
Papers in Environmental Economics and Policy

Heterogeneous effects of weather
shocks on firm economic performance

Romano Tarsia

Paper No. 45
Geography and Environment Discussion Paper Series

July 2024



All views expressed in this paper are those of the author(s) and do not necessarily
represent the views of the editors or LSE. The results presented in the paper are not
peer-reviewed.

Editorial Board
Professor Riccardo Crescenzi
Professor Hyun Bang Shin
Dr Charles Palmer

Published by
Department of Geography and Environment
London School of Economics and Political Science
Houghton Street 
London 
WC2A 2AE

geog.comms@lse.ac.uk
www.lse.ac.uk/Geography-and-Environment

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means without the prior
permission in writing of the author(s) nor be issued to the public or circulated in any
form other than that in which it is published. Requests for permission to reproduce
any article or part of the Discussion Paper should be sent to the author(s) directly.



Heterogeneous effects of weather shocks

on firm economic performance

Romano Tarsia † ∗

†
London School of Economics

∗Baffi Centre, Bocconi University

September 2024

Latest Version

Abstract

This paper provides novel, firm-level estimates of the economic damages induced by

temperature shocks. Leveraging European firm-level data, this study investigates the

heterogeneity of damages across firms characteristics overlooked in aggregate analyses.

The analysis consistently highlights negative (positive) impacts on the least (most) pro-

ductive firms, contributing to both climate economics and the literature on aggregate

productivity. Evidence on firm size reveals negative impacts on small firms located in

warmer areas. Industry-specific effects indicate different susceptibilities across sectors

to weather shocks. These findings expand on the results from the pooled sample, which

show an inverted-U-shaped relationship between temperature and economic outcomes.

This evidence suggests that the statistical insignificance of the pooled marginal effects

is likely driven by the underlying heterogeneity.
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1 Introduction
The increasing attention devoted to climate change is reflected in a growing body of academic research esti-

mating its socioeconomic impacts (Carleton and Hsiang, 2016). Climate econometrics has emerged within this

literature, estimating the costs of historical weather and climate events, generally defined as climate damages.

These costs, in conjunction with climate projections, help quantify the present value of future climate change

losses1. A key complexity in climate policies is the time mismatch between immediate emission reduction and

future climate change costs. Estimating climate damages is essential to quantify future losses and set appro-

priate climate policies. These estimates are also crucial in refining the Social Cost of Carbon (SCC) (Stern,

2006; Pizer et al., 2014; Nordhaus, 2017; Rennert et al., 2022). Finally, identifying areas and entities with the

highest costs of climate change allows policymakers to design adaptation policies effectively.

Climate econometrics leverages changes in weather realisations to identify the causal effect of climate on

various socioeconomic variables (Dell et al., 2014)2, agricultural output (Deschênes and Greenstone, 2007;

Schlenker and Roberts, 2009; Burke and Emerick, 2016), industrial output (Graff Zivin and Kahn, 2016;

Zappalà, 2023), labour productivity (Graff Zivin and Neidell, 2014; Somanathan et al., 2021), natural capi-

tal (Benmir et al., 2024), and economic growth (Dell et al., 2012; Burke et al., 2015; Acevedo et al., 2020).

This literature relies on reduced form models exploiting exogenous weather variables and fixed effects (Hsiang,

2016) yielding plausibly exogenous variation of weather over time3. The relevant estimates are thus identified

through idiosyncratic weather shocks4. Within this literature, Dell et al. (2012) identify negative linear effects

of temperature on aggregate output for poor countries, while Burke et al. (2015) find that the global relationship

between temperature and GDP growth is smooth, non-linear and concave, following an inverted-U shape.

However, averaging local temperature at the country level leads to information loss, as different productive

units are likely exposed to opposing temperature shocks, particularly in large countries with multiple climatic

zones. This potentially introduces uncertainty and changes the true weather effect (Burke and Tanutama, 2019).

Recently, strides have been made by focusing on more granular units of analysis, such as counties or regions

(Burke and Tanutama, 2019; Kalkuhl and Wenz, 2020). Groom et al. (2023) find a nonlinear relationship

opposite to the literature in Europe, highlighting the importance of disentangling aggregate effects. Neverthe-

less, regional analysis still lacks the granularity needed to capture critical economic dynamics affecting climate

damages estimates. Moreover, identifying vulnerability heterogeneity at a more granular level provides poli-

cymakers with insights for tailoring adaptation policies, enhancing their effectiveness.

Since Melitz (2003) emphasized intra-industry heterogeneous firms’ responses to economic shocks, firm-level

analysis has become crucial in economic research, and it has recently been embraced in climate change eco-

nomics. Results consistent with the aggregate studies are found for medium and large firms in China (Zhang

et al., 2018; Chen and Yang, 2019), in a sample of manufacturing and service firms from various countries

(Nath, 2020), and in Italian firms (Caggese et al., 2023), whereas no significant effect is found on public firm

sales in the US (Addoum et al., 2020). Highlighting heterogeneous weather shocks across industries and re-

1Given the uncertainty of climate model projections (Murphy et al., 2004; Calel et al., 2020), enhancing

our understanding of climate damages could reduce the overall uncertainty in these losses.
2Such as mortality (Deschênes and Greenstone, 2011; Barreca, 2012; Burgess et al., 2017; Carleton et al.,

2022), violence and mental health (Card and Dahl, 2011; Carleton, 2017; Burke et al., 2018; Obradovich et al.,

2018; Cunsolo et al., 2020), conflicts (Miguel et al., 2004; Burke et al., 2009; Harari and La Ferrara, 2018)
3Climate is the distribution of possible outcomes, whereas weather is its realization (Hsiang, 2016).
4Studies on economic growth initially relied on cross-sectional identifications (Mendelsohn et al., 1994;

Nordhaus, 2006; Dell et al., 2009). To avoid bias from spurious associations of temperature with national char-

acteristics (Acemoglu et al., 2002; Rodrik et al., 2004), the literature evolved towards panel data approaches.
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gions helps understand how micro-level impacts affect macro-level climate damages, as shown by Ponticelli

et al. (2023), who highlights temperature impacts across firm size categories in the US.

In this paper, I conduct a firm-level analysis to explore the complex impact of weather shocks on the perfor-

mance of European firms5. The European focus is particularly relevant because aggregate studies suggest that

temperature variations do not significantly affect the European economy (Burke et al., 2015; Acevedo et al.,

2020), and some even indicate a positive effect (Groom et al., 2023)6. Exploring sources of heterogeneity

enables us to infer whether such damages are genuinely limited, or whether the aggregate estimates are con-

founded by different effects. In this regard, Groom et al. (2023) find heterogeneous damages across European

regions, with temperature impacting the economy following a U-shaped relationship, in contrast with previous

literature. By exploring the within-region distribution of economic activities, this analysis contributes to an-

swering two main questions. First, whether aggregate results adequately capture the impact of temperature on

economic outputs, or rather, whether they mechanically attenuate this effect by averaging out heterogeneous

underlying responses. Second, if responses are heterogeneous, it seeks to identify their economic drivers.

To answer these question, I generate baseline results at the pooled level, providing a foundation for comparison

with prior studies. Consistent with previous research, these reveal an inverted-U-shaped relationship between

temperature and economic outcomes, although the associated marginal effects are statistically insignificant.

I further extend the analysis by introducing interactions between weather variables and firm characteristics,

which highlight substantial climate damages heterogeneity - likely a key factor contributing to the insignif-

icance of the pooled results. Specifically, this study reveals that in general, high-productive firms appear to

be better shielded from weather shocks. The marginal effect of an additional 1◦C is either positive or not

statistically significant for these firms, although high-productive firms exhibit negative marginal effects in the

pooled sample when located in colder areas. In contrast, low-productive firms consistently experience negative

impacts from rising temperature, albeit with some exceptions.

This paper contributes to different literature. First, the identification strategy section contributes to the climate

econometrics literature by discussing the two econometric approaches commonly adopted in estimating the

impacts of temperature shocks (temperature polynomials and temperature bins). Further, it addresses, in the

firm-level context, methodological drawbacks that have been recently raised (Newell et al., 2021). Secondly,

this work contributes to the climate economics literature by deepening our current understanding of the diverse

ways firm heterogeneity influences climate damages. Thirdly, beyond its relevance to the applied climate

economics literature, this research yields insights that are potentially valuable for the broader discussions on

firm dynamism (Decker et al., 2016), firm inequality (De Loecker et al., 2022), and aggregate productivity

(Foster et al., 2001)7. The analysis focusing on damages heterogeneity across firm productivity categories

contributes to shedding some lights on the possible drivers of the aggregate productivity slowdown in Europe.

The rest of this paper is structured as follows: section 2 presents the data, section 3 describes the identification

strategy, section 4 reports and discusses results and section 5 concludes.

5Despite its large share of the global GDP, Europe has not been previously analysed in firm-level studies.
6Europe is composed of developed countries with generally temperate temperature. Ceteris paribus, these

characteristics are usually associated with lower climate damages.
7Caggese et al. (2023) develop a structural framework to estimate aggregate productivity losses from firm-

level damages.
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2 Data
2.1 Economic Data
I use firm-level data from 1995 to 2020 derived from the administrative micro-level dataset Orbis Historical,

provided by Bureau Van Dijk Electronic Publishing (BvD). These data have been extensively used in the liter-

ature focusing on firm dynamics (Bloom et al., 2016; Gopinath et al., 2017; Acharya et al., 2019; Autor et al.,

2020). This database provides data on firm balance sheets and income statements for over 400 million com-

panies worldwide, covering firms in all sectors of the economy. The main variables of interest in this analysis

encompass real gross output (GO), real value added (VA), capital stock (K), number of employees (L), and

total factor productivity (TFP). I estimate TFP using the Wooldridge (2009) method8. All financial variables,

except for labour, are adjusted to 2010 prices using industry-level deflators from OECD STAN9. The most

recent available deflators correspond to either 2019 or 2018. As the latest year in my sample is 2020, I adopt

the most recent deflator for subsequent years10. Furthermore, I calculate the investment and capital stock us-

ing the Perpetual Inventory Method (PIM). Additionally, I adjust the financial variables by the OECD STAN

PPP (LCU per US dollar) series to correct for price-level differences across countries. Finally, I winsorise the

financial variables at the 1st and the 99th percentiles to mitigate the influence of outliers.

Kalemli-Ozcan et al. (2015) highlight the main challenges related to using Orbis data for research purposes.

To minimise such issues, I follow and extend11 the Kalemli-Ozcan et al. (2015) cleaning procedure. After this

procedure, the total number of observations falls from 212,377,647 to 70,346,838. Table 2 reports descriptive

statistics for the final dataset. Table 4 reports the total number of observations with at least one non-missing

variable of interest (i.e. the union of observations with non-missing GO, VA and TFP) after the cleaning

procedure (column 1) and the number of observations with non-missing GO (column 2), VA (column 3) and

TFP (column 4)12. It is worth specifying that the panel is unbalanced. This is primarily due to the well-known

enhancement in data availability and representativeness over time, a factor that should be considered when

analysing the data. Furthermore, such improvement in data availability is not uniform across countries. Lastly,

the decrease in observation availability in 2020 is a result of the reporting lag in Orbis.

Country-specific total numbers of observations are reported in table 3. I excluded Ireland and Luxembourg

from the initial sample due to their favorable fiscal policies, which could introduce biases in the results. To gain

insights into the distribution of firms, I present maps depicting the spatial distribution of firm-level variables

aggregated at the Nuts 3 level. Figures 12 and 13 reveal significant heterogeneity between regions. While this

visualization is informative for understanding firm characteristics within the sample, caution is needed when

making inferences about the broader firm population due to potential non-random data availability, such as

missing firms. A notable example is Germany, where regions have a low number of firms, leading to relatively

low aggregate gross output and employment. Average values reveals that Germany consistently features large

8Wooldridge (2009) extends the two-step estimation procedures from Olley and Pakes (1996) and Levin-

sohn and Petrin (2003), implementing a two-equations GMM estimation which solves an identification problem

present in previous models and leads to more efficient estimators.
9Industry-level deflators are available at different NACE levels of aggregation for different industries. I

defined an algorithm to identify and select the most granular available level of aggregation for each industry.
10I choose this approach for its likely conservatism compared to assuming a consistent growth rate as in

previous years for imputed values.
11I extend the cleaning procedure by setting to missing implausible negative values for financial variables

and unrealistic spikes in their growth rates.
12The number of available observations for TFP is lower than GO and VA because the Wooldridge (2009)

TFP estimation procedure requires non-missing VA, K, L and cost of materials contemporaneously.
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firms, with an under-representation of small firms. This should be considered when discussing the external

validity of the estimates presented in this paper.

However, the total number of observations does not necessarily provide the full picture of how representative

the sample is for the entire economy. Rather, it is good practice to assess representativeness in terms of cover-

age. That is, the ratio between aggregate economic output across all firms in the Orbis sample and aggregate

values from official statistical offices. Figure 1 shows that, although the coverage is relatively stable over time

within each country, there are non-negligible differences across countries. Specifically, notwithstanding the

low coverage for Germany and the Netherlands, the coverage for the remaining countries is generally good,

with most country-year values above 0.5. European countries generally have better coverage, as firms of all

sizes face the same regulatory requirements to file most of the balance sheet variables included in the database.
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Figure 1: Coverage of the aggregate economy from Orbis data in terms of gross output. The values report for

each country-year the ratio (bounded between 0 and 1) between aggregate gross output for the firms included

in the sample and the economy-wide gross output. The economy-wide gross output values are only available

since 2008. Source: Orbis and EUROSTAT.

While the overall number of observations provides some insight, the real focus of this work is on understanding

the underlying heterogeneity. Table 5 breaks down observations across broadly defined sectors, aggregating

the NACE revision 2 level 2 sectors into the broader NACE revision 2 level 1 for clarity. Notably, there are

significant variations in data availability among industries. While these differences likely mirror the broader

economic landscape, they should be considered when delving into industry-level heterogeneity, as they can

impact standard errors and statistical significance. Given the modest number of observations for industries

“O-Public administration and defence compulsory social security" and “U-Activities of extraterritorial organ-

isations and bodies", firms belonging to these sectors are excluded from the analysis.

Another important aspect is firm size. Past research has underscored a significant positive correlation between

size and productivity, albeit with variations across countries (Bartelsman et al., 2013). Orbis holds a distinct

advantage over other firm-level data sources due to its inclusive coverage of Small and Medium Enterprises

(SMEs). This is crucial because the exclusive focus on large firms would result in estimates with low external

validity, leading to partial conclusions and misguided policy implications. Considering the geographical focus

of this study, the inclusion of SMEs is particularly relevant given their significant contributions and substantial

presence in the European economy. Table 6 outlines the number of observations for three periods in our sample,

categorized by firm size13. Not only does the presence of SMEs increases over time, but their relative share

13Firm size is based on the number of employees according to the European Commission classification.
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also grow. In this regard, it is worth highlighting that Orbis data suffer from underrepresentation of small firms,

particularly before 2006 in countries like Germany, the Netherlands, and Ireland (Kalemli-Ozcan et al., 2015).

An additional multi-step process ensures the accuracy of reported coordinates14. I devised a simple procedure

to remove implausible values at the Nuts 3 and city levels. After matching firms with Nuts 3-level shapefiles, I

marked coordinates as missing if falling outside their region. Subsequently, I generated city-level coordinates

and replaced firm coordinates with their city averages if the difference between the two exceeded 0.25 degrees.

An additional procedure imputes the city-street level mode coordinates when these are missing. If multiple

modes were present, I use the average coordinates unless the difference between the minimum and maximum

mode exceeded 0.25 in absolute value. Testing these values with OpenCage geocoding consistently showed a

correlation above 99%. For a detailed description, refer to Appendix B.

2.2 Weather Data
I retrieve weather data from the Copernicus Climate Change Service (C3S) within the European Centre for

Medium-Range Weather Forecasts (ECMRWF). I utilise hourly average temperature (◦C) and total monthly

precipitation (m) from the ERA5-Land product (Hersbach et al., 2020, 2019) which represents the fifth gen-

eration reanalysis of global climate and weather from 1950 onwards regridded to a regular latitude-longitude

grid of 0.1 degrees (∼ 9 km). Reanalysis combines model data with worldwide observations, resulting in a

globally complete and consistent dataset according to the laws of physics. As meteorological measurements

from station-based weather data are unevenly distributed globally, they can lead to inconsistencies between dif-

ferent areas. Such uneven distribution may introduce endogeneity in the estimation process, as the availability

of meteorological stations is likely correlated with socioeconomic variables, which, in turn, are correlated with

firms’ performance. In contrast, reanalysis data are evenly available both over time and across space.
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Figure 2: Distribution (a) and Spatial distribution (b) of yearly average temperature across firm-year obser-

vations in Europe. Source: ECMWF.

Figure 2a plots the distribution of yearly average temperature for the firm-year observations included in the

dataset. As is evident, the bulk of the observations is between (8◦C) and (19◦C). As expected, the distribution

reports large varition in yearly average temperatures. Figure 2b reports the map of the the average temperature

across the firm-year observations within each Nuts 3 region. In line with existing literature, I aggregate hourly

average temperature to compute yearly average temperature and total monthly precipitation to compute yearly

total precipitation. I match weather and firm-level data using the coordinates available in the two datasets.

14Coordinates for AT, DE, FI, GR, and SE are unavailable in Orbis Historical, geocoded using OpenCage.
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Employing an inverse-distance weighted matching procedure, I construct smoothed averages across space for

the weather variables. Opting for inverse-distance weighting over matching based on the closest grid helps

avoid potential inaccuracies in the assigned weather measures15. Additionally, this matching approach defines

longitude-latitude-specific measures, introducing more variability than grid-specific measures. Due to com-

putational limitations, I restrict this matching process to grids within a 10 km radius of the firm location. The

spatial match is conducted based on geodetic distances (Picard, 2019).

A potential concern with this procedure is that firm locations may change over time, the physical and legal

locations may differ, or the firm may have subsidiaries in different areas, potentially introducing bias to the

estimates. The first concern is ruled out as BvD firm identifiers automatically change when a firm relocates

to a different location. In addition, I rely on firm unconsolidated financial statements to exclude inflows from

subsidiaries16. Moreover, the advantage of Orbis data lies in its extensive coverage of small and micro-firms,

which are less likely to have different physical and legal locations (Fadic et al., 2019). While this assumption

is reasonable for the scope of this work, further research should address and possibly rule out this concern.

Figure 3: Bivariate Spatial distribution of yearly average temperature and total gross outpus across firm-year

observations aggregated at the Nuts 3 level in Europe. The legend reports yearly average temperature on the

X-axis and total GO on the Y-axis. Colours from bottom to top of the legend indicate higher total GO, whereas

colours from left to right indicate higher yearly average temperatures. Source: Orbis and ECMWF.

To provide an overview of how the matched temperature and gross output are jointly spatially distributed,

figure 3 reports the bivariate map of firm-level yearly average temperature and gross output aggregated at the

Nuts 3 level. The figure reveals substantial heterogeneity in the interaction between these two variables across

space17. This is relevant because it allows alleviate selection bias. For example, southern Europe is warmer

and usually considered as less economically developed. However, the figure shows that in warmer areas both

less-developed (south of Italy and Greece) and more-developed (south of Spain) areas are present.

15Consider a firm in a temperate valley near the border of two grids. Using closest-distance matching, its

coordinates might be closer to a grid’s centroid that includes a mountain, resulting in a matched temperature

significantly colder than its actual temperature.
16Unconsolidated financial statements are identified in Orbis as U1 and U2.
17The low values observed for total gross output and employment in German regions are driven by a low

coverage and low number of firms as shown in figures 12a and 14a and discussed in previous section.
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3 Identification and Model Selection
As highlighted in the introduction, the climate econometrics literature has evolved over time, refining methods

to better capture various causal effects of temperature. Similarly to causal inference methods that exploit

quasi-experimental settings, climate econometrics relies on exogenous variation in weather outcomes resulting

from physics principles. Moreover, the inclusion of relevant fixed effects allows us to disentangle plausibly

random weather fluctuations from long-term climate, which is likely correlated with other socioeconomic

characteristics. These fixed effects ensure that constant unobserved components, which could introduce omitted

variable bias if left unaccounted for, are incorporated into the estimation process.

Understanding the economic responses to climate change through the study of annual weather fluctuations is

complex, and it is important to use the terms ‘weather’ and ‘climate’ carefully. ‘Climate’ refers to the distri-

bution of outcomes, such as the range of temperatures experienced in an area, whereas ‘weather’ represents

the realization of this distribution (Hsiang, 2016)18. Throughout this paper, I rely on weather fluctuations to

identify the marginal effect of increasing temperature. These findings contribute to the broader discussion

on climate damages, to the extent that climate change contributes to the observed increases in temperature

reflected in weather fluctuations.

Over the last two decades two main approaches attempting at identifying the economic impacts of weather fluc-

tuations have become the standard in the climate econometrics literature. One exploiting fluctuations in yearly

average temperature (Dell et al., 2012; Burke et al., 2015), and another exploiting variation in the number of

days in a year with daily average temperature within a certain interval (bin), first developed in Deschênes et al.

(2009). The former estimates the marginal effect of an additional 1◦C in yearly average temperature, whereas

the latter estimates the marginal effect of an additional day with daily average temperature falling within a

specific temperature bin compared to a temperate day. These models are not mutually exclusive, but rather

complementary, and the choice between the two alternatives depends on the specific research question. The

temperature bins specification is becoming particularly popular at the moment, possibly due to its straightfor-

ward causal identification and clearer interpretation.

Although more straightforward to interpret, the temperature bins models rely on the assumption that the impact

of temperature on yearly production is a linear combination of daily average temperatures, with each day having

the same weight. This is a plausible assumption in the case of analysis studying the effects of temperature on

mortality. However, the assumption is weaker for firm-level production, since firms’ production is usually

not constant across days. For example, several firms adjust their production according to exogenous variation

in demand, reduce their production during weekends or summer, and in some cases some firms temporarily

interrupt production. Although this is not necessarily the case for some manufacturing firms which tend to

produce at a mostly continuous rate - yet production can still slow-down in certain periods - it is more likely

for firms in the agriculture, trade, retail or service sectors, which are a relevant part of the firms in my sample.

Moreover, estimates based on yearly average temperatures are relevant to the broader discussion on the esti-

mation of the SCC, to the extent that these are used as inputs in general equilibrium macroeconomic models

(Nordhaus, 1991). For these reasons, in this paper I rely on variation in firm-specific yearly weather fluctua-

tions to identify the effect of higher temperature on firm economic performance. Specifically, I estimate the

marginal effect of an additional 1◦C in yearly average temperature using the following general model:

18On this regard, Deryugina and Hsiang (2017) demonstrate that the marginal effect of long-run climate

can be identified using only idiosyncratic weather variation, although under the strong assumption of efficient

competitive markets.
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ΔYi,t = g(Ti,t) + f(Pi,t) +
∑
�≥1

h(Ti,t−�) + δi + δ−i + εi,t (1)

WhereΔYi,t = Yi,t−Yi,t−1 represents the yearly growth rate of either either of the economic variables for firm

i in year t. The function g(Ti,t) is a jth order polynomial in temperature, capturing the impact of temperature

on firm economic performance. It is defined as the dot-product between the 1×j row vector of marginal effects

β′ and the j × 1 column vector of temperature Ti,t, where j represents the degree of the polynomial in Ti,t,

g(Ti,t) = β′
(1×j)

Ti,t
(j×1)

∀ j = 1, . . . , J (2)

expressing the vectors in matrix notation and applying the dot product between β′ and Ti,t, we can retrieve

the underlying jth order polynomial of temperature defined as

g(Ti,t) = β′Ti,t =
[
β1 . . . βj

]
(1×j)

⎡
⎢⎢⎣
Ti,t

...

T j
i,t

⎤
⎥⎥⎦

(j×1)

= β1Ti,t + · · ·+ βjT
j
i,t ∀ j = 1, . . . , J (3)

f(Pi,t) represents a kth order polynomial capturing the effect of precipitation on firm economic performance

and it is defined similar to g(Ti,t). Additionally,
∑

�>1 h(Ti,t−�) is a jth order polynomial with the same

degree as g(Ti,t). It is defined as the sum over the � lags of the dot product between the 1 × j row vector of

marginal effects γ′ and the j × 1 column vector of temperature for lag l T�

∑
�≥1

h(Ti,t−�) =
∑
�≥1

γ′
�

(1×j)

Ti,t−l
(j×1)

(4)

For � = 1 we have a jth order polynomial of 1-lag temperature Ti,t−1 defined analogously as g(Ti,t). Fur-

thermore, δi is a firm fixed effect that accounts for firm-specific unobserved constant components, δ−i is a

set of fixed effects complementary to δi, which can be adapted to the specific research design. For instance,

in analyses at the establishment level, these could include spatial fixed effects. Given that the current analysis

is based on firm-level observations, which are singularly located, spatial fixed effects would be nested under

the firm fixed effect and consequently omitted to avoid multicollinearity. In this paper, I adopt the restrictive

country-industry-year fixed effect λc,n,t that accounts for unobserved time-varying, and country-specific Nace

2 industry-specific trends or shocks (Wooldridge, 2002). These could be common trends such as technolog-

ical innovations or year-specific shocks, such as changes in energy prices or supply-chain shocks which are

allowed to differ across countries and accounting for macroeconomic shocks. I do not include time-trends in

the preferred specification since these have no effects on the resulting firm-level estimates. Specifically, the

results are robust to the inclusion of Nuts1-specific quadratic time trends. For an exhaustive discussion on the

inclusion of time-trends in climate econometrics studies see Bearpak and Palomba (2024). Finally, εi,t is the

idiosyncratic error component, assumed to be exogenous to the weather-related covariates.

Specifically, given the temperature damage function identified in equation 1, the marginal effect of temperature

on firm variables is defined as

∂ΔYi,t

∂Ti,t
=

∂g(Ti,t)

∂Ti,t
(5)

for the contemporaneous effect and
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∂ΔYi,t

∂Ti,t−�
=

∂h(Ti,t−�)

∂Ti,t−�
(6)

for the effect of the �th lag. Therefore, the total cumulative effect, which identifies whether the effect of

temperature variation is persistent (Dell et al., 2012) is defined as

∂ΔYi,t

∂Ti,t
+
∑
�≥1

∂ΔYi,t

∂Ti,t−�
=

∂g(Ti,t)

∂Ti,t
+

∑
�≥1

∂h(Ti,t−�)

∂Ti,t−�
(7)

In the case of a 2nd order polynomial with 2 lags, the contemporaneous marginal effect is given by:

∂Yi,t

∂Ti,t
= β1 + 2β2Ti,t (8)

where the linear coefficient β1 represents the marginal effect of an additional 1◦C in terms of yearly average

temperature, on the growth rate of firms’ economic variables (in percentage points), for firms located in areas

with an average yearly temperature of 0◦C. The coefficient of the quadratic term β2 represents half of the

additional marginal effect for firms located in areas with temperature different from 0◦. That is, half of the

slope of the marginal effect function with respect to Ti,t. The persistence of the effect of increasing temperature

is quantified by adding up the contemporaneous and lagged coefficients of the quadratic model. As emphasised

by Newell et al. (2021) and further discussed by Klenow et al. (2023), if temperature has only a transitory effect

on economic performance, the effects of lagged temperature should reverse the contemporaneous effect. This

phenomenon would manifest in the contemporaneous β′ and lagged
∑L

�>1 γ� effects having approximately

equal magnitude but opposite sign (sign reversal).

The underlying identification assumption is that weather shocks, as identified by temperature fluctuations re-

sulting after controlling for a polynomial of precipitation f(Pi,t) and the relevant fixed effects, are exogenous.

If this assumption holds, then the estimated coefficients could be interpreted as the unbiased causal effect of

an additional 1◦C in temperature on firm economics performance. In terms of panel analysis and fixed effect

model identification, this can be expressed as an adapted strict exogeneity assumption:

E[εi,t | g(Ti,t), f(Pi,t), {h(Ti,t−1), . . . , h(Ti,t−L)}, δi, δ−i] = 0 ∀ t = 1, . . . , T (9)

As long as this assumption holds in the data, the estimates included in the β′ vector can be considered as the

causal marginal effect of an additional 1◦C on firm economic performance. Previous works have relied on

specific cases of the general identification strategy discussed in this section, with most analyses adopting the

specification outlined in the seminal paper by Burke et al. (2015). Building on the Dell et al. (2012) paper,

the authors model economic output as a quadratic function of temperature, allowing the marginal effect of

temperature to vary over the temperature support.

Since the nonlinearity allows the units means to re-enter the estimation, in this model the marginal effect of

increasing temperature is identified through both within-unit time series variation and between-units cross-

sectional variation (McIntosh and Schlenker, 2006). Hence, the nonlinear specification allows us to estimate

plausibly causal estimates of unanticipated short-term weather fluctuations, which incorporate adaptation re-

sponses to longer-term climate (Burke et al., 2015; Auffhammer, 2018). As highlighted by McIntosh and

Schlenker (2006), the nonlinearity produced in a quadratic functional form with fixed-effects can be disentan-

gled between a within nonlinearity (WNL) and a global nonlinearity (GNL)19. Nonlinear models with fixed-

19The WNL has a centering point for each fixed-effect and identifies weather deviations from the mean of

the fixed-effect group, whereas the GNL has only one centering point across the distribution of the weather
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effects accounting for GNL that fail to account for WNL when these are present are biased. Nevertheless,

Mérel and Gammans (2021) show that such bias becomes negligible when cross-sectional variation in climate

dominates locational weather fluctuations (within-units time series variation). WNL are potentially relevant

in a small-N long-T country-level context but are likely to be modest in a large-N, short-T firm-level context.

As highlighted in table 7, in the data of this analysis cross-sectional variation dominates time-series variation,

therefore the coefficients estimated by the nonlinear model accounting for GNL only are likely to be unbiased.

Furthermore, concerns have arisen since the resulting inverted-U relationship could potentially be driven by

the specific constraints that the functional form imposes on the parameters. In this analysis, I aim to identify the

functional form that most accurately captures the relationship between temperature and firm-level economic

performance. I employ post-estimation tests to determine the most appropriate order of the polynomial β′Ti,t

and the number of lagged temperatures to include in the model. I leverage two types of model selection criteria,

i) canonical econometrics in-sample Information Criteria (IC) and ii) Machine Learning out-of-sample Cross

Validation (CV). Appendix C discusses the main characteristics of these approaches. Given the large size

of my sample, and the amount of computational resources required for these analysis, I limit this analysis to

� = {1, . . . , 5} lags for each of the jth = {1, . . . , 4} order polynomials20.

The results from the model selection criteria reported in table 8 are straightforward. Model performance is only

marginally affected by the inclusion of higher-order polynomials, suggesting that they do not play a decisive

role in improving model performance. In contrast, a more pronounced impact is observed with the inclusion of

lagged temperature. However, selecting an appropriate order and number of lags presents a challenge, as both

the IC and the CV values tend to continuously decrease without offering a definitive choice, likely influenced by

the extensive sample size. Since direct comparisons based on absolute figures remains inconclusive, examining

relative changes provides more insightful and rational selection criteria, suggesting a preference for models with

two lags. This approach is similar to the elbow rule used in Machine Learning (e.g. clustering), where models

are assessed according to their marginal benefit (James et al., 2013).

Within each polynomial order, including a second lag leads to a reduction of AIC and BIC values by approx-

imately 25%, and CV means by approximately 10%. Further additions of lags result in diminishing returns,

with IC reductions ranging from roughly 19% to 17% and CV averages from roughly 3.5% to 1.9%. When only

models with two lags are considered, all the selection criteria tend to favour a second-order polynomial, due to

the most significant relative mean decrease by 0.00012%, 0.000057%, and 0.00944% for the AIC, BIC, and CV

respectively. A quadratic model provides adequate model flexibility minimizing overfitting risks. Moreover,

this model aligns with the established literature, facilitating comparisons with previous studies. Consequently,

this study adopts a quadratic model to explore variations in the marginal effects of higher temperature across

the temperature support. The model is defined as follows:

ΔYi,t = β′
(1×2)

Ti,t
(2×1)

+
2∑

�=1

γ′
�

(1×2)

Ti,t−l
(2×1)

+ ψ′
(1×2)

Pi,t
(2×1)

+ δi + λc,n,t + εi,t (10)

In this framework, the error term εi,t is likely serially correlated within a firm over time and spatially correlated

within a certain region. Such correlations may persist even after including the relevant fixed effects (Angrist and

Pischke, 2009; Cameron and Miller, 2015). To address these concerns, I cluster standard errors at the regional

variable and identifies deviations from the mean of the sample as a whole. The GNL implies that the marginal

effect of Ti,t on Yi,t varies across the Ti,t distribution, whereas the WNL implies that the marginal effect of

Ti,t depends only on how Ti,t moves away from the within groups mean Ti.
20I used a cloud computing system set with 2 cores of CPU and 80 GB of RAM, which ran for 4 days, 17

hours and 32 minutes.
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level since each firm in the sample is located in one and only one region. Therefore, firm-level clusters are

nested within regions. At this stage, another question naturally arises. Which is the optimal Nuts level the

standard errors should be clustered at. Cameron and Miller (2015) highlight the relevant trade-off, analogous

to the bias-variance trade-off common in estimation procedures21. Since large and few clusters have less bias

but more variance, I cluster standard errors at the Nuts 3 level, providing a large number of sufficiently large

clusters in both pooled and country-specific analyses.

Another issue related to these estimations concerns the potential non-stationarity of the variables’ time series

included in the analysis. If such series are non-stationary, the models become spurious as they are affected by

three major issues: first, the regression estimates are inefficient; second, the forecasts based on these regressions

are sub-optimal and; third, the usual significance tests on the coefficients are invalid (Granger and Newbold,

1974). A series

yi,t = ρiyi,t−1 + εi,t (11)

is non-stationary when ρi = 1. That is, the series follows a random walk and has a unit-root. When series

are non-stationary, they should be first-differenced when included in regressions. This issue has been raised

in climate econometrics by Burke et al. (2015)22. Newell et al. (2021) point out that the Burke et al. (2015)

specification is still spurious since it only accounts for the non-stationarity in the GDP series but not in the

temperature series, advocating that the temperature terms should be first-differenced as well. It is important

to note in this context that there exists a distinct difference between country-level and firm-level analysis.

Country-level works typically feature longer time series (T) and a lower number of entities (N), whereas firm-

level analysis are characterised by shorter T and longer N. In the small T case of longitudinal microeconomic

data sets, the time-series properties of the data are "a side issue that is usually of little interest" (Greene, 2003).

However, when T increases as the same rate as n (e.g. cross-country studies) these properties become a central

focus of the analysis. Although this paper falls into the first category (short T, long N), I conduct statistical

tests to check for non-stationarity in the relevant series for completeness. All these tests strongly reject the null

hypothesis of nonstationarity. The results of the tests and a detailed discussion can be found in section D.

Finally, to identify the heterogeneous economic impacts of higher temperature I interact the variables in equa-

tion 10 with different variables identifying firms characteristics

ΔYi,t = β′
(1×2)

Ti,t
(2×1)

+

2∑
�=1

γ′
�

(1×2)

Ti,t−l
(2×1)

+ ( β′
(1×2)

Ti,t
(2×1)

) · Ci,t + (

2∑
�=1

γ′
�

(1×2)

Ti,t−l
(2×1)

) · Ci,t+

ψ′
(1×2)

Pi,t
(2×1)

+ δi + λc,n,t + εi,t (12)

where Ci,t identifies firm i category in year t. The resulting marginal effects quantify the additional effect of

an extra 1◦C in yearly average temperature for firms in a certain category, relative to firms in the base category,

whose marginal effects are estimated by the non-interacted temperature variables. In the next section I initially

discuss results from the non-interacted model (the pooled sample) to estimate the average effect of temperature

21First, whenever the regressors and the error terms are potentially correlated within a cluster, the clustering

level should be sufficiently broad to account for such correlation. Second, the clustered variance matrix of β̂
approximates the variance matrix of β only as the number of clusters gets large. Hence, if the defined clusters

are too large, the resulting Vclu[β̂] is a poor estimate of V [β̂].
22They highlight how country-level GDP follows a random walk (ρi = 0.999) before being first-differenced
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fluctuations on firm economic performance, then I delve into heterogeneity analysis regarding different firm

characteristics, such as productivity category, size and industry.

4 Results
Empirical evidence has demonstrated that higher temperatures can impact firm economic performance through

various channels. For example, they can diminish labor supply through higher absenteeism (Graff Zivin and

Neidell, 2014; Somanathan et al., 2021), potentially due to relocation towards leisure or inability to work.

Higher temperatures also impair labor productivity (Graff Zivin et al., 2018; Somanathan et al., 2021), result-

ing from reduced cognitive or physical abilities. These impacts further extend to reduced capital productivity

and stock. As highlighted by Zhang et al. (2018), higher temperatures adversely affect machine productiv-

ity through diminished lubrication capability (Mortier et al., 2010), higher failure rates (Collins, 1963), and

reduced processing speed (Lilja, 2005). Unsustainable temperatures can also cause machinery breakdowns,

reducing capital stock. Damages to production may also arise from reduced material supply due to supply chain

shocks23. Additionally, impacts from higher temperatures can be indirect, involving increased energy or trans-

portation costs. Higher temperatures lead to more use of AC and refrigerators, resulting in higher energy and

fuel consumption. On extremely hot days, local aggregate energy consumption may exceed the grid’s capacity,

potentially causing blackouts and disrupting production. Finally, extreme weather shocks can directly reduce

the stock of materials, requiring substitution to continue production. These results from previous research can

be used to explain the empirical findings of this paper discussed in the following sections.

4.1 Temperature Average Damage, Timing, and Persistence
In this section I present and discuss empirical results for the model discussed in section 3 and the whole set

of dependent variables, such as GO, VA, TFP, L, K and cost of materials (M). The estimates presented here

represent the average effect across the pooled sample, which includes all countries and firms characteristics. To

mitigate bias from extreme values, I exclude firms located in areas falling within the top and bottom percentiles

of the temperature distribution. Table 1 reports the results from the quadratic model defined in equation 10.

According to these estimates, temperature does not seem to have a substantial effect on firms’ economic per-

formance. The marginal effects of temperature on the growth rate of these variables, in terms of percentage

points, are generally not statistically significant. Moreover, even when statistical significance is present - such

as for GO and K - the effects are economically negligible. The primary objective of this section is to explore

the timing and persistence of temperature impacts on firms’ economic outcomes.

The contemporaneous effect of temperature Ti,t is economically negligible and statistically insignificant across

all dependent variables except for GO and K. Given the similar magnitude of these two effects, K may be the

primary channel through which temperature shocks impact GO. The effect on K can be attributed to reductions

in capital stock being more readily observable by firms, and accounted for in their balance sheets. In contrast,

negative labor shocks, although likely to affect firm performance, are mitigated by rigid labor contracts that

are less responsive to short-term weather fluctuations. For Ti,t−1, the effects are generally not statistically

significant, indicating that past temperature shocks do not seem to have a lasting impact on firms’ performance.

Once again, the only exception is K, which consistently shows statistically significant estimates over time. This

persistence may be driven by the fact that negative shocks to capital are more difficult to restore, possibly due

to limited financial resources or greater financial constraints.

23While international supply chains may not be affected, many European firms depend on local supply

chains, shown by local economic agglomerates, hence likely impacted by local weather shocks.
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(1) (2) (3) (4) (5) (6)

ΔGO ΔV A ΔTFP ΔL ΔK ΔM
T 0.0098∗∗ 0.0043 0.0015 0.00063 0.0096∗∗∗ 0.0015

(0.0042) (0.0037) (0.0029) (0.0027) (0.0027) (0.0030)

T 2 -0.00040∗∗ -0.00024 -0.00013 -0.000066 -0.00035∗∗∗ -0.00011

(0.00016) (0.00015) (0.00011) (0.00012) (0.00011) (0.00012)

(�1)T 0.00078 -0.0056 -0.0029 -0.0088∗∗∗ 0.0097∗∗∗ -0.0049

(0.0051) (0.0048) (0.0045) (0.0024) (0.0032) (0.0040)

(�1)T 2 -0.00011 0.000031 0.000033 0.00011 -0.00034∗∗∗ 0.00012

(0.00021) (0.00020) (0.00018) (0.00011) (0.00012) (0.00016)

(�2)T 0.0047 0.0012 -0.00090 0.0011 0.011∗∗∗ 0.0049∗
(0.0042) (0.0045) (0.0046) (0.0023) (0.0032) (0.0029)

(�2)T 2 -0.00023 -0.000099 -0.0000044 -0.000024 -0.00037∗∗∗ -0.00015

(0.00020) (0.00021) (0.00020) (0.00010) (0.00013) (0.00014)

P -0.017∗∗∗ -0.014∗∗ -0.013∗∗ -0.0081∗ 0.0023 -0.017∗∗∗
(0.0062) (0.0072) (0.0065) (0.0047) (0.0038) (0.0060)

P 2 0.0057∗∗∗ 0.0049∗∗ 0.0044∗ 0.0018 0.0015 0.0055∗∗∗
(0.0022) (0.0025) (0.0023) (0.0018) (0.0012) (0.0021)

Constant -0.087 0.063 0.052 0.091∗∗ -0.17∗∗∗ 0.013

(0.073) (0.068) (0.060) (0.037) (0.052) (0.052)

Firm FE Yes Yes Yes Yes Yes Yes

Cou-Ind-Year FE Yes Yes Yes Yes Yes Yes

R2 0.16 0.14 0.12 0.14 0.15 0.15

N 43,010,224 32,189,101 18,442,532 25,570,937 38,146,624 31,095,285

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: Point estimates and standard errors from the regressions of weather variables on the growth rates of

GO, VA, TFP, L, K, and M. Results for the 2nd order polynomial model with firm and country-industry-year

FE, standard errors clustered at the Nuts 3 level.

As discussed in section 3, comparing the estimates over time helps to determine whether the impact of weather

shocks is persistent. If temperature has only a transitory effect, the effects of lagged temperature would reverse

the contemporaneous effect. This would be evident if the contemporaneous β′ and lagged
∑L

�≥1 γ� estimates

had approximately equal magnitudes but opposite signs. As shown in table 1, the linear estimates for Ti,t−1 are

positive for GO and K and negative for VA, TFP, L, and M, while those for Ti,t−2 are positive for all variables

except TFP. Although generally not statically significant, these results seem to suggest persistent growth effects

for GO and K, while VA, TFP24, L, and M exhibit more transitory effects due to the observed sign-reversal.

However, this finding may be reversed for firms located in warmer areas by the positive quadratic terms. To

better understand how these effects vary across the temperature distribution, the remainder of this section

presents the marginal effect over the temperature support, discussing the potential drivers of these differences.

Figure 4 presents the contemporaneous prediction 4a and the marginal effect 4b of temperature on the growth

rate of GO. For presentational purposes, I plot the results excluding the top and bottom percentiles of the tem-

perature distribution, although these firms are present in the estimated sample. Figure 4a presents the predicted

outcomes from equation 10, with temperature varying across its distribution while holding the other covariates

constant at their average values. The figure shows an inverted-U-shaped (concave) relationship between the two

variables, consistently with the findings from the existing literature. Firms throughout the temperature distri-

bution are associated with negative growth rates, with more pronounced negative effects observed in areas with

24Although the marginal effect of Ti,t−2 is negative for TFP, its magnitude is approximately zero.
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both lower and higher yearly average temperature. However, as marginal effects provide more valuable insights,

figure 4b reports the contemporaneous marginal effect of a 1◦C increase in temperature across the temperature

distribution. In line with previous research, the marginal effect of temperature is downward-sloping, though it

is generally economically insignificant. Moreover, since the relationship is flat in the middle, the overall effect

- combining the linear and quadratic coefficients - is generally statistically insignificant.
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(a) 2nd order polynomial prediction
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(b) 2nd order polynomial marginal effect

Figure 4: Contemporaneous prediction (a) and marginal effect (b) of temperature on the growth rate of GO.

Results from the 2nd order polynomial model with firm and country-industry-year FE, standard errors clustered

at the Nuts 3 level.

Figure 5 reports the lagged marginal effects of temperature on firm GO. The marginal effects of Ti,t−1 and

Ti,t−2 (figures 5a and 5b respectively) are downward-sloping and statistically not significant across the whole

temperature distribution, with Ti,t−2 generally larger in magnitude and exhibiting a steeper slope. Figure

17a highlights an inverted-U-shaped cumulative effect, where firms are associated with negative growth rates

throughout the temperature distribution. These predictions are either not statistically different from zero or

show large standard errors, reinforcing the conclusion that these estimates are not effective in precisely identi-

fying the effect of weather on firms’ performance.
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(a) lag-1 marginal effect

-.0
2

-.0
1

0
.0

1
.0

2
G

ro
w

th
 ra

te
 o

f G
O

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
5

Pe
rc

en
t

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Avg T (°C)

(b) lag-2 marginal effect

Figure 5: Lag-1 (a) and lag-2 (b) marginal effects of temperature on the growth rate of GO. Results from the

2nd order polynomial model with firm and country-industry-year FE, standard errors clustered at the Nuts 3

level.

The cumulative marginal effect reported in figure 17b is generally downward sloping, with positive (negative)

estimates in colder (warmer) areas, although statistically insignificant across the entire temperature distribution.

Despite being statistically insignificant, these estimates are consistent in sign, showing the lack of the so-called

sign-reversal and providing suggestive evidence for the presence of persistent growth effects. As discussed, the

marginal effect of temperature is heterogeneous across firms. In this paper, I argue that the overall null average
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marginal effect may be the result of these heterogeneous impacts, as further supported by the presence of large

standard errors, which motivates the empirical analysis presented in the following sections.

Previous literature has shown that such results are also driven by more developed or a higher penetration of

adaptation strategies. Firms more exposed to higher temperature face larger damages, and have larger incentives

to invest in adaptation. The results of this paper suggest that the European firms present in this sample seem to

be more likely to have already undertaken, and potentially completed, adaptation strategies. Firms can adapt to

higher temperatures by adopting air conditioning (Graff Zivin and Kahn, 2016), diversifying or transitioning

their economic activities to less-impacted sectors, or ultimately relocating their establishments to less-impacted

areas. Albert et al. (2021) provide evidence from Brazil of factor reallocation from agriculture and services

to local manufacturing (in the short-run) or to the same sectors in less-affected areas (in the long-run) due

to extreme dryness. As the authors study factors reallocation rather than firm decisions25, further research is

needed to explore these complementary strategies. Although relocation may not be considered as a form of

adaptation from a local perspective, as it results in a loss of GDP for that area, it could be a viable form of

adaptation from the firm’s perspective.

The results presented thus far pertain to the model proposed by Burke et al. (2015) estimated on the pooled

sample. However, the results from the pooled regressions are potentially confounded by the underlying het-

erogeneity in economic damages. Since the primary focus and contribution of this paper revolve around the

significance of accounting for heterogeneous climate damages, I conduct the heterogeneity analysis relying on

their established quadratic model, facilitating the comparison with previous work. Section E.4.1 focuses on

cross-country heterogeneity, highlighting differences in the damage function across countries, whereas next

sections delve into damages heterogeneity in terms of firms characteristics.

4.2 Heterogeneity Analysis
Several factors may contribute to temperature damages across firms characteristics. Firms operating in sectors

more exposed to temperature fluctuations, such as agriculture, mining, construction, are expected to be more

sensitive to temperature fluctuations than sectors with a higher likelihood of indoor activities and a greater

penetration of thermal control systems. Even within the same industry, more profitable firms are more likely

to undertake the adaptation strategies mentioned above, since they have both higher opportunity costs of not

adapting (in terms of lost profits) and more resources to invest. Firm size can also influence this dynamic.

Larger firms are not only more profitable, but they also face relatively lower adaptation costs due to economies

of scale (i.e. lower per-worker costs). Productivity levels may also influence firm climate damages. Even

within the same sector, more productive firms are more likely to rely on cognitive skills-based tasks, which are

less affected compared to physical tasks, and often conducted in temperature-controlled environments, or with

automated processes. These firms possess greater resources for adaptation as they employ fewer inputs for the

same level of output. Finally, they may have better managers, who are able to mitigate productivity declines

(Adhvaryu et al., 2022), likely to be more attentive, and to undertake investments in adaptation (Norris-Keiller

and Van Reenen, 2024). In the following sections I discuss the heteorogeneous effects of weather shocks on

firms’ performance by productivity levels, size, and industry estimated using equation 12.

25Factors reallocation could be determined by higher temperature but independent of firm decisions. For

example, households may decide to change industry or migrate to colder areas for personal reasons.
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4.2.1 Productivity Heterogeneity
This section delves into the analysis of potential firm-level damages by assessing whether firm-specific produc-

tivity levels impact firms’ responses to weather shocks. Figure 6 reports the point estimates for the regression

of the growth rate of gross output on a second-order polynomial of temperature interacted with firm TFP cat-

egory. The TFP categories are defined according to the firm average TFP percentile group, based on the first

two years the firm is available in the sample, which are excluded from the estimation to avoid violating the

strict exogeneity assumption (equation 9). Differently from the results on firm size, firm-level heterogeneity

is clearly visible already at the European level. The function of the marginal effect of an additional 1◦C in

Ti,t is upward-sloping in temperature for the three most productive categories, with positive values at high

levels of the temperature distribution. On the contrary, firms belonging to the 1st decile and the [10th; 25th)

and [25th; 50th) categories are characterised by downward-sloping marginal effect functions, with the least-

productive firms (1st decile) being remarkably negatively affected when located in warmer areas.
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Figure 6: Marginal effect of an extra 1◦C in contemporaneous yearly average temperature on the growth

rate of gross output (log) accounting for productivity heterogeneity (firm grouped according to average TFP).

Results from the quadratic model with firm and country-industry-year FE.

The dynamics between the least and most productive firms differ substantially across the temperature distribu-

tion. In areas with an average yearly temperature of 4◦C, an additional 1◦C in Ti,t increases the growth rate

of GO by 0.2 percentage points for firms belonging to the bottom (1st) productivity decile, and reduces the

growth rate of GO by 1.1 percentage points for firms belonging to the top (10th) productivity decile, although

this result is not significant. When considering areas with an average yearly temperature of 18◦C, an additional

1◦C in Ti,t decreases the growth rate of GO by −5 percentage points for firms in the bottom (1st) productivity

decile and increases the growth rate of GO by 2.6 percentage points for firms in the top (10th) productivity

decile. Although large climate damages estimates are not uncommon in the literature (Ricke et al., 2018; Bilal

and Känzig, 2024; Kotz et al., 2024), it is important to clarify that the estimates in this paper reflect the impact

of a 1◦C increase, whereas yearly average temperatures typically fluctuate by only a fraction of a degree.

The results for lagged temperatures Ti,t−1 and Ti,t−2 reported in figure 7 are largely consistent with those

for contemporaneous temperature Ti,t. The marginal effects of Ti,t−1 are predominantly negative across the

temperature distribution for all TFP categories, except for the most productive firms located in warmer areas

which are positively impacted. The effect ofTi,t−2 is similar toTi,t−1, although the estimates are not significant

or precisely zero for most firms located in colder areas. When considered collectively, the cumulative effects
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over the periods t = {0,−1,−2} highlight persistent, although economically negligible, negative marginal

effect for the most-productive firms located in colder areas and for the least-productive firms across the whole

temperature distribution, and positive persistent marginal effects for most-productive firms located in warmer

areas. Nevertheless, apart from the signs, the difference in magnitude between the marginal effects of the least

and most productive firms is substantial.

The persistent negative impacts of higher temperatures on the least-productive firms are not surprising. These

firms tend to be more vulnerable to temperature variations because they are more likely to operate in sectors

or engage in tasks that are more exposed to such fluctuations. Conversely, the most productive firms generally

have better managers who are more likely to undertake adaptation investments or reallocate production factors

to respond effectively to weather shocks. While these arguments explain why the most productive firms do not

exhibit negative marginal effects, they do not address the presence of positive effects. These positive effects are

potentially driven by a temperature-shock-induced reallocation of market shares and production factors from

the least productive to the most productive firms. Consistent with the concept of market selection, the least

productive firms experience significant negative shocks that likely decrease their competitiveness, leading to

such reallocation. In line with the Schumpeterian notion of creative destruction, this effect might be considered

economically efficient. Furthermore, lower factor misallocation leads to higher aggregate output (Hsieh and

Klenow, 2009). However, assessing the related macro effects, such as on aggregate productivity, is nontrivial.
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Figure 7: Lag-1 (a) and lag-2 (b) marginal effects of temperature on the growth rate of gross output in the

EU across different firm productivity categories. Results from the 2nd order polynomial model with firm and

country-industry-year FE, standard errors clustered at the Nuts 3 level.

Since these results are particularly striking when examining the effects on TFP growth (figure 27b), making

a connection to the firm convergence and inequality literature is natural. From a convergence perspective in

terms of TFP, higher temperature fosters convergence and reduce firm inequality for firms located in areas with

colder yearly average temperature, and at the same time, slows down convergence and exacerbate firm-level

inequality for firms located in areas with warmer yearly average temperature. The result related to colder areas

could initially suggest a positive, and potentially welfare-enhancing effect, to the extent that lower inequality

is usually associated with higher aggregate productivity growth and, consequently, long-run economic growth

(De Loecker et al., 2024).

However, in this case the reduction in firm inequality is not driven by a beneficial "catching-up" effect from

lagging firms, but rather by a detrimental "slowing-down" effect determined by leading firms. Consequently,

the net effect on aggregate productivity for firms located in colder areas is on average negative, and welfare-

reducing. Determining whether the marginal effect of temperature at the high end of the temperature distribu-
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tion is welfare-enhancing or reducing is more complex. Since the effect is positive for more-productive firms

and negative for low-productive firms, the assessment of the overall effect on aggregate productivity hinges on

the relative shares of these firms within the economy and across the temperature support.

Section E.4.4 delves into the heterogeneity of climate damages associated with firm-level productivity levels

by analysing potential differences across countries. Unlike the other sources of heterogeneity analysed in

this paper, the cross-country results focusing on firm-level productivity heterogeneity are consistent both with

those estimated for the pooled sample and with each other. In almost all countries, the least-productive firms are

negatively impacted by higher temperatures, whereas the impact on the most-productive firms is either positive

or not statistically significant. The consistency of results across different samples suggests that differences in

productivity levels are a credible source for identifying heterogeneity in firm-level climate damages. In addition

to being a reasonable metric to pinpoint heterogeneous marginal effects from an econometric perspective, the

identification of a single characteristic able to explain differences in economic responses to temperature offers

new opportunities to design tailored climate policies.

4.2.2 Size Heterogeneity
This section extends the discussion on the heterogeneity of the economic effects of temperature fluctuations to

firm characteristics, and firm size specifically, where size is defined with respect to the number of employees

in accordance with the European Commission classification. Figure 8 shows the marginal effect of an extra

1◦C in contemporaneous temperature on the growth rate of gross output for each of the size categories, at

different levels of the temperature support in the pooled sample. The results for this specification are generally

consistent with the aggregate marginal effect reported in figure 4, although in this case the estimates for small

firms located in warmer areas are negative and statistically significant. However, even when they are significant,

the point estimates are economically small and characterised by relatively large confidence intervals.
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Figure 8: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

(log) across different firm size categories. Results from the quadratic model with firm and industry-year FE.

The results for the marginal effects of lagged temperature align with the average marginal effect reported in fig-

ure 5. The marginal effect function forTi,t−1 shown in figure 9a is generally flat for all categories throughout the

temperature support. Notably, several point estimates tend to have large confidence intervals that span both pos-

itive and negative values, indicating that even within a specific size category, there are considerable differences
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in impacts among firms. The marginal effect function for Ti,t−2, presented in figure 9b, is downward-sloping

and mostly not statistically different from zero. Thus, in line with the cumulative average effects previously

discussed, these findings suggest the existence of persistent negative effects for small firms in warmer areas

and insignificant effects for the remaining firms.
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Figure 9: Lag-1 (a) and lag-2 (b) marginal effects of temperature on the growth rate of gross output in the

EU across different firm size categories. Results from the 2nd order polynomial model with firm and country-

industry-year FE, standard errors clustered at the Nuts 3 level.

The size-specific estimates based on the pooled sample of European firms are noticeably similar to each other,

suggesting a potentially consistent impact of weather fluctuations across different firm types. Thus, the firm size

category does not appear to disentangle the heterogeneous and potentially opposite effects that higher temper-

atures may have on firm performance. However, as emphasized in previous sections, the estimates based on the

pooled sample are likely influenced by other dynamics that tend to vary across countries, thereby attenuating,

or potentially counteracting, the real effect of higher temperatures. This highlights the importance of conduct-

ing a more detailed cross-country analysis to isolate potential heterogeneity driven by country-specific factors.

Section E.4.5 reports country-specific estimates analysing potential size heterogeneity in climate damages.

The results discussed in these sections are relevant for two reasons, i) they show that, coherently with other

strands of literature, focusing only on the average treatment effect could be misleading, as it likely overlooks

important heterogeneous underlying dynamics; ii) they have policy implications which could be accounted for

to design mitigation and adaptation policies. For instance, climate policies aimed at reducing the economic

damages of climate shocks could be designed to target more vulnerable firms and require larger efforts in

reducing emissions from better prepared or less affected ones.

4.2.3 Industry Heterogeneity
This section extends the discussion on the heterogeneity of the economic effects of temperature fluctuations,

with a focus on industry sectors. It is commonly believed that sectors like agriculture, mining, and, to a

lesser degree, manufacturing are more vulnerable to rising temperatures, while the service sector is generally

considered to be largely insulated from these effects. This is particularly relevant for developed countries,

such as those in my sample, where firms typically have greater resources to insulate their economic activities

against climate shocks. In this section, I present empirical evidence of industry-specific heterogeneous effects

by estimating the marginal effect of higher temperatures within each industry. These estimations are performed

by interacting the temperature variables with industry categories26. To enhance the clarity and informativeness

26This procedure requires substantial computational power, as the estimation requires 200 Gb of RAM and

runs for 167.5 hours.
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of the analysis, I aggregate the Nace Revision 2 level 1 industry into six broader industries.
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Figure 10: Marginal effect of an extra 1◦C in contemporaneous yearly average temperature on the growth

rate of gross output (log) accounting for industry heterogeneity (Nace 2 level 1). Results from the quadratic

model with firm and country-industry-year FE.

These broadly defined sectors are likely characterized by significant heterogeneity in underlying climate dam-

ages, affecting both statistical power and significance. Thus, in this section I only report the statistically sig-

nificant (at the 10%) point estimates. Figure 10 illustrates the resulting marginal effects of contemporaneous

temperature Ti,t, where the colours reflect the sign and magnitude of the point estimates. Figures 25 and

26 provide the whole set of coefficients and the relevant p-values, respectively. These estimates are gener-

ally positive (negative) in cold (warm) areas, and mostly characterised by downward-sloping industry-specific

marginal effect functions over the temperature support. However, these estimates are only significant for the

G-J (Wholesale, Retail, Transport, Accommodation & Food, Information & Communication) industry groups,

B-E (Industry - excluding Construction) in cold areas and O-U (Non-market Services) in warm areas.

The industry-specific estimates highlight a delayed negative effect of higher temperature on firm GO (figure

11), particularly with respect to Ti,t−2 in the warmer part of the temperature distribution. The marginal effect

of an extra 1◦C in temperature is negative and statistically significant for the sectors B-E and G-J, while it is

positive for F (Construction) and A (Agriculture Forestry and Fishing). The lack of significant effects for the

service sectors is unsurprising, as these activities are typically conducted indoors in temperature-controlled

environments. The negative estimates for sectors B-E and G-J are intuitive and align with expectations. These

sectors are characterised, on average, by a lower penetration of adaptation technologies, such as AC, and are

often more dependent on local supply-chain, which are also vulnerable to the same local weather shocks.

It is worth highlighting, especially for the wholesale and retail sectors within the G-J group, that tempera-

ture shocks can affect firm performance not only through supply-side impacts but also through a reduction

in demand. For example, customers may reduce outdoor shopping during periods of extreme heat. More-

over, a significant portion of the G-J sectors is comprised of industries related to tourism. The tourism sector

is particularly vulnerable to higher temperatures because it predominantly involves outdoor activities, limit-

ing adaptation possibilities. As a result, individuals may respond to rising temperatures by opting for cooler

destinations, further dampening demand.
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Figure 11: Lag-1 (a) and lag-2 (b) marginal effects of temperature on the growth rate of gross output in

the EU across different firm industry categories. Results from the 2nd order polynomial model with firm and

country-industry-year FE, standard errors clustered at the Nuts 3 level.

On the contrary, the outdoor Agriculture forestry and fishing (A) and the Construction (F) sectors are unexpect-

edly characterised by positive marginal effects. Given their outdoor nature and their limited adaptation options,

these sectors would typically be expected to suffer from higher temperatures. However, since these firms are

located in warmer regions, it is likely they have already implemented adaptation strategies. Additionally, the

positive marginal effects may be driven by increased productivity during milder winter temperatures, which

could offset the productivity loss during hotter summer months. This assumption is particularly relevant for

agriculture, where higher average annual temperatures can boost production—provided the number of grow-

ing degree days increases and the negative effects of extreme summer heat can be mitigated, at least partially,

through irrigation. This finding is supported by satellite observations showing vegetation greening in Europe

(IPCC, 2019)27. It is important to note that these agriculture-related results are specific to Europe and may not

align with global estimates, as irrigation capabilities vary significantly between regions.

The results discussed in this section disentangle different, and potentially opposing, heterogeneous effects

of temperature that are averaged out in the marginal effects estimated in the pooled analysis. Section E.4.6

delves into unravelling potential underlying cross-country heterogeneity in industry-specific marginal effects.

However, it is important to notice that many estimates reported in this section are not statistically different

from zero. This lack of effect is likely due to substantial within-industry variability in the relationship between

temperature and economic performance. Such variability may stem from either the genuine absence of a

significant effect or the limitation that the industry-specific focus may not be the optimal lens to identify the

relevant heterogeneity in the damage functions. Thus, further investigations within countries and industry

dynamics, such as those presented in previous sections, become necessary to fully understand the relationship

between temperature and firms’ economic performance.

5 Conclusions
This paper has presented and discussed estimates of economic damages induced by weather fluctuations based

on a novel sample of European firms, which allows disentangling the heterogeneity of damages that is other-

wise overlooked in aggregate analysis. This study delves into the Burke et al. (2015) specification, discussing

its identification strategy and addressing, in the firm-level context, the drawbacks highlighted in the recent

literature. Furthermore, post-estimation model selection criteria allowed us to identify the optimal functional

27Causes of greening include combinations of an extended growing season, nitrogen deposition, Carbon

Dioxide (CO2) fertilisation, and land management.
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form in terms of both polynomial order and the number of temperature lags. The preferred model is a 2nd

order polynomial in temperature and precipitation with two lags, ensuring flexibility while avoiding overfit-

ting. Additionally, the analysis explores the heterogeneity of climate impacts across countries and various firm

characteristics, such as average productivity, industry, and size. This is the main contribution of this paper.

Consistent with prevailing literature (Burke et al., 2015; Chen and Yang, 2019; Acevedo et al., 2020), the

empirical findings of this paper reveal an inverted-U-shaped relationship between temperature and economic

outcomes for the pooled European sample. However, the pooled estimates are statistically insignificant across

the temperature distribution, suggesting that Europe, as a whole, is insulated from the negative impacts of

rising temperature. The relationship unfolds divergently across countries, manifesting as either a U-shaped or

an inverted-U-shaped relationship. Notably, the UK stands out as the only country where the marginal effect

of an additional degree consistently manifests as negative across the entire temperature spectrum.

The analysis focusing on the heterogeneity across firm productivity levels highlights differential negative im-

pacts on the least productive firms, offering consistent findings across several countries. This result not only

yields empirical insights pertinent to the formulation of targeted adaptation strategies, but also bridges the gap

between climate economics and the broader literature on aggregate productivity and firm dynamics. Firm size

seems to be relevant only for small firms located in warmer areas, which are negatively impacted by higher

temperature. This study explores industry-specific effects, identifying certain sectors as particularly vulnerable

to weather shocks, while other seem to benefit from higher temperature.

Nonetheless, this analysis faces certain limitations. While the internal validity of the results is adequate, as

weather shocks — identified via temperature fluctuations after accounting for fixed effects — are plausibly

exogenous, the external validity remains limited. European firms may not be representative of global firms,

as they differ in resources and institutional frameworks for implementing adaptation policies. Considering the

inertia in climate mitigation, climate adaptation becomes paramount for upholding adequate living standards.

In this regard, the estimates presented in this paper pertain to the short- and medium-term economic damages

arising from variations in temperature. As the impacts of rising temperatures become more pronounced, firms

are likely to invest more substantially in adaptation, thereby attenuating their exposure to the effects of climate

change. Moreover, while this paper studies the effect of average temperature, it does not account for temperature

variability, a crucial factor for climate econometric analysis (Kotz et al., 2021; Linsenmeier, 2023).

The policy implications of this study may be profound. This work challenges prior research suggesting a lack

of impact of higher temperature in Europe, thereby questioning the prevailing idea that the European green

transition is purely motivated by between-continent equity reasons. Additionally, acknowledging the hetero-

geneity in climate impacts across firms emphasises the need for tailored climate policies. Taxation strategies,

differentially applied to firms benefiting from or unaffected by higher temperature, could serve as a mean of

redistributing funds to mitigate adverse effects on vulnerable firms. Furthermore, the paper highlights the im-

portance of productivity-boosting policies. As higher productivity is associated with a reduction in the negative

impacts of weather shocks, such policies have a dual benefit. Policymakers are urged to consider these findings

when formulating strategies for a smooth and equitable transition, ensuring that climate policies align with the

diverse vulnerabilities of firms in the European economic landscape.
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Appendix A Summary Statistics

Min Median Max Mean SD N

Number of employees 1 4 599305 26.794 526.592 37,897,527

Real GO (log) -2.488 12.847 24.654 12.858 2.151 66,624,037

Real VA (log) -0.053 12.195 25.442 12.288 1.700 45,214,411

Number of employees (log) 0.000 1.386 13.304 1.650 1.383 37,897,527

Fixed assets (log) -1.579 11.563 23.300 11.612 2.336 54,045,361

TFP -12.170 10.010 48.412 9.923 1.025 29,580,376

Yearly Average T (°C) -4.337 12.587 20.419 12.431 3.291 65,728,710

Yearly Total P (metres) 0.000 0.759 4.050 0.787 0.397 65,728,710

Table 2: Summary Statistics for different relevant variables. Source: Orbis and ECMRWF.

ISO 2000 2005 2010 2015 2020

AT 493 6,190 9,267 25,246 9,408

BE 72,783 23,138 40,275 35,342 25,896

DE 7,371 69,824 93,314 108,024 32,848

DK 17,583 31,672 26,845 22,393 16,120

ES 347,766 602,730 665,817 689,046 557,835

FI 49,816 76,884 129,014 139,635 107,334

FR 523,286 714,280 978,924 618,686 249,066

GB 235,576 279,813 213,585 167,831 111,439

GR 12,244 19,597 19,907 20,777 9,452

IT 119,876 504,692 791,868 827,547 715,271

NL 3,760 10,991 12,435 9,756 2,020

PT 27,157 223,522 257,219 273,756 284,717

SE 130,363 173,802 222,603 325,375 362,173

Table 3: Total number of observations by Country (ISO geographical areas). The full table can be found in

section A. Source: Orbis.
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year N N Gross Output (log) N Value Added (log) N TFP (log)

1995 656,621 591,665 542,279 279,366

1996 883,005 823,365 722,371 366,875

1997 1,045,997 985,232 843,321 443,899

1998 1,296,358 1,232,357 994,963 559,348

1999 1,485,683 1,412,575 1,103,118 629,826

2000 1,646,362 1,548,074 1,249,236 727,215

2001 1,835,993 1,727,571 1,390,185 828,491

2002 2,081,454 1,937,880 1,519,259 888,050

2003 2,219,480 2,069,497 1,605,060 941,844

2004 2,576,967 2,415,462 1,948,151 1,042,245

2005 2,911,944 2,737,135 2,195,722 1,097,520

2006 3,091,646 2,905,526 2,314,636 1,378,497

2007 3,308,823 3,135,639 2,392,973 1,404,696

2008 3,464,151 3,280,756 2,495,579 1,505,656

2009 3,588,731 3,409,268 2,554,797 1,477,139

2010 3,643,531 3,461,073 2,581,186 1,407,666

2011 3,735,318 3,551,701 2,604,474 1,584,527

2012 3,788,124 3,604,949 2,608,281 1,522,490

2013 3,786,527 3,597,167 2,561,094 1,524,940

2014 3,702,227 3,511,815 2,355,801 1,543,117

2015 3,454,506 3,263,414 2,292,146 1,495,081

2016 3,368,576 3,224,585 2,118,766 1,451,505

2017 3,389,864 3,241,926 2,121,372 1,460,616

2018 3,425,572 3,274,297 2,121,650 1,457,707

2019 3,350,003 3,197,529 2,073,633 1,432,013

2020 2,609,375 2,483,579 1,627,159 1,130,047

Total 70,346,838 66,624,037 48,937,212 29,580,376

Table 4: Total number of observations across all the European countries available in the sample after the

cleaning procedure. Columns 2 to 4 refer to observations with available GO, VA or TFP expressed in logs.

Whereas column 1 is the their union (observations with at least one of these variables available). Source: Orbis
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NACE2 1-digit 2000 2010 2020

A-Agriculture forestry and fishing 25,129 58,787 54,194

B-Mining and quarrying 4,923 7,174 4,560

C-Manufacturing 233,167 383,233 265,411

D-Electricity gas steam and air conditioning supply 4,129 21,133 23,767

E-Water supply sewerage waste management 5,905 14,921 11,703

F-Construction 201,733 498,560 300,410

G-Wholesale and retail trade repair of motor vehicles 385,209 744,214 485,038

H-Transportation and storage 58,885 124,987 97,082

I-Accommodation and food service activities 75,343 208,508 148,328

J-Information and communication 75,570 146,280 119,609

K-Financial and insurance activities 44,500 104,811 85,355

L-Real estate activities 120,510 335,598 252,419

M-Professional scientific and technical activities 138,312 365,279 295,435

N-Administrative and support service activities 72,921 161,534 115,258

O-Public administration and defence 395 915 632

P-Education 12,856 45,652 39,987

Q-Human health and social work activities 20,826 89,015 85,058

R-Arts entertainment and recreation 20,474 54,947 48,940

S-Other service activities 34,817 79,179 47,122

T-Activities of households as employers 12,418 16,145 3,161

U-Activities of extraterritorial organisations and bodies 52 201 110

Table 5: Total number of observations by industry, defined by the NACE 2 level 1 sectors. Source: Orbis.

Size 2000 2005 2010 2015 2020

Below 10 527,852 888,874 1,293,442 1,477,137 1,231,760

10 to 19 131,003 166,521 201,246 236,791 198,870

20 to 49 105,164 126,856 135,134 158,540 134,658

50 to 99 35,286 44,491 52,030 58,905 48,642

100 to 249 22,826 30,383 35,841 42,126 33,831

Above 250 13,535 18,950 22,569 26,951 21,316

Table 6: Total number of observations by firm size (European Commission classification). For presentational

purpose, I report a subset of the available years. Source: Orbis.
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(a) Number of firms

(b) Total gross output (billions of LCU)

(c) Total number of employees (thousands)

Figure 12: Descriptive statistics by Nuts 3 areas. Source: Orbis.
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(a) Average gross output (thousands of LCU)

(b) Average number of employees

Figure 13: Descriptive statistics by Nuts 3 areas. Source: Orbis.

35



(a) Number of firms (thousands of units

(b) Total gross output (billions of LCU)

(c) Total number of employees (thousands)

Figure 14: Descriptive statistics by Nuts 3 areas. Bivariate map of yearly average temperature on the X-axis

and main variable on the Y-axis. Source: Orbis and ECMWF.
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(a) Average gross output (millions of LCU)

(b) Average number of employees

Figure 15: Descriptive statistics by Nuts 3 areas. Bivariate map of yearly average temperature on the X-axis

and main variable on the Y-axis. Source: Orbis and ECMWF.
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Figure 16: Coverage of the aggregate economy from Orbis data in terms of number of em-

ployees. The values report for each country-year the ratio between the sum of the number of

employees for the firms available in my sample and the economy-wide number of employees.

By construction, values range between 0 (red) and 1 (blue). Source: EUROSTAT.

Min P1 P25 Median P75 P99 Max Mean SD

Within Dev 0.000 0.000 0.148 0.318 0.552 1.575 3.171 0.398 0.341

Between Dev -16.677 -8.541 -1.885 -0.005 2.493 6.050 8.078 0.000 3.252

Table 7: Distribution of firm-year temperature deviations from the mean of the fixed-effect group (within)

and from the mean of the sample as a whole (between). Source: ECMRWF ERA5-Land.
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Appendix B Coordinates Imputation
In addition to coordinates, Nuts, city, zipcode and street are also available, which I use to impute the coordinate

for the countries with available coordinates. The zipcode should not be used since the same zipcode sometimes

refers to different cities.

Clean and homogenise firm’ coordinate:

1. transform coordinates in degrees from the coordinates in degrees, minutes, seconds (consistent with

the weather data coordinates);

2. homogenise streets addresses by removing numbers;

3. drop all firm with missing city and coordinates as we cannot impute them.

Remove implausible coordinates using a shapefile at the Nuts 3 granularity:

1. using the shapefile at the Nuts 3 level from EUROSTAT, I create min and max latitude and longitude

for each Nuts 3 area;

2. merge the Orbis file with the shape file to obtain min and max coordinate for each Nuts 3 province;

3. for each firm, replace coordinate as missing if the coordinates lie outside of the min and max coordi-

nates.

Generate average coordinate by city and replace firm’s coordinates with city averages if the former is farther

than 0.25 degrees from the latter. This procedure is quite conservative since it would drop only observation

outside of a radius of approximately 25 km from the average coordinate in the city. Note that the average

coordinate does not refer to the geographical centre of the city, but this step is intended to remove largely

implausible values. At this stage, I impute firm’ coordinates based on the coordinates of firm located in the

same street in the same city. Given the resolution of the weather data (0.1◦), the imputation based on a city-

street level seems to be relatively reasonable:

1. Impute firm coordinates using the mode of the city-street coordinate;

• If multiple modes are present, I create min, max and average mode;

• If the difference | minmode − maxmode |< 0.25, substitute the mode with the average mode,

otherwise. If the difference | minmode−maxmode |> 0.25 firm in the city-street cluster are not

imputed;

2. Substitute the coordinate with the mode if the coordinate is missing.

Finally, I run again the Nuts 3 level cleaning based on the shapefile to drop potential mismatch.
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Appendix C Model Selection
C.1 In-sample Information Criteria
Athey and Imbens (2019) point out that "In most discussions of linear regression in econometric textbook,

there is little emphasis on model validation". In econometric model identifications, there may sometimes be

a tendency to overfit the model, assuming that this would better explain the variation in the underlying data.

However, the researcher has to trade off the improved fit to the current data with the increase in the variance of

the forecast error (Greene, 2003). That is, the ability of the model to fit the in-sample data and produce a good

out-of-sample fit. Although this issue is not of primary importance when estimating the effects of temperature

on historical data to identify past damages, identifying the right model becomes of crucial importance when re-

lying on the coefficients from such reduced-form models to produce climate damage projections. Additionally,

relying on more parsimonious models is beneficial for its interpretation.

A preliminary guidance in this regard comes from the adjusted R2, which differently from the R2, penalises

the model for the loss of degrees of freedom resulting from the inclusion of the new variables. However, it

is not conclusive whether this penalty is sufficiently large to identify the correct model as the sample size

increases (Greene, 2003). To potentially rule out this issue, Information Criteria (IC) have been introduced.

These are log-likelihood criteria incorporating degrees of freedom adjustments, essentially balancing model

fit measured by the maximised log-likelihood value and model parsimony incorporated into the degrees of

freedom adjustments. The most notable and used IC are the Akaike Information Criterion (Akaike, 1973)

and the Bayesian Information Criterion (Schwarz, 1978). Both measures reward an increase in the R2 but,

everything else constant, penalise more complex models (James et al., 2013). Hence, they favour models that

achieve a certain fit with a lower number of variables.

Neither criterion has obvious advantages over the other. However, the Bayesian Information Criterion includes

a larger penalty for the loss in degrees of freedom. Hence, would favour a more simple model28. This charac-

teristic of the BIC makes it consistent. That is, as the sample size gets large, the model selection criterion would

select the "true" model (or more likely its best approximation) with a probability approaching one. Consis-

tency is achieved through penalising the loss of degrees of freedom. However, although it penalises such a loss,

the AIC is not consistent even when the sample size gets large as the AIC tends to select "overparametrized"

models. On the contrary, the BIC penalises the loss of degrees of freedom more heavily, and it is consistent.

Nevertheless, this is not a conclusive argument. In fact, the AIC is asymptotically efficient whereas the BIC is

not.

Moreover, a model selection method is consistent if it asymptotically selects the correct model from a set of

possible models. On the other hand, a model selection method is conservative if it asymptotically always selects

a model that nests the correct model. The minimum-BIC-based model selection procedure is a consistent

model selection procedure, whereas a minimum-AIC-based model selection procedure is a conservative model

selection procedure (Leeb and Pötscher, 2005). In practical work, both criteria are reported and usually identify

the same model. When this is not the case, Diebold (1998) recommends using the more parsimonious model

selected by the BIC.

However, in the climate econometrics discussion Newell et al. (2021) highlight that in-sample fit information

criteria tend to select over-fitted models, especially when higher-order polynomials are included (Chatfield,

1996). Therefore, similar with Newell et al. (2021), I discuss and rely on model Cross-Validation (CV) as well

28For an extensive discussion on information criteria see Greene (2003), Cameron and Trivedi (2005)
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to assess the accuracy of different models in fitting out-of-sample data.

C.2 Machine Learning out-of-sample Cross-Validation
Cross-Validation (CV) techniques estimate different models on a sub-sample of the data, defined as the training

set. Their accuracy is then assessed by fitting the same model out-of-sample. That is, in a different subset of

the data excluded from the training set, defined as the test set. This procedure has advantages compared to

in-sample validation methods. It provides a direct estimate of the test error, and at the same time makes

fewer assumptions about the true underlying model (James et al., 2013). Information Criterion methods were

preferred in the past due to the high computational power needed by CV methods. However, nowadays CV

have become more widely accessible and therefore more attractive in econometric and statistical analysis. In

my specific case, although the number of predictors and/or models is relatively limited compared to other

Machine Learning tasks, the relatively large sample size requires a sufficiently performative machine and long

computational time. Specifically, I used a cloud-based high-performance computer set with 10 cores of CPU

and 100 GB of RAM, which ran for 3 days, 3 hours and 38 minutes.

One of the main methods used for CV is the K-fold CV method, introduced by Geisser (1975). The original

sample is randomly split into K equally-sized sub-samples (usually 5 or 10) and the model is assessed through K

iterations. In each iteration i = 1, . . . ,K, the ith sub-sample is used as the test set, whereas the complementary

(K − i) sub-samples are used as the training set. There is no replacement in the sub-samples, therefore each

observation is used (K-1) times in the training sets and only 1 time in the test set. Every model is estimated on

each of the K sets and each iteration provides a measure of predictive ability (i.e. the predictor quality), usually

the Mean Squared Error (MSE). The lower the MSE, the more precisely the model fits the out-of-sample data.

Therefore, the model with the lowest MSE should be chosen. For each model, the resulting CV measure is the

average of the K MSE:

CVK =
1

K

K∑
j=1

MSE(j) , (13)

with

MSE(j) =
1

N − kj

N−kj∑
i=1

(yi − ŷi)
2

. (14)

Where MSE(j) is the MSE for fold j, based on estimates excluding observations belonging to fold j. Once the

researcher identifies the preferred model through CV, the model is estimated on the full sample.

The K-fold CV method is applied by Newell et al. (2021), among forecats and backcats, in their CV exercise.

They find that model performance assessed through this method is largely invariant to how temperature is mod-

elled or whether it is excluded, with a RMSE varying by less than 1% across temperature functions. Noticeably,

the RMSE is insensitive to whether temperature lags are included or not and to the inclusion of GDP growth

or level effects. Moreover, the RMSE in their work is minimised for models including region-year fixed effects

and excluding parametric trends. However, they point out that "K-fold ignores the time-series nature of the

data and yields an optimistic estimate of the model fit if data are serially correlated. This is a relevant concern

considering that both economic measures and temperature are likely to be serially correlated.
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C.3 Model selection criteria results

Information Criteria Cross Validation

Akaike IC Bayesian IC Mean SD

poly 1 lag 0 96,246,866 96,246,929 0.69358186 0.00074038

poly 1 lag 1 96,246,868 96,246,947 0.69357927 0.00074092

poly 1 lag 2 71,755,475 71,755,569 0.61942618 0.00058512

poly 1 lag 3 58,126,088 58,126,196 0.59742817 0.00040273

poly 1 lag 4 47,867,591 47,867,713 0.58367275 0.00049614

poly 1 lag 5 39,709,263 39,709,399 0.57427776 0.00036762

poly 2 lag 0 96,246,596 96,246,675 0.69363934 0.00074288

poly 2 lag 1 96,246,457 96,246,568 0.69376047 0.00074541

poly 2 lag 2 71,755,388 71,755,528 0.61936773 0.00058616

poly 2 lag 3 58,125,968 58,126,138 0.59734969 0.00040642

poly 2 lag 4 47,867,460 47,867,658 0.58355948 0.00050144

poly 2 lag 5 39,709,128 39,709,354 0.57423643 0.00037318

poly 3 lag 0 96,246,506 96,246,601 0.69363498 0.00074250

poly 3 lag 1 96,246,366 96,246,508 0.69373925 0.00074524

poly 3 lag 2 71,755,382 71,755,569 0.61936904 0.00058617

poly 3 lag 3 58,125,947 58,126,178 0.59731763 0.00040354

poly 3 lag 4 47,867,443 47,867,717 0.58345314 0.00050233

poly 3 lag 5 39,709,092 39,709,409 0.57393991 0.00036960

poly 4 lag 0 96,246,500 96,246,610 0.69364369 0.00074306

poly 4 lag 1 96,246,343 96,246,517 0.69378355 0.00074678

poly 4 lag 2 71,755,265 71,755,499 0.61936615 0.00058748

poly 4 lag 3 58,125,798 58,126,091 0.59735727 0.00040871

poly 4 lag 4 47,867,263 47,867,614 0.58356162 0.00050331

poly 4 lag 5 39,708,932 39,709,340 0.57405486 0.00037542

Table 8: Results from the Model Selection Criteria analysis. The first two columns refer to the Akaike

and Bayesian in-sample IC, the remaining two refer to out-of-sample CV, where the 10-fold MSE mean and

standard deviation are reported for each model.
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Appendix D Non-stationarity
Although testing for unit-roots in time-series setting is common practice, its application to panel data is rela-

tively more recent. These tests are analogs of the Augmented Dickey Fueller unit-root test and, the resulting

statistics are averages of the bias-adjusted t statistics for each panel. An extensive discussion of the different

models and their specific issues can be found in Baltagi (2008). In this paper, I focus on two different tests

which are more appropriate for the characteristics of my data. The Im et al. (2003) test relaxes some require-

ments of previous tests by allowing ρi to be heterogeneous across panels and propose a testing procedure that

averages the individual test statistics. The null hypothesis is that the panel contains a unit root for all i (i.e.

H0 : ρi = 1 ∀ i), whereas the alternative hypothesis is that at least one of the individual series is stationary

(i.e. H1 : ∃ i s.t. ρi < 1).

One limitation of the Im et al. (2003) test in this context relates to the definition of the alternative hypothesis.

The presence of one stationary panel would lead the test to reject the null hypothesis, which is limiting with

high N. Choi (2001) propose a Fisher-type test that extends previous tests and relaxes this assumption among

others. When N is finite, this test is consistent against the alternative that at least one panel does not have a

unit root. When N is infinite, the number of panel which do not have a unit root should grow at the same rate

as N for the tests to be consistent. It is evident how this test is more appropriate for the panel of this study. In

the remaining of this section I will present and discuss results from both the Im et al. (2003) and Choi (2001)

tests.

The main criticism of the Burke et al. (2015) model raised by Newell et al. (2021) refers to overlooking the

nonstationarity of the temperature variables. Since, consistent with Burke et al. (2015), I include the dependent

economic variables in first differences (growth rates), these variables do not need to be tested. Therefore, I only

test the potential nonstationarity of temperature. On this regard, although the panels of my analysis are at the

firm-level, testing all these panels would not be feasible in terms of computational power. Hence, I conduct the

tests at the weather variable grid level. This is a reasonable approximation to the extent that the firm-specific

temperature values are a weighted average of the neighbouring grids.

Statistic p-value

Z-ttilde-bar -456.806 0.000

W-t-bar -334.724 0.000

Inverse chi-squared 242315.259 0.000

Inverse normal -247.420 0.000

Inverse logit -256.954 0.000

Modified inv. chi-squared 257.904 0.000

Table 9: Panel unit-root Augmented Dickey Fueller tests results. Test statistics and p-values reported. Source:

Copernicus Climate Change Service (C3S) ERA5-Land.

Table 9 reports the statistics and p-values of the various tests. The first row refers to the Im et al. (2003) test,

where multiple tests are run to identify the number of lags to include in order to account for serial correlation,

such that the Akaike (1973) information criteria is minimised. The average number of lags that should be

included across the panels is 0.54. The resulting p-value of this test is 0.0000, hence the test strongly rejects

the null hypothesis of nonstationarity. The remaining three rows refer to the Choi (2001) test, where, consistent

with the previous test, I include one lag to account for serial correlation. The inverse χ2 is the most relevant
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statistics in this case, since it is a transformation that is suitable for when N tends to infinity. Also in this case,

all tests have a p-value of 0.0000, hence rejecting the null hypothesis on nonstationarity.

This section has discussed whether the nonstationarity issue relevant in long T and short N country-level panels

highlighted in Burke et al. (2015) and (Newell et al., 2021) is relevant in long T and short N firm-level panels.

I argued that in this panel nonstationarity should not be a concern given the limited length of the time series

(Greene, 2003). Nevertheless, I formally tested the validity of this argument using the the Im et al. (2003)

and Choi (2001) tests that extend the Augmented Dickey Fueller unit root test to panel data. All these tests

consistently have p-values of 0.0000, strongly rejecting the null hypothesis of nonstationarity. Therefore, the

temperature variables could be included in the analysis in levels and not necessarily firs differenced, unless the

specific research setting requires that.
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Appendix E Additional Results
E.1 Additional Results Cumulative Effect
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(a) Cumulative response
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(b) Cumulative marginal effect

Figure 17: Cumulative marginal effects of temperature on the growth rate of GO. Results from the 2nd order

polynomial model with firm and industry-year FE, standard errors clustered at the Nuts 3 level.
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E.2 Additional Results Value Added
As for GO, the effect of Ti,t is generally not significant. The effect of Ti,t−1 is more pronounced, whereas the

marginal effect function of Ti,t−2 has a lower intercept (in absolute value) and a steeper slope than Ti,t−1. As

higher temperature in t − 2 negatively (positively) impact VA in areas with temperature below (above) 9◦C,

the effect of Ti,t−2 reverses the effect of Ti,t−1 in warmer areas and exacerbates it in colder areas as shown in

figure 18d.
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(a) Contemporaneous marginal effect
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(b) lag-1 marginal effect
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(c) lag-2 marginal effect
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(d) Cumulative marginal effect

Figure 18: Contemporaneous (a) lag-1 (b) lag-2 (c) and cumulative (d) marginal effects of temperature on

the growth rate of gross output in the EU. Results from the 2nd order polynomial model with firm and industry-

year FE, standard errors clustered at the Nuts 3 level.
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E.3 Additional Results TFP and Value Added Sample

(1) (2) (3) (4) (5) (6)

ΔGO ΔV A ΔTFP ΔL ΔK ΔM

T -0.0019 -0.0054 0.0071 -0.015∗∗∗ -0.0080∗∗∗ -0.0011

(0.0042) (0.0046) (0.0044) (0.0027) (0.0031) (0.0041)

T 2 0.00043∗∗ 0.00055∗∗∗ -0.000021 0.00068∗∗∗ 0.00044∗∗∗ 0.00044∗∗∗

(0.00018) (0.00019) (0.00016) (0.00012) (0.00011) (0.00017)

(�1)T -0.032∗∗∗ -0.053∗∗∗ -0.033∗∗∗ -0.023∗∗∗ -0.020∗∗∗ -0.025∗∗∗

(0.0029) (0.0048) (0.0039) (0.0020) (0.0024) (0.0029)

(�1)T 2 0.0011∗∗∗ 0.0013∗∗∗ 0.00061∗∗∗ 0.00083∗∗∗ 0.00082∗∗∗ 0.0011∗∗∗

(0.00021) (0.00026) (0.00020) (0.00012) (0.00012) (0.00021)

(�2)T -0.012∗∗ -0.024∗∗∗ -0.011∗∗ -0.014∗∗∗ -0.022∗∗∗ -0.0036

(0.0048) (0.0054) (0.0043) (0.0017) (0.0036) (0.0049)

(�2)T 2 0.00082∗∗∗ 0.0011∗∗∗ 0.00043∗ 0.00085∗∗∗ 0.00087∗∗∗ 0.00053∗∗

(0.00023) (0.00028) (0.00023) (0.000098) (0.00014) (0.00023)

P -0.00059 0.012 0.012 -0.0015 0.0051 -0.0040

(0.011) (0.014) (0.011) (0.0062) (0.0084) (0.011)

P 2 0.0046 0.0022 0.00036 0.0023 0.0032 0.0047

(0.0041) (0.0045) (0.0034) (0.0024) (0.0031) (0.0042)

Firm FE Yes Yes Yes Yes Yes Yes

Ind-Year-FE Yes Yes Yes Yes Yes Yes

R2 0.20 0.15 0.11 0.14 0.17 0.16

N 16203021 16203021 16203021 16203021 16203021 16203021

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 10: Point estimates and standard errors from the regressions of weather variables on the growth rates

of GO, VA, and TFP. Results refer to the subsample of firms with available TFP. Results for the 2nd order

polynomial model with firm and industry-year FE, standard errors clustered at the Nuts 3 level.
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(1) (2)

ΔGO ΔV A
T (°C) -0.00493 -0.00618

(0.00496) (0.00555)

T 2 (°C) 0.000347∗ 0.000368∗

(0.000191) (0.000219)

(�1)T (°C) -0.0268∗∗∗ -0.0394∗∗∗

(0.00323) (0.00473)

(�1)T 2 (°C) 0.000813∗∗∗ 0.000834∗∗∗

(0.000218) (0.000260)

(�2)T (°C) -0.00501 -0.0192∗∗∗

(0.00498) (0.00517)

(�2)T 2 (°C) 0.000530∗∗ 0.00100∗∗∗

(0.000232) (0.000261)

P -0.0177∗ -0.0176

(0.0102) (0.0121)

P 2 0.00905∗∗ 0.00914∗∗

(0.00370) (0.00410)

Firm FE Yes Yes

Industry-Year-FE Yes Yes

R2 0.180 0.133

N 28,359,459 28,359,459

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 11: Point estimates and standard errors from the regressions of weather variables on the growth rates

of GO and VA. Results refer to the subsample of firms with available VA. Results for the 2nd order polynomial

model with firm and industry-year FE, standard errors clustered at the Nuts 3 level. Note that the new sample is

constructed as the intersection between firms with available GO and VA, hence the total number of observations

is lower than those with available either GO or VA in the main regressions.
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E.4 Additional Results Heterogeneity

E.4.1 Cross-Country Heterogeneity
This setion focuses on cross-country heterogeneity. While results for all countries in the sample are presented,

the discussion focuses on France, Italy, Spain and the UK as they constitute the major and most relevant coun-

tries in my sample. I exclude Germany from the main discussion due to the previously discussed issues related

to the poor coverage in Orbis Historical. This applies to all sections focusing on cross-country heterogeneity

in the paper.

Consistent with Burke et al. (2015), the results from the quadratic model (equation 10) for Italy and France

in figure 20 show an inverted-U relationship. The predicted effect of temperature on the growth rate of gross

output is a smooth function which is negative at all levels of the temperature distribution for Italy and positive

for France, with a larger effect in magnitude at the two tails of the temperature distribution. Firms located in the

coldest and warmest areas have on average a lower growth rate of output than firms located in areas with milder

temperature. On the contrary, the response function for Spain reports a U-shaped and convex relationship,

characterised by positive predicted growth rates at lower temperature and negative rates at temperate and higher

temperature. Also in this case, possible explanations could be related to a higher presence of firms with specific

characteristics or to a higher level of adaptation. Interestingly, the UK is characterised by a downward-sloping

and linear relationship. In this case, the temperature support is particularly narrow, therefore the UK-specific

estimator is negatively impacted by the low variability in the variable of interest. Nevertheless, to understand

how much economic production is affected by increasing temperature, the marginal effects reported in figure

20 below are more informative.
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(b) Prediction FR
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(c) Prediction GB
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(d) Prediction IT

Figure 19: Predicted effect of temperature on the growth rate of gross output in Spain, France, Italy and Great

Britain. Results from the quadratic model with firm and industry-year FE estimated excluding the bottom and

top 1% of the temperature distribution.

Figure 20 reports the marginal effect of an extra 1◦C against the temperature support. As is evident, the
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marginal effect varies largely across Countries, being upward sloping for Italy (figure 20d) and France (figures

20b), slightly downward sloping for Great Britain (figure 20c) and upward sloping for Spain (figure 20a). An

extra 1◦C in yearly average temperature in Italy increases the growth rate of gross output by approximately

0.067 log-points (6.9%) for firms located in areas with a yearly average temperature of 6◦C and decreases

the growth rate of gross output by 0.051 log-points (5.2%) for firms located in areas with a yearly average

temperature of 18◦C. These effects may initially seem excessively large. However, it is unlikely that yearly

average temperature will increase by 1◦C in a year. Rather, they will increase by a fraction of 1◦C, and the

marginal impact will also be a fraction of the reported values. The results for France are generally consistent

with, although lower in magnitude than those for Italy. According to figure 20b the marginal effect of an extra

1◦C in yearly average temperature is generally not statistically significant. Nevertheless, it is still important

to consider the point estimates as they can provide insights on general trends. An extra 1◦C in yearly average

temperature has a positive impact of 0.004 log-points (0.4%) for firms located in areas with average yearly

temperature of 6◦C and−0.0065 log-points (-0.65%) for firms located in areas with average yearly temperature

of 15.5◦C.
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Figure 20: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in Spain, France, Italy and Great Britain. Results from the quadratic model with firm and industry-year FE

estimated excluding the bottom and top 1% of the temperature distribution.

The results for Spain reported in figure 20a differ substantially from those for Italy and France, although they

are consistent with the pooled-EU marginal effects. The estimated marginal effect of temperature on the growth

rate of gross output panel is increasing over the temperature distribution, although not statistically significant

above 15◦C. The marginal effect of temperature is negative for firms located at lower temperature and positive

for firms located at higher temperature. Specifically, an extra 1◦C in yearly average temperature has a positive

impact of −0.042 log-points (-4.3%) for firms located in areas with average yearly temperature of 10◦C and

−0.013 log-points (-1.38%) for firms located in areas with average yearly temperature of 19◦C. Moreover,

the UK is a peculiar case as the marginal effect is consistently negative and statistically significant over the

whole temperature distribution. An extra 1◦C in yearly average temperature has a negative impact of −0.051
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log-points (-5.2%) for firms located in areas with average yearly temperature of 8◦C and −0.057 log-points

(-5.8%) for firms located in areas with average yearly temperature of 11.5◦C.

The figure below report the marginal effects for the remaining countries. Results for these countries are char-

acterised by large confidence intervals, likely due to a lower number of observations, making these results not

statistically significant for most countries over a large part of the temperature distribution. The marginal effect

function is downward sloping for Belgium, Denmark, Finland, and the Netherlands. Apart from the Nether-

lands, the marginal effect is negative over the whole temperature support. On the contrary, the marginal effect

function is upward-sloping for Austria, Germany, Greece, Portugal, and Sweden. The function is characterised

by positive point estimates for all countries, with the exception of Austria and the colder areas in Sweden.
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(d) Prediction DK

Figure 21: Predicted effect of temperature on the growth rate of gross output in other European countries.

Results from the quadratic model with firm and industry-year FE estimated excluding the bottom and top 1%
of the temperature distribution.
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(d) Prediction PT
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(e) Prediction SE

Figure 22: Predicted effect of temperature on the growth rate of gross output in other European countries.

Results from the quadratic model with firm and industry-year FE estimated excluding the bottom and top 1%
of the temperature distribution.
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(d) Marginal Effect DK

Figure 23: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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Figure 24: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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E.4.2 Pooled EU additional results, industry heterogeneity
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Figure 25: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

(log) accounting for industry heterogeneity (Nace 2 level 2). Results from the quadratic model with firm and

industry-year FE.
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Figure 26: P-values for coefficients of figure 25 for the marginal effect of an extra 1◦C in yearly average

temperature on the growth rate of gross output (log) accounting for industry heterogeneity (Nace 2 level 2).

The heat map colours refer to the values of the point estimates. Results from the quadratic model with firm

and industry-year FE.
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E.4.3 Pooled EU additional results, productivity heterogeneity (VA and TFP)
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(b) Marginal effect TFP

Figure 27: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of value added (a)

and TFP (b) accounting for productivity heterogeneity (firm grouped according to their average TFP). Results

from the quadratic model with firm and industry-year FE.
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E.4.4 Country-level additional results, TFP heterogeneity
The country-specific damages heterogeneity related to the TFP categories reported in figure 28 are generally

consistent with both the country-level pooled analysis and the other sources of damages heterogeneity high-

lighted so far, with relevant differences between the analysed countries. Similar to the pooled results presented

in the previous section, the disaggregated country-level estimates related to TFP categories are unequivocal.

On the one hand, most productive firms seem to be generally shielded by, or even benefit from, higher temper-

ature across the whole temperature support, characterised by either positive or non-significant effects. On the

other hand, least productive firms are consistently negatively impacted across most countries and over a large

part of the temperature support.
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Figure 28: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

accounting for firm size heterogeneity. Results from the quadratic model with firm and industry-year and

standard errors clustered at the Nuts 3 level, FE plotted over country-specific temperature supports.

Specifically, in terms of the four countries discussed in the main body, least productive firms are significantly

negatively impacted by higher temperature across the whole temperature support in Italy (figure 28d), Spain

(figure 28a), and the UK (figure 28c). In France (figure 28b) this effect is negative only at higher temperature

and positive at lower temperature. Most productive firms instead, seem to be positively affected by higher

temperature over the whole distribution in Italy, and at high temperature in France and Spain. These "leaders"

firms are not significantly affected by higher temperature in the colder areas of Spain and in generally in the

UK. It is worth highlighting that, although the results in the UK are clear for least productive firms, they are

more uncertain for the other TFP categories. The results for the remaining countries reported in figures 29

and 30 are also consistent with both the pooled results and the previous country-level analysis. In general, the

marginal effect of an additional 1◦C in yearly average temperature is positive or not statistically significant for

most productive firms and negative, and usually statistically significant for least productive firms.
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Figure 29: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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Figure 30: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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E.4.5 Country-level additional results, size heterogeneity
Figure 31 reports the marginal effect of an additional 1◦C on the growth rate of gross output for the quadratic

model in equation 10 for different firm size in selected Countries. Consistent with the country-level average

estimates, there are notable differences across countries. It is worth starting the discussion with the results for

Italy as they are more evident than for other countries and help to provide the underlying intuition.

The size-specific results for Italy are generally in line with the average marginal effect reported in figure 20d.

The point estimates reported in figure 31d are not significantly different from each other at lower temperature.

Nevertheless, the coefficients become statistically different from each other at medium and higher temperature.

These differences are particularly evident in the two warmest sections of the temperature support. Moreover,

when focusing on the highest part of the temperature support an important result emerges. Although small

and medium firms are negatively impacted by increasing temperature, we fail to reject the null hypothesis of

a marginal effect equal to 0 for larger firms (more than 50 employees). That is, the marginal effect of higher

yearly average temperature is not statistically different from 0 at the 5% significance level. Specifically, the

impact of an additional 1◦C on firm gross output growth rate is−5.3% for the first category (below 10), −3.4%

for the second category (10 to 19) and −2.4% for the third category (20 to 49). The estimates for the three

largest categories are neither economically, nor statistically significant (at the 5% level).
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Figure 31: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

accounting for firm size heterogeneity. Results from the quadratic model with firm and industry-year FE and

standard errors clustered at the Nuts 3 level, plotted over country-specific temperature supports.

There are several reasons why larger firms may not be affected, on average, by higher temperature. First

of all, larger firms usually tend to have higher revenues and profits, which determine a lower relative cost

of implementing, and a larger opportunity cost of refraining from adaptation strategies. Examples of these

adaptation strategies are adopting or expanding air conditioning (Graff Zivin and Kahn, 2016), and improving

thermal insulation for the plants where production is carried out. Moreover, given their larger resources, these

59



firms can undertake more radical adaptation strategies, such as changing their economic activity towards less

impacted sectors or relocate to areas with milder temperature.

The results for the remaining countries in figure 31 are less clear than, and somehow contrasting with those for

Italy. Consistent with the aggregate results from figure 20a, the size-specific results for Spain reported in figure

31a show an upward-sloping marginal effect function over the temperature support across all firm size groups.

The point estimates are negative for all groups over the first half of the support. At higher temperature, they

remain negative for smaller firms and become positive for larger firms. The estimates are generally statistically

significant in the lower part of the temperature distribution and become insignificant at higher temperatures,

apart from the largest size group which seems to be not significantly affected by higher temperature over the

whole support. Although with substantial differences, the results for Spain seem to be coherent with those

for Italy to the extent that smaller firms seem to be negatively impacted by higher temperature, whereas larger

firms seem not to be impacted by, or even benefit from higher temperature.

The results for France and the UK reported in figures 31b and 31c respectively, are characterised by larger

confidence intervals and, therefore, larger uncertainty than those just discussed. Although the results for France

are consistently not significant over the whole temperature support and across all size categories, the estimates

for the UK provide insightful information nonetheless. The negative estimates, which are not significant for

the larger size groups at all levels of the support, become significant at the 95% level for the smaller groups.

Suggesting that, differently from larger firms which seem not to be affected by higher temperature, the evidence

indicates that smaller firms are negatively affected by higher temperature. Specifically, an additional 1◦C in

yearly average temperature reduces the growth rate of gross output for firms in the first (below 10) and second

(10 to 19) categories by -3% and -2.9% respectively.

The results for the remaining countries reported in figures 32 and 33 are generally consistent with the finding

that smaller firms tend to be more negatively (positively) impacted by higher temperatures when located in

warmer (colder) areas. Although with different level of statistical significance, these results are particularly

relevant because they show that even when located in areas with different absolute temperatures across coun-

tries, smaller firms tend to be more vulnerable to higher temperature when located in relatively warmer areas

compared to the specific country-level distribution. This has again implications for the pooled results since it

shows that the average effects estimated when pooling all firms together, average out different and often op-

posing effects within the same level of the temperature distribution. Therefore, relying on the European-level

results without acknowledging the underlying country-level heterogeneity, might lead to incorrectly infer that

size heterogeneity does not play a role in explaining climate damages.
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(d) Marginal Effect DK

Figure 32: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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Figure 33: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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E.4.6 Cross-country heterogeneity, industry-level
The marginal effect for Spain reported in 34a is a negative and upward-sloping function of temperature. The

results for France reported in figure 34b are generally not statistically significant and, within the set of industries

where the effects are positive. The United Kingdom is an interesting case because, as reported in figure 34c,

although only a limited amount of industries are significantly affected by higher temperature, those reporting

statistically significant estimates are considerably impacted. Finally, the results for Italy reported in figure

34d are consistent with the results from the pooled analysis, as they show the expected downward-sloping

marginal effect across all industries. In addition, in the Italian case, a significant share of the point estimates

is statistically significant. T
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Figure 34: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

accounting for industry heterogeneity. Results from the quadratic model with firm and industry-year FE and

standard errors clustered at the Nuts 3 level, plotted over country-specific temperature supports.

The industry-specific estimates for the remaining reported countries are not easy to interpret given the consid-

erable amount of country-industry-specific point estimates to take into account. The heat map colours are par-

ticularly convenient in this case because they provide a broad overview of the different signs and magnitudes.

The main result arising from the plots in this section is that industry-specific marginal effects are generally

consistently negative across countries, although with significant differences in magnitude as highlighted by the

different colour intensities.
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Figure 35: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

accounting for firm industry heterogeneity - estimates with a statistical significance of at least 90%. Results

from the quadratic model with firm and industry-year FE plotted over country-specific temperature supports.
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(d) P-values IT

Figure 36: Relevant p-values for the marginal effect of an extra 1◦C in yearly average temperature on the

growth rate of gross output accounting for firm industry heterogeneity. Results from the quadratic model with

firm and industry-year FE plotted over country-specific temperature supports.
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Figure 37: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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(e) Marginal Effect SE

Figure 38: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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Figure 39: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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(e) Marginal Effect SE

Figure 40: Marginal effect of an extra 1◦C in yearly average temperature on the growth rate of gross output

in other European countries. Results from the quadratic model with firm and industry-year FE and standard

errors clustered at the Nuts 3 level, estimated excluding the bottom and top 1% of the temperature distribution.
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