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Multivariate Zero-Inflated INAR(1) Model with an Application in
Automobile Insurance

Pengcheng Zhang,1 Zezhun Chen,2 George Tzougas,3 Enrique Calder�ın–Ojeda,4

Angelos Dassios,2 and Xueyuan Wu4
1School of Insurance, Shandong University of Finance and Economics, Jinan, China.
2Department of Statistics, London School of Economics and Political Science, London, UK.
3Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh, UK.
4Department of Economics, University of Melbourne, Melbourne, Victoria, Australia.

The objective of this article is to propose a comprehensive solution for analyzing multidimensional non-life claim count data
that exhibits time and cross-dependence, as well as zero inflation. To achieve this, we introduce a multivariate INAR(1) model,
with the innovation term characterized by either a multivariate zero-inflated Poisson distribution or a multivariate zero-inflated
hurdle Poisson distribution. Additionally, our modeling framework accounts for the impact of individual and coverage-specific
covariates on the mean parameters of each model, thereby facilitating the computation of customized insurance premiums based
on varying risk profiles. To estimate the model parameters, we employ a novel expectation-maximization (EM) algorithm. Our
model demonstrates satisfactory performance in the analysis of European motor third-party liability claim count data.

1. INTRODUCTION
Claim count modeling is an essential part in the calculation of premiums. Due to the inclusion of multiple types of coverage

in insurance policies, there is a need for multivariate count models to effectively capture the dependence structures between
different count responses. Many attempts have been made in actuarial literature to develop appropriate multivariate count mod-
els. One common approach is to leverage common shock variables. This method proves useful in the multivariate Poisson
model because the sum of independent Poisson random variables still follows a Poisson distribution. The application of the
multivariate Poisson model in an actuarial setting can be found in Berm�udez and Karlis (2011). Another method involves the
use of copulas, which offers the advantage of treating marginals and dependence structures separately. Shi and Valdez (2014b)
demonstrated the application of copulas directly on negative binomial marginals, and Zhang et al. (2023) constructed a copula
based on the mixing parameters of mixed Poisson distributions. Sarmanov distributions serve as an additional approach.
Bolanc�e and Vernic (2019) considered three trivariate Sarmanov distributions combined with generalized linear models for
marginals, and they fit these distributions to car insurance data. Mixture count models have also been explored to describe cor-
relations in insurance. Fung, Badescu, and Lin (2019) and Tzougas and Pignatelli di Cerchiara (2021) investigated the applica-
tion of mixture count models in this context.

As evidenced by empirical data, non-life insurance claim count data often exhibit a high prevalence of zeros. Zhang, Pitt,
and Wu (2022) noted that the zero inflation phenomenon in the multivariate context is more intricate compared to the univari-
ate case, emphasizing the need to employ multivariate zero-inflated models to explore cross-dependence. The existing methods
have primarily focused on scenarios where margins follow Poisson distributions. Li et al. (1999) proposed a multivariate zero-
inflated Poisson model comprising mþ 2 components of m-dimensional discrete distributions. However, the complexity of
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this model makes maximum likelihood estimation challenging for large m. Recently, Liu and Tian (2015) introduced a new
multivariate zero-inflated Poisson model that addresses computational issues associated with dimensionality. Nonetheless, the
assumption of a standard Poisson distribution for each margin limits the model’s adaptability to diverse features. To tackle this
limitation, Zhang, Pitt, and Wu (2022) proposed a multivariate zero-inflated hurdle model, assuming zero-modified distribu-
tions for margins. This model offers greater flexibility in handling various features across margins.

The insurance company often keeps track of their policyholders for several years, enabling repeated observations that yield
valuable insights into individuals’ risk profiles. Consequently, an expanding research field in insurance has emerged to study
panel count data models. One of the most commonly employed models is the multiplicative random effect Poisson model,
where the random effect is assumed to follow a Gamma distribution. For a comprehensive description of this random effect
model and its generalization, refer to Boucher, Denuit, and Guillen (2009). Copulas have been explored as an alternative
method to model panel counts. In Shi and Valdez (2014a), the utility of copulas in capturing relationships within panel count
data was investigated, and a jittering method was employed for estimation purposes. Furthermore, the application of time ser-
ies models to analyze longitudinal insurance data is available in the literature. For instance, Gourieroux and Jasiak (2004) uti-
lized the integer-valued autoregressive (INAR) model of order one based on the binomial thinning operator to update
premiums in car insurance. An exhaustive overview of the aforementioned models as applied to actuarial science was provided
in Boucher, Denuit, and Guill�en (2008).

However, it is worth noting that though there is existing literature on models that solely considered cross-dependence or time
dependence, the integration of these two types of dependence into a single model remains a relatively unexplored area of research.
One natural approach is to generalize the univariate INAR model to the multivariate case. In this approach, the innovation term in
the model captures cross-dependence, and the lag term accounts for time dependence. Within this framework, Berm�udez, Guill�en,
and Karlis (2018) utilized a bivariate Poisson distribution as the innovation term to allow for cross-correlations. Berm�udez and
Karlis (2021) considered multivariate discrete distributions defined using the Sarmanov family as the innovation term.

In this article, we introduce two multivariate INAR(1) models by modeling the innovation terms based on the multivariate
zero-inflated Poisson distribution (INAR-MZIP) and the multivariate zero-inflated hurdle Poisson (INAR-MZIHP) distribu-
tion. Our contribution to the existing literature is threefold. Firstly, we propose a flexible framework that simultaneously
addresses various features observed in the data, such as an excess of common zeros, cross-dependence, and time dependence.
Unlike previous studies, our models can be applied in a general multivariate case, not limited to just a bivariate setting. This
distinguishes our work from that of Berm�udez, Guill�en, and Karlis (2018), which focused only on a two-dimensional scenario.
Furthermore, we consider multivariate zero inflation, which is commonly observed in automobile insurance data, whereas
Berm�udez, Guill�en, and Karlis (2018) and Berm�udez and Karlis (2021) failed to incorporate this phenomenon. Thus, our mod-
els can be regarded as important additions to the existing literature. Secondly, we develop a novel expectation-maximization
(EM) algorithm to estimate the parameters in our proposed models. The log-likelihood function in these models has a complex
form, making direct maximization challenging. However, by employing the EM algorithm, we can significantly simplify the
inference procedure. To the best of our knowledge, the EM algorithm we establish for the multivariate INAR model is innova-
tive and has not been previously proposed. Finally, we evaluate the suitability of the multivariate zero-inflated INAR(1) mod-
els from multiple perspectives. Through extensive analysis, we demonstrate that our proposed models outperform other
potential alternatives in terms of model fitting and predictive performance.

The rest of this article is organized as follows. In Section 2 we provide a brief review of multivariate zero-inflated distribu-
tion, focusing on two specific cases: the multivariate zero-inflated Poisson (MZIP) distribution and the multivariate zero-
inflated hurdle Poisson distribution (MZIHP). Section 3 details the formulation of two types of multivariate INAR(1) models
with MZIP and MZIHP as innovations. The corresponding EM algorithms for parameter estimation are presented in each case.
Section 4 presents a simulation study aimed at illustrating the efficacy of our proposed EM algorithms. In Section 5, we delve
into a practical application to illustrate the utility of our proposed models. The last section concludes the article.

2. MULTIVARIATE ZERO-INFLATED DISTRIBUTION
The multivariate zero-inflated distribution can be defined as follows. Let Y ¼ ðY1, :::,YmÞ> denote a discrete random vector

where Yj, j ¼ 1, :::,m, are independent of each other and defined on N: Then N ¼ ðN1, :::,NmÞ> is said to follow the multivari-
ate zero-inflated distribution if

N ¼ U0Y ¼ 0m, U0 ¼ 0
Y, U0 ¼ 1,

�
(2.1)

2 P. ZHANG ET AL.



where U0 � Bernoulliðp0Þ, 0 < p0 < 1, and U0 is independent of Y: The probability mass function (pmf) of N can be
derived as

PrðN ¼ nÞ ¼ 1 − p0 þ p0
Ym
j¼1

PrðYj ¼ 0Þ
" #v

p0
Ym
j¼1

PrðYj ¼ njÞ
" #1−v

, (2.2)

where n ¼ ðn1, :::, nmÞ> is a vector of observed values, v ¼ Iðn ¼ 0mÞ, and Ið�Þ is an indicator function.

2.1. Multivariate Zero-Inflated Poisson Distribution
Let Yj � PoissonðkjÞ, for j ¼ 1, :::,m: Then N is said to follow the multivariate zero-inflated Poisson distribution with the

parameter vector k ¼ ðk1, :::, kmÞ> and a zero inflation parameter p0, denoted by N � MZIPðk, p0Þ: The pmf of N is

PrðN ¼ nÞ ¼ 1 − p0 þ p0e
−
Pm

j¼1
kj

� �v
p0
Ym
j¼1

k
nj
j e

−kj

nj!

0
@

1
A

1−v

: (2.3)

2.2. Multivariate Zero-Inflated Hurdle Poisson Distribution
We shall assume that each Yj, j ¼ 1, :::,m, follows a zero-modified Poisson distribution, which can be characterized as

follows:

Yj ¼ UjWj ¼
0, Uj ¼ 0,

Wj, Uj ¼ 1,

(
(2.4)

where Wj follows a unit-shifted Poisson distribution with the following pmf:

PrðWj ¼ njÞ ¼
k
nj−1
j e−kj

ðnj − 1Þ! , nj > 0: (2.5)

Uj � BernoulliðpjÞ, 0 < pj < 1, and Uj is independent of Wj: Then N is said to follow the multivariate zero-inflated hurdle
Poisson distribution with parameter vectors p ¼ ðp1, :::, pmÞ>, k ¼ ðk1, :::, kmÞ> and a zero inflation parameter p0, denoted by
N � MZIHPðp, k, p0Þ: The pmf of N is

PrðN ¼ nÞ ¼ 1 − p0 þ p0
Ym
j¼1

ð1 − pjÞ
" #v

� p0
Y
j:nj¼0

ð1 − pjÞ
Y
j:nj 6¼0

pj
k
nj−1
j e−kj

ðnj − 1Þ!

2
4

3
5
1−v

:

(2.6)

3. MULTIVARIATE INAR(1) MODEL
3.1. The Model

The multivariate INAR model of order 1 is defined as follows:

Nt ¼ P�Nt−1 þ Rt, (3.1)

where Nt ¼ ðN1t , :::,NmtÞ> and Nt−1 ¼ ðN1, t−1, :::,Nm, t−1Þ>: Rt ¼ ðR1t , :::,RmtÞ> is referred to as innovations. P is assumed to
be a diagonal matrix in our model, which is written as
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P ¼
p1 0 � � � 0
0 p2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � pm

0
BBB@

1
CCCA, (3.2)

P� acts as the usual matrix multiplication, while reserving the properties of the binomial thinning operation. Each series
then can be written as

N1t ¼ p1�N1, t−1 þ R1t,
N2t ¼ p2�N2, t−1 þ R2t,

..

.

Nmt ¼ pm�Nm, t−1 þ Rmt:

(3.3)

Each operation is defined as p�N ¼PN
i¼1 Zi, where Zi �i:i:dBernoulliðpÞ:

The pmf of Nt conditional on the last state Nt−1 is given by

f ðntjnt−1Þ ¼
Xs1t
y1t¼0

:::
Xsmt
ymt¼0

Ym
j¼1

gjðyjt; nj, t−1, pjÞ
 !

fRðnt − ytÞ, (3.4)

where nt ¼ ðn1t , :::, nmtÞ> and nt−1 ¼ ðn1, t−1, :::, nm, t−1Þ> are observed values. sjt ¼ minðnj, t−1, njtÞ and yt ¼ ðy1t , :::, ymtÞ>: We
denote gjðy; n, pÞ as the pmf of a binomial variable with parameters n and p and fR as the joint pmf of the random vector
Rt: For our purpose, we assume that Rt follows a multivariate zero-inflated distribution.

3.2. Multivariate INAR(1) Model with MZIP as Innovations
We denote Nijt as the number of claims for the ith individual and for claim type j at time point t, where i ¼ 1, :::, n,

j ¼ 1, :::,m, t ¼ 1, :::,Ti, and nijt as the observed value. Now we introduce some covariates xit, where xit ¼ ð1, xit1, :::, xitpÞ>:
Here we use the same set of covariates for each claim type. However, a specific policyholder’s information may change over
time. The location parameter kijt can then be modeled as

kijt ¼ exp ðx>it bjÞ, i ¼ 1, :::, n, j ¼ 1, :::,m, t ¼ 1, :::,Ti, (3.5)

where bj ¼ ðbj0,bj1, :::,bjpÞ> is the parameter vector to estimate. For the purpose of easy interpretation, we do not inject
covariates in p0 and pj:

Suppose now we observe the values yt from the latent random vector Yt ¼ ðp1�N1, t−1, :::, pm�Nm, t−1Þ>: Then the joint pmf
can be written as (we omit i for simplicity)

f ðntjnt−1, ytÞ ¼
Ym
j¼1

gjðyjt; nj, t−1, pjÞ
 !

fRðnt − ytÞ: (3.6)

Furthermore, suppose we also observe latent variables vt and ut, where vt ¼ Iðnt − yt ¼ 0mÞ and ut ¼ 1 indicates that the
common zeros come from the zero inflation part. The joint pmf can be further decomposed as

f ðntjnt−1, yt, ut, vtÞ ¼
Ym
j¼1

gjðyjt; nj, t−1, pjÞ
 !

ð1 − p0Þut p0
Ym
j¼1

hjð0Þ
 !1−ut

2
4

3
5
vt

� p0
Ym
j¼1

hjðnjt − yjtÞ
" #1−vt

,

(3.7)

where hj denotes the pmf of the Poisson distribution.
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The complete log-likelihood function is then given by

lcðHÞ /
Xn
i¼1

Xm
j¼1

XTi
t¼1

yijt log pj þ ðnij, t−1 − yijtÞ log ð1 − pjÞ
� �

þ
Xn
i¼1

XTi
t¼1

uitvit log ð1 − p0Þ þ ð1 − uitvitÞ log p0½ �

þ
Xn
i¼1

Xm
j¼1

XTi
t¼1

ðnijt − yijtÞ log kijt − ð1 − uitvitÞkijt
� �

,

(3.8)

where H ¼ ðp,p0, bÞ, p ¼ ðp1, :::, pmÞ> and b ¼ ðb1, :::, bmÞ:
The Q function at the rth iteration is given by

QðH;HðrÞÞ ¼
Xn
i¼1

Xm
j¼1

XTi
t¼1

yðrÞijt log pj þ nij, t−1 − yðrÞijt

� �
log ð1 − pjÞ

h i

þ
Xn
i¼1

XTi
t¼1

wðrÞ
it log ð1 − p0Þ þ 1 − wðrÞ

it

� �
log p0

h i

þ
Xn
i¼1

Xm
j¼1

XTi
t¼1

nijt − yðrÞijt

� �
log kijt − 1 − wðrÞ

it

� �
kijt

� �
,

(3.9)

where wit ¼ uitvit:

� E-step:
1. The conditional expectation yðrÞijt is given by

yðrÞijt ¼ EðyijtjHðrÞ, nit, ni, t−1Þ

¼
pðrÞj nij, t−1f ðnit − 1jjni, t−1 − 1j;HðrÞÞ

f ðnitjni, t−1;HðrÞÞ , nijt > 0 and nij, t−1 > 0,

0, otherwise,

8><
>:

(3.10)

where nit ¼ ðni1t , :::, nimtÞ> and ni, t−1 ¼ ðni1, t−1, :::, nim, t−1Þ> are observed values, and 1j ¼ ð0, :::, 1, :::, 0Þ> is a unit vector
with the jth element equal to one.
2. The conditional expectation wðrÞ

it is given by

wðrÞ
it ¼ EðuitvitjHðrÞ,nit, ni, t−1Þ ¼ Prðuit ¼ vit ¼ 1jHðrÞ, nit, ni, t−1Þ

¼
Qm

j¼1 gjðnijt; nij, t−1, pðrÞj Þð1 − pðrÞ0 Þ
f ðnitjni, t−1;HðrÞÞ , nijt � nij, t−1 for j ¼ 1, :::,m,

0, otherwise:

8><
>:

(3.11)

� M-step: Update the parameter set H to make QðHðrþ1Þ;HðrÞÞ > QðHðrÞ;HðrÞÞ:
1. Update the parameter pj:

pðrþ1Þ
j ¼

Pn
i¼1

PTi
t¼1 y

ðrÞ
ijtPn

i¼1

PTi
t¼1 nij, t−1

, j ¼ 1, :::,m: (3.12)
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2. Update the parameter p0:

pðrþ1Þ
0 ¼ 1 −

Pn
i¼1

PTi
t¼1 w

ðrÞ
itPn

i¼1 Ti
: (3.13)

3. Update the parameter vector bj by implementing the Newton-Raphson method for one cycle:

b
ðrþ1Þ
j ¼ b

ðrÞ
j − HðbðrÞj Þ

h i−1
sðbðrÞj Þ, j ¼ 1, :::,m, (3.14)

where the score equation and Hessian matrix are given as follows:

sðbðrÞj Þ ¼
Xn
i¼1

XTi
t¼1

nijt − yðrÞijt − ð1 − wðrÞ
it ÞkðrÞijt

h i
xit,

HðbjðrÞÞ ¼ −
Xn
i¼1

XTi
t¼1

ð1 − wðrÞ
it ÞkðrÞijt xitx

>
it :

(3.15)

3.3. Multivariate INAR(1) Model with MZIHP as Innovations
In this model, we introduce covariates in both pj and kj: The parameter pijt can be modeled as

pijt ¼ exp ðx>it ajÞ
1þ exp ðx>it ajÞ

i ¼ 1, :::, n, j ¼ 1, :::,m, t ¼ 1, :::,Ti, (3.16)

where aj ¼ ðaj0, aj1, :::, ajpÞ> is the parameter vector to estimate. The parameter kijt can be modeled as

kijt ¼ exp ðx>it bjÞ, i ¼ 1, :::, n, j ¼ 1, :::,m, t ¼ 1, :::,Ti, (3.17)

where bj ¼ ðbj0,bj1, :::, bjpÞ> is the parameter vector to estimate.
Suppose now we observe the values yt from the random vector Yt ¼ ðp1�N1, t−1, :::, pm�Nm, t−1Þ>: Then the joint pmf can be

written as (we omit i for simplicity)

f ðntjnt−1, ytÞ ¼
Ym
j¼1

gjðyjt; nj, t−1, pjÞ
 !

fRðnt − ytÞ: (3.18)

Furthermore, suppose we also observe latent variables vt and ut, where vt ¼ Iðnt − yt ¼ 0mÞ and ut ¼ 1 indicates that the
common zeros come from the zero inflation part. The joint pmf can be further decomposed as

f ðntjnt−1, yt, ut, vtÞ ¼
Ym
j¼1

gjðyjt; nj, t−1, pjÞ
 !

ð1 − p0Þut p0
Ym
j¼1

ð1 − pjtÞ
 !1−ut

2
4

3
5
vt

� p0
Y

j:yjt¼njt

ð1 − pjtÞ
Y

j:yjt<njt

pjtfWjðnjt − yjtÞ
� �1−vt

,

(3.19)

where fWj denotes the pmf of the unit-shifted Poisson distribution.
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The complete log-likelihood function is then given by

lcðHÞ /
Xn
i¼1

Xm
j¼1

XTi
t¼1

yijt log pj þ ðnij, t−1 − yijtÞ log ð1 − pjÞ
� �

þ
Xn
i¼1

XTi
t¼1

uitvit log ð1 − p0Þ þ ð1 − uitvitÞ log p0½ �

þ
Xn
i¼1

Xm
j¼1

XTi
t¼1

sijt log pijt þ ð1 − uitvit − sijtÞ log ð1 − pijtÞ
� �

þ
Xn
i¼1

Xm
j¼1

XTi
t¼1

ðnijt − yijt − sijtÞ log kijt − sijtkijt
� �

,

(3.20)

where sijt ¼ Iðyijt < nijtÞ, H ¼ ðp,p0, a, bÞ, p ¼ ðp1, :::, pmÞ>, a ¼ ða1, :::, amÞ, and b ¼ ðb1, :::, bmÞ:
The Q function at the rth iteration is given by

QðH;HðrÞÞ ¼
Xn
i¼1

Xm
j¼1

XTi
t¼1

yðrÞijt log pj þ nij, t−1 − yðrÞijt

� �
log ð1 − pjÞ

h i

þ
Xn
i¼1

XTi
t¼1

wðrÞ
it log ð1 − p0Þ þ 1 − wðrÞ

it

� �
log p0

h i

þ
Xn
i¼1

Xm
j¼1

XTi
t¼1

sðrÞijt log pijt þ ð1 − wðrÞ
it − sðrÞijt Þ log ð1 − pijtÞ

h i

þ
Xn
i¼1

Xm
j¼1

XTi
t¼1

nijt − yðrÞijt − sðrÞijt

� �
log kijt − sðrÞijt kijt

h i
,

(3.21)

where wit ¼ uitvit:

� E-step:
1. The conditional expectation yðrÞijt is given by

yðrÞijt ¼ EðyijtjHðrÞ, nit, ni, t−1Þ

¼
pðrÞj nij, t−1f ðnit − 1jjni, t−1 − 1j;HðrÞÞ

f ðnitjni, t−1;HðrÞÞ , nijt > 0 and nij, t−1 > 0,

0, otherwise,

8><
>:

(3.22)

where nit ¼ ðni1t , :::, nimtÞ> and ni, t−1 ¼ ðni1, t−1, :::, nim, t−1Þ> are observed values, and 1j ¼ ð0, :::, 1, :::, 0Þ> is a unit vector
with the jth element equal to one.
2. The conditional expectation wðrÞ

it is given by

wðrÞ
it ¼ EðuitvitjHðrÞ,nit, ni, t−1Þ ¼ Prðuit ¼ vit ¼ 1jHðrÞ, nit, ni, t−1Þ

¼
Qm

j¼1 gjðnijt; nij, t−1, pðrÞj Þð1 − pðrÞ0 Þ
f ðnitjni, t−1;HðrÞÞ , nijt � nij, t−1 for j ¼ 1, :::,m,

0, otherwise:

8><
>:

(3.23)
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3. The conditional expectation sðrÞijt is given by

sðrÞijt ¼ EðsijtjHðrÞ,nit,ni, t−1Þ ¼ Prðsijt ¼ 1jHðrÞ, nit,ni, t−1Þ

¼ 1 −
f ðnitjni, t−1, yijt ¼ nijt;H

ðrÞÞ
f ðnitjni, t−1;HðrÞÞ , nijt � nij, t−1,

1, nijt > nij, t−1:

8><
>:

(3.24)

� M-step: Update the parameter set H to make QðHðrþ1Þ;HðrÞÞ > QðHðrÞ;HðrÞÞ:
1. Update the parameter pj:

pðrþ1Þ
j ¼

Pn
i¼1

PTi
t¼1 y

ðrÞ
ijtPn

i¼1

PTi
t¼1 nij, t−1

, j ¼ 1, :::,m: (3.25)

2. Update the parameter p0:

pðrþ1Þ
0 ¼ 1 −

Pn
i¼1

PTi
t¼1 w

ðrÞ
itPn

i¼1 Ti
: (3.26)

3. Update the parameter vector aj by implementing the Newton-Raphson method for one cycle:

a
ðrþ1Þ
j ¼ a

ðrÞ
j − HðaðrÞj Þ

h i−1
sðaðrÞj Þ, j ¼ 1, :::,m, (3.27)

where the score equation and Hessian matrix are given as follows:

sðaðrÞj Þ ¼
Xn
i¼1

XTi
t¼1

sðrÞijt − ð1 − wðrÞ
it ÞpðrÞijt

h i
xit,

HðaðrÞj Þ ¼ −
Xn
i¼1

XTi
t¼1

ð1 − wðrÞ
it ÞpðrÞijt ð1 − pðrÞijt Þxitx>it :

(3.28)

4. Update the parameter vector aj by implementing the Newton-Raphson method for one cycle:

b
ðrþ1Þ
j ¼ b

ðrÞ
j − HðbðrÞj Þ

h i−1
sðbðrÞj Þ, j ¼ 1, :::,m, (3.29)

where the score equation and Hessian matrix are given as follows:

sðbðrÞj Þ ¼
Xn
i¼1

XTi
t¼1

nijt − yðrÞijt − sðrÞijt − sðrÞijt k
ðrÞ
ijt

h i
xit ,

HðbðrÞj Þ ¼ −
Xn
i¼1

XTi
t¼1

sðrÞijt k
ðrÞ
ijt xitx

>
it :

(3.30)

4. SIMULATION STUDY
In this section, a simulation study is carried out. Firstly, we seek to validate the effectiveness of our proposed EM algo-

rithms for the specialized models, namely, INAR-MZIP and INAR-MZIHP. Secondly, we aim to showcase the versatility of
our models by applying them in a broader multivariate context, beyond just a bivariate scenario. In our study, the programming
is implemented using the R language. The R codes for the implementation of the two models can be found at https://github.
com/qingdaozpc/multivariate-zero-inflated-INAR-model.git.
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4.1. Study Setup
We simulate a portfolio comprising n ¼ 2000 policyholders and m ¼ 3 claim types, each with an insured period Ti ¼ 5:

Two predictors are independently generated in the simulation: x1 from a standard normal distribution and x2 from a Bernoulli
distribution with p ¼ 0:5, and we assume they do not vary with time. The true values for the underlying parameters in the two
models are presented in Table 4.1. For simplicity, covariates are not included in pj, j ¼ 1, 2, 3, when data are simulated from
the INAR-MZIHP model.

4.2. Results
The estimation results are summarized in Table 4.1. In both cases, the results are derived from 100 replications. We provide

the average estimates along with their standard errors. As anticipated, the mean estimates are very close to the true values, all
of which fall within the 95% confidence intervals. This verifies the effectiveness of our proposed EM algorithms.

TABLE 1
Mean Estimates with Standard Errors from Simulations from the INAR-MZIP Model and the INAR-

MZIHP Model

Parameter Estimate SE (�10−3)

p1 ¼ 0:1 0.10 1.25
p2 ¼ 0:2 0.20 1.44
p3 ¼ 0:3 0.30 1.08
p0 ¼ 0:5 0.50 1.45
b11 ¼ −3 −3:02 8.85
b12 ¼ −1 −1:00 3.84
b13 ¼ 1 1.01 9.11
b21 ¼ −2 −2:00 6.42
b22 ¼ −1 −1:00 3.74
b23 ¼ −1 −1:00 7.75
b31 ¼ −1 −0:99 4.94
b32 ¼ 1 1.00 2.44
b33 ¼ −1 −1:00 6.21

Parameter Estimate SE (�10−3)

p1 ¼ 0:1 0.10 1.21
p2 ¼ 0:2 0.20 1.27
p3 ¼ 0:3 0.30 1.23
p0 ¼ 0:5 0.50 1.99
p1 ¼ 0:3 0.30 1.35
p2 ¼ 0:2 0.20 0.97
p3 ¼ 0:1 0.10 0.60
b11 ¼ −3 −2:98 14.27
b12 ¼ −1 −1:00 6.42
b13 ¼ 1 0.98 13.62
b21 ¼ −2 −2:00 13.03
b22 ¼ −1 −1:00 7.68
b23 ¼ −1 −1:02 19.48
b31 ¼ −1 −1:00 10.41
b32 ¼ 1 0.99 6.97
b33 ¼ −1 −1:00 19.06

(a) INAR-MZIP model
(b) INAR-MZIHP model
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5. APPLICATION
5.1. Data Description

The study is based on a dataset comprising automobile insurance policies from a major European insurance company during
the underwriting years 2014 to 2019. This dataset includes bodily injury (BI) and property damage (PD) claims, denoted by N1

and N2, respectively, along with risk factors that impact both N1 and N2: An exploratory analysis was conducted to select the
subset of covariates with the highest predictive power for N1 and N2: The description and empirical distribution of the selected
explanatory variables are presented in Tables 5.2 and 5.3, respectively.

For our study, we randomly take 10,000 policyholders from the portfolio. The records in 2015 to 2018 are regarded as train-
ing data, and the records in 2019 are treated as test data. Therefore, we have 40,000 observations as training data to develop
the models and 10,000 observations as a hold-out sample to evaluate model performance. The empirical joint distributions for
claim numbers N1 and N2 across the 4 years (2015–2018) are displayed in Table 5.4. It is worth noting the presence of a multi-
variate zero inflation feature in the dataset, which confirms the validity of our proposed models.

5.2. Model Fitting
We begin by considering the scenario where no covariates are included. It is important to note that for the first type of

claim, the claim number is either 0 or 1. Therefore, when utilizing relevant hurdle models such as MZIHP, INAR-MZIHP, and
INAR-HP-copula, there is no need to model the positive part. In addition to our proposed INAR-MZIP and INAR-MZIHP
models, we apply several typical alternatives associated with Poisson distributions as benchmark models for comparison

TABLE 3
Empirical Distribution of Explanatory Variables over the Years 2015–2018

Car horsepower Policy type Region Vehicle age

C1 9,648 2,024 19,139 14,199
C2 13,777 8,248 16,451 22,932
C3 10,323 29,728 4,410 2,869
C4 6,252 — — —

TABLE 2
Description of Explanatory Variables

Variable Description

Car horsepower:
v1 ¼ v2 ¼ v3 ¼ 0 C1: 0–1299 cc
v1 ¼ 1, v2 ¼ v3 ¼ 0 C2: 1300–1399 cc
v2 ¼ 1, v1 ¼ v3 ¼ 0 C3: 1400–1599 cc
v3 ¼ 1, v1 ¼ v2 ¼ 0 C4: � 1600 cc
Policy type:
v4 ¼ v5 ¼ 0 C1: Economic type, which includes only MTPL coverage.
v4 ¼ 1, v5 ¼ 0 C2: Middle type, which includes other types of coverage like legal protection etc.
v5 ¼ 1, v4 ¼ 0 C3: Expensive type—own coverage
Region:
v6 ¼ v7 ¼ 0 C1: Capital city
v6 ¼ 1, v7 ¼ 0 C2: Provincial cities of mainland
v7 ¼ 1, v6 ¼ 0 C3: Provincial cities of island area
Vehicle age:
v8 ¼ v9 ¼ 0 C1: 0–10 years
v8 ¼ 1, v9 ¼ 0 C2: 10–20 years
v9 ¼ 1, v8 ¼ 0 C3: >20 years
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purposes. The description of each model is outlined below. Further details on these benchmark models can be found in
Appendix A.

� IP: Independent Poisson model.
� MZIP: Multivariate zero-inflated Poisson model; see (2.3).
� MZIHP: Multivariate zero-inflated hurdle Poisson model; see (2.6).
� Poi-copula: Gaussian copula to connect two Poisson marginals.
� INAR-Poi-copula: Gaussian copula to connect two INAR marginals, where the innovation parts are both modeled as

Poisson distributions.
� INAR-ZIP-copula: Gaussian copula to connect two INAR marginals, where the innovation parts are both modeled as

zero-inflated Poisson distributions.
� INAR-HP-copula: Gaussian copula to connect two INAR marginals, where the innovation parts are both modeled as hur-

dle Poisson distributions.
� INAR-BP: Bivariate INAR model with bivariate Poisson proposed in Berm�udez, Guill�en, and Karlis (2018).
� INAR-PS: Bivariate INAR model with bivariate Poisson-Sarmanov proposed in Berm�udez and Karlis (2021).

The comparison results are presented in Table 5.5. It is evident that the IP model performs the worst among all models,
indicating the need to introduce correlated effects between the two types of claims, in the form of either copula or multivariate
random variables. Furthermore, the INAR models generally outperform those without autocorrelation counterparts (INAR-Poi-
copula vs. Poi-copula, INAR-MZIP vs. MZIP, INAR-MZIHP vs. MZIHP), suggesting the importance of considering time cor-
relation to fit the claim data. Overall, all of the information criteria support our proposed INAR-MZIHP model as the best
performer.

We next turn to parameter estimation when covariates are introduced in our INAR-MZIHP model. The estimation results
are displayed in Table 5.6. The 95% confidence interval of p0 is ð0:063, 0:083Þ, with the upper bound significantly below the
boundary of 1. This indicates the presence of a multivariate zero inflation feature within the dataset. For the claims of N1 type,
p1¼0, suggesting that the number of claims in the previous year does not influence the number of claims in the current year.
However, for the N2 type, p2¼0.034, with the lower boundary of the 95% confidence interval exceeding 0, confirming the sig-
nificance of the lag term. Moving on to the influence of covariates on p1, p2, and k2, it is observed that no predictor signifi-
cantly affects the occurrence of N1 type claims. As for the occurrence of the claims of N2 type, v6, v7, and v9 are all
statistically significant, indicating that driving in provincial cities on the mainland or island (v6 and v7) and vehicle age greater
than 20 (v9) are all associated with decreased chances of a claim in this category. Additionally, conditional on the occurrence

TABLE 4
Empirical Joint Distribution of N1 and N2 in Each Year from 2015 to 2018

N2

N1 0 1 2 3

2015

0 9521 429 18 1
1 4 24 3 0
2016

0 9484 470 23 0
1 10 13 0 0
2017

0 9448 508 22 2
1 4 16 0 0
2018

0 9467 483 26 2
1 2 19 1 0
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of N2 type claims, v1 and v2 are positively associated with the positive number of claims. This suggests that higher horsepower
correlates with more claims of this type.

5.3. Predictive Performance
In insurance claims modeling, we are concerned about the overall distribution of the portfolio, which can be used for pre-

mium calculation, risk management, and so forth. To evaluate the predictive performance, we then calculate the predicted
claim frequencies (expected frequencies) by summing individual probabilities of joint events ðN1,N2Þ 2
fð0, 0Þ, ð0, 1Þ, ð0, 2Þ, ð1, 0Þ, ð1, 1Þ, ð1, 2Þg based on estimated parameters. These are then compared to observed frequencies
from the test sample. In addition to our proposed INAR-MZIHP model, we try the INAR-BP and INAR-PS models as the
benchmark for comparison, because these two models generally exhibit superior Akaike information criterion and Bayesian
information criterion compared to other candidates, as seen from Table 5.5. To mitigate overfitting, a stepwise variable selec-
tion process is conducted, and only relevant covariates are retained in the model. The corresponding estimation results are

TABLE 5
Information Criteria of Several Relevant Fitted Models

Model Parameters Log-likelihood Akaike information criterion Bayesian information criterion

IP 2 −9, 221:82 18,447.64 18,464.84
MZIP 3 −9, 141:52 18,289.03 18,314.82
MZIHP 4 −9, 027:68 18,063.36 18,097.74
Poi-copula 3 −9, 086:45 18,178.90 18,204.69
INAR-Poi-copula 5 −9, 065:27 18,140.54 18,183.52
INAR-ZIP-copula 7 −9, 055:38 18,124.76 18,184.93
INAR-HP-copula 6 −9, 054:59 18,121.17 18,172.75
INAR-BP 5 −9, 040:77 18,091.53 18,134.51
INAR-PS 5 −9, 031:91 18,073.82 18,116.80
INAR-MZIP 5 −9, 121:99 18,253.98 18,296.96
INAR-MZIHP 6 −9, 006:56 18,025.13 18,076.71

TABLE 6
Estimates of the Full INAR-MZIHP Model

p1 p2 k2

Estimate t Ratio Estimate t Ratio Estimate t Ratio

Intercept −2:885 −2:038	 1.383 2.248	 −3:269 −3:819			
v1 0.259 0.815 0.245 1.113 0.645 2.036	
v2 −0:186 −0:553 0.163 0.685 0.847 2.840		
v3 −0:224 −0:381 0.178 0.455 0.487 1.364
v4 0.038 0.026 0.132 0.278 −0:133 −0:128
v5 −0:286 −0:202 0.184 0.439 −0:627 −0:593
v6 −0:334 −1:312 −1:390 −5:015			 −0:002 −0:007
v7 −0:646 −1:410 −1:336 −4:503			 −0:588 −0:828
v8 −0:169 −0:644 −0:113 −0:679 0.289 1.027
v9 −0:985 −1:483 −0:818 −2:962		 −0:290 −0:471

Estimate 95% Confidence interval

p0 0.073 (0.063, 0.083)
p1 0.000 (0.000, 0.000)
p2 0.034 (0.021, 0.047)

Note: 	p < .05. p < 		.01. 			p < .001.
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TABLE 7
Estimates of the Reduced INAR-MZIHP Model

p1 p2 k2

Estimate t Ratio Estimate t Ratio Estimate t Ratio

Intercept −3:383 −27:379			 1.583 5.371			 −3:393 −17:054			
v1 0.390 1.472
v2 0.615 2.289	
v6 −1:333 −6:523			
v7 −1:285 −5:031			
v9 −0:716 −3:020		

Estimate 95% Confidence interval

p0 0.073 (0.065, 0.081)
p1 0.000 (0.000, 0.000)
p2 0.036 (0.023, 0.048)

Note: 	p < .05. p < 		.01. 			p < .001.

TABLE 8
Estimates of the Reduced INAR-BP Model

p1 p2 k2

Estimate t Ratio Estimate t Ratio Estimate t Ratio

Intercept −7:542 −33:772			 −2:756 −92:034			 −6:282 −53:883			
v6 −0:453 −9:191			
v7 −0:457 −5:604			
v9 −0:344 −3:376			

Estimate 95% Confidence interval

p1 0.000 (0.000, 0.000)
p2 0.038 (0.025, 0.050)

Note: 	p < .05. p < 		.01. 			p < .001.

TABLE 9
Estimates of the Reduced INAR-PS Model

k1 k2

Estimate t Ratio Estimate t Ratio

Intercept −6:032 −59:099			 −2:719 −92:530			
v6 −0:452 −9:337			
v7 −0:453 −5:663			
v9 −0:360 −3:570			

Estimate 95% Confidence interval

p1 0.000 (0.000, 0.000)
p2 0.038 (0.025, 0.051)
x 24.541 (19.762, 29.320)

Note: 	p < .05. p < 		.01. 			p < .001.
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presented in Tables 5.7, 5.8, and 5.9. These reduced models are utilized for prediction and ratemaking purposes. Furthermore,
we incorporate results for the MZIHP model, given its second-best performance in fitting the training data, as evidenced by
Table 5.5.

The predictive joint frequencies ðN1,N2Þ generated by these models are summarized in Table 5.10. It is evident that both
the MZIHP and INAR-MZIHP models exhibit superior predictive performance based on v2 statistics. Apart from the frequency
comparison, the overall predictive ability of the models can be assessed by examining the log-likelihood values on the test
data. As shown in Table 5.10, once again, the superiority of our proposed INAR-MZIHP model is apparent. This finding con-
sistently aligns with the conclusions drawn from the model fitting part.

5.4. Application to Ratemaking
In this subsection, we analyze several fitted models for ratemaking. We have chosen three representative risk profiles under

different models, labeled as Good, Average, and Bad. The three risk profiles under the four models are presented in
Table 5.11.

We then calculate the means and variances of N1t þ N2t for three representative risk profiles under each model. The formu-
las for these computations are detailed in Appendix B. Tables 5.12 and 5.13 compare the means and variances of three profiles
across the four models, given the claim counts from the previous year. Because p1 ¼ 0 in the INAR models, the means and
variances in these models are unaffected by the number of claims of the first type. For the MZIHP model, claim history is
irrelevant to the prediction of future claims.

TABLE 10
Predicted Frequencies and Log-Likelihood Values on Test Data under Each Model

ðN1,N2Þ Observed INAR-MZIHP MZIHP INAR-BP INAR-PS

(0, 0) 9420 9482.00 9484.73 9475.11 9469.14
(0, 1) 524 471.46 467.41 487.35 492.78
(0, 2) 30 21.97 23.23 13.32 13.82
(1, 0) 4 7.86 7.69 5.02 11.54
(1, 1) 21 15.38 15.52 17.96 11.94
(1, 2) 1 0.74 0.77 0.92 0.46

v2 13.24 13.04 24.69 33.61
Log-likelihood −2, 440:023 −2, 446:275 −2, 442:309 −2, 447:954

TABLE 11
Three Different Risk Profiles under the Four Models

v1 v2 v6 v7 v9

Good 0 0 1 0 1
Average 1 0 0 1 0
Bad 0 1 0 0 0

v6 v7 v9

Good 0 1 1
Average 1 0 0
Bad 0 0 0

(a) INAR-MZIP and MZIHP models
(b) INAR-BP and INAR-PS models
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6. CONCLUDING REMARKS
This article introduces a flexible framework aimed at addressing time dependence and cross-dependence in multivariate

insurance claim counts. We utilized the recently proposed multivariate zero-inflated Poisson and multivariate zero-inflated hur-
dle Poisson distributions to model the innovation term of the multivariate INAR(1) model. The resulting models effectively
capture overdispersion and the high prevalence of zeros observed in real insurance data. The article distinguishes itself from
previous works by employing the EM algorithm for parameter estimation.

In our numerical analysis, we utilized a dataset comprising automobile insurance policies from the underwriting years 2014
to 2019. Here, observations from 2015 to 2018 were designated as training data, and those from 2019 were used as test data to
evaluate model performance. In addition to the proposed INAR-MZIP and INAR-MZIHP models, we applied several alterna-
tives related to Poisson distributions as benchmark models for comparison. Generally, the INAR(1) models outperformed their
counterparts without autocorrelation, highlighting the significance of considering time correlation when modeling claim counts
data. Overall, all information criteria favored the superior performance of the INAR-MZIHP model. These models were further
employed in a ratemaking scenario for pricing an automobile insurance contract.

In this study, our methodology effectively addresses the time dependence structure by assuming a diagonal matrix P in the
model, thereby substantially reducing the correlation structure. However, exploring more intricate arrangements, such as a non-
diagonal matrix P, could provide insights into additional sources of dependence. Furthermore, our current time dependence

TABLE 12
Premium Calculations from Different Models: Means

Profile ðn1, t−1, n2, t−1Þ INAR-MZIHP MZIHP INAR-BP INAR-PS

Good (0,0) 0.0315 0.0353 0.0329 0.0317
(0,1) 0.0671 0.0353 0.0705 0.0693
(1,0) 0.0315 0.0353 0.0329 0.0317
(1,1) 0.0671 0.0353 0.0705 0.0694

Average (0,0) 0.0464 0.0471 0.0447 0.0444
(0,1) 0.0820 0.0471 0.0823 0.0820
(1,0) 0.0464 0.0471 0.0447 0.0444
(1,1) 0.0820 0.0471 0.0823 0.0821

Bad (0,0) 0.0668 0.0686 0.0678 0.0683
(0,1) 0.1024 0.0686 0.1054 0.1060
(1,0) 0.0668 0.0686 0.0678 0.0683
(1,1) 0.1024 0.0686 0.1054 0.1060

TABLE 13
Premium Calculations from Different Models: Variances

Profile ðn1, t−1, n2, t−1Þ INAR-MZIHP MZIHP INAR-BP INAR-PS

Good (0,0) 0.0335 0.0375 0.0366 0.0330
(0,1) 0.0678 0.0375 0.0728 0.0693
(1,0) 0.0335 0.0375 0.0366 0.0330
(1,1) 0.0678 0.0375 0.0728 0.0693

Average (0,0) 0.0501 0.0513 0.0484 0.0463
(0,1) 0.0844 0.0513 0.0846 0.0825
(1,0) 0.0501 0.0513 0.0484 0.0463
(1,1) 0.0844 0.0513 0.0846 0.0826

Bad (0,0) 0.0724 0.0744 0.0715 0.0713
(0,1) 0.1067 0.0744 0.1077 0.1076
(1,0) 0.0724 0.0744 0.0716 0.0713
(1,1) 0.1067 0.0744 0.1077 0.1076
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assumption is limited to claims counts reported in the preceding period. To mitigate this limitation, exploring higher-order
models, such as MINAR(p) with p > 1, warrants consideration in future research endeavors.
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APPENDIX A. DESCRIPTION FOR SOME BENCHMARK MODELS

A.1. Copula Model
We aim to compare our proposed INAR-MZIP and INAR-MZIHP models with some copula models. For our purpose,

we use the Gaussian copula as an example. Instead of pairing the bivariate sequence ðN1t,N2tÞ by the joint inflated probabil-
ity p0, we introduce correlation using the Gaussian copula to connect the two discrete marginals. The bivariate Gaussian
Copula is defined as

CGaussðu1, u2Þ ¼ UqðU−1ðu1Þ,U−1ðu2ÞÞ,

where Uð�Þ is the cumulative distribution function (cdf) of the standard normal distribution, U−1ð�Þ is its quantile function,
and Uqð�, �Þ is the cdf of a bivariate normal distribution with density function /qð�, �Þ defined as follows:

/qðx1, x2Þ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

p exp −
1
2
x21 − 2qx1x2 þ x22

1 − q2

( )
, (A.1)

where q is the correlation parameter. Here, u1 and u2 are the cdf of discrete marginals N1t and N2t, respectively. We con-
sider the following choices for marginals:

� Poison model (Poi-copula).
� INAR(1) model: N1t and N2t are both modeled as univariate INAR(1). The model is defined as

Nt ¼ p�Nt−1 þ Rt, (A.2)

where Rt denotes the innovation part. The pmf of Nt is given by

f ðntjnt−1Þ ¼
Xminðnt , nt−1Þ

k¼0

nt−1
k


 �
pkð1 − pÞkfRðnt − kÞ: (A.3)

For the innovation part, three choices are considered:

� Poisson (INAR-Poi-copula)
� Zero-inflated Poisson (INAR-ZIP-copula). The pmf is given by

fRðrÞ ¼
1 − p0 þ p0e−k, r ¼ 0,

p0
e−kkr

r!
, r > 0:

8<
: (A.4)

� Hurdle Poisson (INAR-HP-copula). The pmf is given by

fRðrÞ ¼
1 − p0, r ¼ 0,

p0
e−kkr−1

ðr − 1Þ! , r > 0:

8<
: (A.5)

A.2. Bivariate INAR(1) Model
In addition to our proposed INAR-MZIP and INAR-MZIHP models, we try other bivariate INAR models with different
innovation terms. We consider the following two choices for the innovation term:

� Bivariate Poisson (INAR-BP). This distribution, characterized by three parameters ðk0, k1,k2Þ, is formulated as follows:

R1 ¼ Z1 þ Z0, R2 ¼ Z2 þ Z0, (A.6)
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where each Zj, j ¼ 0, 1, 2, independently follows a simple Poisson distribution with parameter kj: Its pmf is given by

fRðrÞ ¼ e−k0−k1−k2
Xminðr1, r2Þ

j¼0

kj0
j!

kr1−j1

ðr1 − jÞ!
kr2−j2

ðr2 − jÞ! : (A.7)

� Poisson-Sarmanov (INAR-PS). The pmf of this distribution, characterized by three parameters ðx,k1, k2Þ, is given as
follows:

fRðrÞ ¼ e−k1kr11
r1!

e−k2kr22
r2!

1þ xðe−r1 − e−k1cÞðe−r2 − e−k2cÞ
� �

, (A.8)

where c ¼ 1 − e−1: To ensure the nonnegativity of this pmf, the following restrictions apply to x :

−minð 1
L1L2

,
1

ðL1 − 1ÞðL2 − 1ÞÞ � x � minð 1
ð1 − L1ÞL2 ,

1
ð1 − L2ÞL1Þ, (A.9)

where Lj ¼ e−kjc, j ¼ 1, 2, is the value of the Laplace transform function of Poisson distribution evaluated at 1.

APPENDIX B. DISTRIBUTIONAL PROPERTIES FOR SOME INAR(1) MODELS

B.1. Two Multivariate Zero-Inflated INAR(1) Models
The conditional mean and variance of two multivariate zero-inflated INAR(1) models (INAR-MZIP and INAR-MZIHP)

are

EðNjtjNj, t−1 ¼ nj, t−1Þ ¼ pjnj, t−1 þ EðRjtÞ,
VarðNjtjNj, t−1 ¼ nj, t−1Þ ¼ pjð1 − pjÞnj, t−1 þ VarðRjtÞ,

(B.1)

where EðRjtÞ is given by

EðRjtÞ ¼
p0kj, MZIP,

p0pjðkj þ 1Þ, MZIHP,

(
(B.2)

and VarðRjtÞ is given by

VarðRjtÞ ¼
p0kj þ p0ð1 − p0Þk2j , MZIP,

p0pjkj þ p0pjð1 − p0pjÞðkj þ 1Þ2, MZIHP:

(
(B.3)

The covariance between Njt and Nj0t, j 6¼ j0 is given by

CovðNjt,Nj0tÞ ¼
p0ð1 − p0Þkjkj0 , INAR-MZIP,

p0ð1 − p0Þpjpj0 ðkj þ 1Þðkj0 þ 1Þ, INAR-MZIHP:

(
(B.4)

B.2. Two Bivariate INAR(1) Models
The conditional mean and variance of two bivariate INAR(1) models (INAR-BP and INAR-PS) are

EðNjtjNj, t−1 ¼ nj, t−1Þ ¼ pjnj, t−1 þ EðRjtÞ,
VarðNjtjNj, t−1 ¼ nj, t−1Þ ¼ pjð1 − pjÞnj, t−1 þ VarðRjtÞ,

(B.5)
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where EðRjtÞ is given by

EðRjtÞ ¼
kj þ k0, BP,

kj, PS,

(
(B.6)

and VarðRjtÞ is given by

VarðRjtÞ ¼
kj þ k0, BP,

kj, PS:

(
(B.7)

The covariance between N1t and N2t is given by

CovðN1t,N2tÞ ¼
k0, BP,

xk1k2c2e−ðk1þk2Þc, PS:

(
(B.8)
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