(
∂Aj+1(F )

∂Aj(F )

)n)
∂Aj(F ),

where the second equality holds by Proposition 1(iii) and the inequality comes from (5). □

Our final ingredient is a reverse to the previous two lemmas. It shows that for any sequence

satisfying properties (a)-(c) we can construct a distribution G for which (Aj(G))j∈N matches the

values of the sequence and Mn(G) matches the upper bound on Mn(G) in terms of the values of

the sequence.

Lemma 3. For every (Bn)n∈N with B0 = 0, and satisfying (a)-(c), there exists a distribution G

such that An(G) =Bn for every non-negative integer n. Furthermore, we have

Mn(G) =
∞∑
j=0

(
1−

(
∂Bj+1

∂Bj

)n)
∂Bj.
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Proof. We construct explicitly the distribution G satisfying the statement of the lemma. Recall

that since (Bn)n∈N satisfies properties (b)-(c) the sequence (∂Bn+1/∂Bn)n∈N converges to a value

ρ∈ (0,1]. We prove the following claim.

Claim 1. Suppose that ρ< 1. Then, there exists a value B> 0 such that limn→∞Bn =B.

Since the sequence (Bn)n∈N satisfies property (c), we have that ∂Bn ≤ ρ∂Bn−1, and therefore

∂Bn ≤ ρn∂B0 = ρnB1 for every n∈N. On the other hand, we have

Bn =
n−1∑
j=0

(Bj+1 −Bj) =
n−1∑
j=0

∂Bj ≤B1

n−1∑
j=0

ρn ≤ B1

1− ρ
,

which implies that the sequence (Bn)n∈N is upper bounded. Since by property (a) the sequence

(Bn)n∈N is strictly increasing, we conclude that (Bn)n∈N is a convergent sequence and we call B the

value of this limit. This establishes the claim.

We now construct the distribution G satisfying the conditions of the statement. Consider G :

R → R defined as follows: G(x) = 0 for every x ∈ (−∞,0), for every non-negative integer j and

every x ∈ [Bj,Bj+1) we have G(x) = ∂Bj+1/∂Bj, and let G(x) = 1 for every x≥ limn→∞Bn. Since

the sequence (Bn)n∈N satisfies property (a), the function G is well defined for every non-negative

integer n. Furthermore, since the sequence (Bn)n∈N satisfies (c), we have that G is non-decreasing,

and property (b) implies that G(x)≤ 1 for every x∈R+. If ρ= 1 then limx→∞G(x) = 1. Otherwise,

if ρ < 1, by Claim 4 there exists a value B > 0 such that limn→∞Bn = B, and therefore G(x) = 1

for every x≥B. Therefore, we conclude that G is a distribution.

In what follows, we show that An(G) =Bn for every non-negative integer n. We proceed by induc-

tion. By construction, we have A0(G) = 0=B0. Suppose that Bi =Ai(G) for every i∈ {0,1, . . . , n}.
By Proposition 1, for every positive integer n it holds that∫ An(G)

An−1(G)

G(y)dy=

∫ ∞

An(G)

(1−G(y))dy=An+1(G)−An(G),

and therefore the inductive step implies that∫ Bn

Bn−1

G(y)dy=An+1(G)−Bn. (6)

On the other hand, by construction of G it holds that∫ Bn

Bn−1

G(y)dy=
Bn+1 −Bn

Bn −Bn−1

· (Bn −Bn−1) =Bn+1 −Bn = ∂Bn,

and therefore together with (6) we conclude that An+1(G) =Bn+1. Finally, we have

Mn(G) =

∫ ∞

0

(1−G(y)n)dy=
∞∑
j=0

∫ Aj+1(G)

Aj(G)

(1−G(y)n)dy=
∞∑
j=0

(
1−

(
∂Bj+1

∂Bj

)n)
∂Bj,

where the second equality holds since lim
j→∞

Aj(G) = ω1(G), by Proposition 1(iii). □
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We are now ready to prove Theorem 3.

Proof of Theorem 3. We start by showing that if for some ε≥ 0, n≥ 1, and m≥ 1, there exists

a distribution F such that (1 + ε)Am(F ) < Mn(F ) then the objective value of the optimization

problem (1)-(4) must be negative. Note that for this distribution F it must hold that ω0(F ) <

ω1(F ) because otherwise Am(F ) =Mn(F ), and so we must have Aj+1(F )>Aj(F ) for all j ∈N by

Proposition 1(iv).

We construct a solution (δj)j∈N for the optimization problem as follows. For every non-negative

integer j, let δj(F ) = ∂Aj(F )/∂A0(F ). We begin by showing that the sequence (δj)j∈N satisfies

(2)-(4). By construction we have δ0(F ) = ∂A0(F )/∂A0(F ) = 1, that is, (4) holds. By Lemma 1,

the sequence (Aj(F ))j∈N satisfies properties (a)-(c). In particular, the sequence (∂Aj(F ))j∈N is

non-increasing and therefore δj+1(F )≤ δj(F ) for every integer j ≥ 0, that is, (2) is satisfied. The

sequence (∂Aj+1(F )/∂Aj(F ))j∈N is non-decreasing, and therefore δj+1(F )/δj(F )≥ δj(F )/δj−1(F )

for every integer j ≥ 1, that is, δj(F )2 ≤ δj−1(F )δj+1(F ), and therefore (3) is satisfied. Finally,

observe that

0>
1

∂A0(F )

(
(1+ ε)Am(F )−Mn(F )

)
= (1+ ε)

m−1∑
i=0

δi(F )− Mn(F )

∂A0(F )

≥ (1+ ε)
m−1∑
i=0

δi(F )−
∞∑
j=0

(
1−

(
∂Aj+1(F )

∂Aj(F )

)n)
∂Aj(F )

∂A0(F )

= (1+ ε)
m−1∑
i=0

δi(F )−
∞∑
j=0

(
1−

(
δj+1(F )

δj(F )

)n)
δj(F ),

where the first inequality holds by assumption and the second inequality comes from Lemma 2.

So, in particular, the last expression of the above chain, which coincides with the objective in (1)

must be negative.

Conversely, suppose that the value of the optimization problem (1)-(4) is negative. That is, there

exists a sequence (δ⋆j )j∈N satisfying (2)-(4) such that

(1+ ε)
m−1∑
i=0

δ⋆i −
∞∑
i=0

(
1−

(
δ⋆i+1

δ⋆i

)n)
δ⋆i < 0. (7)

Consider the sequence (Bj)j∈N defined as follows: B0 = 0 and Bj =
∑j−1

i=0 δ
⋆
i for every j ≥ 1. In

particular, we have

Bj+1 =

j∑
i=0

δ⋆i >

j−1∑
i=0

δ⋆i =Bj

for every integer j ≥ 1, and therefore the sequence (Bj)j∈N satisfies (a). Since the sequence (δ⋆j )j∈N

satisfies (2)-(3), by construction it holds directly that (Bj)j∈N satisfies (b)-(c), and therefore by
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Lemma 3 there exists a distribution G such that Aj(G) =Bj for every non-negative integer j, and

we have

(1+ ε)Am(G) = (1+ ε)Bm

= (1+ ε)
m−1∑
i=0

δ⋆i

<
∞∑
i=0

(
1−

(
δ⋆i+1

δ⋆i

)n)
δ⋆i =

∞∑
i=0

(
1−

(
∂Bi+1

∂Bi

)n)
∂Bi =Mn(G),

where the last equality also holds by Lemma 1. This finishes the proof of the theorem. □

4. Exact Competition Complexity: Proof of Theorem 1. We show next how to use

Theorem 3 to prove the impossibility result in Theorem 1 about the exact competition complexity.

Proof of Theorem 1. Letting ε = 0 in Theorem 3, it suffices to show that the value of the

optimization problem (1)-(4) is strictly negative. Consider the sequence (bi)i∈N defined as follows:

b0 = 1, and b1 ∈ (0,1) to be specified later. For every i∈ {1, . . . ,m− 1} let

bi+1 = bi

(
n

n− 1

) 1
n
(

bi
bi−1

)n−1
n

, (8)

and for every i ≥m let bi+1 = b2i /bi−1. We first show that (bi)i∈N is feasible for the optimization

problem (1)-(4). By construction the sequence satisfies (4). We start with the monotonicity property

(2). Consider the function h(x) = (n/(n− 1))1/nx(n−1)/n and let h(i) be the function obtained from

the composition of h with itself i times. From (8), we get bi+1/bi = h(i)(b1/b0) = h(i)(b1) for every

i ∈ {0,1, . . . ,m− 1}. Observe that h(x) is monotone increasing and continuous on x ∈ [0,1], with

h(0) = 0, and therefore h(i) is also monotone increasing, continuous and h(i)(0) = 0, for every

i ∈ {0,1, . . . ,m− 1}. Since we also know bj+1/bj = bm/bm−1 for every j ≥ m, it suffices to prove

bi/bi−1 ≤ 1 for every i ∈ {1, . . . ,m} in order to show that the sequence (bi)i∈N satisfies (2). To this

end, we make any choice of b1 in a way that maxi∈{0,1,...,m−1} h
(i)(b1)≤ 1. This implies that property

(2) is satisfied.

Claim 2. For every x∈ [0,1] we have
(

n
n−1

) 1
n

x
n−1
n ≥ x.

To see this, consider the function g :R→R given by g(x) =
(

n
n−1

) 1
n

x
n−1
n − x. This function is

concave in the interval [0,1] and therefore the minimum is attained in either zero or one. Since

g(0) = 0 and g(1) = (n/(n− 1))1/n − 1> 0, we conclude that g(x)≥ 0 for every x ∈ [0,1], proving

the claim.



14

In particular, for every i∈ {1, . . . ,m− 1} we have

bi+1

bi
=

(
n

n− 1

) 1
n
(

bi
bi−1

)n−1
n

= g

(
bi
bi−1

)
+

bi
bi−1

≥ bi
bi−1

,

where we used the fact that 0 ≤ bi/bi−1 ≤ 1 by the monotonicity property (2). Since bi+1/bi =

bm/bm−1 ≤ 1 for every i ≥ m, we conclude that (3) is also satisfied, and therefore the sequence

(bi)i∈N is feasible for the optimization problem (1)-(4). We now show that the objective value of

the sequence (bi)i∈N is strictly negative. We first observe that the objective value is equal to

m−1∑
i=0

bi −
m−1∑
i=0

(
1−

(
bi+1

bi

)n)
bi −

∞∑
i=m

(
1−

(
bi+1

bi

)n)
bi

=
m−1∑
i=0

(
bi+1

bi

)n

bi −
∞∑

i=m

(
1−

(
bi+1

bi

)n)
bi

By construction of the sequence we have

m−1∑
i=0

bi

(
bi+1

bi

)n

= bn1 +
n

n− 1

m−1∑
i=1

bi

(
bi
bi−1

)n−1

= bn1 +
n

n− 1

m−1∑
i=1

bi−1

(
bi
bi−1

)n

= bn1 +
n

n− 1

m−2∑
i=0

bi

(
bi+1

bi

)n

,

and therefore

bn1 =
m−1∑
i=0

bi

(
bi+1

bi

)n

− n

n− 1

m−2∑
i=0

bi

(
bi+1

bi

)n

= bm−1

(
bm
bm−1

)n

+
m−2∑
i=0

bi

(
bi+1

bi

)n

− n

n− 1

m−2∑
i=0

bi

(
bi+1

bi

)n

= bm−1

(
bm
bm−1

)n

− 1

n− 1

m−2∑
i=0

bi

(
bi+1

bi

)n

.

By rearranging terms we conclude that

m−1∑
i=0

bi

(
bi+1

bi

)n

= bm−1

(
bm
bm−1

)n

+
m−2∑
i=0

bi

(
bi+1

bi

)n

= bm−1

(
bm
bm−1

)n

+(n− 1)

(
bm−1

(
bm
bm−1

)n

− bn1

)
= nbm−1

(
bm
bm−1

)n

− (n− 1)bn1 .

Let γ = bm/bm−1. We have γ < 1, bm = γbm−1 and inductively bm+i = γi+1bm−1 for every non-

negative i. Therefore, overall, the objective value of the sequence is equal to

m−1∑
i=0

(
bi+1

bi

)n

bi −
∞∑

i=m

(
1−

(
bi+1

bi

)n)
bi
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= nbm−1γ
n − (n− 1)bn1 − (1− γn)

∞∑
i=0

γi+1bm−1

= nbm−1γ
n − (n− 1)bn1 −

(1− γn)γ

1− γ
bm−1

= nbm−1γ
n − (n− 1)bn1 − bm−1

n∑
i=1

γi

=−(n− 1)bn1 − bm−1

(
n∑

i=1

γi −nγn

)
< 0,

which concludes the proof. □

We note that the sequence (bn)n∈N defined in the proof of Theorem 1 gives one possible con-

struction of a distribution such that (1+ ε)Am(F )≥Mn(F ). More precisely, (bn)n∈N is a sequence

such that the value of the optimization problem (1)-(4) is negative. In other words, it satisfies the

properties of (δ⋆j )j∈N (7) as defined in (the converse direction of) the proof of Theorem 3.

5. Approximate Competition Complexity: Proof of Theorem 2. In this section we

show how to use Theorem 3 to derive Theorem 2 about the approximate competition complexity.

In particular, we show how to optimally solve the optimization problem (1)-(4). For every m,n

and ε > 0, we show how to reduce the task to finding the minimum of a real convex function in

finite dimension. Then, using this reduction, we show that the optimal value of (1)-(4) is obtained

by a recursive formula. As a final step, we analyze this recurrence by considering a continuous

counterpart defined by a differential equation.

Consider the function Γε
n,m :Rm−1

+ →R defined by

Γε
n,m(x) = ε+xn

1 +
m−2∑
i=1

xi

(
ε+

(
xi+1

xi

)n)
−xm−1(n− 1− ε).

Given ε > 0 and positive integer n ≥ 2, let (ρε,j)j∈N be the sequence defined by the following

recurrence:

ρε,1 = 1, and (n− 1)ρnε,j−1 − ε= nρn−1
ε,j for every j ≥ 2 such that (n− 1)ρnε,j−1 − ε > 0. (9)

For fixed ε and n we say that ρε,j is well defined if (n− 1)ρnε,j−1 − ε > 0. Observe that by letting

x= ρε,j in Claim 2, we get that ρε,j is decreasing in j. It follows that if ρε,m is well defined, then

so is ρε,j for j ≤m. As a first step, we will show that the optimal value of (1)-(4) can be obtained

in terms of the sequence (ρε,j)j∈N. To prove this result we require a few propositions.

Proposition 2. Let ε > 0, and let n≥ 2 and m≥ 3 be two positive integers such that ρε,m is

well defined. Then, Γε
n,m is convex over Rm−1

+ and it has a unique minimizer Y in this region, given

by

Y1 = ρε,m and Yj =

j−1∏
k=0

ρε,m−k for every j ∈ {2, . . . ,m− 1}. (10)
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Furthermore, Γε
n,m(Y ) = ε− (n− 1)ρnε,m.

Proof. We begin by proving (strict) convexity of Γε
n,m. We proceed by induction on m. Observe

first that when m= 3, we have that Γε
n,3(x1, x2) = ε+xn

1 +p(x1, x2)−x2(n−1− ε), where p(y, z) =

y(ε+(z/y)n). The Hessian of p is

∇2p(y, z) = n(n− 1)zn−2y1−n

(
z2/y2 −z/y
−z/y 1

)
,

and this is a positive semidefinite matrix for every (y, z)∈R2
+, since one eigenvalue is equal to zero,

and the other is n(n− 1)zn−2y1−n((z/y)2 + 1) > 0. In particular, p is convex over R2
+. Since the

function ε+ xn
1 − x2(n− 1− ε) is also convex over R2

+, we conclude that Γε
n,3 is convex over R2

+.

Now consider an integer value m> 3, and observe that

Γε
n,m+1(x1, . . . , xm) = p(xm−1, xm)− (xm −xm−1)(n− 1− ε)+Γε

n,m(x1, . . . , xm−1),

and therefore the convexity follows by the inductive step, that is, Γε
n,m convex over Rm−1

+ , together

with p convex over R2
+. Every minimizer y of Γε

n,m over Rm−1
+ is a solution to the system given by

∇Γε
n,m = 0, that is,

(n− 1)

(
y2
y1

)n

− ε= nyn−1
1 , (11)

(n− 1)

(
yi+1

yi

)n

− ε= n

(
yi
yi−1

)n−1

for every i∈ {2, . . . ,m− 2}, (12)

n− 1− ε= n

(
ym−1

ym−2

)n−1

, and y ∈Rm−1
+ . (13)

The above system has a unique solution and therefore this proves the first part.

To finish the proof, we show that Y defined in (10) is strictly positive, satisfies the system

(11)-(13), and Γε
n,m(Y ) = ε− (n− 1)ρnε,m. Since ρε,j is well-defined for all j ≤m, we have ρε,j =

((n− 1)ρnε,j−1 − ε)1/(n−1) > 0. This implies that Y ∈ Rm−1
+ . Next observe that Y2 = ρε,mρε,m−1 and

therefore Y2/Y1 = ρε,m−1. Then, we have

(n− 1)(Y2/Y1)
n − ε= (n− 1)ρnε,m−1 − ε= nρn−1

ε,m = nY n−1
1 ,

and therefore (11) is satisfied. Similarly, for every j ∈ {2, . . . ,m− 2}, we have Yj/Yj−1 = ρm−j+1

and Yj+1/Yj = ρm−j. Then, we have

(n− 1)(Yj+1/Yj)
n − ε= (n− 1)ρnε,m−j − ε= nρn−1

ε,m−j+1 = n(Yj/Yj−1)
n−1,

and therefore (12) is satisfied. Finally, since Ym−1/Ym−2 = ρε,2, we have

n− 1− ε= (n− 1)ρnε,1 − ε= nρn−1
ε,2 = n(Ym−1/Ym−2)

n−1,
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and therefore (13) is satisfied. We now evaluate Γε
n,m(Y ). The vector Y satisfies (11)-(13) and

therefore

(n− 1)
m−2∑
i=1

Yi

(
Yi+1

Yi

)n

+(n− 1)Ym−1 − ε
m−1∑
i=1

Yi = nY n
1 +n

m−1∑
i=2

Yi

(
Yi

Yi−1

)n−1

= nY n
1 +n

m−1∑
i=2

Yi−1

(
Yi

Yi−1

)n

= nY n
1 +n

m−2∑
i=1

Yi

(
Yi+1

Yi

)n

.

By subtracting the first term of the left hand side we get

m−2∑
i=1

Yi

(
Yi+1

Yi

)n

= (n− 1)Ym−1 − ε
m−1∑
i=1

Yi −nY n
1 ,

and by rearranging terms we obtain that

m−2∑
i=1

Yi

(
ε+

(
Yi+1

Yi

)n)
= (n− 1− ε)Ym−1 −nY n

1 .

Therefore, the minimum of Γε
n,m over Rm−1

+ is equal to

ε+Y n
1 +(n− 1− ε)Ym−1 −nY n

1 − (n− 1− ε)Ym−1 = ε− (n− 1)Y n
1 .

The proof follows since we have Y1 = ρε,m. □

Proposition 3. Let ε > 0, let n≥ 2 and m≥ 3 be two positive integers such that ρε,m is well

defined, and let Y be as defined in (10). Then, the following holds:

(a) For every j ∈ {1, . . . ,m− 1} we have that Yj+1 ≤ Yj.

(b) For every j ∈ {2, . . . ,m− 1} we have that Y 2
j ≤ Yj−1Yj+1.

Proof. Observe that for every k ∈ {1, . . . ,m− 1}, we have Ym−k+1/Ym−k = ρε,k. For k = 1 we

have Ym/Ym−1 = ρε = 1. From the definition of the recurrence, we have

(n− 1)ρnε,k−1 ≥ (n− 1)ρnε,k−1 − ε= nρn−1
ε,k

for every k ∈ {2, . . . ,m− 1}. By induction, if ρε,k−1 ≤ 1, we have ρn−1
ε,k ≤ (n− 1)/n and therefore

ρε,k ≤ 1. This concludes part (a). Since for every j ∈ {1, . . . ,m− 1} we have Yj+1/Yj = ρε,m−j, to

prove part (b) it suffices to show ρε,k+1 ≤ ρε,k for every k ∈ {1, . . . ,m− 2}. From the construction

of the recurrence, for every k ∈ {1, . . . ,m− 2} it holds that

ρε,k ≥
(

n

n− 1

) 1
n

ρ
(n−1)/n
ε,k+1 .
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By (a) we have ρε,k+1 ∈ [0,1], which together with Claim 2 implies that(
n

n− 1

) 1
n

ρ
(n−1)/n
ε,k+1 ≥ ρε,k+1.

Therefore we conclude that ρε,k+1 ≤ ρε,k. This proves part (b). □

Proposition 4. For every sequence (δj)j∈N satisfying (2)-(4) for which δm/δm−1 < 1, there

exists a sequence (βj)j∈N satisfying (2)-(4), and such that the following holds:

(a) For every j ∈ {0,1, . . . ,m− 1} we have δj = βj, and βm/βm−1 < 1.

(b)
∞∑

i=m−1

(
1−

(
δi+1

δi

)n)
δi ≤ βm−1

n−1∑
i=0

(
βm

βm−1

)i

.

Proof. Suppose we are given (δj)j∈N satisfying (2)-(4) for which δm/δm−1 < 1. We claim that

then there exists a sequence (βj)j∈N satisfying (2)-(4) such that (a) holds and furthermore (i)

βj ≥ δj for all j ≥m and (ii) βj/βj−1 = βm/βm−1 for all j ≥m.

If (δj)j∈N does not already satisfy these properties, then it must be because of (ii). In particular,

there must be a smallest index j ≥m such that δj+1/δj > δm/δm−1. We next describe a procedure

that maintains all properties, but extends (ii) so that it holds for one more index. Applying this

procedure iteratively, we obtain (βj)j∈N.

Given (δj)j∈N satisfying (2)-(4), let k(δ)≥m be the first value j such that δj+1/δj > δm/δm−1. In

particular, we have δj/δj−1 = δm/δm−1 for every j ∈ {m, . . . , k(δ)}. Consider the sequence (Dj)j∈N

defined as follows: Dj = δj for every j ∈ {0,1, . . . ,m− 1},

Dm = δm−1

(
δk(δ)+1

δm−1

) 1
k(δ)−m+2

,

Dj =Dm(Dm/δm−1)
j−m for every j ∈ {m+1, . . . , k(δ)}, and Dj = δj for every j ≥ k(δ)+1. Observe

that from the construction it holds directly that Dj+1/Dj =Dm/δm−1 for every j ∈ {m, . . . , k(δ)−
1}. Furthermore, we have

δk(δ)+1

Dk(δ)

=Dm

(
Dm

δm−1

)k(δ)−m+1

· 1

Dm

(
δm−1

Dm

)k(δ)−m

=
Dm

δm−1

,

and therefore, we have Dj+1/Dj = Dm/Dm−1 for every j ∈ {m − 1, . . . , k(δ)}. By construction,

the sequence (Dj)j∈N satisfies (2)-(4) and Dm/Dm−1 < 1. We show next that Dj ≥ δj for every

j ∈ {m, . . . , k(δ)}. Since δj+1/δj ≥ δm/δm−1 for every j ∈ {m, . . . , k(δ)}, we have(
δm
δm−1

)k(δ)−m+1

≤
k(δ)∏
j=m

δj+1

δj
=

δk(δ)+1

δm
,

which implies that δm ≤ δm−1(δk(δ)+1/δm−1)
1

k(δ)−m+2 =Dm. For j ∈ {m+1, . . . , k(δ)} we proceed by

induction:

Dj =Dj−1

Dm

δm−1

≥ δj−1

Dm

δm−1

≥ δj−1

δm
δm−1

= δj ·
δj−1

δj
· δm
δm−1

= δj,
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where the first equality holds by construction of the sequence, the first inequality holds by the

inductive hypothesis, the second inequality holds since Dm ≥ δm, and the last equality follows since

δj/δj−1 = δm/δm−1 for every j ∈ {m, . . . , k(δ)}. This finishes the proof of part (a).

In the remainder we will prove part (b) using the existence of a sequence (βj)j∈N for which (a)

holds as well as (i) and (ii). To this end we need the following definition and claim. For every

sequence (δj)j∈N let

R(δ) =
∞∑

i=m−1

(
1−

(
δi+1

δi

)n)
δi.

Claim 3. R is non-decreasing in δi for every i≥m.

Before proving Claim 3, we show how together with the properties of the sequence (βj)j∈N it implies

property (b). Namely,

∞∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi ≤

∞∑
i=m−1

(
1−

(
βi+1

βi

)n)
βi

=

(
1−

(
βm

βm−1

)n) ∞∑
i=m−1

βi

= βm−1

(
1−

(
βm

βm−1

)n) ∞∑
i=0

(
βm

βm−1

)i

= βm−1

n−1∑
i=0

(
βm

βm−1

)i

,

where the inequality holds by Claim 3 and (i), the first equality holds by (ii), and the second

equality holds because (ii) implies βi = βm−1 (βm/βm−1)
i−m+1

for i≥m− 1.

It remains to prove Claim 3. Consider the function φ :R2
+ →R+ such that φ(x, y) = (1−(y/x)n)x.

In particular, the derivative of R with respect to δi, with i≥m, is equal to

∂φ

∂y
(δi−1, δi)+

∂φ

∂x
(δi, δi+1) =−n

(
δi
δi−1

)n−1

+1+ (n− 1)

(
δi+1

δi

)n

= n

(
δi+1

δi

)n−1
(
1

n

(
δi
δi+1

)n−1

+

(
1− 1

n

)
δi+1

δi
−
(

δ2i
δi+1δi−1

)n−1
)

≥ n

(
δi+1

δi

)n−1
(
1−

(
δ2i

δi+1δi−1

)n−1
)
≥ 0,

The first inequality holds because for any p ∈ [0,1] we have that (1− 1/n)p+1/(npn−1)≥ 1, and

δi−1 ≤ δi ≤ δi+1 for every i ≥m, and the second holds since (δj)j∈N satisfies constraint (3). This

concludes the proof of the claim. □

The following lemma relates the optimal value of the optimization problem (1)-(4) with the

sequence (ρε,j)j∈N. Using Lemma 4 and Theorem 3 we can numerically find the competition com-

plexity by computing the recurrence (9) (see Figure 2). More specifically, given n and ε, we just

have to find the last value m for which the value of the optimization problem is non-negative, and

this can be found by numerically computing the values of the recurrence (9).



20

Lemma 4. Let ε > 0, and let n ≥ 2 and m ≥ 3 be two positive integers such that ρε,m is well

defined. Then, the value of the optimization problem (1)-(4) is equal to ε− (n− 1)ρnε,m.

Proof. Consider Y ∈ Rm−1
+ as defined in (10). For every α ∈ (0,1), consider the sequence

(Yj(α))j∈N defined as follows: Y0(α) = 1, Yj(α) = Yj for every j ∈ {1, . . . ,m − 1} and Yj(α) =

αm−j+1Ym−1 for every j ≥m. Thanks to Proposition 2 and Proposition 3, for every α ∈ (0,1) the

sequence (Yj(α))j∈N satisfies (2)-(4). The objective value (1) of the sequence is equal to

(1+ ε)
m−1∑
i=0

Yi(α)−
∞∑
i=0

(
1−

(
Yi+1(α)

Yi(α)

)n)
Yi(α)

= ε+Y n
1 +(1+ ε)Ym−1 +

m−2∑
i=1

(
ε+

(
Yi+1

Yi

)n)
Yi −

∞∑
i=m−1

(
1−

(
Yi+1(α)

Yi(α)

)n)
Yi(α)

= ε+Y n
1 +(1+ ε)Ym−1 +

m−2∑
i=1

(
ε+

(
Yi+1

Yi

)n)
Yi − (1−αn)

∞∑
i=0

Ym+i−1(α)

= ε+Y n
1 +

m−2∑
i=1

(
ε+

(
Yi+1

Yi

)n)
Yi −Ym−1

((
(1−αn)

∞∑
i=0

αi

)
− 1− ε

)

=Γε
n,m(Y )+Ym−1

(
n− (1−αn)

∞∑
i=0

αi

)

= ε− (n− 1)ρnε,m +Ym−1

(
n− (1−αn)

∞∑
i=0

αi

)
,

where the last equality holds by Proposition 2. In particular, the feasibility of (Yj(α))j∈N for every

α∈ (0,1) implies that the value of the optimization problem (1)-(4) is upper bounded by

ε− (n− 1)ρnε,m +Ym−1 inf
α∈(0,1)

{
n− (1−αn)

∞∑
i=0

αi

}
= ε− (n− 1)ρnε,m. (14)

Let (δj)j∈N be any sequence satisfying (2)-(4). We denote by V(δ) the objective value (1), which

by rearranging terms, is equal to

V(δ) = Γε
n,m(δ1, . . . , δm−1)+nδm−1 −

∞∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi.

Now either δi+1/δi = 1 for all i ≥ m − 1 in which case V(δ) = Γε
n,m(δ1, . . . , δm−1) + nδm−1 ≥

minx∈Rn−1
+

Γε
n,m(x) = ε− (n− 1)ρnε,m, where the last inequality holds by Proposition 2. Otherwise,

by Proposition 4, there exists a sequence (βj)j∈N satisfying (2)-(4) for which the following holds:

V(δ) = Γε
n,m(δ1, . . . , δm−1)+nδm−1 −

∞∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi

=Γε
n,m(β1, . . . , βm−1)+nβm−1 −

∞∑
i=m−1

(
1−

(
δi+1

δi

)n)
δi
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Figure 2. On the left, we have a plot of the competition complexity as a function of n when ε= 0.1. On the right,

we have a plot of the competition complexity as a function of ε when n= 20.

≥ Γε
n,m(β1, . . . , βm−1)+nβm−1 −βm−1

n−1∑
i=0

(
βm

βm−1

)i

≥ min
x∈Rm−1

+

Γε
n,m(x)+βm−1

(
n−

n−1∑
i=0

(
βm

βm−1

)i
)

≥ ε− (n− 1)ρnε,m +βm−1

(
n−

n−1∑
i=0

(
βm

βm−1

)i
)
,

where the second equality holds by property (a) in Proposition 4, the first inequality holds by

property (b) in Proposition 4, and the last inequality again holds by Proposition 2. Observe that

for every (βj)j∈N, the last term of the above inequality can be lower bounded by zero, and therefore,

we get that V(δ)≥ ε− (n− 1)ρnε,m also in this case. This, together with the upper bound in (14),

concludes the proof of the lemma. □

As a second step, we study the recurrence (ρε,j)j∈N to find the point in which it becomes non-

positive. More specifically, by Theorem 3 and Lemma 4, our aim is to find the greatest index

m for which ρε,m is well defined, or equivalently the unique m for which (n− 1)ρnε,m − ε ≤ 0. To

understand this problem we consider a differential equation that will serve as an upper bound to

our recurrence relation. Recall the definition of ϕ(ε) =
∫ 1

0
1/(y(1− log(y)) + ε)dy. Given a value

ε > 0, consider the following ordinary differential equation:

y′(t) = y(t)(log(y(t))− 1)− ε for every t∈ (0, ϕ(ε)), (15)

y(0) = 1. (16)

We define y(ϕ(ε)) = limt↑ϕ(ε) y(t) as the continuous extension of y in ϕ(ε). The following lemma

summarizes our results for the differential equation and ϕ(ε).

Lemma 5. For every ε > 0, the differential equation (15)-(16) has a unique solution yε. Fur-

thermore, the following holds:
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(a) For every t ∈ [0, ϕ(ε)) we have y′
ε(t) < 0. In particular, yε is decreasing and invertible on

[0, ϕ(ε)) and yε(ϕ(ε)) = 0.

(b) For every integer n≥ 2, and every j ∈N for which ρε,j is well-defined, we have

n− 1

n
ρnε,j −

ε

n
≤ yε

(
j

n

)
.

(c) For every δ ∈ (0, ϕ(ε)), there exists n0 such that for every n≥ n0 we have (n− 1)ρnε,k − ε > 0,

where k= ⌊(ϕ(ε)− δ)n⌋.

(d) We have ϕ(ε) =Θ(log log 1/ε).

We prove Lemma 5. For (a), (b) and (c) we first need a few propositions.

Proposition 5. For every ε > 0, there exists a unique solution of the differential equation

(15)-(16), that we denote yε. Furthermore, for every t ∈ [0, ϕ(ε)) we have y′
ε(t)< 0. In particular,

yε is decreasing and invertible in [0, ϕ(ε)], and yε(ϕ(ε)) = 0.

Proof. Observe that for any solution y of the differential equation (15)-(16), we have y′(0) =

−ε < 0. Furthermore, for every y ∈ (0,1], since log(y) ≤ 0 and ε > 0, we have y′
ε(t) < 0 for every

t∈ [0, ϕ(ε)). We also know the second derivative

y′′(t) = y′(t)(log(y(t))− 1)+ y(t)
y′(t)

y(t)
= y′(t) log(y(t))> 0.

In particular, if y ∈ (0,1), then |y′′| is bounded, implying that y′ is Lipschitz continuous. Therefore,

by the Picard-Lindelöf theorem [32], there is a unique solution on (0, ϕ(ε)). As y(0) is given, and

we defined y(ϕ(ε)) as the continuous extension of y, the solution of the ODE is unique on [0, ϕ(ε)]

and we denote it by yε. In particular, the function yε is invertible and with a differentiable inverse

in [0,1]. Let T = y−1
ε (0). Then, we have

y−1
ε (1) = T +

∫ 1

0

1

y′
ε(y

−1
ε (s))

ds

= T −
∫ 1

0

1

s(1− log(s))+ ε
ds= T −ϕ(ε),

and since y−1
ε (1) = 0 we conclude that y−1

ε (0) = T = ϕ(ε). □

Given ε > 0, consider the function Mε :R→R given by

Mε(x) =
(
log(x)− 1− ε

x

)(
x log2(x)+x log(x)−x− ε

)
.

Proposition 6. Let ε > 0 and let αε = y−1
ε (exp(− 1

2
(1+

√
5))). Then, the following holds:

(a) For every t∈ [0, ϕ(ε)] we have y′′′
ε (t) =Mε(yε(t)).

(b) For every t∈ [0, αε] we have y′′′
ε (t)≥ 0.

(c) When ε≤ 0.25, we have y′′′
ε (t)≥−1.173 for every t∈ [αε, ϕ(ε)].
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(d) When ε≤ 0.25, there exists xε ∈ (0.01,0.067) such that y′′′
ε is increasing in [y−1

ε (xε), ϕ(ε)].

(e) When ε≥ 0.25, we have y′′′
ε (t)≥ 0 for every t∈ [0, ϕ(ε)].

Proof. By a direct computation, we have that

y′′
ε (t) = y′

ε(t)(log(yε(t))− 1)+ yε(t) · y′
ε(t)/yε(t) = y′

ε(t) log(yε(t)),

and therefore,

y′′′
ε (t) = y′′

ε (t) log(yε(t))+ y′
ε(t) ·

y′
ε(t)

yε(t)

= y′
ε(t) log

2(yε(t))+ y′
ε(t) ·

y′
ε(t)

yε(t)

= y′
ε(t)

(
log2(yε(t))+ log(yε(t))− 1− ε

yε(t)

)
=
(
yε(t)(log(yε(t))− 1)− ε

)(
log2(yε(t))+ log(yε(t))− 1− ε

yε(t)

)
=Mε(yε(t)),

which proves (a). Consider the function g(x) = x log2(x) + x log(x)− x. We have that g(x)≤ 0 for

every exp(− 1
2
(1+

√
5))≤ x≤ 1, and together with Proposition 5, implies that g(yε(t))− ε≤ 0 for

every t∈ [0, αε]. Furthermore, by Proposition 5 we have that y′
ε(t)/yε(t)≤ 0 for every t∈ [0, αε] and

therefore

y′′′
ε (t) =Mε(yε(t)) =

y′
ε(t)

yε(t)
(g(yε(t))− ε)≥ 0,

which proves (b). To prove (c), observe that by Proposition 5 we have that yε(αε)≥ yε(t)≥ 0 for

every t∈ [αε, ϕ(ε)], and since 0.199> yε(αε) = exp(−(1+
√
5)/2)> 0.198, we have that

min
ε∈(0,0.25)

min
t∈[αε,ϕ(ε)]

y′′′
ε (t) = min

ε∈(0,0.25)
min

t∈[αε,ϕ(ε)]
Mε(yε(t))≥ min

ε∈[0,0.25],
x∈[0,0.199]

Mε(x)≈−1.1722,

where the first equality comes from part (a). We now prove (d). By a direct computation, we have

M ′
ε(x) =− ε2

x2
− 2ε

x
− 2ε log(x)

x
+ log3(x)+ 3 log2(x)− 2 log(x)− 1,

M ′′
ε (x) =

2ε2

x3
+

2ε log(x)

x2
− 2

x
+

3 log2(x)

x
+

6 log(x)

x
.

Furthermore, we have

min
ε∈[0,0.25],
x∈[0,067]

M ′′
ε (x)≈ 0.716,

and therefore the function M ′
ε is increasing in (0,0.067] for every ε∈ (0,0.25]. On the other hand,

we have

M ′
ε(0.067)>− ε2

(0.067)2
− 2ε

0.067
− 2ε log(0.067)

x
+6.57,
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and this is a quadratic concave function over [0,0.25] that attains the minimum at ε= 0.25 with a

value of ≈ 5.36. Furthermore, we have

M ′
ε(0.01)<− ε2

(0.01)2
− 2ε

0.01
− 2ε log(0.01)

x
− 25.83,

and this is a quadratic concave function over [0,0.25] that attains the maximum at ≈ 0.036 with a

value of ≈−12.83. Therefore, for every ε ∈ (0,0.25], the continuity of M ′
ε implies the existence of

a value xε ∈ (0.01,0.0067) such that M ′
ε(xε) = 0. Since the function M ′

ε is increasing in [0,0.067],

we have M ′
ε(x)≤Mε(xε) = 0 for every x ∈ [0, xε], and therefore the function Mε is decreasing in

the interval [0, xε]. By Proposition 5 we have that yε is decreasing in [0, ϕ(ε)], and therefore we

conclude that y′′′
ε =Mε ◦ yε is increasing in the interval [y−1

ε (xε), ϕ(ε)].

Finally, we prove (e). Recall that g(x) = x log2(x) + x log(x)− x. It is sufficient to verify that

g(x) ≤ ε for every x ∈ (0,1] when ε ≥ 0.25, since we have y′′′
ε (t) = y′

ε(t)(g(yε(t)) − ε)/yε(t), and

y′
ε ≤ 0 in [0, ϕ(ε)]. We have

g′(x) = log2(x)+ 2x log(x) · 1
x
+ log(x)+x · 1

x
− 1 = log(x)(log(x)+ 3).

We have g′(x)≥ 0 when x∈ (0, e−3] and g′(x)≤ 0 when x∈ [e−3,1]. Therefore, the maximum of g in

(0,1] is attained at e−3 and we conclude that g(x)≤ 5e−3 − ε≤ 5e−3 − 0.25< 0 for every x∈ (0,1].

This concludes the proof of the proposition. □

Given ε > 0 and a positive integer n≥ 2, consider the function Fn,ε :R→R given by

Fn,ε(x) = x+
x(log(x)− 1)

n
+

log(x)(x(log(x)− 1)− ε)

2n2
.

Proposition 7. Let n≥ 2 be an integer value and let ε∈ (0,0.25]. Then, the following holds:

(a) For every x∈ (0,1] we have Fn,ε(x)≥
(
n−1
n

)
x

n
n−1 .

(b) For every x∈ [0.01,0.199] we have Fn,ε(x)≥
(
n−1
n

)
x

n
n−1 + 1.173

6n6 .

(c) For every x∈ [0,0.07] we have Fn,ε(x)+
Mε(x)

6n6 ≥
(
n−1
n

)
x

n
n−1 .

Proof. The inequality in (a) holds by [8, Proposition D.1.]. Consider the function Gn : R→ R

given by

Gn(x) = 1+
log(x)− 1

n
+

log(x)(log(x)− 1)

2n2
−
(
n− 1

n

)
x

1
n−1 − 1.173

6xn6
.

To prove (b) it suffices to show that Gn(x)≥ 0 for every x ∈ [0.01,0.199], since −ε log(x)≥ 0 for

every x∈ [0.01,0.199], and therefore

Fn,ε(x)−
(
n− 1

n

)
x

n
n−1 − 1.173

6n6
≥ x ·Gn(x)≥ 0.
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We have that {Gn(0.199)}n∈N is a strictly positive and decreasing sequence, and therefore it is

sufficient to show that Gn is decreasing in the interval [0.01,0.199]. We have

G′
n(x) =

1

nx
+

log(x)

n2x
− 1

2n2x
− 1

n
x

1
n−1−1 +

1.173

6n6x2

=
1

nx2

(
x+

x log(x)−x/2

n
−x

n
n−1 +

1.173

6n5

)
,

and let

hn(x) = x+
x log(x)−x/2

n
−x

n
n−1 +

1.173

6n5
.

It is sufficient to show that hn is non-positive in [0.01,0.199]. We have

h′
n(x) = 1+

log(x)+ 1/2

n
−
(
1− 1

n

)
x

1
n−1 ,

h′′
n(x) =

1

nx
− 1

n
x

1
n−1−1 =

1

nx

(
1−x

1
n−1

)
,

and therefore h′′
n(x) > 0 for every x ∈ [0.01,0.199]. This implies that hn is convex in the interval

[0.01,0.199], and therefore it is sufficient to verify that hn(0.01)< 0 and hn(0.199)< 0. In fact, we

have

hn(0.01) = 0.01+
0.01 log(0.01)− 0.005

n
− 0.01

n
n−1 +

1.173

6n5

≤ 0.01 log(0.01)− 0.005

2
+

1.173

6 · 25
<−0.019,

hn(0.199) = 0.199+
0.199 log(0.199)− 0.0995

n
− 0.199

n
n−1 +

1.173

6n5

≤ 0.199 log(0.199)− 0.0995

2
+

1.173

6 · 25
<−0.2,

and therefore we conclude that hn is non-positive in [0.01,0.199], which implies that Gn is positive

in [0.01,0.199]. This proves (b). Finally, to prove (c), consider the function Ψ :R3
+ →R given by

Ψ(x, y, ε) = x+
x(log(x)− 1)

y
+

log(x)(x(log(x)− 1)− ε)

2y2
+

Mε(x)

6y6
−
(
1− 1

y

)
x

y
y−1 .

Then, we have

inf
n≥2,

ε∈(0,0.25],
x∈[0,0.07]

(
Fn,ε(x)+

Mε(x)

6n6
−
(
n− 1

n

)
x

n
n−1

)
≥ min

y≥2,
ε∈(0,0.25],
x∈[0,0.07]

Ψ(x, y, ε)≥ 0,

which concludes the proof. □

Proof of Lemma 5. Part (a) holds by Proposition 5. To prove (b) we proceed by induction.

When j = 1, we have ρn−1
ε,1 = 1= yε(0). For every j ≥ 1, Taylor’s theorem implies that

yε

( j
n

)
= yε

(j− 1

n

)
+

1

n
y′
ε

( j
n

)
+

1

2n2
y′′
ε

( j
n

)
+

1

6n6
y′′′
ε (ξ)
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= yε

(j− 1

n

)
+

1

n
y′
ε

( j
n

)(
1+

1

2n
log
(
yε

(j− 1

n

)))
+

1

6n6
y′′′
ε (ξ)

= yε

(j− 1

n

)
+

yε(
j−1
n
)(log(yε(

j−1
n
))− 1)− ε

n

(
1+

1

2n
log
(
yε

(j− 1

n

)))
+

1

6n6
y′′′
ε (ξ)

= Fn,ε

(
yε

(j− 1

n

))
− ε

n
+

1

6n6
y′′′
ε (ξ)

where ξ ∈ ((j− 1)/n, j/n), and the second and third equalities come from the ODE definition. We

consider four different cases.

Case 1: Suppose that ε≥ 0.25. By Proposition 6(e) we have y′′′
ε (ξ)≥ 0, and therefore

yε

( j
n

)
= Fn,ε

(
yε

(j− 1

n

))
− ε

n
+

1

6n6
y′′′
ε (ξ)

≥ Fn,ε

(
yε

(j− 1

n

))
− ε

n

≥
(
n− 1

n

)
yε

(j− 1

n

) n
n−1

− ε

n
≥
(
n− 1

n

)
ρnε,j −

ε

n
= ρn−1

ε,j+1,

where the second inequality holds from Proposition 7(a), and in the third inequality we used the

inductive step.

Case 2: Suppose that ε≤ 0.25 and 2≤ j ≤ αεn+ 1. In particular, we have (j − 1)/n ∈ [0, αε]. By

Proposition 6(b) we have y′′′
ε (ξ)≥ 0, and therefore

yε

( j
n

)
= Fn,ε

(
yε

(j− 1

n

))
− ε

n
+

1

6n6
y′′′
ε (ξ)

≥ Fn,ε

(
yε

(j− 1

n

))
− ε

n

≥
(
n− 1

n

)
yε

(j− 1

n

) n
n−1

− ε

n
≥
(
n− 1

n

)
ρnε,j −

ε

n
= ρn−1

ε,j+1,

where the second inequality holds from Proposition 7(a), and in the third inequality we used the

inductive step.

Case 3: Suppose that ε≤ 0.25 and αεn+ 1≤ j ≤ y−1
ε (xε)n+ 1, where xε is the value guaranteed

by Proposition 6(d). In particular, we have (j − 1)/n ∈ [αε, y
−1
ε (xε)], and by Proposition 6(d) we

have 0.01 < xε, which implies that 0.01 < yε((j − 1)/n) ≤ 0.199. By Proposition 6(c) we have

y′′′
ε (ξ)≥−1.173, and therefore

yε

( j
n

)
= Fn,ε

(
yε

(j− 1

n

))
− ε

n
+

1

6n6
y′′′
ε (ξ)

≥ Fn,ε

(
yε

(j− 1

n

))
− ε

n
− 1.173

6n6

≥
(
n− 1

n

)
yε

(j− 1

n

) n
n−1

− ε

n
≥
(
n− 1

n

)
ρnε,j −

ε

n
= ρn−1

ε,j+1,
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where the second inequality holds from Proposition 7(b), and in the third inequality we used the

inductive step.

Case 4: Suppose that ε≤ 0.25 and j ≥ y−1
ε (xε)n+1. In particular, we have (j−1)/n≥ y−1

ε (xε) and

yε((j − 1)/n)≤ xε < 0.067. By Proposition 6(d), y′′′
ε is increasing in [y−1

ε (xε), ϕ(ε)], and therefore

y′′′
ε (ξ)≥ y′′′

ε ((j− 1)/n). Then, we have

yε

( j
n

)
= Fn,ε

(
yε

(j− 1

n

))
− ε

n
+

1

6n6
y′′′
ε (ξ)

≥ Fn,ε

(
yε

(j− 1

n

))
− ε

n
+

1

6n6
y′′′
ε

(j− 1

n

)
= Fn,ε

(
yε

(j− 1

n

))
+

1

6n6
Mε

(
yε

(j− 1

n

))
− ε

n

≥
(
n− 1

n

)
yε

(j− 1

n

) n
n−1

− ε

n
≥
(
n− 1

n

)
ρnε,j −

ε

n
= ρn−1

ε,j+1,

where the second inequality holds from Proposition 7(c), and in the third inequality we used the

inductive step.

Part (c) is a direct extension of [25, Corollary 6.9]. Finally we prove (d). By definition, recall

that

ϕ(ε) =

∫ 1

0

1

y(1− log(y))+ ε
dy.

We apply the change of variables x=− log(y) to get that

ϕ(ε) =

∫ ∞

0

1

1+x+ εex
dx.

Note that the function f(x) = 1+ x− εex has a unique root in x ∈ [0,∞), that we denote rε (i.e.,

f(rε) = 0). In particular, we have 1 + x ≥ εex for every x ≤ rε, and 1 + x ≤ εex for every x ≥ rε.

Then, we have ∫ rε

0

1

2(1+x)
dx≤

∫ rε

0

1

1+x+ εex
dx

and ∫ ∞

rε

1

2εex
dx≤

∫ ∞

rε

1

1+x+ εex
dx.

By adding both inequalities we get

1

2

(∫ rε

0

1

1+x
dx+

∫ ∞

rε

1

εex
dx

)
≤ ϕ(ε).

On the other hand, we have

ϕ(ε)≤
∫ rε

0

1

1+x
dx+

∫ ∞

rε

1

εex
dx,
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and therefore, by evaluating the integrals, we have

1

2

(
log(1+ rε)+

exp(−rε)

ε

)
≤ ϕ(ε)≤ log(1+ rε)+

exp(−rε)

ε
.

Observe that rε = log(1+ rε)+ log(1/ε), and therefore rε ≥ log(1/ε). Furthermore, when ε is suffi-

ciently small, we have f(2 log(1/ε)) = 1+2 log(1/ε)− 1/ε < 0, and therefore rε ≤ 2 log(1/ε). Then,

for ε sufficiently small we have log(1/ε)≤ rε ≤ 2 log(1/ε), which implies that

log

(
1+ log

(
1

ε

))
+

exp(−2 log( 1
ε
))

ε
≤ log(1+ rε)+

exp(−rε)

ε

≤ log

(
1+2 log

(
1

ε

))
+

exp(− log( 1
ε
))

ε
.

The result now follows from the fact that the leftmost expression is lower bounded as

log log

(
1

ε

)
≤ log

(
1+ log

(
1

ε

))
+

exp(−2 log( 1
ε
))

ε
,

and the rightmost is upper bounded as log
(
1+2 log

(
1
ε

))
+

exp(− log( 1ε ))

ε
≤ 2 log log

(
1
ε

)
.

We are now ready to prove Theorem 2. □

Proof of Theorem 2. Fix ε > 0 and consider the non-trivial case where n ≥ 2. We begin with

the first part of the theorem. By Lemma 4 it suffices to find the largest index j for which ρε,j

is well defined. Suppose for a contradiction that for some m ≥ ϕ(ε)n, ρε,m is well defined but

(n− 1)ρnε,m − ε > 0. Define ε′ > 0 such that m/n = ϕ(ε′). Note that such an ε′ exists and ε′ ≤ ε

because ϕ is monotone and continuous.

Claim 4. For every positive integer j, ρε′,j is well defined when ρε,j is well defined, and ρε′,j ≥
ρε,j.

Using Claim 4, we have

n− 1

n
ρnε,m − ε

n
≤ n− 1

n
ρnε′,m − ε′

n
≤ yε′ (ϕ(ε

′)) = 0,

where the second inequality holds by Lemma 5(b) and the final equality holds by Lemma 5(a).

This yields a contradiction. To prove the claim, we consider an inductive argument. The claim

clearly holds for j = 1, and assume that it holds for every k ≤ j − 1. If ρε,j is well defined, that is

(n− 1)ρnε,j−1 − ε > 0, by the inductive step we have ρε′,j−1 ≥ ρε,j−1 and therefore,

(n− 1)ρnε′,j−1 − ε′ ≥ (n− 1)ρnε,j−1 − ε > 0,

meaning ρε′,j is also well defined. Furthermore, in this case we have

nρn−1
ε,j = (n− 1)ρnε,j−1 − ε≤ (n− 1)ρnε′,j−1 − ε′ = nρn−1

ε′,j ,

which implies that ρε′,j ≥ ρε,j.

By Lemma 5(d) we have ϕ(ε) =Θ(log log 1/ε). The second part of the theorem holds by Lemma

4 and Lemma 5(c). This finishes the proof of the theorem. □
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Appendix.

In this appendix, we show that for sufficiently large values of m, we have 1−2 log(m)/m≤A′
m ≤

1− log(m)/(3m). First, observe that the expected welfare with m buyers, obtained by a static price

of T , can be lower bounded by the expected revenue, which is equal to T · P(maxj∈{1...,m}Xj >

T ) = T (1−Tm). Then, the optimal welfare with static prices can be lower bounded by the revenue

of the static price T ⋆
m that maximizes the expected revenue R(T ) = T − Tm+1, which is equal to

T ⋆
m = ( 1

m+1
)1/m. In particular, the expected revenue with price T ⋆

m satisfies that

R(T ⋆
m) = T ⋆

m − (T ⋆
m)

m+1 =

(
1

m+1

)1/m

−
(

1

m+1

)(m+1)/m

.

For every m ≥ 1 we have R(T ⋆
m) ≥ R((1/m)1/m) = (1/m)1/m − (1/m)1+1/m, and we have

(1/m)1+1/m ≤ 2/m. Therefore, R(T ⋆
m) ≥ (1/m)

1/m − 2/m. Furthermore, observe that (1/m)
1/m

=

exp(− log(m)/m)≥ 1− log(m)/m, where the last inequality holds since exp(−x)≥ 1−x for every

x≥ 0. Hence, we conclude that the optimal revenue is at least 1− log(m)/m−2/m≥ 1−2 log(m)/m.

For a given static price T > 0, the expected welfare with m buyers is equal to

W (T ) = (1−Tm)T +(1−Tm)(1−T )/2 =
1

2
(1+T )(1−Tm) =

1

2

(
1

T
+1

)
R(T ),

If T > T ⋆
m, we have R(T )<R(T ⋆

m), and therefore

W (T ) =
1

2

(
1

T
+1

)
R(T )<

1

2

(
1

T ⋆
m

+1

)
R(T ⋆

m) =W (T ⋆
m).

Let Tm be the maximizer of the welfare W . The previous inequality implies that Tm ≤ T ⋆
m, and

therefore

w(T ) =
1

2
(1+T ⋆

m)(1−T ⋆
m)

≤ 1

2
(1+T ⋆

m) =
1

2

(
1+

(
1

m+1

)1/m
)
≤ 1− log(m)

3m
,

where the last inequality holds since the function f(x) = 1 − log(x)

3x
− 1

2
(1 + ( 1

x+1
)1/x) is strictly

decreasing in [1,∞)] and limx→∞ f(x) = 0.
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