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A B S T R A C T   

Addressing the requirements and challenges of traffic light control, a reinforcement learning based adaptive 
optimal control model for traffic lights in intelligent transportation systems is proposed. In the model design, we 
combined Markov decision process, Q-learning algorithm, and Deep Q-Learning Network (DQN) control theory 
to establish a comprehensive signal light Adaptive Optimal Control of Signal Lights in Intelligent Transportation 
Systems (AOCITL) control model. Through simulation experiments on the model and the application of actual 
road scene data, we have verified the superiority of the model in improving traffic system efficiency and reducing 
traffic pressure. The experimental results show that compared with traditional fixed cycle signal light control, the 
adaptive optimal control model based on reinforcement learning can significantly improve the traffic efficiency 
of roads, reduce the incidence of traffic accidents, and enhance the overall operational effectiveness of urban 
transportation systems. The proposed method is possible to further optimize the model algorithm, expand its 
application scope, and promote the development and practical application of intelligent transportation systems.   

1. Introduction 

With the acceleration of urbanization and the continuous growth of 
car ownership, traffic congestion has become a common problem faced 
by major cities around the world [1]. Traditional traffic signal control 
methods, such as fixed duration control and simple adaptive control, are 
no longer suitable for increasingly complex traffic environments. For 
this reason, researchers are constantly exploring new technological 
means to improve traffic management efficiency. Among them, the 
adaptive optimal control model for traffic lights in intelligent trans
portation systems based on reinforcement learning has received wide
spread attention [2]. 

As an important part of urban traffic system, traffic lights’ control 
strategies directly affect the efficiency and safety of road traffic [3]. 
Traditional traffic signal control methods are often based on fixed time 
or simple adaptive logic, which cannot sense the change of traffic 
environment in real time and make corresponding adjustments. This not 
only easily leads to increased traffic congestion, but also may increase 
the risk of traffic accidents. In recent years, with the development of 
sensor technology, big data analysis and artificial intelligence technol
ogy, new possibilities have been brought to traffic signal control [4]. 
Through real-time monitoring of road traffic flow, speed, pedestrian 
density and other information, we can more accurately grasp the change 

of traffic environment, and provide a more scientific basis for traffic 
signal control. 

Reinforcement learning, as a machine learning paradigm based on 
environmental interaction, aims to learn an optimal strategy that max
imizes cumulative rewards in a given environment through continuous 
trial and error. This learning method has shown great potential for the 
application of reinforcement learning in traffic signal control. Rein
forcement learning can perceive real-time changes in the traffic envi
ronment and adjust the control strategy of traffic lights based on these 
changes [5]. Through continuous interaction and trial and error with the 
environment, reinforcement learning algorithms can learn an optimal 
traffic light control strategy, thereby maximizing traffic efficiency and 
reducing traffic congestion. Reinforcement learning can handle complex 
traffic scenarios. In actual traffic environments, there are often multiple 
influencing factors, such as road type, vehicle type, number of pedes
trians, etc [6]. These factors interact with each other, making the traffic 
scene exceptionally complex. And reinforcement learning algorithms 
have strong learning capabilities, which can handle such complex scenes 
and learn an optimal traffic light control strategy [7]. 

Although reinforcement learning has shown great potential in traffic 
signal control, current research is still in its early stages. The existing 
research mainly focuses on traffic signal control at single intersections, 
while there is relatively little research on traffic network signal control 
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at multiple intersections and regions. In addition, existing research also 
has some limitations, such as high model complexity and long training 
time. This study aims to explore an adaptive optimal control model for 
traffic lights in intelligent transportation systems based on reinforce
ment learning. By constructing an efficient reinforcement learning al
gorithm framework, adaptive control of traffic lights in multi 
intersection and multi area traffic networks can be achieved. This study 
can not only improve the efficiency of urban traffic and reduce traffic 
congestion, but also provide new ideas and methods for urban traffic 
management. Research contributions include: 

1) This paper proposes a signal control strategy based on multi-agent 
cooperation, in which each intersection is regarded as an independent 
agent. This model can realize unified scheduling and optimization of 
multiple intersection signal lights in the region, so as to avoid the spread 
and transfer of traffic congestion. 

2) Through continuous learning and optimization, the model can 
gradually adapt to different traffic scenarios and needs to achieve more 
efficient and intelligent signal control. 

The first chapter describes the background and main purpose of the 
study. Chapter 2 reviews the latest relevant research to provide the basis 
for the follow-up research. The third chapter combines Markov decision 
to complete the traffic state decomposition, uses extended Kalman filter 
to construct the backbone network of intelligent traffic signal system 
and complete the feature fusion, and finally establishes the traffic light 
adaptive optimal control AOCITL model. Chapter 4 Test and analysis. 
The fifth chapter is the discussion of the research results and the sug
gestions for the traffic signal system. The last chapter is the summary of 
the full text, the limitations of the study and the possible direction of 
follow-up research. 

2. Literature review 

With the increasingly serious problem of urban traffic congestion, 
the development of intelligent transportation systems (ITS) has become 
the key to alleviating traffic pressure and improving road efficiency. 
Among them, traffic lights, as the core element of traffic control, have 
become a hot research topic in terms of their adaptive optimal control. 
In recent years, reinforcement learning (RL) technology has shown great 
potential in the field of traffic signal control due to its unique learning 
and optimization capabilities. Li, et al. [8] have applied a 
multi-objective multi-agent framework to traffic signal control at a 
single intersection. They treat each signal phase as an intelligent agent 
and use reinforcement learning algorithms to enable these agents to 
learn the optimal signal light control strategy. Their research not only 
considers the degree of traffic congestion, but also fuel economy, opti
mizing these goals by setting appropriate reward functions. Haydari, 
et al. [9] proposed a traffic signal control model based on deep rein
forcement learning. They use deep neural networks to approximate 
complex traffic environments and train agents through interaction with 
the environment. Their model can perceive traffic conditions in 
real-time and adjust the control strategy of traffic lights based on these 
conditions. Through experiments in actual traffic scenarios, they 
demonstrated that the model can effectively improve traffic efficiency 
and reduce congestion. Baumgart, et al. [10]. have studied multi inter
section traffic signal control based on reinforcement learning. They 
proposed a distributed learning architecture where each intersection has 
an independent agent to learn its optimal control strategy. These intel
ligent agents share information through communication to achieve co
ordinated control of the entire transportation network. Their research 
suggests that reinforcement learning can enable traffic signal controllers 
at multiple intersections to work together to improve the performance of 
the entire network. Ge, et al. [11]. have combined reinforcement 
learning with fuzzy logic to propose a new traffic signal control method. 
They use fuzzy logic to handle the uncertainty of traffic conditions and 
use reinforcement learning to optimize the parameters of fuzzy con
trollers. This method can demonstrate good adaptability in different 

traffic scenarios and effectively adjust the control strategy of traffic 
lights in real-time traffic environments. 

Drawing on the research achievements of the above scholars and 
combining with the application of reinforcement learning in intelligent 
transportation systems, we can construct a more efficient and intelligent 
traffic signal adaptive optimal control model, effectively alleviating 
traffic congestion, improving transportation system efficiency, and 
bringing important technological innovation and improvement to urban 
traffic management. 

3. Intelligent traffic signal light control system and 
reinforcement learning 

3.1. Basic concepts of traffic signal control systems 

Traffic signal control system is an important part of urban traffic 
management [12,13]. It guides and manages traffic flow by controlling 
changes in traffic signals [14,15], improves road traffic efficiency, re
duces traffic congestion, and improves traffic safety [16,17]. The traffic 
light adaptive optimal control model of intelligent transportation system 
based on reinforcement learning is a new research direction [18,19]. 
The core idea is to use reinforcement learning algorithm to dynamically 
adjust the traffic light control strategy according to real-time traffic 
conditions and environmental changes, and realize the adaptive optimal 
control of traffic lights. 

The traffic signal control system is a crucial component of urban 
traffic management, and the reinforcement learning based intelligent 
traffic system signal adaptive optimal control model represents an 
innovative direction in traffic signal control technology, which will 
bring more efficient and intelligent solutions to urban traffic 
management. 

3.2. Markov decision process 

The Markov Decision Process (MDP) is a mathematical framework 
used to describe decision problems [20,21], especially in environments 
involving randomness and uncertainty. When studying the adaptive 
optimal control model of signal lights in intelligent transportation sys
tems [22], Markov decision process can provide effective tools and 
methods for system modeling. 

Reinforcement learning refers to the process in which agents interact 
with the surrounding environment to achieve self-learning and optimize 
goals without the need for predetermined data [23]. Agents that make 
decisions or control the environment through reinforcement learning 
are called agents [24]. Its learning process is carried out through the 
state of the interactive environment (State) s∈S, where the agent exe
cutes an action (Action) a∈A, and the environment executes a reward 
(Reward) r. Among them, SA is the set of environmental states. At time t, 
the intelligent agent selects the action at corresponding to state st, and 
the reward obtained by taking action at in the environment will be 
obtained at time t+1, represented by rt. 

The environmental state of reinforcement learning problems satisfies 
the Markov requirement, which means that the action At is taken in the 
current state St and transferred to the next state St+1 without considering 
the previous state St− 1, S1. The state St captures all associated state in
formation in history. If the state St− 1, S1 is discarded, but the transition 
probability from the current state S to the next state St+1 is still obtained. 
The transition probability is: 

P = [St+1|St ] = P[Ss+1|S1, S2, S3, St ] (1) 

Markov processes belong to the category of stochastic processes, also 
known as Markov chains. It describes the stochastic process of spatial 
state transition from one state to another, represented by a binary 
M=<S, P>, where S is a finite set of states and P is the probability of 
state transition. All state transition probabilities are combined to form a 
state transition matrix [25], 
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Psś = P[St+1 = ś |St = s] (2) 

The transition relationship between states with rewards is described 
using Markov Reward Process (MRP). When each state transitions, 
different reward values are given, which is the process of obtaining 
Markov rewards. The reward process of Markov includes quadruples<S, 
P, R, γ>, the process is shown in Fig. 1. 

In the intelligent transportation system, the control of signal light is 
an important link that affects the smooth and efficiency of traffic flow. 
However, due to changes in the number of vehicles on the road, speed, 
driving direction and other factors, the traditional timing control 
method of signal lights may not fully adapt to real-time traffic condi
tions, resulting in traffic congestion and low efficiency [26]. 

RS,A = E(Rt |St = s,At = a
)

(3) 

It refers to the expected reward obtained when the state at time t is 
transmitted to various possible states within time t+1. By judging the 
results obtained after completing action a∈A, it guides the direction of 
intelligent agent learning. 

Gt = rt + γrt+1 + γ2rt+2 +… (4) 

The reward attenuation coefficient in the formula is γ∈ [0,1] refers to 
the sum of all rewards r obtained from the current t-sampling to the 
termination time with decay. If γ= If 0, it means that the harvest will 
only be determined by the current immediate reward, and it is not 
related to the delayed reward in the future; If γ= 1. It indicates that there 
is no difference in the impact of the current two types of rewards on the 
overall harvest. Specifically, they are subsequent delayed rewards and 
immediate rewards. 

3.3. Traffic state decomposition 

We introduce the principle of "traffic state decomposition", that is, 
traffic inference should maintain rotation, inversion and other symme
tries, so that the model can learn from the data more effectively and 
adapt to different intersection structures more easily. We divide traffic 
reasoning into four steps: traffic state decomposition, traffic information 
representation, traffic reasoning and traffic state synthesis. By decom
posing traffic state, action and future information and input it into the 
reasoning model based on lane group, the principle of invariance can be 
guaranteed [27]. The formula is as follows: 
(
s(1), s(2),…, s(n)

)
= Decomp(s) (5)  

(
a(1), a(2),…, a(n)) = Decomp(a) (6)  

(
f (1), f (2),…, f (n)

)
= Decomp(f) (7)  

Where n represents a group of lanes in the same direction and phase. 
Encode the collected lane group status, actions, and future information 
separately, embed them, and obtain their representation vectors. Its 
function is to convert the raw data into representation vectors that can 
be recognized by neural networks. The process of qi traffic state 
decomposition is as follows. 

Specifically, we will represent the collected lane group status, 
vehicle or pedestrian actions, and future information as s(i), a(i), f(i), 
respectively. Take s(i), a(i), f(i) as inputs and pass them into three inde
pendent K1 layer fully connected neural networks to generate corre
sponding representation vectors es, ea, ef. 

hs
1 = ReLU

(
Ws

1es + bs
1
)

(8) 

Traffic flow refers to the number of vehicles passing through a 
certain section of road, which can describe the current traffic state based 
on the density and speed of vehicles. The size and distribution of traffic 
flow directly affect the degree of road congestion and traffic efficiency, 
which is of great significance for optimizing traffic signal control. The 
speed of the vehicle reflects the operation of the vehicle on the road. A 
fast vehicle usually indicates smooth traffic, while a slow vehicle may 
indicate traffic congestion [28]. Monitoring speed changes can help 
traffic managers adjust signal control in time and optimize traffic flow. 

hs
k = ReLU

(
Ws

kh
s
k− 1 + bs

k
)
, k ∈

[
2,K1

]
(9)  

es = hs
K1

(10) 

The status of traffic signals includes the duration and phase settings 
of traffic lights at each intersection, and different signal control schemes 
will have different impacts on the operation of the traffic system. 
Optimizing the status of traffic lights requires consideration of factors 
such as vehicle flow, speed, and queue length to achieve smooth and 
efficient operation of traffic flow. 

3.4. Extended Kalman filter combined with a single intersection traffic 
signal adaptive method 

Extended Kalman filter is a filter used to handle nonlinear systems, 
combined with adaptive control of traffic lights in intelligent trans
portation systems, which can better estimate and predict traffic states 
such as vehicle flow, speed, and queue length, thereby achieving more 
optimized traffic light control. The traffic signal timing system is 

Fig. 1. Reward process of Markov.  
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abstracted as an intelligent agent, the traffic environment at in
tersections is abstracted as a controlled object, the timing scheme of 
traffic signals is abstracted as actions, and the changes in the cumulative 
waiting time of vehicles are abstracted as rewards. Firstly, the traffic 
signal timing system selects a timing scheme based on the vehicle in
formation provided by the traffic environment; After implementing the 
timing plan, the traffic environment will provide feedback on the vehicle 
information and accumulated waiting time to the traffic signal timing 
system, and this process will be repeated continuously; Finally, the 
traffic signal timing system continuously updates with the goal of 
reducing the cumulative waiting time of vehicles until the optimal 
timing scheme is obtained Among them, st is the state at time t, at is the 
action at time t, and rt is the reward at time t; Dt is the playback memory 
unit at time t. In the traffic signal timing system, a main measure of 
vehicle traffic efficiency is the waiting time of the vehicle, so the reward 
is defined as the difference in cumulative waiting time between adjacent 
cycles [29]. 

rt = Wt+1 − Wt (11) 

Among them, rt is the reward at time t, and Wt represents the cu
mulative waiting time of the vehicle at time t. The position matrix and 
speed matrix of vehicles at a single intersection are shown in Fig. 3. 

Q(st, at) is the estimated network value function for taking action at a 
certain moment in state st, and the environment will provide feedback 
on the corresponding reward r(St, at) based on the action executed by the 
agent. The update formula for Q-learning is as follows: 

Q(st , at) = Q(st , at)+α
[

r(st , at)+ γmax
at+1

Q(st , at+1) − Q(st , at)

]

(12) 

The parameters of the target network are not iteratively updated, but 
are periodically copied from the main network [30]. Therefore, the 
structures of the two networks are the same, but the parameters are 
different. 

Loss(θt) =
[
r(st , at)+ γmaxat+1 Q(st+1, at+1|θ̃) − Q(st , at |θt)]

2 (13) 

In the formula, Zt is the value function of the target network at time t, 
θ̃ is the fixed weight of the target network, Q(st , at |θt) is the value 
function of the estimated network at time t, and θt is the uncertainty 
parameter of the estimated network at time t. In the adaptive method for 
single intersection traffic signals, extended Kalman filtering can 
combine traffic state data and sensor information to effectively estimate 
the current traffic state and predict future traffic state changes. By uti
lizing real-time data and information in intelligent transportation sys
tems, extended Kalman filtering can dynamically adjust the control 

Fig. 2. Traffic State Decomposition.  

Fig. 3. Position matrix and speed matrix of vehicles at a single intersection.  
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parameters of traffic lights to adapt to changes in traffic flow and 
minimize traffic congestion. 

3.5. Backbone network and feature fusion structure 

In the process of studying the adaptive optimal control model for 
intelligent transportation system traffic lights based on reinforcement 
learning, the backbone network and feature fusion structure are two key 
technical components that can help improve the performance and sta
bility of the traffic light control model. In intelligent transportation 
systems, backbone networks are typically used to process the input and 
output of traffic status data. The backbone network can be a deep neural 
network responsible for learning complex traffic state features, such as 
vehicle flow, vehicle speed, and queue length. Through the backbone 
network, the model can extract representative features from the raw 
data, providing effective input for signal light control decision-making. 
In the transportation system, there may be complex correlations and 
mutual influences between different traffic state characteristics. The 
function of feature fusion structure is to fuse and integrate features from 
different sources, in order to improve the model’s understanding and 
representation ability of traffic status. Through the feature fusion 
structure, the model can more comprehensively consider the de
pendency relationships between different features, making signal light 
control decisions more accurate and robust. 

Feature learning and representation backbone networks can learn 
complex traffic state features through deep learning, thereby better 
describing the operation of transportation systems. The feature fusion 
structure can integrate multiple feature information from the backbone 
network, improving the model’s representation ability of traffic status. 
Decision optimization integrates the features extracted from the back
bone network and the feature fusion structure, allowing the model to 
better understand the complexity of traffic conditions and provide more 
accurate inputs for signal control decisions. This helps to optimize the 
timing and phase settings of traffic lights and achieve adaptive control of 
intelligent transportation systems. The signal light control model 
combining backbone network and feature fusion structure can improve 
the overall performance of intelligent transportation systems, effectively 
reduce traffic congestion, optimize vehicle traffic efficiency, improve 
road utilization, and achieve intelligent and efficient operation of 
transportation systems. 

3.6. Traffic signal control algorithm based on DQN 

Traffic signal control is the key link to ensure efficient and safe 
operation of road network. With the development of deep reinforcement 

learning, Deep Q network (DQN) algorithm has become an important 
method to solve traffic signal control problems. By combining the 
feature extraction capability of deep learning with the decision-making 
capability of reinforcement learning, DQN algorithm enables traffic 
lights to achieve adaptive optimal control, thus improving the efficiency 
and safety of the traffic system. 

Using formula 10 as the definition of the state action value function, 
and based on this, updating the Q value can be achieved through the 
formula [31]. The new Q value is equal to the old Q value plus the 
learning rate multiplied by the difference, where the difference is the 
actual Q value minus the estimated Q value. 

Q(st , at)←Q(st , at)+α⋅δt (14)  

δt = Rt+1 + γ⋅max
a

Q
(

st+1, a
)

− Q
(

st , at

)

(15) 

Among them a is the learning rate. In traditional Q-learning algo
rithms, tables are usually used to store the Q-values corresponding to 
each state action, and the Q-value table is queried to determine the 
action taken by the agent in the next control step. In traffic signal control 
problems, due to the large traffic state space, it is not realistic to 
continue using tables to store Q values and select actions by querying the 
Q value table. 

DQN algorithm is a deep reinforcement learning algorithm based on 
value function, which approximates the state-action value function (Q 
function) through neural network, so as to realize the evaluation and 
selection of actions. In the traffic signal control problem, DQN algorithm 
can take the real-time state of the traffic intersection (such as the 
number of vehicles, traveling speed, traffic flow, etc.) as the input, 
calculate the Q value of each action (such as changing the state of the 
signal light) through the neural network, and then select the best action 
to execute. Based on these states and actions, the DQN algorithm can 
learn an optimal control strategy, making the adjustment of traffic sig
nals more intelligent and adaptive. 

L(θ) = [Qt(s, a) − Qe(s, a; u)]2 (16) 

In the formula, Qt is the Q-reality, Qe is the Q-estimation, s is the 
current state, a is the neural network’s output action based on state 
information, and u is the weight parameter of eval.net. Update using 
random gradient descent method. The weight parameters of target.net 
are not updated every iteration, but are directly copied to target.net 
after completing several time steps of the update. 

Using state information as the input of a convolutional neural 
network, the Q-value of the action taken in that state is processed by the 
convolutional neural network, and this value is used to update and 

Fig. 4. Schematic diagram of adaptive optimal solution operation.  

Z. Huang                                                                                                                                                                                                                                          



Alexandria Engineering Journal 106 (2024) 381–391

386

iterate. Using the velocity matrix and position matrix corresponding to 
each entrance direction at the intersection as inputs to the neural 
network, feature information is extracted using two convolutional 
layers. The first layer consists of 16 4 * 4 filters with a step size of 2, and 
the second layer consists of 32 2 * 2 filters with a step size of 1. Input the 
data processed by these two convolutional layers and the intersection 
phase information into two fully connected layers. The fully connected 
layer connects all features and outputs a series of Q-values corre
sponding to various actions that the intelligent agent may take in the 
current input state. 

Through DQN algorithm, traffic lights can adjust signal timing 
adaptively according to real-time traffic conditions, achieve reasonable 
allocation of green time, reduce vehicle waiting time, and improve road 
traffic efficiency. At the same time, the DQN algorithm can also learn 
according to historical data and real-time traffic conditions, and 
constantly optimize the control strategy to adapt to the needs of 
different time periods and different traffic conditions. 

3.7. AOCITL model for adaptive optimal control of traffic lights 

The study established an AOCITL (Adaptive Optimal Control of 
Signal Lights in Intelligent Transportation Systems) model based on 
reinforcement learning. It can adjust the control strategy of signal lights 
based on real-time traffic conditions and environmental changes 
through learning and optimization, achieving adaptive optimal control 
of signal lights. In this article, we conducted experiments on bidirec
tional six lane intersections. The total number of lanes entering the 
intersection is 12, so we define the state as the number of vehicles 
currently parked on each lane. This is an example of an intersection. To 
calculate the number of stops on the 12 lanes entering the intersection, 
we normalize the vector according to the following formula to accelerate 
the training speed. 

x = (x − xmin)/(xmax − xmin) (17)  

xmin represents the minimum value in the data, and xmax represents the 
maximum value in the data. 

When the intelligent agent obtains the current system state, it needs 
to perform an operation to set the phase of the next cycle. In this model, 
we define the action space as {a1, a2, a3, …, a9} by selecting the 
duration of each phase in the next cycle. Actions a1 to a4 indicate an 
increase of 5 seconds in the corresponding traffic light stage; Action a5 
indicates that the duration of the corresponding traffic light phase re
mains unchanged; Actions a6 to a9 indicate a reduction of 5 seconds in 
the corresponding traffic light stage. For example, when action a1 is 
selected, the duration of the north-south straight phase green light in
creases by 5 seconds. When action a2 is selected, the duration of the 
north-south left turn phase green light increases by 5 seconds. When 
action a5 is selected, it means that no changes will be made to the signal 
light. When action a6 is selected, the duration of the north-south straight 
phase green light decreases by 5 seconds. When action a7 is selected, the 
duration of the north-south left turn phase green light decreases by 
5 seconds, and so on. With this small phase change interval, the duration 
of the phase in the current state should change steadily. In this model, 
we use quadruples<t1, t2, t3, t4>to represent the duration of the four 
phases in the signal lamp cycle. In addition, we set the maximum legal 
duration of a phase to 60 seconds and the minimum legal duration to 
0 seconds. 

Set the delay time for vehicles entering each lane at the intersection 
to d, the sum of the waiting queue lengths for all vehicles entering the 
lane to q, the waiting time for all vehicles entering the lane to w, the state 
switching of vehicle phases to p, the emergency braking stop of vehicles 
at the intersection to e, and the number of vehicles choosing to leave 
after executing actions to n. 

Rt = k1d+ k2q+ k3w+ k4p+ k5e+ k6n (18) 

The observed environmental state St is mapped to the Q-Value value 
associated with the current action, and a deep neural network is con
structed for systematic training. The input of this signal control system is 
the IDR (Environmental State Vector) vector with a time step of t, while 
the output of the deep neural network is the Q-Value value from the 
action of state st. 

nin
k,t = − IDRk,t (19) 

Among them, IDRk represents the nth input element of the neural 
network when the time step is t, and IDRk,t is the kth element of the 
vector IDR when the time step is t. The input here in this traffic signal 
control system is the five dimensional state vector mentioned in the 
previous establishment of the traffic signal control model, that is, the 
system state S=(Qn1,Qn2,Qn3,Qn4….Qni;Pn), which is input into the 
neural network for training. This way, regardless of the state, it can be 
included in the vector without omission. 

The Q-Value update uses the following update formula: 

Q(st , at) = rt+1 + γE[maxAQ́ (st+1, at+1)] (20) 

The reward rt+1 of the traffic signal control system is an immediate 
reward obtained only after st takes the action, while Q(stat) is the Q- 
Value value obtained after st+1 takes the relevant action, that is, the state 
of the next system after taking the action, discount factor γ Compared 
with immediate rewards, future rewards will follow the progression of 
time step t, and the magnitude of punishment will become smaller and 
even have little impact. The data and perceptron types are shown in  
Table 3 below. 

4. Experimental results 

4.1. Data source and experimental parameter setting 

The research data comes from the simulated environment provided 
by the City Brain Challenge competition. Based on the data set generated 
by SUMO (Simulation of Urban MObility) open source traffic simulation 
software, in order to verify the applicability and effect of the model in 
the actual traffic environment, we cooperated with the local traffic 
management department and selected typical traffic intersections for 
field testing. In the field testing process, we used a variety of sensors and 
data acquisition devices, such as cameras, radar, GPS, etc., to collect key 
data such as traffic flow, vehicle speed, and driving trajectory in real 
time. The field test data set not only contains real-time traffic informa
tion, but also covers the data of different time periods, different weather 
conditions and different traffic conditions, providing us with a wealth of 
actual traffic scene data. By comparing the simulation data set with the 
field test data set, we can more accurately evaluate the performance and 
applicability of the model, and provide strong data support for the 
optimization and improvement of the model. The test parameter Set
tings are shown in Table 4 below. 

Table 1 
Increment of Traffic Signal Control System.  

Increment of 
transportation system 
(increasing) 

Constant variation Indicate 

Signal lights Including signal states such as 
red light, yellow light, green 
light, etc 

Different states 
correspond to 
different traffic rules 

traffic flow The number of vehicles or 
pedestrians passing through a 
certain road or intersection per 
unit time 

Road traffic 
efficiency 

control strategy Adjusting the rhythm and 
duration of signal light changes 

Optimal traffic 
efficiency 

adaptive control Control strategy for 
autonomously adjusting signal 
lights 

To achieve optimal 
traffic efficiency  
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4.2. Basic single intersection reward value 

In an environment controlled by traffic lights, the reward value is 
usually related to the smoothness and degree of delay of traffic flow. By 
designing reward values reasonably, the system can continuously try 
and adjust the control scheme of traffic lights during the learning pro
cess, in order to achieve the optimal traffic flow control effect. The 
setting of basic single intersection reward values needs to consider 
multiple factors, such as vehicle speed, delay time, queue length, etc. By 
quantifying and weighting these factors, an effective feedback mecha
nism can be provided for reinforcement learning algorithms, guiding the 
system to continuously learn and optimize traffic light control strategies. 
When designing basic single intersection reward values, it is also 
necessary to consider the dynamics and complexity of the transportation 
system. The changes in traffic flow during different time periods and 
under different weather conditions will have an impact on the setting of 
reward values. Therefore, it is necessary to establish a flexible reward 
value calculation framework to adapt to the signal light control re
quirements under various traffic conditions. The results are shown in  
Fig. 5. 

When discussing the change of the reward value of different algo
rithms in single-intersection traffic signal control with the increase of 
step size, we can observe several remarkable features. First of all, when 
the step size of Q-learning algorithm gradually increased from 200 steps 

Table 2 
Backbone Network and Traffic Feature Fusion Calculation.  

1： Input: The set of traffic environment states SA, at time t, the intelligent agent 
selects the corresponding action at state st, lane group state s(i), vehicle or 
pedestrian action a(i), and future information f(i). 

2： Take action At in the current state St and transfer to the next state St+1 

3： Capture all associated state information in history 
4： P=[S(t+1) | St]=P[S(s+1) | S1,S2,S3,St] 
5： for all i =1 to t do 
6： All state transition probabilities are combined to form a state transition 

matrix 
7： Pss’ =P[S(t+1)=s’ |St=s] 
8： By judging the results obtained after completing the action 
9： Guiding the direction of intelligent agent learning 
10： for t 1: T 
11： Gt=rt+γrt+1+γ2 rt+2+… 
12： if γ=0 
13： The harvest will only be determined through current immediate rewards 
14： else 
15： There is no difference in the impact of the current two types of rewards on the 

overall harvest 
16： end for 
17： end for  

Table 3 
Types of data and perceptron.  

Type of perceptron for data and perception 

Data type Sensor type 
flow Road sensors, cameras, etc 
Signal light status Signal light control system 
environment temperature sensor 
Transportation History Deep learning sensing system  

Table 4 
Experimental parameter Settings.  

Parameter setting name Specific setting Remark 

Learning rate 0.05 Adjustable 
Activation function Relu - 
Loss function Paddle - 
Cnov_1 3*3256 - 
Cnov_2 3*3256 - 
Cnov_3 3*3256 -  

Fig. 5. Partial Display of Reward Values for Basic Single Intersection.  

Fig. 6. Basic Single Intersection Reward Value Vertical Content Display.  

Fig. 7. Adaptive Control Strategy Single Intersection Reward Values.  
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to 3000 steps, its reward value experienced large fluctuations, showing a 
downward trend at the beginning, but then rebounded slightly. The 
DQN algorithm also shows a large fluctuation in the similar step size 
range, first decreasing and then gradually increasing. However, in the 
process of D3QN algorithm, its reward value fluctuates more violently, 
and the overall trend is more inclined to decline. Compared with the 
above algorithms, when the step size of Q learning algorithm increases, 
the reward value also shows a large fluctuation, but in general, it shows 
a trend of continuous decline. However, when the AOCITL algorithm 
increased the step size, the reward value fluctuated relatively smoothly, 
with only slight changes, and showed a relatively stable reward value at 
3000 steps. From the above analysis, it can be seen that different algo
rithms have different performances in single-intersection traffic signal 
control, and AOCITL algorithm has better performance in the stability of 
reward value, which is more in line with the expected control effect. Of 
course, in practical applications, we also need to choose the appropriate 
algorithm according to the specific application scenarios and needs to 
achieve the best control effect. 

4.3. Adaptive control strategy single intersection reward value 

In the reinforcement learning based adaptive optimal control model 
for intelligent transportation system signal lights, the adaptive control 
strategy is crucial. The design of reward values for single intersections is 
one of the key considerations. In this scenario, the setting of reward 
values needs to comprehensively consider factors such as traffic flow, 
vehicle delay time, energy consumption, and vehicle emissions. For 
traffic flow, the reward value can be set to reduce vehicle waiting time or 
maximize vehicle traffic efficiency. By using reinforcement learning 
algorithms to learn the optimal control strategy, traffic lights can be 
dynamically adjusted according to real-time traffic conditions, effec
tively reducing traffic congestion and improving road traffic efficiency. 

By observing the above data, it can be seen that there are certain 
fluctuations and differences in the reward value performance of 
different algorithms in adaptive traffic light control strategies. When the 
step size is 200, the Q-learning algorithm and DQN algorithm perform 
relatively well, while the AOCITL algorithm performs weakly. As the 
step size increases, some algorithms exhibit significant fluctuations in 
their reward values, such as the D3QN algorithm and AOCITL algorithm. 
At certain step sizes, such as 1600 and 2200, the D3QN algorithm per
forms relatively well. At a step size of 2800, the reward value of the Q- 
learning algorithm significantly decreases, while the reward value of the 
AOCITL algorithm also changes significantly. The performance of 
different algorithms in adaptive traffic light control strategies will be 
affected by step size settings, and it is necessary to choose appropriate 
algorithms and adjust parameters according to specific situations to 
achieve better traffic control effects and reward values. 

4.4. Basic reward value for multiple intersections 

The basic reward value can be determined based on various factors, 
such as the average speed of the vehicle, the waiting time of the vehicle, 
the traffic congestion index, etc. By comprehensive evaluation of these 
factors, the basic reward value of each signal control period can be 
calculated, which is used as the feedback signal of reinforcement 
learning algorithm and guides the system to adjust the control strategy 
of the signal. Through the data collection and analysis of the actual 
traffic scene, the calculation method and influencing factors of the basic 
reward value of multiple intersections are determined. By optimizing 
the reinforcement learning model, the signal control system can 
dynamically adjust the time interval and phase of the signal light ac
cording to the real-time traffic situation, so as to achieve the optimal 
control of traffic flow. 

This paper discusses the influence of Q-learning, DQN, D3QN and 
AOCITL algorithms on the control reward value of multi-intersection 
traffic lights under the asynchronous length setting. Q-learning 

Fig. 8. Basic reward values for multiple intersections.  

Fig. 9. Results of opening to traffic at multiple intersections.  

Fig. 10. Changes in vehicle queue duration after adaptive control.  
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algorithm is a table-based reinforcement learning algorithm that 
directly stores and updates the Q value of each state-action pair. In 
multi-junction traffic light control, the reward value fluctuates greatly 
with the increase of step length. In the process of gradually increasing 
the step size from a smaller value, the reward value shows a clear 
downward trend in the step size range of 300–1800. This may be 
because the large step size causes the algorithm to over-trust the new 
information, resulting in unstable updates, affecting the overall perfor
mance. DQN algorithm combines the feature extraction ability of deep 
learning with the decision making ability of Q-learning. In multi- 
junction traffic light control, the fluctuation range of reward value of 
DQN algorithm is smaller than that of Q-learning algorithm. This may be 
because the DQN algorithm approximates the Q function through a 
neural network, which is better able to handle high-dimensional state 
Spaces and reduce fluctuations due to table updates. 

D3QN algorithm is an improvement of DQN algorithm, aiming to 
solve the overestimation problem in DQN algorithm. However, in multi- 
intersection traffic light control, the reward value of D3QN algorithm 
fluctuates sharply, and the overall trend is not obvious. This may be 
because the D3QN algorithm not only reduces overestimation, but also 
introduces some randomness, resulting in large fluctuations in the per
formance of the algorithm under non-synchronous length. Under some 
steps, the reward value of D3QN algorithm is relatively stable, but the 
overall level is average. AOCITL algorithm is a combination of adaptive 
online control and reinforcement learning algorithm. In multi- 
intersection traffic light control, the AOCITL algorithm has a large 
fluctuation range of reward value under non-synchronous length, and 
the overall level is relatively low. This may be because the AOCITL al
gorithm requires a larger step size to quickly update its strategy when 
adapting to different traffic conditions. However, excessive step size can 
also lead to instability of the algorithm. At some steps, the reward value 
of AOCITL algorithm increases, but the overall performance is mediocre. 
However, the AOCITL algorithm has a wider applicability because it can 
adapt its step size to traffic conditions. 

4.5. Changes in vehicle queue duration after adaptive control at complex 
intersections 

In traditional traffic signal control systems, fixed timing control is 
often difficult to adapt to changes in traffic flow, leading to traffic 
congestion and an increase in vehicle queuing time. With the help of 
reinforcement learning algorithms, traffic signals can dynamically 
adjust their timing and cycle based on real-time data, enabling the 
transportation system to better adapt to current traffic demands. 
Through continuous learning and optimization, traffic lights can make 
the best decisions in a short period of time, thereby reducing vehicle 
queuing time and improving road traffic efficiency. The adaptive 
optimal control model for traffic signals in intelligent transportation 
systems based on reinforcement learning can effectively optimize the 
control strategy of traffic signals and reduce the queuing time of vehi
cles. The results are shown in the following figure. 

In the initial first month, the D3QN algorithm achieved remarkable 
results in reducing the queuing time of vehicles, successfully reducing 
the queuing time by 3 minutes, while other algorithms were mediocre. 
In the second month, the DQN algorithm stood out, and its optimization 
effect reduced the queue time by 2 minutes, which was slightly inferior 
to other algorithms. Over the next few months, the performance of the 
various algorithms has fluctuated. In the third month, Q-learning algo
rithm and AOCITL algorithm both showed good performance, reducing 
the queue time by 3 minutes. In the fourth month, the DQN algorithm 
and AOCITL algorithm further improved the effect, reducing the queue 
time by 4 minutes. In the fifth month, the AOCITL algorithm achieved 
the best results in reducing the queue time, successfully reducing the 
queue time by 4 minutes, while other algorithms failed to achieve such 
an effect. In the next six months, Q-learning and D3QN also performed 
well, reducing the queue time by 2 minutes. In the second half of the 

year, AOCITL algorithm continued to show its superiority. In both the 
seventh and eighth months, it managed to reduce the queue time by four 
minutes, and in the ninth month, this achievement was maintained. By 
the tenth month, DQN algorithm and Q learning algorithm also achieved 
good results, reducing the queue time by 3 minutes. At the eleventh 
month, the D3QN algorithm regained the lead, reducing the queue time 
by 2 minutes. In the last month, the 12th month, both the DQN algo
rithm and the D3QN algorithm showed good performance, reducing the 
queue time by 2 minutes. Combining the above data, we can find that 
AOCITL algorithm has the best performance in reducing vehicle queuing 
time, followed by DQN algorithm. The two algorithms have achieved 
significant optimization effects in different months, and have made 
positive contributions to easing traffic congestion. 

5. Discussion 

In the field of intelligent transportation Systems (ITS), the adaptive 
optimal control of signal lights has been a hot research topic. With the 
rapid development of reinforcement learning (RL) technology, more and 
more researchers begin to explore the application of RL in traffic signal 
control to achieve more efficient and intelligent traffic management. 
The adaptive optimal control model of intelligent transportation system 
signal light based on reinforcement learning has achieved remarkable 
results in both simulation and field tests. However, while exploring this 
model in depth, we also noted important factors such as the limitations 
of other relevant studies, adaptability to different flow conditions, and 
potential integration challenges. 

In the field of traffic signal control, although the traditional fixed 
time control method is simple and easy, it can not adapt to the dynamic 
change of traffic flow. However, rule-based adaptive control methods, 
such as fuzzy control and genetic algorithm, can adjust signal timing 
according to traffic flow to a certain extent, but their decision-making 
process often relies on predefined rules and thresholds, which lacks 
flexibility and adaptability. 

In contrast, control methods based on reinforcement learning are 
able to learn from historical data and real-time traffic conditions and 
continuously optimize control strategies. However, the existing research 
on traffic signal control based on reinforcement learning still has some 
limitations. For example, some studies only focus on the signal control of 
a single intersection, but ignore the collaborative optimization of mul
tiple intersections. Other studies are limited by computational resources 
and the difficulty of obtaining data, and cannot be applied in actual 
large-scale transportation networks. 

The model presented in this study shows good adaptability under 
different flow conditions. Through simulation experiments and field 
tests, we verify the control effect of the model in different scenarios such 
as peak hours, off-peak hours and sudden traffic incidents. The experi
mental results show that the model can dynamically adjust the signal 
timing according to the real-time change of traffic flow, effectively 
alleviate traffic congestion and improve road traffic efficiency. Howev
er, we also note that under certain extreme traffic conditions, such as 
extreme congestion or extreme sparsity, the performance of the model 
may suffer somewhat. Therefore, in future studies, we will further 
explore how to improve the adaptability and robustness of the model 
under extreme flow conditions. 

Integrating reinforcement learning-based traffic signal control 
models into existing intelligent transportation systems faces some po
tential challenges. First of all, the existing intelligent transportation 
systems often adopt a variety of technologies and methods, such as video 
surveillance, traffic flow detection, road state assessment, etc., how to 
effectively integrate reinforcement learning models with other tech
nologies to achieve information sharing and collaborative work is a 
problem that needs to be solved. Because the traffic system is a complex 
network structure, it involves the connection of multiple intersections 
and roads. It is a challenging task to realize the cooperative optimization 
and global optimal control of the entire traffic network while ensuring 
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the optimal control of a single intersection. 
The adaptive optimal control model of intelligent transportation 

system signal light based on reinforcement learning has achieved 
remarkable results in both simulation and field tests. However, we also 
note important factors such as the limitations of other relevant studies, 
adaptability to different flow conditions, and potential integration 
challenges. In future studies, we will further explore these issues in 
depth to promote the continued development and application of intel
ligent transportation systems. 

6. Conclusion 

The aim of this study is to explore a reinforcement learning based 
adaptive optimal control model for traffic signals in intelligent trans
portation systems, in order to improve the efficiency and intelligence 
level of urban traffic signal systems. The adaptive optimal control model 
for traffic signal lights in intelligent transportation systems based on 
reinforcement learning has shown significant advantages in improving 
the efficiency of traffic signal light systems. The traditional fixed time 
sequence signal control method often cannot adapt to changes in traffic 
flow, which can easily lead to traffic congestion and energy waste. The 
reinforcement learning based model proposed in this study can 
dynamically adjust traffic flow data in real-time, making the control of 
traffic lights more flexible and efficient, effectively alleviating traffic 
congestion and improving road traffic efficiency. 

This study also found that the adaptive optimal control model for 
traffic lights in intelligent transportation systems based on reinforce
ment learning has good adaptability and generalization ability. Through 
experimental verification of models under different traffic scenarios and 
road conditions, we found that the model can achieve good control ef
fects in different environments, demonstrating strong adaptability and 
generalization ability. This lays a solid foundation for the application of 
the model in actual transportation systems. 

The research model may be limited by computational resources and 
time when dealing with large-scale transportation systems, and further 
optimization of algorithms and improvement of computational effi
ciency are needed; In addition, the robustness and security of the model 
also need to be strengthened to cope with various unexpected situations 
and malicious attacks. 

In summary, the adaptive optimal control model for traffic lights in 
intelligent transportation systems based on reinforcement learning has 
significant advantages and application potential, and is of great signif
icance in improving transportation system efficiency, reducing traffic 
congestion, and saving energy. However, in order to further promote the 
application of this model in actual transportation systems, we still need 
to conduct further in-depth research and improvement, continuously 
improve the theoretical basis and practical application effects of the 
model. 
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